The nonlinear transformation of Gaussian medasure on
Banach space and its absolute continuity (IT)

By Shigeo KUSUOKA®

1. Introduction.

Let (¢, H, B) be an .abstract Wiener space in the sense of the previous paper
[4]. Let F:B—B be a Borel map such that I;—F:B—B is bijective, and let
y=(Iz—F)'¢ be the image measure on B of p under (I;—F):B—B. In the
previous - paper [4], the author gave some sufficient condition on F for the image
measure y to be absolutely continuous relative to g. However, in the case where
B is a Banach space included in §'(R%), the space of tempered distributions over
R?, and g and v can be regarded as stationary ergodic probability measures on
S’(RY), g and v are identical or mutually singular. Therefore we can not expect
that v is absolutely continuous to z.

But even in the case where g and v are mutually singular, there sometimes
exists a sub-o-field F of B(B), the Borel field over B, such that ¢ is not so
small and the restricted measures gl¢ and vlg of # and v to the os-field & are
mutually absolutely continuous. The purpose of the present paper is to find such
a o-field ¢F.

Now let us show the results in our paper. Let H.®H, be an orthogonal
decomposition of H, and let &F; and & be the sub-o-fields of PB(B) generated by
Borel functions

(U, ->p; u€ HiNB* and {p{u, -y5; u€ HN B}

respectively. We will show in Theorem 1 that on some condition for F, H, and
H, there exist Borel maps =;:B—B and z,:B—B, and an G X Fo-measurable
function H:BxB->R such that for any bounded Borel function f defined on B,
the conditional expectation E.[f|F,] of f relative to the o-fleld ¢F, under the image
measure p=(Iz—F)¢ is represented by

exp HEz, 2)

ELAG 0= SBf(m'Z'warzz) S £(d2)

exp H(z, 2) p(d?)
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for v-a.e.2. We will also give the explicit form of H3, 2).

In Section 5, we will consider the stochastic non-linear pseudo-differential
equation introduced in the author [5]:

PD)X=bi(D,)X, - -+, qu(D)X)=W,

where W is a Gaussian white noise with d-dimensional parameter. We will set
some assumption for p, g, j=1,---,n, and b. It has been shown in [5] that there
exists a unique solution X for the equation on some assumption. Let Y=»{(D,)'W.
Then X and Y are S’(R%)-valued random variables. Let # and 5 denote the
probability laws of ¥ and X respectively.

For any domain D in R?, let &, denote the sub-o-field of the Borel field
Q(S’(Rd)) over S'(R%) generated by Borel functions {g(u,->s; e S(R% and
the support of u is contained in D}, and 9, denote the sub-o-field of B(S’'(R?)
generated by Borel functions {s{u, ->s; u € S(R% and the support of (p(D,)p(—D.))"*u
is contained in D}, where S(R% denotes the space of rapidly decreasing smooth -
functions. In the case where p(D,)p(—D,) is a differential operator, {Yp; D is a
domain in R% is an innovating system for {Fp; D is a domain in R% under the
probability measure 7 in the sense of Dobrushin and Surgailis [2].

Now let D be a bhounded domain in R? with smooth boundary, and let De°
denote the exterior of D. Moreover let 5(-|Jp¢) denote the conditional probability
measure of relative to the ¢-field (Jpe. Then we will show in Theorem 2 that
(1) the restricted measures fs, and 5ls, are mutually absolutely continuous, and
(2) there exists an Fpx Jpe-measurable function H:S’(R%) XS’ (R)—R such that
for any Ec ),

S exp H(w, w) f#(dw)
S(E| Y pe) (w) =—4E

— for s-a.e.w.
S exp H(w, w) #(dw)
SI

The author is grateful to Prof. Y. Okabe for his hearty encouragement and
useful conversation.

Notation.

For any Banach space E,E* denotes the dual Banach space of E and Iy
denotes the identity map in E.

For any Hilbert spaces H and K, _[~(H, K) denotes the Banach space con-
sisting of all bounded linear maps from H into K with the operator norm, and
LHH,K) denotes the Hilbert space consisting of all Hilbert-Schmidt operators
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with Hilbert-Schmidt norm.
For any o-fields &F and ', F V<’ denotes the o-field generated by & U,

—
<x>=\/1+ X;x? for any x=(%, - -+, %4) € R
=

2. The Borel maps =; and z,.

Let (#, H, B) denote an abstract Wiener space throughout this paper. Let H,
and H, be mutually orthogonal closed linear subspaces of H satisfying H=H,(DH,.
Let P, (resp. P,) denote the orthogonal projection defined in H onto H, (resp. Hj), °
and let B, and B, be the closure of H, and H, in B respectively. Now let B, be
a real separable reflexive Banach space such that H is densely, continuously in-
cluded in B, and B, is also densely, continuously included in B. Then it is clear
that B¢ is densely included in H, and that B*cBfcHcCB,CB.

We assume the following two assumptions through this section, Sections 3
and 4:
(A-1}) ByNnB,NB,={0}, and
(A-2) the orthogonal projection P,: H—H, is extensible to a bounded linear map
P,:B,—H,.

Then we get the following.

PrOPOSITION 2.1. B*NH,+B*N\H, is dense in B¥. Therefore B*NH,+B*NH,
is dense in H.
PrROOF. It is obvious that

B*NHy={uc B*; plu,z)p=0 for any z€ By},
and
B¥*N Hy={u€ B*; zdu,2>5=0 for any z¢ By}.

Then it is easy to see that

2.1) B,={ze B; p<{u,z>p=0 for any uc B*NH,},
and
(2.2) B,={2¢ B; p<u,2)p=0 for any uc B*NHy}.

(See Yosida [7, Appendix to Chapter 5] for instance.)
Now suppose that B*NH;+B*NH, is not dense in B¥. Then the Hahn-
Banach theorem and the reflexivity of B, imply that there exists some z¢ B,
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such that 2%0 and iU, 2Dp,= 5<%, 2)p=0 for any we B*nHy+B*NH, Thus
it. follows from (2.1) and (2.2) that z€ B,NB;NB;. But this contradicts the as-
sumption (A-1). This completes the proof.

For any subspace E of H, let P(E) denote the set of all orthogonal projec-
tions on H with a finite dimensional range contained in E. It is easy to see that
any projection P, P¢ (P(B*), is extensible to a bounded linear map from B into
B*, which will be denoted by P.

Take such sequences {P{"}i, and {Pi"};z, of increasing orthogonal projec-
tions on H that (P>, c P(B*NH,) and {P§{P}2,c P(B*NH,), and that PPt P
and Pé’” 1 P, strongly as n—co, and fix them through this paper. The existence
of such sequences are guaranteed by Proposition 2.1.

DEFINITION 2.1. We define a Borel subset J)(z,) of B by
Dix)={zc B; (P2, is convergent in B},
and a Borel map m; : §)(z)—B; by nlzzii_g Pimz for each z€ Q).
We define a Borel subset §)(r,) of B by
Dlr)={z€ P(zy); 2—mz€ By},
and a Borel map =, : §)(r;)—>B; by mz=2—m2 for each z¢ Qr). -

PROPOSITION 2.2. (1) Qi) and iz, are linear subspaces of B, and
71 Dir) =B, and w5 1 Gir)—B, are linear. )
B,C Plr) = Pixy) and mz=Pz for each ze By
B,c )y}, and 7,2=0 and nzg=2 for each z€ B,.
If zc Qixy), then mze QPlxy), mmz=rz and wamz=0.

EV D

PROOF. Our assertion (1) is obvious. It is clear that Ph=P®» Pk and
55U, h— Pihyp =0 for any he H and we B*NH;. Thus we get for any z€ B,,

lim P{"z=lim P{"Piz=P;z and p{u,2—Pyz)g,=0

7—>00 " o

for any w€B*NH,. Therefore by (2.2) we see that z¢ Dizy), mz=Pz and
z—Pizc B, for any z€ B,. This proves our assertion (2.

It is obvious that P{®2=0, n=1,2, ---, for any z€ B,. This proves our as-
sertion (3). Let z¢€ Q)z,). Then we see that

Pwg z=lim PWPme=Pws n=1,2,.--

Mm—>CO

H
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which shows our assertion (4). This eompletes the proof.

PrROPOSITION 2.83. (1) p(Qix))=p(D(=))=1 and Pmz—srz in B, N0, for
pa.e z€ Jxy). ‘
(2) The probability law on B of mizi+mze under pdz)Q@u(dz:)- is equal to p.
That is,

B

I, St mde@pidz)= | S

for any bounded Borel function f on B.

PROOF. By virtue of Carmona [1], we see that {P{™z}, and {P{ 2}, are
convergent in B for p-a.e.z, and that P{®z+P{z—z in B, n—co, for g-a.e.z.
Thus we have z(Q(ry))=p(D(x,)) =1 and P{z—ryz in B, n—co, for p-a.e.z€ (x,).
This proves our assertion (1). _

Let f be a bounded continuous function defined on B. Since Bwz and Pz

are independent under g(dz), we obtain

S f(P{“’z1+Pé”)zz)p(dzl)®#(dzz)=S FPPMa+ P2 p(dz).
BXB B
Letting n—o0, we have got

L Bf<n1z1+azzzm(dzl)@p(dzz)=5Bf(z>u<dz).

This completes the proof. ,
‘The probability measure on B, (resp. B,) induced by g through z,: P(m:))—B
(resp. w3 : G(zy)—B,) will be denoted by g, (resp. p,).

3. The o-fields &, and <F,.

Let &, (resp. &, denote the sub-o-field of B(B), the Borel field over B,
generated by Borel functions {z<u, ->p : Bo>R; uc B*N Hy} (resp. {p<{u, -5 : B—>R;
uwc B*NH,)). For each probability measure v on B, J], will denote the s-field
generated by v-null sets, i.e. Jl,={A; Aisa subset of B and there exists a Borel
subset C of B of v-measure zero such that AcC or B\AcC}.

ProposiTioN 3.1. (1) If g: B—R is SFi-measurable, then g(z+2')=g(z) for
any z€ B and 2’ € B,. »
(2) If g: B—>R is Fy-measurable, giz+2')=g(z) for any z€ B and 2’ € B,.

PrROOF. It is clear that if we B*NH;, then p<u,z+2">p=plu, 2>y for any
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2¢B and 2/ ¢ B,. Thus we get our assertion (1) by the definition of the o-field
F,. The proof of our assertion (2) goes similarly. This completes the proof.

Let F: B>B, be a Borel map such that I;—F: B—B is bijective, and let
y=(I;—F)~'z be the image probability measure of y under (I;—F)™: B—>B. Then
we have the following.

PROPOSITION 3.2. (D)) =v(P(zs))=1.
ProoF. It is clear that
(3.1) (Is—F)'z=2z+F(Iz—F)'z for any z¢ B.

Thus it follows from Proposition 2.2 (1) and (2) that (Iz—F)'Q(x,)=J(xs). This
and Proposition 2.3 lead to our assertion. .

PROPOSITION 8.3. (1) If f: Bi—R is a Borel function, then flz;-): Q)R
is & -measurable.

(2 If f: B,~R is a Borel function, then flns-) : Q(w.)—>R s G,V Il-measurable.
@) F1vVLENVIL=BB)V I,

PRrOOF. It is obvious that §)(x,) € &, and f(ﬂlz)zlig.} fIP™z) for any z¢€ Q)
and any bounded continuous function f defined on ”B This shows our assertion
).

Next let us prove our assertion (2). By virtue of Proposition 3.2, we see
that Q(zz) € Jlo. Let i be an arbitrary element of B} and g : B,—~C be a con-

tinuous function given by g(w):exp(«/—_lgg(ﬁ, wpp,) for each we B,. The Hahn-
Banach theorem implies that there exists some =€ B* such that g(w)=
exp(V —1 plu, wdz) for any we B,. Observing u € B¥*CB§, we see by Proposition
2.1 that there exist sequences {v,}o,CB*NH, and {u,}m1CB*N H, such that

(3.2) Vpt+U, —> u in B, n—oo.
It is easy to see by (2.1) and (2.2) that

(3.3) B¥Unt Uy T32) = p+{Uin, TR = U, 20
for any z¢ Q(x,).

Let g, : B—~C be a function given by g.(2) =exp(V —1p«t,, 2p5) for any z€ B.
Then it is obvious that g, is ,-measurable. It follows from Proposition 2.2,
Proposition 3.2, (3.1) and (8.3) that

L |(:2) — g4 () o (d2)
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lexp(V —1 gt — (U +0,), 742 5) — 1|v(d2)

D(rg)

j lexp(V =1 et — (tn +0), w2+ (Igy — PO F(Ig— F) 2 ) — 1| elde)

9 (mg)

lexp(v —1 gt — (Un+,), 22)5) — 1| p(d2) -

IA

9(xy)

+§ lexp (V' —1 ol — (Uat+0,), (Ig,— PO F(Ip— F)7'2)5,) — 1| p(d2).
B
Proposition 2.3 implies that
j lexp(v =T gt (u+v,), ma2s)— 1]2(d2)
9D(mg)

1/2
s{S |B*<u—<un+vn),n2z>312p(dz>} = | Py(tt— (2t 9, 1.
Ding)
Therefore by (3.2) we see that

L |g(ms2) —ga(2)Iv(d2) — 0 as n—oco.

This shows that g(z:') : Diz)—~C is G,V Il,-measurable.
Let V be the set of linear combinations of

{cos(ayu, *>z,), sin(pglu, ->z,); u€ Bi}.

Then g(ry+) : P(z)—R is G,V Jl.,-measurable for any gc V. Let f: B,—R be a
bounded continuous funetion and let C=sup{|f(w)|; we B;}. Since the image
measure w on B, of v under =, : §)(r,)—~B is a Radon measure, there exists a
sequence {K,}o_, of increasing compact subsets of B, such that z,w(B,\K,.)—0 as
m—oo,
By virtue of the Stone- Weierstrass theorem, we see that there exists a se-
quence {f,}2,CV such that f.(w)—f(w), n—co, uniformally for we K,, m=1,2,
.. Let f, : B,.>R,n=12, ~--,be functions given by f.(w)=min{C, max{—C, f.(w)}}
for each we B;. Then it is obvious that flzs) : D(x)—R is F,VI],-measurable,
and we get

S()]f(ﬂzz)—fn(frﬂ)lv(dz)=g | ) = Folaw) | mw(dte) —> 0, m—soo.

By

Therefore fiz,+) : D(zs)—R is F,VI],-measurable. This proves our assertion (2).
Our assertion (3) follows immediately from our assertions (1), (2) and the fact
that z=m2+m,2 for any z€ g)(z,). This completes the proof.
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4. Gibbs representation of (Ip—F)7'p.

In this section we assume that a Borel map F: B—B, satisfies the following
five assumptions.
(F-1) F(z+h)—F(z) € H for any z€ B and he H, and there exists a map DF : B—
_[=(H,H) (not necessarily Borel) such that | P(z+1)— F(z) — DF ()l a=0(lhlx),
Ihla—0, and DF(z-+-) : H—~_{°(H, H) is continuous for any z2€ B.
(F-2) Iz—F: B—B is bijective and Iy—DF(z) : H—H is invertible for any z¢ B.
(F-3) P,DF(z) : H~H and DF(z)P,: H—H are Hilbert-Sehmidt operators for any
2€ B, and P,DF(z+-) : H->_{*(H, H) and DF(z+-)P; : H—_[*(H, H) are continuous
for any z € B.
(F-4) I;—F,: B—B is bijective, where F, denotes a Borel map (IBO—PI)F : B—B,,
and I,—P,DF(z) : H—H is invertible for any z€ B.
(F-5) For any z€B and z¢ B, Fla+z)—F(z) € H and DF{z+2)—DF(z) : H-H is
a Hilbert-Schmidt operator, and moreover DF(x+z+-)—DF(z+Py-) : H—_[*(H, H)

is continuous.

REMARK 4.1. Since F: B—B, is a Borel map and _[*(H, H) is a separable
Hilbert space, P,DF(-):B-_{*H,H), DF(-)P,: B—>_[*H,H) and DF(x+-)—
DF(-): B—_{*(H, H),x € B,, are Borel maps.

Let H{ : B,XxB;—~R, n=1,2,---, be Borel functions given by

H (%, y)=p{P™ (Flo+y)— Faly), o+y—Foy)p
—tracey, P™ (DF(x+y) — P,DF(y) Py)(In— P, DF (y) Py)
for any x € B, and y€ B,, where P®=P{"+P{". And let v=(I,—F)'p.
The following is our main result.

THEOREM 1. (1) There exists « Borel function H,: ByXB,—~R such that
H$ (x, y)—Hy(x, y), n—oo, in probability with respect to mip(de)Q@rqv(dy).
(2) For any bounded function f: B—R, the conditional expectation E[f|F,] of
f relative to the o-field F, under the probability measure v 18 given by

E»[fl?fz](Z)=S Pt SPHEETA) g
: S oxp(H(r:3, :2)) (d%)

B
Jor v-a.e.z, where

Hiz,y)=Hy,y) ——;—HF(M-@/) — Fy(y) % +1og|0u((Iz— DF (@ +y)) (In— P.DF(y) P,) )|

for each x€ B, and Y€ B,.
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Here 65(A) denotes the Carleman-Fredholm determinant of an operator A : H->H
{(see [4, Definition 6.1] for the detail).

In particular, the restricted measures p|s, and vlg, of x and v to the o-field
¢, are mutually absolutely continuous.

REMARK 4.2. Suppose that
[(DF(%+y) — P,DF(y) Py) (Iy— P DF (y) Py) || co g, <1

for any 2€ B, and y€ B,. Noting that
5H<IH—K)=exp<—n>§2 % tracey K» ) Ke [*H, H)
such that | K| ou.m <1, we get
Hiz, y)=Hilo, v)—5 | Flo-+4)— Faly) I
-3 % tracey [(DF(z-+v) — P,DF(y) Py)(Iy— P, DF(y) Py)].

We will prove Theorem 1 in several steps.
Step 1. TFirst we prove the following.

ProposiTION 4.1. (1) The image of F,: B—B, is contained in By,
(2) IBZ_FZ . Bz—)Bz 18 biject’i?)e.

Proor. (1) is obvious. For any u € B,, there exists v € B such that (Iz—F,)v=u
by the assumption (F-4). Since v=Fyw+uc B, we see that Iy,—F,: B,—B, is
surjective. On the other hand, the injectivity of I;—F,: B—B leads to that of
Iy,—F,: B,—>B,. This completes the proof.

Let G,: Bi®B,~B:DB; and G, : BiBB,~>BDB, be Borel maps given by

(4.1) Gz, y) =z, y— Faly)
and
(4.2) Gz, y) =(GP (x, v), G2 (x, ) = (@ — P F(x+y), y— Folz +u))

for each (z,¥) € B®B,.
Then we have the following

PROPOSITION 4.2. (1) Gy: BiPB,—~>B,®B, is bijective.
(2) G: BO®B,—~>B(DB; is bijective and
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sz, y) =@+ P FIz—F) (@+y), y+ Fa(l— F) (2 +9)
Jor any (x,y) € BiDB,.
@) Gz, y)+GP (@, y)=I—F)(@+y) for any (z,y) € BiOB..

PROOF. The assertions (1) and (3) are obvious. Let us prove our assertion
(2). Let J: Bi@B,—>BiPB; be a Borel map given by

J(@, ) =T @, v), ] (@, 9) =@+ P F(—F)e+y), y+ Follz— F) 7 (z+9)
for any (x,y) € Bi®B,. Then it is obvious that

T (@, )+ IO, y) = T— F) (@ +9).
Therefore we get

JoGy(, y) = (G (x, y) + PLF (@ +v), GP (%, y) + Felz+y)) = (@, ¥),
and

Good (@, y) =TV (x, y) — P,F(Iz— F) "z +y), J? (@, 9) — Fo(Is—F)(z+y)) =(, y).
This completes the proof.

Step 2. It is clear that (¢, ®u,, H/BH,, BiPB;) is an abstract Wiener space.
Let K : Bi®B,—B,DB, be a Borel map given by

Kz, y)=(®,y)—GoGi'(x,y) for each (x,y) € B/DB,.
Then it is obvious that
(4.3) Kz, y)=(PiF(@+ (Ig,— Fo)y), Fola -+ (Ip,— F2) 7y) — Fy((Ip,— F)7'Y))

for each (x,¥) € By®B,. Thus by the assumption (F-5), we see that K is a Borel
map defined on B,®B, into HyPH,. For each (z,y) € BiDB,, let DK(z, %) : H,BH,
—H,DH, be a bounded linear operator given by

4.4) DK(, y)(hs, hs) = (DK™ (x, y) (ha, ha), DK® (x, y) (hy, he))
for each (h,, ko) € HiPH,, where

DE® (z,y)(hy, hy) = P,DF (% + (Ip,— F2)~'y) (In — Py DF ((Iz,— Fo) 7'9) P) 7 (ha + ho),
and

DK ® (@, y)(hy, hy)=P:DF(@+ (Ip,— F2)7y) Iy — PeDF((Ip,— F2) 7y) Py) 7 by + o)
— P,DF((I5,— F)'y) Po(Iy— Py DF((Ig,— Fo) 79) Po) 7 (b1 +ho).

Then it is easy to see that
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K@+ hy, y+he) — K(x, y) — DK@, y) (ha, ho) bmyom, =0 alla, + e iry),
121l + 1ol z,— 0,

for each (z,y)€ B/PB;. By the assumptions on F, we also see that DK{x,y) :
H\QH,—~H,QH, is a Hilbert-Schmidt operator and DK(x+-,y+-): H{OH,—~
L*H,DH,, HDH,) is continuous for each (z,y) € Bi{PB,.

Note that

4.5) (DK% (&, y}+DK® (@, y))(hy, he) = (DF (@4 (Ip,— Fo)™'y) — P,DF ((I3,— F)'y) P,)
. (IH_PzDF((IBz_Fz)_ly)Pz)*l(hl"‘hz)y
and that

(4.6) (fy+he) — (DK™ (w, y) + DK® (2, y)) (hy, hs)
=(Ig~DF(@+ (Is,~ F2)™'y)) Iz — P, DF{(Iy,— IF,) y) Py) " (hy+ hy)

for each (z,y)€B/DB, and (By, ho) € HHPH,. Thus Iy en,—DKx,y) : HOH,~
H,(DH, is invertible for any (z,y) € BDB,.
Let H™ : B{®B,—~R,n=1,2, ---, be Borel functions given by

H{P (z, y) = prony (P, P K@, 9), @, Y)) 508,
—tracem,en,(P{”, P{") DK(x, y)

for each ()€ BiPB,, where (P{”, P{") denotes the orthogonal projection on
H.®H, such that (P{”, P{")(h, hs)=(P{"hy, Pi"h;) for each (hy,hy)€ HyDH,.
Then we have

H§ (@, y) = pl P (F(@+ (Ig,— Fo) 7 9) ~ Fo((Lp,— F) 7'9)), 2+ 9)p
— tracey P™ (DF(x+ (Ip,— F3)7'y) — P.DF ((Ip,— F,)~'y) Ps)
. (IH—‘PZDF((IBZf—Fz)_ly)Pz)—l-

Therefore we have got

(4.7) H(x, y)=H{" (x, (Ip,— Fa)7'y)

for each (x,¥) € B/PB, and #=1,2 ---. According to [4, Corollary to Theorem
4.2], we see that there exists a Borel function H,: B,®B,—R such that
(4. 8) ﬁ‘()n) (./X/', y) — Ho(x, y)y n—co,

in probability with respect to x,(dz)Qu.(dy). Furthermore by virtue of {4, Theorem
6.4], we see that (Ip,es,—K) ' 1:Qpu. and ¢,Qp, are mutually absolutely eontinuous,
and that ‘
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(In,08,— K) 1. Qp(dx X dy)
= 16 ,0my L ity — DK, 9) | exp ( H(z, ) ——;—umw, v) nz)m(dx)@zz(dy).

Thus by (4.8) and (4.6), we obtain

4.9) G1oG3 1 Qpa(dw X dy)
= |8x((In— DF(%-+ (Is,— Fo)™9)) (Iy— P, DF((Iz,— F2) 7 y) P2) )|

xexp( Hyfz, ) ——;—u Flo+ (Ip,— Fo)9) — Fs ((Is,— F2)'9) u%;)mdm)wa(dy).

So it is easy to see that
(4.10) G @ pa(de X dy) =p (@, ¥) 1 (da) D (Is,— Fo) ' p2(dy),

where
o, y)=10x{Ia— DF (@ -+y))(In— P, DF(y) P;) )|

X exp (ﬁo«c, <IBZ—F2)y>-~;—nF<x+w ~F,y) uz).

Note that (4.7) and (4.8) imply that

(4.11) : (@, y) — Holw, (In,— F)y), n—oo,

in probability with respect to s (dz)®(Ip,—F: 2) " (d ).
Step 3. Let us prove the foﬁowing.

PROPOSITION 4.3.
) S f(w+y>G;1;zl®ﬂ2(dxxdy>=S Flewlda)
Bl®82 B
for any bounded Borel function f: B—R.

(2) S glx, ?/)Gz_ll«h@#z(dde'y):S g(m12, m2)v(d2)
B,®B,

B

for any bounded Borel function g: BiDB:—~R.
Proor. Let f: B—»R be a bounded Borel function. By Proposition 2.3 (2)
and Proposition 4.2 (2}, we see that

L o @+ )G 1 Qpa(dxRdy) =S S@+y+FIz—F) o +9) ulde) R pa(dy)

BBy

=SB f((IB—F)—lzm(dz):j Flewida).

B
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This proves our assertion (1).

Now let ¢, : Bi—~R and g, : B:—R be bounded Borel functions. Then it follows
from Propositions 2.2, 3.2, (4.10) and our assertion (1) that = (@x-+y)=2% and
ma@+y)=y for Gz'm@p.-a.e. (x,y). Thus we have got by Proposition 2.2 and
our assertion (1),

L g Gs B paldax )
=§ g1 (71 (@ +1))ga(ma(x + 1)) Ge 1R pa[d X dyy) = L g1(712) g2(maz)v(d2).
B;®B,

This proves our assertion (2). This completes the proof.
Now we will ecomplete the proof of Theorem 1. It follows from Proposition
4.3 (2) and (4.10) that =» and (I,—F.)"'p. are mutually absolutely continuous.
Therefore (4.11) implies that H{ (@, y)—>Ho, (Iz,— F2)¥y), n—co, in probability with
respect to0 7,p(d2)@7w(dy). This shows Theorem 1 (1) and Ho(w, v)=H,(x, (Iz,— F2)¥).
Let f: B—>R be a bounded Borel function and g : B—~R be an F ,-measurable
bounded function. Then it follows from Propositions 3.1, 4.3 and (4.10) that

S FlR)gevlde)= SW Flo+9)g o+ )G m@(dexdy)

F@+y) g e, y) e (de)Q(Ls,—Fa) 7 2(dy)

B, ©B,

j FE+1)0(®, 1) (d)

f
:S non, S %p(ﬁz, VmdB)
|,

o(@, Y) p1(d2) @ (Is,— Fo) " p2(dy)

g(rs2) f
where
| rmetnaoms raua)
flo) ==2 -
S olad, ma)uld?)
Since g(r.2)=g(2) for v-a.e.z and fis F,vIl,-measurable by Propositions 3.2 and
3.3, we have got E[f]|.](z) flz) for v-a.e.z. This completes the proof.

PROPOSITION 4.4. Suppose that there exists a constant C, 0<C<1, such that
IDF@)|| r=w,m <C for any z€ B. Then (F-1) and (F-2) lead to (F-4).
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PROOF. Since |P.DF(2)| = w.m<C for any z€ B, Iy— P,DF(z) : H—H is invert-
ible for any z€ B. Therefore it suffices to prove that Iz;—F,: B—~B is bijective
under the assumptions (F-1) and (F-2). It is easy to see that

|1 F(z+h)— F@) | z=

glmmmhdtﬂ <Clhlla,
0 H
and

| Fo(z-+ 1) — Fyl2) | = | Po(Flz+ B)— F(&) | < Cllhllm

for any 2¢ B and he H. Therefore I;—(F(z+)—F(z)): H>H and Iy— (Faz+-)
—Fy(z)) : H-H are bijective for any z€ B by virtue of the fixed point theorem
for contraction map.

Now let us prove the injectivity of Iz—F,: B—~B. Suppose that (Iz—Fs)z
=(Iz—F,)z; for some 2z,2z,€B. Then we get (Iz—F)z,=(Iz—F)z+k, where
k=P,F(z,)—P,F(z;) ¢ H. Since Iy— (F(z;+-)—F(zy)) : H-H is bijective, there exists
some ke H such that h— (F(z,+h)—~F(z)))=k. Thus (2,+h)—F(2,+h)=2,—F(2,)+ k.
Since I;—F : B—>B is bijective by (F-1), we get z,=2;-+h. Hence h—(F,(z,+h)
—Fy(2) = (Ip—Fy)z;—2,+ F,(z,)=0. The injectivity of Iy— (Falz,+ ) —Fy(z()) : H~H
implies =0, and accordingly we have got z;=2z,. This shows the injectivity of
I;—F,: B—>B.

Let w be an arbitrary element of B. Let z=(Iz—F)~'w. Since P,F(z)¢ H,
there exists some ¢ H such that h—(Fz(z+h)—F2(z))=—PIF(z). Then we obtain

(Iz—F3)(z+h)=2—Fyp—P,F(z)=(Iz— F)z=w.

This shows the surjectivity of I;—F,: B—>B. This completes the proof.

By using Schwarts [6, Theorem 1.22], we can also prove the following similarly
to Proposition 4.4. ’

PrOPOSITION 4.5. Suppose that Iy;—DF(z) : H—H and I;—P,DF(z) : H—H are
invertible for any z¢ B and that there exists a constant K>0 such that

lIg—DF@) | o <K and |{(Ig—P.DF(2))7 | com.m < K

for any z€ B. Then (F-1) and (F-2) lead to (F-4).

5. Application.

In this section we will consider the solution of the stochastic pseudo-differen-
tial equation treated in [5, Section 5]. We will use the notation introduced in [5]
sometimes without explanation. . ' ' ’
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Let p(&) € §S™, me R, such that p(g)=0 for any &€ R® and pe)te S, and let
q,-(f)eS”,j:l, -..,n and r€R. Moreover let b: R"—>R be a bounded smooth
function such that

95 = sup {} 9 () ‘ ;Y€ é”}<oo.

Y,

and

19:50ll0= sup{‘ (y)l;yeR"}<oo

! 0Y;0Y;

for any ¢,5=1,---,n. Now let us consider the following stochastic pseudo-differen-
tial equation
(6.1) pD)X—b@(DJX, -+, qu(D) X)=W,
where W is a Gaussian white noise with d-dimensional parameter. Let Y=p(D,)'W.
Then we get
(5'2) X—p(Dx)——lb(ql(Dz)X, ] qn(Dx)X):Y'

Assume that m>r—|—% and .il“ajb“oo'”qu_lnl,w<1- Then according to [5,
=

Theorem 3], there exists the unique solution X of the equation (5.1). Let D be
a bounded domain in R? with smooth boundary. Let us make some preparation
to study about the o-fields &p and Ype as in Introduetion.

Let ot(z)=<x)>* and p*(x)=<{x)*,xz € R?, for eacht,s€ R. Let W%t""z be a Banach
space with a norm || | Wyot0®s the same as in [5], given by

Wi r'={ue S'(RY; p(X)o'(DJue LR},
and
Il yotor=llo(X)ot(DJullz  for each we W™,

The following has been shown in [5, Theorem 2].

PROPOSITION 5.1. For any s,t€ R and any pseudo-differential operator P
belonging to S°, there exists a constant C>0 such that

1Pull gt ot <Cllttl rotor Sfor anmy we Wg'",
Therefore P can be considered a bounded linear operator in Wi ',

Let ofy(@)=p-2)! and p%i(x)=<2-2)°,w€ R?, for each t,s€ R and 7, 1¢(0,1],
and let W3'»*'z be a Banach space with a norm || || wyonets given by

Wy'ne'i=fue S'(RY; p*2(X)aty(D,)u e LE(RY},
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and
Il gty o2 =0 a(X)ata(DJull 2 for each we Wy'n'a.
Then we get the following.
PROPOSITION 5.2. Wy'n'i=W;"*" as a set and the norms | |yet,0; and
I W w,eter are equivalent for any s,t€R and 7,2€ (0, 1.
ProoF. It is obvious that
ell gy ot.02= | 07(X) 0*(X) 7 (0°(X )0 (Da) o (D;) 7 0*(X)) 0* (X ) o (Do) w12

for any ue S(RY). Since p*2(X)e*(X)™* and p*(X)e'y(D,)e*(D,)"tp*(X)™" are pseudo-
differential operators belonging to §° by virtue of [5, Corollary to Lemma 4.1],
it follows from Proposition 5.1 that there exists a constant C>0 such that

] ,oty.002 <Cllo*(X)a* (Dol 2=Clwefl yrotor for any ue S(RY).
Similarly we see that there exists a constant C’>0 such that
[l gt <Ot gotyet, for any we S(RY).

This proves our assertion.

2
Let U, and U, be bounded domains in R® such that DcU,cU,cU,, and let
g : R*—>R be a smooth function such that g(x)>0,z¢€ R% g(x)=1 for any z¢ U,
and g(z)=p"x)=<)"™ for any x¢ Us, where D and U, denote the closure of D
and U, and U denotes the complement of U, in R?. Note that g€ L?(R?). From
now on we denote p(&)p(—£&) by r(€),6€ R%. Let

Let t,= —%(m—fr—l—i) and s,= —%—— 1. Then it is obvious that 6, 0* € L*(R?).

Ai=g(X)'r(D,)g(X)r(D,), A:=p(D,)g(X)p(D,)"g(®)™
and A,=¢(X)'p(D,)g(X)p(D,).

Then we get the following.

PROPOSITION 5.3. (1) A, A, and A; are pseudo-differential operators belong-
ing to S".
(2) g(X) can be considered a continuous linear map from Wgt"‘so into Wg'e®
Jor any t<R.

ProOF. OQur assertion (1) is an immediate consequence of [5, Corollary to
Lemma 4.1]. It is obvious that
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lg(X)n] gyot.00=llo* (D) g (X)u]j 2
=[(e*(Dx)g(X)e*(D,)7g(X) ) (g(X)e™(X) ) 0"(X)o*(D,)ull 2

for any ue S(R?. Therefore the proof of our assertion (2) goes similarly to that
of Proposition 5.2.

tn 8, 3 . .
Now let G : Wy % "—>W,"° be a continuous map given by

Gu(@)=b(g:(D.)p(D.) ulw), -+ -, qu( D) (D) ulx)),

@ € R%, for each ue Wy"#". Then it follows from the proof of [5, Theorem 3]

and Proposition 5.2 that Iy ;'o,"o—G : W 0 W,o 0" s bijective.
1 d 8
Let tL:to—i-m:E(m—FT—'é")’ and let B denote WZ"CI"’ ® and B, denote

Wyo™e", By virtue of [5, Theorem 2], p(D,) can be considered a bijective bicon-

tinuous linear map from B onto W,° 0,670

and also considered a bijective bicontin-
uous linear map from B, onto W" . Therefore we can define a continuous
linear map F: B—B, by Fu=p(D,Gp(D,)u for each wc B, and we see that
Iz;—F : B—B is bijective. '

Let g be a probability measure on S’(R% such that
_ 1 -1 £9j2
exp(v/ ~1(f, whs) pldw) =exp( —=-| p(— D)1 f |72
s7rY 2

for any feS(RY. Then g is the probability law of Y. It follows from 5,
Theorem 1] that p¢(B)=1. Thus by (5.2), we see that v={I;—F)'g is the prob-
ability law of X. Let H be a Hilbert space with an inner produet (,)z given by
H={ue §'(RY); p(D)uc LARY}, and (u,v)g=(p(D,)u, p(D,)v);2 for each wu,vc H.
Then it is easy to see that H= WZ"’"""’ as a set.

Let us identify the dual space H* with H. Then it is easy to see that
S(RY)cB*cHcB,cB and

(5.3) (, v) = p{t, V) pr=(u, *(D:)v) 12

for any u,v€ S(RY. Therefore for any u< S(R%, we obtain

L exp(V —T5Cut, whs) x(dav) =S exp(v/ = Ts(r (D), wys) (daw)

s (gt

=exp(——up )7 (D uuL>~exp(-—uuHZ)

Therefore (¢, H, B) i3 an abstract Wiener space.
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Recall that D is a bounded domain in R with smooth boundary, and let H;
and H, be closed linear subspaces of H given by

(5.4) H,={uec HcS'(RY; the support of r(D,)u

is contained in the closure D of D},
and
(5.5) H,={uec HcS'(RY; the support of « is contained

in the complement D° of Dj}.

Then it is obvious that H, and H, are orthogonal and H=H,@HH,. Let B,
and B, be the closure of H; and H; in B respectively. Then it is easy to see
that )

(5.6) . Bi={uc BCS'(RY; the support of r(D,)u is contained in Dy,
and
(5.7 - B,={uec BcS’(RY); the support of « is contained in D,

Now we get the following.

PROPOSITION 5.4. The assumptions (A-1) and (A-2) hold. That is,
(1) By,nB,nB,={0}, and
(2) the orthogonal projection Py: H—~H, is extensible to a bounded linear map
P,: B—H,

ProoF. Since g(x)~*=1 around D, we get
(5.8 g(X)u=g(X)"r(D,)"'g(X)g(X)~*r(DJu=Au
for any %€ B,.

Suppose that w€ ByNB;NB,. Then Propositions 5.1 and 5.3 (1) show that
g(X)'u=A,u€ B,. Thus by Proposition 5.3 (2), we see that u=g{(X)g(X)uec H.
However, it is obvious that HN B;=H, and HN B,=H,. Therefore u ¢ H,N H,={0}.
This proves (A-1).

Now let us prove (A-2). By (5.3), we see that for any u¢€ S{R* and ve H,

(P, v) g =5, T(D,) Pyvds:=s{@(X)u, (Do) Pyv) s = (P1g{X)u, v) .

Therefore we get -
(5.9) Pu=P,g(X)u for any ue€ S(RY).

Hence due to Proposition 5.3 (2)., we obtain (A-2). This completes the proof.
Since B, is reflexive, we see that B,, H; and H, satisfy all the assumptions
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in Section 2. Now let us study about the property of the Borel map F' : B—B,.
For each we B, let flw;w)=b(g(D,)w(x), - - -, ¢.(DJw(x)), x € R¢, and
.. 0b
f i(wvw) - ay’
and z€ R and let T (w) : L*R%)—L*R%,j=1,--,n, be bounded linear operators
given by

(ql(Dz)w(w): " ':QN(Dz)w(m)), j=1: N

Tiwyu@)=f;z;wu(x), <R, for each ue LiRY).
Note that p(D,) can be considered an isometry from H into L3(R%. Now let
DF(w) x H—H be a bounded linear operator given by
n
(5.10) DF(w)h= El 2(D,)*T j(w)q;(D,)p(D.)*p(D.)h,
he H, for each we B. It is obvious that DF is well-defined. It is easy to see
that for any we B,

(6.11) [ DF(w){|rw.m
=|p(D)DF(w) p(D,) | s L2 @)

kd

< J_g,l 1T (w0 ] r= 2@ 12w 104D DD = 2@ L2 w
”n

< 3 lopllollgy p =<1

Since m—r>%, by virtue of Sobolev’s lemma there exists a constant C>0 such

that ||g;(D,)p(D,) " ull,=<Clul2, j=1,---,n, for any ue L*R%. Thus we get for
any we B and he H,

(6.12) | DF(w+h)—DF(w) l[;wm.méé If3(- s w+h) —fil - swll=ligy 2~ e

< 3 10:blela:(D)p(D) DIkl p=llgy 5~ o

i,5=1

sc(i_

1

zlaijbalmllqj-p—luLw)nhuH.

Therefore DF(w+:): H—_{~(H,H) is continuous for any we B. It is obvious
that for any we B and he H,

Flw+ h)—F(w)=sl DF{w+th)h dt,

which implies that F(w+h)—F(w) <€ H and
| F(w+h)— F(w)— DF(w)k| g=0(|kllx), [kllz—0.
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Thus by (5.11) and Proposition 4.4, we get.the following.

PROPOSITION 5.5. The 'Boi"e'l map F éatisﬁes the assumptions (F-1), (F-2)
and (F-4). :

Now let us prove the following.
PROPOSITION 5.6. The Borel map F satisfies the assumption (F-3).

~ Proor. It follows .‘from (5.8) and (5.9) that

5.1 P.DF(w)= %, Pig(X)p(D T {)g,(Dp(D.)*p(D)

= % Pp(D. " AuT 0)(g(X)q,(DIp (D)) p(D)
and
5.14 DF@)Py= 3. p(D.)=*T;{)g;(D.)p(D.)"p(D,)g(X)g(X)"*P;

.
ft
A

D(D.) T () (g5(D)p(D.)g(X)) Ayp(D,) AsPy.

fl
e

.
It
A

Note that A; can be considered a bounded linear operator in H and that A4, and
A; can be considered bounded linear operators in L2(R%, due to Propositions 5.1
and 5.8. Since g and ¢;-p1,5=1, ---,n, belong to LERY, we see that

. g(X)q,;(Dz)p(Dz)—la qJ(Dz)p(Dz)——lg(X)y J=1, e, M,

can be considered Hilbert-Schmidt operators in L2(R%).
Therefore P;DF(w): H—H and DF(w)P, : H—H are Hilbert-Schmidt operators
for each we B. Similarly to (5.12), we can see that

Tjw+-) : H— L=(L*R%), L}RY), j=1,---,m,
are econtinuous for any we B. Thus P,DF(w+-) : H—_{*(H, H) and DF{(w+-)P,:
H— _[?(H, H) are continuous for any we€ B. This completes the proof.

PROPOSITION 5.7. DF{w-+w)—DF(w) : H—H is a Hilbert-Schmidt operator
for any we B and w€ B,. Furthermore, DF(-+u)—DF(-): B—_[*H,H) is con-
tinuous for any u < By, and there exists a constant C>0 such that

| DF (w-+u) — DE ()|l c2c.e0 <Cllil

for any we B and ue B,. Therefore the map from BXB; into _{*(H, H) under
which (w,u) corresponds to DF(w+u)— DF(w) is continuous. In particular, the
Borel map F satisfies (F-5).
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. ProOF. It is obvious that

n

(6.15)  DF(w+u)—DF(w)=p(D)~' T (T,(@+u) - Tj(w))qj(Dx)p(Dz)_lp(Dz)

=

for any we B and u€ B,. It is easy to see that
(5.16) [fi(@swu)—fi;w) | < El 19;bllla:(Da)u() |,

z€ R? and j=1,---,n, for each we B and ue B,. It follows from (5.8) that
(5.17) 2:(Du=¢;(D,)g(X) Ayu=g(X)g(X)"'q;(D.)g(X) A,u

for any ue¢ B, and i=1,--.,n. By virtue of [5, Corollary to Lemma 4.1 and
Theorem 2], ¢g(X)'¢,(D,)g(X),i=1,---,n, can be considered a continuous linear
map from B into W,°**™. Proposition 5.3 (2) shows that g(X) can be considered

a continuous linear map from W, into L*R%), and Propositions 5.1 and 5.3 (1)
show that A, can be considered a bounded linear operator in B. Therefore by
(6.17) we see that there exists a constant C”>0 such that

(5.18) la:(D)ull2<C"|uls, i=1,:--,mn,

for any we B;. Thus by virtue of Lebesgue’s convergence theorem, (5.16) and
(5.18), we get

(5.19) S N Fiwsw’ +u) —fila,w') = (f5(w;0-+u) — Fi@;w) PFde—0, w'—w in B,
R

for any %€ B;. Moreover (5.16) and (5.18) imply that there exists a constant
C’>0 such that

(5.20) ([ ittaswsw—fimrde)"<Cluls
R

for any we B;. Since q;-p7'€ L3 R%,j=1,---,n, we see by (5.15), (5.19) and (5.20)
that DF(w-+u)—DF(w): H—H is a Hilbert-Schmidt operator for any we B and
%€ By, |(DF(w'+u)—DF(w')) — (DF(w+wu) — DF(w))|| r2,m—0 as w'—w in B for any
% ¢ By, and that there exists a constant C>0 such that
| DF (w+u) ~ DF(w)|| r2r,m <Cllulls  for any u€ B,.

This proves the first part of our assertion. The latter part is obvious. This
completes the proof.

Let &, and Jpe be o-fields as in Introduction. By ignoring S’(R%\.B, we
obtain glvaC_FDme, FNVIL=FpVIL, SFz\/m,FJnerﬂﬂ and f.VJlL=
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Jpe\VIl,. Thus according to Theorem 1, Propositions 3.3, 5.5, 5.6 and 5.7, we get
the following by letting H(w, w)= H(zW, zsw) as in Theorem 1.

THEOREM 2. Let ¢ and v be the probability laws of Y and X respectively,
and let D be a bounded domain with smooth boundary. Moreover let v(-|Jp?)
denote the conditional probability measure relative to the o-field Ype under v.
Then
(1) the restricted measures pls, and vla, relative to the o-field Fp are mutually
absolutely continuous, and
(2) there ewists an FpX Jp-measurable function H: S’ (RH)XS'(R)—R such that
for any Ec Sy,

exp H(w, w) p(dw)
(B p)(w) =—45 —~ Sor v-a.e. w.
S exp A, w)p(dd)

S
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