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Introduction.

In the theory of statistical hydrodynamies, which aims at a phenome-
nalistic description of turbulence, one of the principal problems is to de-
termine probability distributions of velocity fields and their time evolution.

This leads to the study of so-called Hopf equation introduced in [6].

But, in order to obtain full informations on the statistical nature of
turbulence, it is necessary to know the joint distributions of velocity fields
at several different times.

The equations satisfied by them, the necessity of which had been
pointed out by E. Hopf himself, are given and discussed by M. Visik and
A. Fursikov in [1].

On the other hand, the collection of all joint distributions is essentially
the same as a probability measure concentrated on the solutions of Navier-
Stokes equation. Such a measure is called a statistical solution of Navier-
Stokes equation.

The construction of statistical solutions in bounded domains is given
in [1] Chap. 4.

In this work we shall prove the existence of statistical solutions in
general domains, improving the method in [1] so as to be applied to arbi-
trary domains in RY.

§1. Statement of Theorem.

Let 2 be a domain in RY. In the sequel we shall frequently use the
space H ;. () (or simply 4, ,), which is defined as the completion of

V={usCs(2)¥; divu=0}

with respect to the norm

o= ) 0+1sl 3 Dz | e R, seN).

Iss
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We shall write 4, for 4(,, and H for H, Identifying K’ with 4
by means of inner product, we may regard 4 as a linear subspace of 4(..
The norm of 4, K and 4; will be denoted by | Il,, | | and | ||.; respec-
tively. Throughout this work, we shall assume s=[(n+1)/2].

For feL*0,T; %) we consider the following equation (variational
form of Navier-Stokes equation: cf. [3] p. 69)

% <u, vY +va(u, v) +b(u, u, v) ={f,d? Yoely (1)
where
B N ou; 0v,
a(u, v)—iljzilgg ox; 0x; de
N
b(u, v, w)= j%lgguk 7z, w,dx

v is a positive constant (viscosity).

We call u(t) a (individual) solution of (1), if we L=, T ; H)NL* 0, T ; K,
and satisfies (1).
The main result of this work is the following

THEOREM. Let p be a given (Borel) probability measure on K,
such that S\Iuondy(uo)<ooz’. Then, there exists a (Borel) probability meas-
ure P on Z=C0, T ; I )NL*0, T ; H) with the following properties.
1° yoP=p, where 7, is defined by you=u(0).
2°  There exists a Borel set W wn Z, consisting of solutions of (1) with

Sull measure: P(W)=1.
3° (Energy inequality)

d
N(1lmcrs Nl 7o+ [ S

ﬁmmg4u+wmmmw

L20, T; 45
(C is a positive constant which s independent of p).

P is called a statistical solution of Navier-Stokes equation with “initial
value” p.

Note. 1. Let E; (i=1,2) be a Banach space, which is a linear sub-

1) ¢,> denotes the pairing between 4 and 4]. Henceforth we shall use the same
notation to indicate the pairing between E and E’ for any Banach space E.

2) If the domain of integration is not specified, then the integral is taken over the
whole space.
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space of another Banach space E and for which the canonical injection
E,—FE is continuous.

Then, E,NE, can be identified with the closed subspace of E\DE, by
the diagonal mapping u— (u, u).

Thus it may be regarded as a Banach space, which is separable if E;
and E, are both separable.

In particular, Z is a separable Banach space, hence a polish space (ie.
a separable metrizable space which is complete with respect to a metric
compatible with its topology).

2. In the above situation, suppose E, is separable. We extend |ulg,
(the norm of E)) to E, setting |ulg,=oco for ue E\E,. Then |uls is Borel
measurable and hence its restriction to E, is also Borel measurable. This
is an immediate consequence of the classical theorem of Lusin:

Let f be a continuous injection of a polish space X into a Hausdorf
space Y. Then, for every Borel set B in X, f(B) is a Borel set in Y.

If f is mot mecessarily injective, f(B) 1s universally measurable, i.e.
u-measurable for every finite Borel measure p on Y.

(For the proof, see e.g. [4] Chap II.)

In case E=L1%0,T; %), E=L*0,T; 4, and E,=Z, the above result
implies the measurability of [ullz2c0,7:4p On Z.

Similarly |4 Lo, 7 y)—llm lullz2e.7;4> is also Borel measurable on Z.

In §3 it will be shown that IIdu/dtll 2o, ;4 18 P-measurable.

3. Let X,Y and f be as in the theorem of Lusin. For a Borel measure
v on Y, fu(A)=v(f(A)) defines a Borel measure on X (pull-back of v) by
virtue of that theorem. Then it is obvious that f~'fp=pu, where fu (image
of p) is defined by fu(B)=pu(f'(B))

In particular, p is uniquely determined by its image. They are often
identified and are denoted by the same notation.

Thus, when FE, is also separable, we may “compare” a measure on E,
and a measure on F,.

The proof of Theorem will be given in §3. Here we shall give some
of its consequences.

COROLLARY (Existence of individual solutions). For every u,e X, there
exists a solution of (1) with u(0)=wu, (more precisely, lim u(t)=wu, in I()).
tlo

PROOF. Let Wy=4HNy,W. Then we have
n(Wo)=ulyeW)=P(r5'r. W)= P(W) =

(Note that y,W is p-measurable and hence y;'y,W is P-measurable.)
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From this we can conclude that, for r-a.e. iy, there exists a solution
u(t) satisfying #(0)=w, In particular, taking 0,, (the point measure with
support {us}) as g, we see that, for every w,e .4, there exists a solution
with initial value wu,.

COROLLARY (uniqueness of a statistical solution). In case the uniQue-
ness of an individual solution is established, (for examnple, in case N=2),
a statistical solution with prescribed imitial value is also umique.

PROOF. See [1] Chap. 4 Theorem 6.

§2, Preliminaries.
LEMMA 2.1. For some constant C>0, we have
16(w, v, w) | S Cllwl(Tul ] vl lvl).

PROOF. See [3] Chap., 6.3. As a consequence, we have
b(u, v, w)=<Bu, v),w>  (w,veIH,weH;)

where B: I, X H,—H; is a continuous bilinear mapping. Similarly, there
exists a continuous linear mapping A: K ,— % such that <Au,vd>=a(u,v)
(u,ve K.

LEMMA 2.2. For r>0, the canonical injection 9,,— I is compact.

PROOF. We may restrict ourselves to the case 2=R". Let B a bounded
set in H,,. Then, for a given >0, there exists a finite number of ele-
ments in B:u, -+, %, such that for each we B, there is a j with
)
2
where Sy is the ball of radius R in RY with center at origin.

This is possible because the injection H(Sz)— L*(Sr) is compact.

As we can easily see, {u;} forms a e-net for Bin 4 if R is sufficiently
large.

This lemma ensures the existence of a complete orthogonal system {e,}
in 4 ,, which is, at the same time, an orthogonormal base of (.

We denote by E, the subspace spanned by {e, ‘-, en).

The orthogonal projection =, onto E, (in %), which is expressed as

||u—ujll< in Lz(SR)

m
T = .}31(% e)e;
=
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can obviously be extended to a continuous linear mapping from 4 irto En.
Moreover, as is easily seen,

m —> 1 (identity operator)

strongly in 4(, .
From this, in particular, follows

lznuls., < luls., . @)

In E,, we consider the approximate equation

Lt Atk + 7 Bty ) = (D).

LEMMA 2.3 (a priori estimate).

) Tun@1+5{ lunlides @ (lua@+ 17 1 )

=C1+lunl i“’(o. a0+ ”um“zz(o.:ﬁ;s{))
L2¢o, T;.!('s' »]

d
2) H dt “m
where C ts a positive constant which is independent of m.

PROOF. Since b(u, v, v)=0 for usH, ve I, we have

d
g P+ 20 [V =2, > S+ - 1124,
or

% llumHZ-FvHumeé2vllum||2+% IFIZs,

from which follows

d -2ut 2 -2vt 2 1 -2ut 2
W(e lunl?) +ve ? u,ll*< ¢ A2,
Integrating this, we obtain

t

ln 45 e funo)lide < Lm0+ L et £ e )
which proves 1). On the other hand, we have, by (1),
d
\ <W Uy 'U> \ = Vl <Aum) T I + | <B(u7m um); T | + I <f’ Tp) |

= Wlunlllznvli+lzav sl wnl 1wl + 1l zaol)
= Wlunli+Hlunlllwnll i+ 1A -Dzavlls., .
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Hence, in. view of (2), we have
[-Lwa . Solnli a1 51
dt m J('s,r_ mill m mil1 -1,
which gives

<| um”L2(o,T:J(1)+ Ul 2ooco, 7, 50> * U [l 220, 75 90

[
dt m L2¢0, T; 4y, )

+ ”f”LZ(o,T;J(’) .

Thus we have 2) for some constant C=C,,>0.

A priori estimate 1) ensures the existence of the unique solution of
(Dm unsC0, T; E,) with %,(0)=1u,.

By the continuous dependence of a solution on its initial value, the
mapping S, : E,—C(0, T; E,), defined by (Snu,)(t)=unr(t), is continuous.
Setting pn=rntt, Pn==Snpts, we have

LEMMA 2.4.

1) S<||u||zww,r;m+||unzz<o,r;ﬂl)>dpm<u>scg(unuonz)dﬂ

A\

where C 1s a positive constant which is independent of m and p.

de<u>scS<1+uuonZ)du(uo)

L2¢0,T; 45 )

PROOF. From Lemma 2.3, 1) follows
Mfwg I Smtholl®+ | Smtholl Eoco, 7300y < C(1+ 1 woll®)
s

for some constant C=C, r >0.

Integrating both sides with respect to u., we obtain 1).
Since P, is concentrated on the space of solutions of (1), we have

du
i F(u)+g(t) P,-a.e.
where F:C(0, T; E,)—C(0, T ; E,) is continuous and géLZ(O, T;E,).
Hence, there is a continuous function on C(0, T'; E,) which is equal to
ldu/dtll Lo, r; 5,5 Pm-a.e.. That is to say, the latter is P,-measurable.

Now, 2) is an immediate consequence of 1) and Lemma 2.3, 2).
Let
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L={ue Lm0, T; SN0, T3 90) s Gt L0, Ti 9]

Z,=C(0, T; K )NLX0, T'; Ho.-»)
(Here du/dt means the derivative of u in the sense of vector-valued dis-
tribution).

As was already mentioned in §1, L, and Z, are Banach spaces with
norm

du
= oyl . + } _—
llulz, %]l zooco, 7396+ 1%l 2co, 730> dt llz2o 7y,

lullz, = 1wl ceo,riay, o 1%l zeco, 7380 -1

respectively.
LEMMA 2.5. The canonical injection L,—Z,. 1s compact.

Proof proceeds along the same line as in [1] Chap. 4, §4. We have
only to observe that the injections 4(,—H, _, and H — 4 ;, are compact.
(Strictly speaking, the proof in [1] contains a defect. - But it is easy to
get rid of it). :

Let Ky be the closure of {u€L,; |ul,, <R} in Z,, which is compact
by virtue of the preceeding lemma. On the other hand, Lemma 2.4 shows

1 C
PuZAK) = 5\l aPow) s
(C is a constant which is independent of m).
Therefore {P,} contains a subsequence converging weakly to a measure

P on Z,, according to the theorem of Prokhorov :

Let X be a completely regular topological space, whose compact subsets
are all metrizable. Suppose that a family of probability Radon measures

M 1is tight, that is, for any >0, there exists a compact set K=K, such
that

P(X\K)<e for every PeM.
Then, any sequence wn M contains a subsequence which converges
weakly on X (For the proof, see e.g. [5] §5, Theorem 2).
For simplicity, we suppose P, itself converges to P.

3. Proof of Theorem.

In this paragraph it will be shown that the measure P constructed in
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§2 is in fact a statistical solution.

LEMMA 3.1. Let E be a real separable reflexive Banach space and
{pa} be a sequence of (Borel) probability measures on E, satisfying for
some r>0

florammsc w2y,
Then, there exists a Borel measure p on E, such that
Jietdue =c 3)

and, for a suitable subsequence {u,.}, we have

fnr —> fi on E’
where /:z(f)zge“f ' Pdyp(x) — characteristic functional of p.

PROOF. Since a closed ball in E is weakly compact, {u,.}, regarded as
a family of measures on E, (E, is the space E endowed with the weak
topology), is tight by the assumption.

Moreover, separability of E ensures the metrizability of weakly com-
pact sets. In fact, they are homeomorphic to subspaces of I (I is a closed
interval in R). We also note that since E is a polish space, p, is a Radon
measure on FE, hence a fortiori on E,.

Applying Prokhorov’s theorem, we are able to extract a subsequence
tn, Which converges weakly to some p on E,.

According to Lusin’s theorem, we have B(E)=B(E,) for a separable
Banach space (we denote by B(X) the og-algebra of all Borel sets in a
topological space X). v

Thus g is certainly a Borel measure on E. Because of the weak con-
tinuity of ¢*/'’ (f€E’), we see that g, —p on E’.

It remains to verify (8).

We take a countable dense subset {f,} in the unit ball in E’ (the re-
flexivity and the separability of E imply the separability of E’).

Let us denote by F, the linear subspace spanned by {f,, -+, f»}. Then, as
is easily seen, Ilelm:nﬂlsll)[(f, x>| is weakly continuous and [zlqy T 2zl as

n

n tends to infinity. Therefore, setting ouy(x)=l2liyv, AN, we have

\ex@du@ =1lim {pu(@du@) = lim | z17dp @ =C.
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Finally the theorem of Beppo Levi shows

fizlrd(o) = tim {pu(@)dp@ scC.

Example. Let E be a real separable (infinite dimensional) Hilbert
space and {e,} be an orthonormal base of E. Then u,=4,, (n=1) satisfies
(3) for any 7>0. In this case we have z,—8 on E.

But any subsequence of {u,} does not converges weakly on E, because
for a bounded continuous function ¢(¢) on R with ¢(0) #¢(1), we have

Sgo(llwll)d;zn(x)=<p(1) and Stp(!lx“)da(x)=<,o(0).

The preceeding lemma, with Lemma 2.4, shows that there is a Borel
measure P on E=L%*0, T; 4, satisfying

S||uuzz<o.r-,yl>dp’(u)ch(1+ l2tol1®)d e (1t) )

(C is as in Lemma 2.4) and P, — P’ for some subsequence {P,.}.
Since P,—P weakly on Z, we must have P=P’ (c.f. §1, Note 3)).
Similarly we have

Vi1 o700 P @) = CL (1 + sl Y et (5)
from which follows (by Fatou's lemma)

S||u1|zw<o,r;ﬂ>dp<u) gcga o) d ()

LEMMA 3.2. Let ¢, (n=1) be a uniformly equicontinuous function on
a Banach space E.

If ¢. converges on a dense subset of E, ¢, converges everywhere to a
uniformly continuous function.

Proof is easy.
Let

@, (u, v)= <u(t)— u(0), v) +S:<Au, vyde+ S (Blu, u), vyde

~\<hovde  elo, ) ©)
and let
ouv) = Se“’““’”’dP,,(u) n=1).
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As in the proof of a priori estimate (Lemma 2.8), we have
1D (u, v) | < C(llw ()| + u(0) | + Il 3eco, 7;00+ %l Fooco, 7250y F D W

Therefore Lemma 2.4 proves

lgon<v>~gon(vl>rggl¢t<u, v |dPo(w) < Clo—il,.,

(C is independent of n).
We shall next show that

lim Se”““'”’dPn(u):Sew“"'”’dP(u) for vedy. )

T —00

It suffices to verify that, for ¢t<[0, T'] and v/, @,(u, v) is continuous
on Z,.

The continuity of <u(t)—u(0), v> is clear. As for the second and the
third term in the right side of (6), it is seen from the inequalities:

Lo —
|, <aw, vrde| <oV T lulsc. sy - pl0

|}, <Bw, ), vrde | < luliz pn, - sup (14|27 V0.

REMARK. In the same way, we see that @,(u,v) is continuous in te
[0, T] for fixed weZ,, veCl and continuous in veCy for fixed usz,
telo, T.

Thus Lemma 3.2 proves that 1imSe“”“”'”’dPn(u) exists and continuous

on K., o
On the other hand, in view of the approximate equation (1),

D,(u,v)=0 P,-a.e. if veFE, and m=n.

Hence we have

lim Se“’tw'”)dl’n (w)=1 for »ve C_}lEn .

N —00

Since C) E, is dense in Y(,.,, this relation holds also for v& %(,,,.
n=1

Therefore from (7) follows
Seim(u,v)dp(u)___l (Q)ECV) s

which implies that, for every v»eC(/ and t<[0, T'], the distribution of
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@,(u, v), regarded as a random variable on Z,, is equal to § (Dirac measure).
That is to say,

?,(u,v)=0, P-a.e. . . (8)

Now, we take countable sets {t,} and {v;}, which are dense in [0, T']
and C{/, respectively. ‘
Then, from (4), (5), (8) and §1 Note 2, we see that

J 1

W= 0 (weZ, 0, v)=0NLH0, T; I)NL0, T; H)
is a Borel set in Z, and P(W)=1.
In view of the remark made above, for uc W we have
D, (u,v)=0 (telo, T),vecy).
That is to say, u is a solution of (1). Consequently, as in the proof of

Lemma 2.3, 2), we have, for ue W,

K%ti o) S Il Glul,+ lul lul 112,

from which follows

|du
dt

SCA+lullfeco, 790+ Hu”iuo,r;ﬂfl)) . 9
L2¢0, T; 4

This, in particular, shows that We B(Z), hence P may be thought to
be a probability measure on Z.

Let W.={ue L0, T:9(); du/dte L¥0, T ; H)}.

Then WC W,CZ and, since W, is polish, [[du/dtll 120, 7; 5 (=00 for ue W)
is Borel measurable on Z. Therefore, being equal to a Borel measurable
function P-a.e., |du/dtl e 14 (=00 if du/dte LX 0, T'; H7)) is P-measurable.

Now, energy inequality (Theorem. 3°) is a direct consequence of (4), (5)
and (9).

To accomplish the proof of Theorem, it remains to show y,P=p.

Let ¢ be a bounded continuous function H; Then we have

\otwd(roP) ) = | pu(0)aPw) = lim {puo)ar, w

=tim (g (ragde(u) = { () d et

Thus all assertions in Theorem have been proved.
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