The nonlinear transformation of Gaussian measure on Banach space and its absolute continuity (II)

By Shigeo Kusuoka*)

1. Introduction.

Let (μ, H, B) be an abstract Wiener space in the sense of the previous paper [4]. Let $F:B\to B$ be a Borel map such that $I_B-F:B\to B$ is bijective, and let $\nu=(I_B-F)^{-1}\mu$ be the image measure on B of μ under $(I_B-F)^{-1}:B\to B$. In the previous paper [4], the author gave some sufficient condition on F for the image measure ν to be absolutely continuous relative to μ . However, in the case where B is a Banach space included in $\mathcal{S}'(R^d)$, the space of tempered distributions over R^d , and μ and ν can be regarded as stationary ergodic probability measures on $\mathcal{S}'(R^d)$, μ and ν are identical or mutually singular. Therefore we can not expect that ν is absolutely continuous to μ .

But even in the case where μ and ν are mutually singular, there sometimes exists a sub- σ -field \mathcal{F} of $\mathcal{B}(B)$, the Borel field over B, such that \mathcal{F} is not so small and the restricted measures $\mu|_{\mathcal{F}}$ and $\nu|_{\mathcal{F}}$ of μ and ν to the σ -field \mathcal{F} are mutually absolutely continuous. The purpose of the present paper is to find such a σ -field \mathcal{F} .

Now let us show the results in our paper. Let $H_1 \oplus H_2$ be an orthogonal decomposition of H, and let \mathcal{G}_1 and \mathcal{G}_2 be the sub- σ -fields of $\mathcal{G}(B)$ generated by Borel functions

$$\{B^* \langle u, \cdot \rangle_B; u \in H_1 \cap B^*\} \text{ and } \{B^* \langle u, \cdot \rangle_B; u \in H_2 \cap B^*\}$$

respectively. We will show in Theorem 1 that on some condition for F, H_1 and H_2 , there exist Borel maps $\pi_1: B \to B$ and $\pi_2: B \to B$, and an $\mathcal{F}_1 \times \mathcal{F}_2$ -measurable function $\tilde{H}: B \times B \to R$ such that for any bounded Borel function f defined on B, the conditional expectation $E_{\nu}[f|\mathcal{F}_2]$ of f relative to the σ -field \mathcal{F}_2 under the image measure $\nu = (I_B - F)^{-1}\mu$ is represented by

$$E_{\nu}[f|\mathcal{F}_2](z) = \int_B f(\pi_1 \tilde{z} + \pi_2 z) \frac{\exp \tilde{H}(\tilde{z},z)}{\int_B \exp \tilde{H}(\tilde{z},z) \ \mu(d\tilde{z})} \mu(d\tilde{z})$$

^{*)} Research partially supported by the SAKKOKAI FOUNDATION.

for ν -a.e. z. We will also give the explicit form of $\tilde{H}(\tilde{z},z)$.

In Section 5, we will consider the stochastic non-linear pseudo-differential equation introduced in the author [5]:

$$p(D_x)X - b(q_1(D_x)X, \dots, q_n(D_x)X) = W.$$

where W is a Gaussian white noise with d-dimensional parameter. We will set some assumption for $p, q_i, j=1, \dots, n$, and b. It has been shown in [5] that there exists a unique solution X for the equation on some assumption. Let $Y=p(D_z)^{-1}W$. Then X and Y are $S'(\mathbb{R}^d)$ -valued random variables. Let $\tilde{\mu}$ and $\tilde{\nu}$ denote the probability laws of Y and X respectively.

For any domain D in \mathbb{R}^d , let \mathcal{F}_D denote the sub- σ -field of the Borel field $\mathcal{B}(\mathcal{S}'(\mathbb{R}^d))$ over $\mathcal{S}'(\mathbb{R}^d)$ generated by Borel functions $\{_{\mathcal{S}}\langle u,\cdot\rangle_{\mathcal{S}'};\ u\in\mathcal{S}(\mathbb{R}^d)\$ and the support of u is contained in $D\}$, and \mathcal{F}_D denote the sub- σ -field of $\mathcal{B}(\mathcal{S}'(\mathbb{R}^d))$ generated by Borel functions $\{_{\mathcal{S}}\langle u,\cdot\rangle_{\mathcal{S}'};\ u\in\mathcal{S}(\mathbb{R}^d)\$ and the support of $(p(D_x)p(-D_x))^{-1}u$ is contained in $D\}$, where $\mathcal{F}(\mathbb{R}^d)$ denotes the space of rapidly decreasing smooth functions. In the case where $p(D_x)p(-D_x)$ is a differential operator, $\{\mathcal{F}_D;\ D \text{ is a domain in }\mathbb{R}^d\}$ is an innovating system for $\{\mathcal{F}_D;\ D \text{ is a domain in }\mathbb{R}^d\}$ under the probability measure $\tilde{\mu}$ in the sense of Dobrushin and Surgailis [2].

Now let D be a bounded domain in \mathbb{R}^d with smooth boundary, and let D^e denote the exterior of D. Moreover let $\tilde{v}(\cdot|\mathcal{J}_{D^e})$ denote the conditional probability measure of relative to the σ -field \mathcal{J}_{D^e} . Then we will show in Theorem 2 that

(1) the restricted measures $\tilde{\mu}|_{\mathcal{F}_D}$ and $\tilde{\nu}|_{\mathcal{F}_D}$ are mutually absolutely continuous, and (2) there exists an $\mathcal{F}_D \times \mathcal{F}_{D^e}$ -measurable function $\tilde{H}: \mathcal{S}'(\mathbf{R}^d) \times \mathcal{S}'(\mathbf{R}^d) \to \mathbf{R}$ such that for any $\mathbf{E} \in \mathcal{F}_D$,

$$ilde{
u}(E|\mathcal{J}_{D^c})(w) = rac{\displaystyle\int_{E} \exp ilde{H}(ilde{w}, w) \; ilde{\mu}(d ilde{w})}{\displaystyle\int_{\mathcal{S}'} \exp ilde{H}(ilde{w}, w) \; ilde{\mu}(d ilde{w})} \qquad ext{for $ ilde{
u}$-a.e. w.}$$

The author is grateful to Prof. Y. Okabe for his hearty encouragement and useful conversation.

Notation.

For any Banach space E, E^* denotes the dual Banach space of E and I_E denotes the identity map in E.

For any Hilbert spaces H and K, $\mathcal{L}^{\infty}(H, K)$ denotes the Banach space consisting of all bounded linear maps from H into K with the operator norm, and $\mathcal{L}^2(H, K)$ denotes the Hilbert space consisting of all Hilbert-Schmidt operators

with Hilbert-Schmidt norm.

For any σ -fields \mathcal{F} and $\mathcal{F}', \mathcal{F} \vee \mathcal{F}'$ denotes the σ -field generated by $\mathcal{F} \cup \mathcal{F}'$.

$$\langle x \rangle = \sqrt{1 + \sum_{j=1}^{d} x_j^2}$$
 for any $x = (x_1, \dots, x_d) \in \mathbb{R}^d$.

2. The Borel maps π_1 and π_2 .

Let (μ, H, B) denote an abstract Wiener space throughout this paper. Let H_1 and H_2 be mutually orthogonal closed linear subspaces of H satisfying $H=H_1 \oplus H_2$. Let P_1 (resp. P_2) denote the orthogonal projection defined in H onto H_1 (resp. H_2), and let B_1 and B_2 be the closure of H_1 and H_2 in B respectively. Now let B_0 be a real separable reflexive Banach space such that H is densely, continuously included in B_0 and B_0 is also densely, continuously included in B_0 . Then it is clear that B_0^* is densely included in H_1 , and that $H_2^* \subset H_1 \subset H_2 \subset H_2$.

We assume the following two assumptions through this section, Sections 3 and 4:

(A-1) $B_0 \cap B_1 \cap B_2 = \{0\}$, and

(A-2) the orthogonal projection $P_1: H \to H_1$ is extensible to a bounded linear map $\overline{P}_1: B_0 \to H_1$.

Then we get the following.

PROPOSITION 2.1. $B^* \cap H_1 + B^* \cap H_2$ is dense in B_0^* . Therefore $B^* \cap H_1 + B^* \cap H_2$ is dense in H.

PROOF. It is obvious that

$$B^* \cap H_1 = \{u \in B^*; \ _{B^*} \langle u, z \rangle_B = 0 \text{ for any } z \in B_2\},$$

and

$$B^* \cap H_2 = \{u \in B^*; \ _{B^*} \langle u, z \rangle_B = 0 \text{ for any } z \in B_1\}.$$

Then it is easy to see that

$$(2.1) B_1 = \{z \in B; \ _{B^*}\langle u, z \rangle_B = 0 \text{ for any } u \in B^* \cap H_2\},$$

and

$$(2.2) B_2 = \{z \in B; \ _{B^*}\langle u, z \rangle_B = 0 \text{ for any } u \in B^* \cap H_1\}.$$

(See Yosida [7, Appendix to Chapter 5] for instance.)

Now suppose that $B^* \cap H_1 + B^* \cap H_2$ is not dense in B_0^* . Then the Hahn-Banach theorem and the reflexivity of B_0 imply that there exists some $z \in B_0$

such that $z \neq 0$ and $_{B_0^*}\langle u, z \rangle_{B_0} =_{B^*}\langle u, z \rangle_{B} = 0$ for any $u \in B^* \cap H_1 + B^* \cap H_2$. Thus it follows from (2.1) and (2.2) that $z \in B_0 \cap B_1 \cap B_2$. But this contradicts the assumption (A-1). This completes the proof.

For any subspace E of H, let $\mathcal{L}(E)$ denote the set of all orthogonal projections on H with a finite dimensional range contained in E. It is easy to see that any projection P, $P \in \mathcal{L}(B^*)$, is extensible to a bounded linear map from B into B^* , which will be denoted by \tilde{P} .

Take such sequences $\{P_1^{(n)}\}_{n=1}^{\infty}$ and $\{P_2^{(n)}\}_{n=1}^{\infty}$ of increasing orthogonal projections on H that $\{P_1^{(n)}\}_{n=1}^{\infty} \subset \mathcal{D}(B^* \cap H_1)$ and $\{P_2^{(n)}\}_{n=1}^{\infty} \subset \mathcal{D}(B^* \cap H_2)$, and that $P_1^{(n)} \uparrow P_1$ and $P_2^{(n)} \uparrow P_2$ strongly as $n \to \infty$, and fix them through this paper. The existence of such sequences are guaranteed by Proposition 2.1.

DEFINITION 2.1. We define a Borel subset $\mathcal{D}(\pi_1)$ of B by

$$\mathcal{G}(\pi_1) = \{z \in B; \{\tilde{P}_1^{(n)}z\}_{n=1}^{\infty} \text{ is convergent in } B\},$$

and a Borel map $\pi_1: \mathcal{D}(\pi_1) \to B_1$ by $\pi_1 z = \lim_{n \to \infty} \tilde{P}_1^{(n)} z$ for each $z \in \mathcal{D}(\pi_1)$.

We define a Borel subset $\mathcal{G}(\pi_2)$ of B by

$$\mathcal{G}(\pi_2) = \{z \in \mathcal{G}(\pi_1); z - \pi_1 z \in B_2\},$$

and a Borel map $\pi_2: \mathcal{D}(\pi_2) \to B_2$ by $\pi_2 z = z - \pi_1 z$ for each $z \in \mathcal{D}(\pi_2)$.

PROPOSITION 2.2. (1) $\mathcal{D}(\pi_1)$ and $\mathcal{D}(\pi_2)$ are linear subspaces of B, and $\pi_1: \mathcal{D}(\pi_1) \to B_1$ and $\pi_2: \mathcal{D}(\pi_2) \to B_2$ are linear.

- (2) $B_0 \subset \mathcal{G}(\pi_2) \subset \mathcal{G}(\pi_1)$ and $\pi_1 z = \overline{P}_1 z$ for each $z \in B_0$.
- (3) $B_2 \subset \mathcal{D}(\pi_2)$, and $\pi_1 z = 0$ and $\pi_2 z = z$ for each $z \in B_2$.
- (4) If $z \in \mathcal{D}(\pi_1)$, then $\pi_1 z \in \mathcal{D}(\pi_2)$, $\pi_1 \pi_1 z = \pi_1 z$ and $\pi_2 \pi_1 z = 0$.

PROOF. Our assertion (1) is obvious. It is clear that $P_1^{(n)}h = P_1^{(n)}\bar{P}_1h$ and $P_1^{(n)}h = P_1^{(n)}\bar{P}_1h$

$$\lim_{n\to\infty} \tilde{P}_1^{(n)}z = \lim_{n\to\infty} \tilde{P}_1^{(n)}\bar{P}_1z = \bar{P}_1z \quad \text{and} \quad {}_{B_0^*}\!\langle u, z - \bar{P}_1z\rangle_{B_0} = 0$$

for any $u \in B^* \cap H_1$. Therefore by (2.2) we see that $z \in \mathcal{D}(\pi_1)$, $\pi_1 z = \overline{P}_1 z$ and $z - \overline{P}_1 z \in B_2$ for any $z \in B_0$. This proves our assertion (2).

It is obvious that $\tilde{P}_1^{(n)}z=0$, $n=1,2,\cdots$, for any $z\in B_2$. This proves our assertion (3). Let $z\in \mathcal{D}(\pi_1)$. Then we see that

$$\tilde{P}_{1}^{(n)}\pi_{1}z=\lim_{m\to\infty}\tilde{P}_{1}^{(n)}\tilde{P}_{1}^{(m)}z=\tilde{P}_{1}^{(n)}z,\quad n=1,2,\cdots,$$

which shows our assertion (4). This completes the proof.

PROPOSITION 2.3. (1) $\mu(\mathcal{Q}(\pi_1)) = \mu(\mathcal{Q}(\pi_2)) = 1$ and $\tilde{P}_2^{(n)}z \rightarrow \pi_2 z$ in B, $n \rightarrow \infty$, for μ -a.e. $z \in \mathcal{Q}(\pi_2)$.

(2) The probability law on B of $\pi_1 z_1 + \pi_2 z_2$ under $\mu(dz_1) \otimes \mu(dz_2)$ is equal to μ . That is,

$$\int_{B\times B} f(\pi_1 z_1 + \pi_2 z_2) \, \mu(dz_1) \bigotimes \mu(dz_2) = \int_B f(z) \, \mu(dz)$$

for any bounded Borel function f on B.

PROOF. By virtue of Carmona [1], we see that $\{\tilde{P}_1^{(n)}z\}_{n=1}^{\infty}$ and $\{\tilde{P}_2^{(n)}z\}_{n=1}^{\infty}$ are convergent in B for μ -a.e. z, and that $\tilde{P}_1^{(n)}z+\tilde{P}_2^{(n)}z\to z$ in B, $n\to\infty$, for μ -a.e. z. Thus we have $\mu(\mathcal{Q}(\pi_1))=\mu(\mathcal{Q}(\pi_2))=1$ and $\tilde{P}_2^{(n)}z\to\pi_2 z$ in B, $n\to\infty$, for μ -a.e. $z\in\mathcal{Q}(\pi_2)$. This proves our assertion (1).

Let f be a bounded continuous function defined on B. Since $\tilde{P}_1^{(n)}z$ and $\tilde{P}_2^{(n)}z$ are independent under $\mu(dz)$, we obtain

$$\int_{B\times B} f(\tilde{P}_{1}^{(n)}z_{1} + \tilde{P}_{2}^{(n)}z_{2}) \mu(dz_{1}) \otimes \mu(dz_{2}) = \int_{B} f(\tilde{P}_{1}^{(n)}z + \tilde{P}_{2}^{(n)}z) \mu(dz).$$

Letting $n \rightarrow \infty$, we have got

$$\int_{B\times B} f(\pi_1 z_1 + \pi_2 z_2) \, \mu(dz_1) \otimes \mu(dz_2) = \! \int_B f(z) \, \mu(dz) \, .$$

This completes the proof.

The probability measure on B_1 (resp. B_2) induced by μ through $\pi_1: \mathcal{D}(\pi_1) \to B_1$ (resp. $\pi_2: \mathcal{D}(\pi_2) \to B_2$) will be denoted by μ_1 (resp. μ_2).

3. The σ -fields \mathcal{G}_1 and \mathcal{G}_2 .

Let \mathcal{G}_1 (resp. \mathcal{G}_2) denote the sub- σ -field of $\mathcal{B}(B)$, the Borel field over B, generated by Borel functions $\{_{B^*}\langle u,\cdot\rangle_B:B\to R;\ u\in B^*\cap H_1\}$ (resp. $\{_{B^*}\langle u,\cdot\rangle_B:B\to R;\ u\in B^*\cap H_2\}$). For each probability measure ν on B, \mathcal{J}_{ν} will denote the σ -field generated by ν -null sets, i.e. $\mathcal{J}_{\nu}=\{A;\ A \text{ is a subset of } B \text{ and there exists a Borel subset } C \text{ of } B \text{ of } \nu\text{-measure zero such that } A\subset C \text{ or } B\setminus A\subset C\}.$

PROPOSITION 3.1. (1) If $g: B \rightarrow R$ is \mathcal{F}_1 -measurable, then g(z+z') = g(z) for any $z \in B$ and $z' \in B_2$.

(2) If $g: B \rightarrow \mathbf{R}$ is \mathcal{G}_2 -measurable, g(z+z') = g(z) for any $z \in B$ and $z' \in B_1$.

PROOF. It is clear that if $u \in B^* \cap H_1$, then $B^* \langle u, z+z' \rangle_B = B^* \langle u, z \rangle_B$ for any

 $z \in B$ and $z' \in B_2$. Thus we get our assertion (1) by the definition of the σ -field \mathcal{F}_1 . The proof of our assertion (2) goes similarly. This completes the proof.

Let $F: B \to B_0$ be a Borel map such that $I_B - F: B \to B$ is bijective, and let $\nu = (I_B - F)^{-1}\mu$ be the image probability measure of μ under $(I_B - F)^{-1}: B \to B$. Then we have the following.

Proposition 3.2. $\nu(\mathcal{D}(\pi_1)) = \nu(\mathcal{D}(\pi_2)) = 1$.

PROOF. It is clear that

(3.1)
$$(I_B-F)^{-1}z=z+F(I_B-F)^{-1}z for any z \in B.$$

Thus it follows from Proposition 2.2 (1) and (2) that $(I_B - F)^{-1} \mathcal{D}(\pi_2) = \mathcal{D}(\pi_2)$. This and Proposition 2.3 lead to our assertion.

PROPOSITION 3.3. (1) If $f: B_1 \to R$ is a Borel function, then $f(\pi_1 \cdot): \mathcal{Q}(\pi_1) \to R$ is \mathcal{G}_1 -measurable.

- (2) If $f: B_2 \to R$ is a Borel function, then $f(\pi_2 \cdot): \mathcal{D}(\pi_2) \to R$ is $\mathcal{F}_2 \vee \mathcal{T}_{\nu}$ -measurable.
- (3) $\mathcal{G}_1 \vee \mathcal{G}_2 \vee \mathcal{N}_{\nu} = \mathcal{B}(B) \vee \mathcal{N}_{\nu}$.

PROOF. It is obvious that $\mathcal{Q}(\pi_1) \in \mathcal{F}_1$ and $f(\pi_1 z) = \lim_{n \to \infty} f(\tilde{P}_1^{(n)} z)$ for any $z \in \mathcal{Q}(\pi_1)$ and any bounded continuous function f defined on B. This shows our assertion (1).

Next let us prove our assertion (2). By virtue of Proposition 3.2, we see that $\mathcal{D}(\pi_2) \in \mathcal{I}_v$. Let \tilde{u} be an arbitrary element of B_2^* and $g: B_2 \to C$ be a continuous function given by $g(w) = \exp(\sqrt{-1}_{B_2^*}\langle \tilde{u}, w \rangle_{B_2})$ for each $w \in B_2$. The Hahn-Banach theorem implies that there exists some $u \in B^*$ such that $g(w) = \exp(\sqrt{-1}_{B_2^*}\langle u, w \rangle_B)$ for any $w \in B_2$. Observing $u \in B^* \subset B_0^*$, we see by Proposition 2.1 that there exist sequences $\{v_n\}_{n=1}^{\infty} \subset B^* \cap H_1$ and $\{u_n\}_{n=1}^{\infty} \subset B^* \cap H_2$ such that

$$(3.2) v_n + u_n \longrightarrow u in B_0^*, n \to \infty.$$

It is easy to see by (2.1) and (2.2) that

$$(3.3) B^* \langle v_n + u_n, \pi_2 z \rangle_B = B^* \langle u_n, \pi_2 z \rangle_B = B^* \langle u_n, z \rangle_B$$

for any $z \in \mathcal{D}(\pi_2)$.

Let $g_n: B \to C$ be a function given by $g_n(z) = \exp(\sqrt{-1}_{B^*} \langle u_n, z \rangle_B)$ for any $z \in B$. Then it is obvious that g_n is \mathcal{G}_2 -measurable. It follows from Proposition 2.2, Proposition 3.2, (3.1) and (3.3) that

$$\int_{B}|g(\pi_{2}z)-g_{n}(z)|\nu(dz)$$

$$\begin{split} &\leq \int_{\mathscr{D}(\pi_{2})} |\exp(\sqrt{-1}_{B^{*}}\langle u - (u_{n} + v_{n}), \pi_{2}z\rangle_{B}) - 1 |\nu(dz)| \\ &= \int_{\mathscr{D}(\pi_{2})} |\exp(\sqrt{-1}_{B^{*}}\langle u - (u_{n} + v_{n}), \pi_{2}z + (I_{B_{0}} - \bar{P}_{1})F(I_{B} - F)^{-1}z\rangle_{B}) - 1 |\mu(dz)| \\ &\leq \int_{\mathscr{D}(\pi_{2})} |\exp(\sqrt{-1}_{B^{*}}\langle u - (u_{n} + v_{n}), \pi_{2}z\rangle_{B}) - 1 |\mu(dz)| \\ &+ \int_{B} |\exp(\sqrt{-1}_{B_{0}^{*}}\langle u - (u_{n} + v_{n}), (I_{B_{0}} - \bar{P}_{1})F(I_{B} - F)^{-1}z\rangle_{B_{0}}) - 1 |\mu(dz)|. \end{split}$$

Proposition 2.3 implies that

$$\begin{split} & \int_{\mathcal{B}(\pi_2)} |\exp(\sqrt{-1}_{B^*} \langle u - (u_n + v_n), \pi_2 z \rangle_B) - 1 |\mu(dz)| \\ \leq & \left\{ \int_{\mathcal{B}(\pi_2)} |_{B^*} \langle u - (u_n + v_n), \pi_2 z \rangle_B |^2 \mu(dz) \right\}^{1/2} = \|P_2(u - (u_n + v_n))\|_H. \end{split}$$

Therefore by (3.2) we see that

$$\int_{B} |g(\pi_{2}z) - g_{n}(z)| \nu(dz) \longrightarrow 0 \quad \text{as } n \to \infty.$$

This shows that $g(\pi_2): \mathcal{D}(\pi_2) \to \mathbf{C}$ is $\mathcal{F}_2 \vee \mathcal{I}_{\nu}$ -measurable.

Let V be the set of linear combinations of

$$\{\cos({}_{B_2^*}\langle u,\,\cdot\,\rangle_{B_2}), \sin({}_{B_2^*}\langle u,\,\cdot\,\rangle_{B_2}); u\in B_2^*\}.$$

Then $g(\pi_2 \cdot): \mathcal{D}(\pi_2) \to \mathbb{R}$ is $\mathcal{F}_2 \vee \mathcal{N}_{\nu}$ -measurable for any $g \in V$. Let $f: B_2 \to \mathbb{R}$ be a bounded continuous function and let $C = \sup\{|f(w)|; w \in B_2\}$. Since the image measure $\pi_2 \nu$ on B_2 of ν under $\pi_2: \mathcal{D}(\pi_2) \to B$ is a Radon measure, there exists a sequence $\{K_m\}_{m=1}^{\infty}$ of increasing compact subsets of B_2 such that $\pi_2 \nu(B_2 \setminus K_m) \to 0$ as $m \to \infty$.

By virtue of the Stone-Weierstrass theorem, we see that there exists a sequence $\{\tilde{f}_n\}_{n=1}^{\infty} \subset V$ such that $\tilde{f}_n(w) \to f(w)$, $n \to \infty$, uniformally for $w \in K_m$, $m=1, 2, \dots$. Let $f_n: B_2 \to R$, $n=1, 2, \dots$, be functions given by $f_n(w) = \min\{C, \max\{-C, \tilde{f}_n(w)\}\}$ for each $w \in B_2$. Then it is obvious that $f(\pi_2 \cdot): \mathcal{D}(\pi_2) \to R$ is $\mathcal{F}_2 \vee \mathcal{D}_{\nu}$ -measurable, and we get

$$\int_{\mathscr{D}(\pi_2)} |f(\pi_2 z) - f_n(\pi_2 z)| \nu(dz) = \int_{B_2} |f(w) - f_n(w)| \pi_2 \nu(dw) \longrightarrow 0, \quad n \to \infty.$$

Therefore $f(\pi_2 \cdot): \mathcal{D}(\pi_2) \to \mathbf{R}$ is $\mathcal{F}_2 \vee \mathcal{N}_{\nu}$ -measurable. This proves our assertion (2). Our assertion (3) follows immediately from our assertions (1), (2) and the fact that $z = \pi_1 z + \pi_2 z$ for any $z \in \mathcal{D}(\pi_2)$. This completes the proof.

4. Gibbs representation of $(I_B-F)^{-1}\mu$.

In this section we assume that a Borel map $F: B \rightarrow B_0$ satisfies the following five assumptions.

- (F-1) $F(z+h)-F(z) \in H$ for any $z \in B$ and $h \in H$, and there exists a map $DF: B \to \mathcal{L}^{\infty}(H,H)$ (not necessarily Borel) such that $\|F(z+h)-F(z)-DF(z)h\|_{H}=o(\|h\|_{H})$, $\|h\|_{H}\to 0$, and $DF(z+\cdot): H\to \mathcal{L}^{\infty}(H,H)$ is continuous for any $z \in B$.
- (F-2) $I_B F : B \rightarrow B$ is bijective and $I_H DF(z) : H \rightarrow H$ is invertible for any $z \in B$.
- (F-3) $P_1DF(z): H\rightarrow H$ and $DF(z)P_1: H\rightarrow H$ are Hilbert-Schmidt operators for any $z\in B$, and $P_1DF(z+\cdot): H\rightarrow \mathcal{L}^2(H,H)$ and $DF(z+\cdot)P_1: H\rightarrow \mathcal{L}^2(H,H)$ are continuous for any $z\in B$.
- (F-4) $I_B-F_2: B\to B$ is bijective, where F_2 denotes a Borel map $(I_{B_0}-\bar{P}_1)F: B\to B_0$, and $I_H-P_2DF(z): H\to H$ is invertible for any $z\in B$.
- (F-5) For any $z \in B$ and $x \in B_1$, $F(x+z) F(z) \in H$ and $DF(x+z) DF(z) : H \to H$ is a Hilbert-Schmidt operator, and moreover $DF(x+z+\cdot) DF(z+P_2\cdot) : H \to \mathcal{L}^2(H,H)$ is continuous.

REMARK 4.1. Since $F: B \rightarrow B_0$ is a Borel map and $\mathcal{L}^2(H, H)$ is a separable Hilbert space, $P_1DF(\cdot): B \rightarrow \mathcal{L}^2(H, H)$, $DF(\cdot)P_1: B \rightarrow \mathcal{L}^2(H, H)$ and $DF(x+\cdot) - DF(\cdot): B \rightarrow \mathcal{L}^2(H, H)$, $x \in B_1$, are Borel maps.

Let $H_0^{(n)}: B_1 \times B_2 \rightarrow R$, $n=1, 2, \cdots$, be Borel functions given by

$$\begin{split} H_0^{(n)}(x,y) = &_{B^*} \langle P^{(n)}(F(x+y) - F_2(y)), x + y - F_2(y) \rangle_B \\ &- \operatorname{trace}_H P^{(n)}(DF(x+y) - P_2DF(y)P_2)(I_H - P_2DF(y)P_2)^{-1} \end{split}$$

for any $x \in B_1$ and $y \in B_2$, where $P^{(n)} = P_1^{(n)} + P_2^{(n)}$. And let $\nu = (I_B - F)^{-1}\mu$. The following is our main result.

THEOREM 1. (1) There exists a Borel function $H_0: B_1 \times B_2 \to R$ such that $H_0^{(n)}(x,y) \to H_0(x,y), n \to \infty$, in probability with respect to $\pi_1 \mu(dx) \otimes \pi_2 \nu(dy)$.

(2) For any bounded function $f: B \rightarrow R$, the conditional expectation $E_{\nu}[f|\mathcal{F}_2]$ of f relative to the σ -field \mathcal{F}_2 under the probability measure ν is given by

$$E_{\boldsymbol{\nu}}[f|\mathcal{G}_2](z) = \int_B f(\pi_1 \tilde{\boldsymbol{z}} + \pi_2 z) - \int_B \frac{\exp(H(\pi_1 \tilde{\boldsymbol{z}}, \pi_2 z))}{\exp(H(\pi_1 \tilde{\boldsymbol{z}}, \pi_2 z)) \mu(d\tilde{\boldsymbol{z}})} \mu(d\tilde{\boldsymbol{z}})$$

for v-a.e. z, where

$$H(x,y) = H_0(x,y) - \frac{1}{2} \|F(x+y) - F_2(y)\|_H^2 + \log |\delta_H((I_H - DF(x+y))(I_H - P_2DF(y)P_2)^{-1})|$$

for each $x \in B_1$ and $y \in B_2$.

Here $\delta_H(A)$ denotes the Carleman-Fredholm determinant of an operator $A: H \rightarrow H$ (see [4, Definition 6.1] for the detail).

In particular, the restricted measures $\mu|_{\mathcal{G}_1}$ and $\nu|_{\mathcal{G}_1}$ of μ and ν to the σ -field \mathcal{G}_1 are mutually absolutely continuous.

REMARK 4.2. Suppose that

$$\|(DF(x+y)-P_2DF(y)P_2)(I_H-P_2DF(y)P_2)^{-1}\|_{\mathcal{L}^\infty(H,H)}\!<\!1$$

for any $x \in B_1$ and $y \in B_2$. Noting that

$$\delta_H(I_H-K) = \exp\left(-\sum_{n=2}^{\infty} \frac{1}{n} \operatorname{trace}_H K^n\right), K \in \mathcal{L}^2(H, H)$$

such that $||K||_{L^{\infty}(H,H)} < 1$, we get

$$\begin{split} H(x,y) &= H_0(x,y) - \frac{1}{2} \|F(x+y) - F_2(y)\|_H^2 \\ &- \sum_{n=2}^\infty \frac{1}{n} \operatorname{trace}_H \left[(DF(x+y) - P_2DF(y)P_2) (I_H - P_2DF(y)P_2)^{-1} \right]^n. \end{split}$$

We will prove Theorem 1 in several steps.

Step 1. First we prove the following.

PROPOSITION 4.1. (1) The image of $F_2: B \rightarrow B_0$ is contained in B_2 .

(2) $I_{B_2}-F_2: B_2 \rightarrow B_2$ is bijective.

PROOF. (1) is obvious. For any $u \in B_2$, there exists $v \in B$ such that $(I_B - F_2)v = u$ by the assumption (F-4). Since $v = F_2v + u \in B_2$, we see that $I_{B_2} - F_2 : B_2 \to B_2$ is surjective. On the other hand, the injectivity of $I_B - F_2 : B \to B$ leads to that of $I_{B_2} - F_2 : B_2 \to B_2$. This completes the proof.

Let $G_1: B_1 \oplus B_2 \rightarrow B_1 \oplus B_2$ and $G_2: B_1 \oplus B_2 \rightarrow B_1 \oplus B_2$ be Borel maps given by

$$(4.1) G_1(x, y) = (x, y - F_2(y))$$

and

$$(4.2) G_2(x,y) = (G_2^{(1)}(x,y), G_2^{(2)}(x,y)) = (x - \overline{P}_1 F(x+y), y - F_2(x+y))$$

for each $(x, y) \in B_1 \oplus B_2$.

Then we have the following

PROPOSITION 4.2. (1) $G_1: B_1 \oplus B_2 \to B_1 \oplus B_2$ is bijective.

(2) $G_2: B_1 \oplus B_2 \rightarrow B_1 \oplus B_2$ is bijective and

$$G_{2}^{-1}(x, y) = (x + \overline{P}_{1}F(I_{R} - F)^{-1}(x + y), y + F_{2}(I_{R} - F)^{-1}(x + y))$$

for any $(x, y) \in B_1 \oplus B_2$.

(3) $G_2^{(1)}(x, y) + G_2^{(2)}(x, y) = (I_B - F)(x + y)$ for any $(x, y) \in B_1 \oplus B_2$.

PROOF. The assertions (1) and (3) are obvious. Let us prove our assertion

(2). Let $J: B_1 \oplus B_2 \rightarrow B_1 \oplus B_2$ be a Borel map given by

$$J(x,y) = (J^{(1)}(x,y), J^{(2)}(x,y)) = (x + \bar{P}_1 F(I_B - F)^{-1}(x+y), y + F_2(I_B - F)^{-1}(x+y))$$

for any $(x, y) \in B_1 \oplus B_2$. Then it is obvious that

$$J^{(1)}(x,y)+J^{(2)}(x,y)=(I_B-F)^{-1}(x+y)$$
.

Therefore we get

$$J \circ G_2(x, y) = (G_2^{(1)}(x, y) + \overline{P}_1 F(x+y), G_2^{(2)}(x, y) + F_2(x+y)) = (x, y),$$

and

$$G_2 \circ J(x,y) = (J^{(1)}(x,y) - \bar{P}_1 F(I_B - F)^{-1}(x+y), J^{(2)}(x,y) - F_2(I_B - F)^{-1}(x+y)) = (x,y).$$

This completes the proof.

Step 2. It is clear that $(\mu_1 \otimes \mu_2, H_1 \oplus H_2, B_1 \oplus B_2)$ is an abstract Wiener space. Let $K: B_1 \oplus B_2 \to B_1 \oplus B_2$ be a Borel map given by

$$K(x, y) = (x, y) - G_2 \circ G_1^{-1}(x, y)$$
 for each $(x, y) \in B_1 \oplus B_2$.

Then it is obvious that

$$(4.3) K(x,y) = (\overline{P}_1 F(x + (I_{B_2} - F_2)^{-1}y), F_2(x + (I_{B_2} - F_2)^{-1}y) - F_2((I_{B_2} - F_2)^{-1}y))$$

for each $(x, y) \in B_1 \oplus B_2$. Thus by the assumption (F-5), we see that K is a Borel map defined on $B_1 \oplus B_2$ into $H_1 \oplus H_2$. For each $(x, y) \in B_1 \oplus B_2$, let $DK(x, y) : H_1 \oplus H_2 \to H_1 \oplus H_2$ be a bounded linear operator given by

$$(4.4) DK(x, y)(h_1, h_2) = (DK^{(1)}(x, y)(h_1, h_2), DK^{(2)}(x, y)(h_1, h_2))$$

for each $(h_1, h_2) \in H_1 \oplus H_2$, where

$$DK^{(1)}\left(x,y\right)(h_1,h_2) = P_1DF(x + (I_{B_2} - F_2)^{-1}y)(I_H - P_2DF((I_{B_2} - F_2)^{-1}y)P_2)^{-1}(h_1 + h_2),$$

and

$$\begin{split} DK^{(2)}(x,y)(h_1,h_2) = & P_2 DF(x + (I_{B_2} - F_2)^{-1}y)(I_H - P_2 DF((I_{B_2} - F_2)^{-1}y)P_2)^{-1}(h_1 + h_2) \\ & - P_2 DF((I_{B_0} - F_2)^{-1}y)P_2(I_H - P_2 DF((I_{B_0} - F_2)^{-1}y)P_2)^{-1}(h_1 + h_2). \end{split}$$

Then it is easy to see that

$$\begin{split} \|K(x+h_1,y+h_2)-K(x,y)-DK(x,y)(h_1,h_2)\|_{H_1\oplus H_2} &= o(\|h_1\|_{H_1}+\|h_2\|_{H_2}),\\ \|h_1\|_{H_1}+\|h_2\|_{H_2} &\longrightarrow 0, \end{split}$$

for each $(x,y) \in B_1 \oplus B_2$. By the assumptions on F, we also see that DK(x,y): $H_1 \oplus H_2 \to H_1 \oplus H_2$ is a Hilbert-Schmidt operator and $DK(x+\cdot,y+\cdot)$: $H_1 \oplus H_2 \to \mathcal{L}^2(H_1 \oplus H_2,H_1 \oplus H_2)$ is continuous for each $(x,y) \in B_1 \oplus B_2$.

Note that

$$(4.5) \qquad (DK^{(1)}(x,y) + DK^{(2)}(x,y))(h_1,h_2) = (DF(x + (I_{B_2} - F_2)^{-1}y) - P_2DF((I_{B_2} - F)^{-1}y)P_2) \\ \cdot (I_H - P_2DF((I_{B_2} - F_2)^{-1}y)P_2)^{-1}(h_1 + h_2),$$

and that

$$(4.6) \qquad (h_1+h_2) - (DK^{(1)}(x,y) + DK^{(2)}(x,y))(h_1,h_2)$$

$$= (I_H - DF(x + (I_{B_2} - F_2)^{-1}y))(I_H - P_2DF((I_{B_2} - F_2)^{-1}y)P_2)^{-1}(h_1 + h_2)$$

for each $(x,y) \in B_1 \oplus B_2$ and $(h_1,h_2) \in H_1 \oplus H_2$. Thus $I_{H_1 \oplus H_2} - DK(x,y) : H_1 \oplus H_2 \rightarrow H_1 \oplus H_2$ is invertible for any $(x,y) \in B_1 \oplus B_2$.

Let $\overline{H}_0^{(n)}: B_1 \oplus B_2 \to R$, $n=1, 2, \cdots$, be Borel functions given by

$$\begin{split} \overline{H}_{0}^{(n)}(x,\,y) = & \,_{B_{1}^{*}\oplus B_{2}^{*}} \langle (P_{1}^{\,(n)},\,P_{2}^{\,(n)})K(x,\,y),\,(x,\,y) \rangle_{B_{1}\oplus B_{2}} \\ - & \, \text{trace}_{H_{1}\oplus H_{2}} \langle P_{1}^{\,(n)},\,P_{2}^{\,(n)})DK(x,\,y) \end{split}$$

for each $(x,y) \in B_1 \oplus B_2$, where $(P_1^{(n)},P_2^{(n)})$ denotes the orthogonal projection on $H_1 \oplus H_2$ such that $(P_1^{(n)},P_2^{(n)})(h_1,h_2) = (P_1^{(n)}h_1,P_2^{(n)}h_2)$ for each $(h_1,h_2) \in H_1 \oplus H_2$. Then we have

$$\begin{split} \overline{H}_0^{(n)}(x,y) &= {}_{B^*}\!\langle P^{(n)}\left(F(x\!+\!(I_{B_2}\!-\!F_2)^{-1}y)\!-\!F_2((I_{B_2}\!-\!F_2)^{-1}y)),x\!+\!y\rangle_B \\ &- \operatorname{trace}_H P^{(n)}\left(DF(x\!+\!(I_{B_2}\!-\!F_2)^{-1}y)\!-\!P_2DF((I_{B_2}\!-\!F_2)^{-1}y)P_2\right) \\ &\cdot (I_H\!-\!P_2DF((I_{B_2}\!-\!F_2)^{-1}y)P_2)^{-1}. \end{split}$$

Therefore we have got

(4.7)
$$\overline{H}_0^{(n)}(x, y) = H_0^{(n)}(x, (I_{B_2} - F_2)^{-1}y)$$

for each $(x, y) \in B_1 \oplus B_2$ and $n=1, 2, \cdots$. According to [4, Corollary to Theorem 4.2], we see that there exists a Borel function $\overline{H}_0: B_1 \oplus B_2 \to R$ such that

$$(4.8) \overline{H}_0^{(n)}(x,y) \longrightarrow \overline{H}_0(x,y), \quad n \to \infty,$$

in probability with respect to $\mu_1(dx)\otimes\mu_2(dy)$. Furthermore by virtue of [4, Theorem 6.4], we see that $(I_{B_1\oplus B_2}-K)^{-1}\mu_1\otimes\mu_2$ and $\mu_1\otimes\mu_2$ are mutually absolutely continuous, and that

$$\begin{split} & (I_{B_1 \oplus B_2} - K)^{-1} \mu_1 \bigotimes \mu_2(dx \times dy) \\ = & \| \delta_{H_1 \oplus H_2} (I_{H_1 \oplus H_2} - DK(x,y)) \| \exp \left(|| \overline{H_0}(x,y) - \frac{1}{2} || K(x,y) ||_H^2 \right) \! \mu_1(dx) \! \otimes \! \mu_2(dy). \end{split}$$

Thus by (4.3) and (4.6), we obtain

$$\begin{split} (4.9) \qquad & G_1 \circ G_2^{-1} \mu_1 \otimes \mu_2(dx \times dy) \\ & = |\delta_H((I_H - DF(x + (I_{B_2} - F_2)^{-1}y))(I_H - P_2 DF((I_{B_2} - F_2)^{-1}y)P_2)^{-1})| \\ & \times \exp \left(\left. \vec{H}_0(x, y) - \frac{1}{2} \, \| \, F(x + (I_{B_2} - F_2)^{-1}y) - F_2((I_{B_2} - F_2)^{-1}y) \, \|_H^2 \right) \! \mu_1(dx) \otimes \mu_2(dy). \end{split}$$

So it is easy to see that

$$(4.10) G_2^{-1}\mu_1 \otimes \mu_2(dx \times dy) = \rho(x, y)\mu_1(dx) \otimes (I_{B_2} - F_2)^{-1}\mu_2(dy),$$

where

$$\begin{split} \rho(x,y) = & \left| \delta_H((I_H - DF(x+y))(I_H - P_2 DF(y)P_2)^{-1}) \right| \\ \times & \exp\bigg(\overline{H}_0(x,(I_{B_2} - F_2)y) - \frac{1}{2} \|F(x+y) - F_2(y)\|_H^2 \bigg). \end{split}$$

Note that (4.7) and (4.8) imply that

$$(4.11) H_0^{(n)}(x,y) \longrightarrow \overline{H}_0(x,(I_{B_2}-F_2)y), \quad n \to \infty,$$

in probability with respect to $\mu_1(dx) \otimes (I_{B_2} - F_2)^{-1} \mu_2(dy)$.

Step 3. Let us prove the following.

PROPOSITION 4.3.

$$\int_{B_1 \oplus B_2} f(x+y) G_2^{-1} \mu_1 \bigotimes \mu_2(dx \times dy) = \int_B f(z) \nu(dz)$$

for any bounded Borel function $f: B \rightarrow R$.

$$\int_{B_1 \oplus B_2} g(x, y) G_2^{-1} \mu_1 \otimes \mu_2(dx \times dy) = \int_{B} g(\pi_1 z, \pi_2 z) \nu(dz)$$

for any bounded Borel function $g: B_1 \oplus B_2 \rightarrow R$.

PROOF. Let $f: B \rightarrow R$ be a bounded Borel function. By Proposition 2.3 (2) and Proposition 4.2 (2), we see that

$$\begin{split} \int_{B_1 \oplus B_2} f(x+y) G_{\mathbf{2}}^{-1} \mu_1 \otimes \mu_2 (dx \otimes dy) &= \int_{B_1 \oplus B_2} f(x+y+F(I_B-F)^{-1}(x+y)) \, \mu_1 (dx) \otimes \mu_2 (dy) \\ &= \int_B f((I_B-F)^{-1}z) \, \mu(dz) = \int_B f(z) \nu(dz) \, . \end{split}$$

This proves our assertion (1).

Now let $g_1: B_1 \to \mathbb{R}$ and $g_2: B_2 \to \mathbb{R}$ be bounded Borel functions. Then it follows from Propositions 2.2, 3.2, (4.10) and our assertion (1) that $\pi_1(x+y)=x$ and $\pi_2(x+y)=y$ for $G_2^{-1}\mu_1 \otimes \mu_2$ -a.e. (x,y). Thus we have got by Proposition 2.2 and our assertion (1).

$$\begin{split} &\int_{B_1\oplus B_2} g_1(x)g_2(y)G_2^{-1}\mu_1 \otimes \mu_2(dx \times dy) \\ &= \int_{B_1\oplus B_2} g_1(\pi_1(x+y))g_2(\pi_2(x+y))G_2^{-1}\mu_1 \otimes \mu_2(dx \times dy) = \int_{B} g_1(\pi_1z)g_2(\pi_2z)\nu(dz). \end{split}$$

This proves our assertion (2). This completes the proof.

Now we will complete the proof of Theorem 1. It follows from Proposition 4.3 (2) and (4.10) that $\pi_2\nu$ and $(I_{B_2}-F_2)^{-1}\mu_2$ are mutually absolutely continuous. Therefore (4.11) implies that $H_0^{(n)}(x,y)\to \overline{H}_0(x,(I_{B_2}-F_2)y),\ n\to\infty$, in probability with respect to $\pi_1\mu(dx)\otimes\pi_2\nu(dy)$. This shows Theorem 1 (1) and $H_0(x,y)=\overline{H}_0(x,(I_{B_2}-F_2)y)$.

Let $f: B \to \mathbb{R}$ be a bounded Borel function and $g: B \to \mathbb{R}$ be an \mathcal{G}_2 -measurable bounded function. Then it follows from Propositions 3.1, 4.3 and (4.10) that

$$\begin{split} &\int_{B} f(z)g(z)\nu(dz) = \int_{B_{1}\oplus B_{2}} f(x+y)g(x+y)G_{2}^{-1}\mu_{1}\otimes\mu_{2}(dx\times dy) \\ = &\int_{B_{1}\oplus B_{2}} f(x+y)g(y)\rho(x,y)\mu_{1}(dx)\otimes (I_{B_{2}}-F_{2})^{-1}\mu_{2}(dy) \\ = &\int_{B_{1}\oplus B_{2}} g(y)\frac{\int_{B_{1}} f(\tilde{x}+y)\rho(\tilde{x},y)\mu_{1}(d\tilde{x})}{\int_{B_{1}} \rho(\tilde{x},y)\mu_{1}(d\tilde{x})} \rho(x,y)\mu_{1}(dx)\otimes (I_{B_{2}}-F_{2})^{-1}\mu_{2}(dy) \\ = &\int_{B} g(\pi_{2}z)\tilde{f}(z)\nu(dz), \end{split}$$

where

$$\tilde{f}(z) = \frac{\int_B f(\pi_1 \tilde{z} + \pi_2 z) \rho(\pi_1 \tilde{z}, \pi_2 z) \mu(d\tilde{z})}{\int_B \rho(\pi_1 \tilde{z}, \pi_2 z) \mu(d\tilde{z})}.$$

Since $g(\pi_2 z) = g(z)$ for ν -a.e. z and \tilde{f} is $\mathcal{G}_2 \vee \mathcal{J}_{\nu}$ -measurable by Propositions 3.2 and 3.3, we have got $E[f|\mathcal{G}_2](z) = \tilde{f}(z)$ for ν -a.e. z. This completes the proof.

PROPOSITION 4.4. Suppose that there exists a constant C, 0 < C < 1, such that $||DF(z)||_{\mathcal{L}^{\infty}(H,H)} \le C$ for any $z \in B$. Then (F-1) and (F-2) lead to (F-4).

PROOF. Since $\|P_2DF(z)\|_{L^{\infty}(H,H)} \leq C$ for any $z \in B$, $I_H - P_2DF(z) : H \to H$ is invertible for any $z \in B$. Therefore it suffices to prove that $I_B - F_2 : B \to B$ is bijective under the assumptions (F-1) and (F-2). It is easy to see that

$$||F(z+h)-F(z)||_{H} = \left\|\int_{0}^{1} DF(z+th)h dt\right\|_{H} \le C||h||_{H},$$

and

$$\|F_2(z+h)-F_2(z)\|_H\!=\!\|P_2(F(z+h)-F(z))\|_H\!\leq\!C\|h\|_H$$

for any $z \in B$ and $h \in H$. Therefore $I_H - (F(z+\cdot) - F(z)) : H \to H$ and $I_H - (F_2(z+\cdot) - F_2(z)) : H \to H$ are bijective for any $z \in B$ by virtue of the fixed point theorem for contraction map.

Now let us prove the injectivity of $I_B-F_2: B\to B$. Suppose that $(I_B-F_2)z_1=(I_B-F_2)z_2$ for some $z_1,z_2\in B$. Then we get $(I_B-F)z_2=(I_B-F)z_1+k$, where $k=\bar{P}_1F(z_1)-\bar{P}_1F(z_2)\in H$. Since $I_H-(F(z_1+\cdot)-F(z_1)): H\to H$ is bijective, there exists some $h\in H$ such that $h-(F(z_1+h)-F(z_1))=k$. Thus $(z_1+h)-F(z_1+h)=z_1-F(z_1)+k$. Since $I_B-F: B\to B$ is bijective by (F-1), we get $z_2=z_1+k$. Hence $h-(F_2(z_1+h)-F_2(z_1))=(I_B-F_2)z_2-z_1+F_2(z_1)=0$. The injectivity of $I_H-(F_2(z_1+\cdot)-F_2(z_1)): H\to H$ implies h=0, and accordingly we have got $z_1=z_2$. This shows the injectivity of $I_B-F_2: B\to B$.

Let w be an arbitrary element of B. Let $z=(I_B-F)^{-1}w$. Since $\overline{P}_1F(z)\in H$, there exists some $h\in H$ such that $h-(F_2(z+h)-F_2(z))=-\overline{P}_1F(z)$. Then we obtain

$$(I_R-F_2)(z+h)=z-F_2z-\overline{P}_1F(z)=(I_R-F)z=w.$$

This shows the surjectivity of $I_B - F_2 : B \rightarrow B$. This completes the proof.

By using Schwarts [6, Theorem 1.22], we can also prove the following similarly to Proposition 4.4.

PROPOSITION 4.5. Suppose that $I_H - DF(z) : H \rightarrow H$ and $I_H - P_2DF(z) : H \rightarrow H$ are invertible for any $z \in B$ and that there exists a constant K > 0 such that

$$\|(I_H - DF(z))^{-1}\|_{L^{\infty}(H,H)} \le K$$
 and $\|(I_H - P_2DF(z))^{-1}\|_{L^{\infty}(H,H)} \le K$

for any $z \in B$. Then (F-1) and (F-2) lead to (F-4).

5. Application.

In this section we will consider the solution of the stochastic pseudo-differential equation treated in [5, Section 5]. We will use the notation introduced in [5] sometimes without explanation.

Let $p(\xi) \in \widetilde{\mathcal{S}}^m$, $m \in \mathbb{R}$, such that $p(\xi) \neq 0$ for any $\xi \in \mathbb{R}^d$ and $p(\xi)^{-1} \in \widetilde{\mathcal{S}}^{-m}$, and let $q_j(\xi) \in \widetilde{\mathcal{S}}^r$, $j=1, \dots, n$ and $r \in \mathbb{R}$. Moreover let $b: \mathbb{R}^n \to \mathbb{R}$ be a bounded smooth function such that

$$\|\partial_j b\|_{\infty} = \sup \left\{ \left| \frac{\partial b}{\partial y_j}(y) \right| ; y \in \mathbb{R}^n \right\} < \infty,$$

and

$$\|\partial_{ij}b\|_{\infty} = \sup\left\{\left|\frac{\partial^2 b}{\partial y_i\partial y_j}(y)\right|; \ y \in \mathbf{R}^n\right\} < \infty$$

for any $i, j=1, \dots, n$. Now let us consider the following stochastic pseudo-differential equation

(5.1)
$$p(D_x)X - b(q_1(D_x)X, \dots, q_n(D_x)X) = W,$$

where W is a Gaussian white noise with d-dimensional parameter. Let $Y = p(D_x)^{-1}W$. Then we get

(5.2)
$$X - p(D_x)^{-1}b(q_1(D_x)X, \dots, q_n(D_x)X) = Y.$$

Assume that $m > r + \frac{d}{2}$ and $\sum_{j=1}^{n} \|\partial_{j}b\|_{\infty} \cdot \|q_{j}p^{-1}\|_{L^{\infty}} < 1$. Then according to [5, Theorem 3], there exists the unique solution X of the equation (5.1). Let D be a bounded domain in \mathbb{R}^{d} with smooth boundary. Let us make some preparation to study about the σ -fields \mathcal{F}_{D} and \mathcal{F}_{D} as in Introduction.

Let $\sigma^t(x) = \langle x \rangle^t$ and $\rho^s(x) = \langle x \rangle^s$, $x \in \mathbb{R}^d$, for each $t, s \in \mathbb{R}$. Let $W_2^{\sigma^t, \rho^s}$ be a Banach space with a norm $\| \ \|_{W_2^{\sigma^t, \rho^s}}$, the same as in [5], given by

$$W_2^{\sigma^t,\rho^s} = \{ u \in \mathcal{S}'(\mathbf{R}^d); \ \rho^s(X)\sigma^t(D_x)u \in L^2(\mathbf{R}^d) \},$$

and

$$\|u\|_{W_0\sigma^{t,\rho^s}} = \|\rho^s(X)\sigma^t(D_x)u\|_{L^2} \qquad \text{for each } u \in W_2^{\sigma^t,\rho^s}.$$

The following has been shown in [5, Theorem 2].

PROPOSITION 5.1. For any $s, t \in \mathbf{R}$ and any pseudo-differential operator P belonging to \tilde{S}^0 , there exists a constant C > 0 such that

$$\|Pu\|_{W_2^{\sigma^t,\rho^s}} \leq C \|u\|_{W_2^{\sigma^t,\rho^s}} \quad \text{ for any } u \in W_2^{\sigma^t,\rho^s}.$$

Therefore P can be considered a bounded linear operator in $W_2^{\sigma^t,\sigma^s}$.

Let $\sigma^t_{\eta}(x) = \langle \eta \cdot x \rangle^t$ and $\rho^s_{\lambda}(x) = \langle \lambda \cdot x \rangle^s$, $x \in \mathbb{R}^d$, for each $t, s \in \mathbb{R}$ and $\eta, \lambda \in (0, 1]$, and let $W_2^{\sigma^t_{\eta}, \rho^s_{\lambda}}$ be a Banach space with a norm $\| \cdot \|_{W_2^{\sigma^s_{\eta}, \rho^t_{\lambda}}}$ given by

$$W_2^{\sigma^t\eta,\rho^s\lambda} = \{u \in \mathcal{S}'(\mathbf{R}^d); \ \rho^s{}_\lambda(X)\sigma^t{}_\eta(D_x)u \in L^2(\mathbf{R}^d)\},$$

and

$$\|u\|_{W_0\sigma^t_\eta,\rho^s_\lambda} = \|\rho^s_\lambda(X)\sigma^t_\eta(D_x)u\|_{L^2} \qquad \text{for each } u \in W_2^{\sigma^t_\eta,\rho^s_\lambda}.$$

Then we get the following.

PROPOSITION 5.2. $W_2^{\sigma^t,\rho^s}\lambda = W_2^{\sigma^t,\rho^s}$ as a set and the norms $\| \ \|_{W_2\sigma^t,\rho^s}\lambda$ and $\| \ \|_{W_3\sigma^t,\rho^s}$ are equivalent for any $s,t\in R$ and $\eta,\lambda\in (0,1]$.

PROOF. It is obvious that

$$\|u\|_{W_{o}\sigma^{t}_{\eta},\rho^{s}_{\lambda}} = \|\rho^{s}_{\lambda}(X)\rho^{s}(X)^{-1}(\rho^{s}(X)\sigma^{t}_{\eta}(D_{x})\sigma^{t}(D_{x})^{-1}\rho^{s}(X))\rho^{s}(X)\sigma^{t}(D_{x})u\|_{L^{2}}$$

for any $u \in \mathcal{S}(\mathbf{R}^d)$. Since $\rho^s_{\lambda}(X)\rho^s(X)^{-1}$ and $\rho^s(X)\sigma^t_{\eta}(D_x)\sigma^t(D_x)^{-1}\rho^s(X)^{-1}$ are pseudo-differential operators belonging to $\widetilde{\mathcal{S}}^0$ by virtue of [5, Corollary to Lemma 4.1], it follows from Proposition 5.1 that there exists a constant C>0 such that

$$\|u\|_{W_{\sigma}^{\sigma^t},\rho^s\lambda} \leq C\|\rho^s(X)\sigma^t(D_x)u\|_{L^2} = C\|u\|_{W_{\sigma}^{\sigma^t},\rho^s} \qquad \text{for any } u \in \mathcal{S}(\mathbf{R}^d).$$

Similarly we see that there exists a constant C'>0 such that

$$\|u\|_{W_{\sigma}\sigma^t,\rho^s} \leq C' \|u\|_{W_{\sigma}\sigma^t_{\eta},\rho^s_{\lambda}} \quad \text{for any } u \in \mathcal{S}(\mathbf{R}^d).$$

This proves our assertion.

Let
$$t_0 = -\frac{1}{2} \left(m - r + \frac{d}{2} \right)$$
 and $s_0 = -\frac{d}{2} - 1$. Then it is obvious that σ^{t_0} , $\rho^{s_0} \in L^2(\mathbf{R}^d)$.

Let U_1 and U_2 be bounded domains in \mathbf{R}^d such that $\overline{D} \subset U_1 \subset \overline{U}_1 \subset U_2$, and let $g: \mathbf{R}^d \to \mathbf{R}$ be a smooth function such that g(x) > 0, $x \in \mathbf{R}^d$, g(x) = 1 for any $x \in U_1$ and $g(x) = \rho^{s_0}(x) = \langle x \rangle^{s_0}$ for any $x \in U_2^s$, where \overline{D} and \overline{U}_1 denote the closure of D and U_1 and U_2^s denotes the complement of U_2 in \mathbf{R}^d . Note that $g \in L^2(\mathbf{R}^d)$. From now on we denote $p(\xi)p(-\xi)$ by $p(\xi)$, $\xi \in \mathbf{R}^d$. Let

$$\begin{split} &A_1\!=\!g(X)^{-1}r(D_x)^{-1}g(X)r(D_x), \ A_2\!=\!p(D_x)g(X)p(D_z)^{-1}g(x)^{-1}\\ &\text{and }A_3\!=\!g(X)^{-1}p(D_x)g(X)p(D_x)^{-1}. \end{split}$$

Then we get the following.

Proposition 5.3. (1) A_1 , A_2 and A_3 are pseudo-differential operators belonging to \widetilde{S}^0 .

(2) g(X) can be considered a continuous linear map from $W_2^{\sigma^t,\rho^{s0}}$ into $W_2^{\sigma^t,\rho^0}$ for any $t \in \mathbb{R}$.

PROOF. Our assertion (1) is an immediate consequence of [5, Corollary to Lemma 4.1]. It is obvious that

$$\begin{split} \|g(X)u\|_{W_2^{\sigma^t,\rho^0}} &= \|\sigma^t(D_x)g(X)u\|_{L^2} \\ &= \|(\sigma^t(D_x)g(X)\sigma^t(D_x)^{-1}g(X)^{-1})(g(X)\rho^{s_0}(X)^{-1})\rho^{s_0}(X)\sigma^t(D_x)u\|_{L^2} \end{split}$$

for any $u \in \mathcal{S}(\mathbf{R}^d)$. Therefore the proof of our assertion (2) goes similarly to that of Proposition 5.2.

Now let $G: W_2^{\sigma^{t_0}, \rho^{s_0}} \to W_2^{\sigma^{0}, \rho^{s_0}}$ be a continuous map given by

$$Gu(x) = b(q_1(D_x)p(D_x)^{-1}u(x), \dots, q_n(D_x)p(D_x)^{-1}u(x)),$$

 $x \in \mathbf{R}^d$, for each $u \in W_2^{\sigma^{t_0}, \rho^{s_0}}$. Then it follows from the proof of [5, Theorem 3] and Proposition 5.2 that $I_{W_2^{\sigma^{t_0}, \rho^{s_0}} - G}: W_2^{\sigma^{t_0}, \rho^{s_0}} \to W_2^{\sigma^{t_0}, \rho^{s_0}}$ is bijective.

Let $t_1 = t_0 + m = \frac{1}{2} \left(m + r - \frac{d}{2} \right)$, and let B denote $W_2^{\sigma^{t_1}, \rho^{s_0}}$ and B_0 denote $W_2^{\sigma^{m}, \rho^{s_0}}$. By virtue of [5, Theorem 2], $p(D_x)$ can be considered a bijective bicontinuous linear map from B onto $W_2^{\sigma^{t_0}, \rho^{s_0}}$ and also considered a bijective bicontinuous linear map from B_0 onto $W_2^{\sigma^{t_0}, \rho^{s_0}}$. Therefore we can define a continuous linear map $F: B \to B_0$ by $Fu = p(D_x)^{-1}Gp(D_x)u$ for each $u \in B$, and we see that $I_B - F: B \to B$ is bijective.

Let μ be a probability measure on $S'(\mathbf{R}^d)$ such that

$$\int_{\mathcal{S}'(\mathbf{R}^d)} \exp(\sqrt{-1}_{\mathcal{S}}\langle f, w \rangle_{\mathcal{S}'}) \mu(dw) = \exp\left(-\frac{1}{2} \| p(-D_x)^{-1} f \|_{L^2}^2\right)$$

for any $f \in \mathcal{S}(\mathbf{R}^d)$. Then μ is the probability law of Y. It follows from [5, Theorem 1] that $\mu(B)=1$. Thus by (5.2), we see that $\nu=(I_B-F)^{-1}\mu$ is the probability law of X. Let H be a Hilbert space with an inner product $(\ ,\)_H$ given by $H=\{u\in\mathcal{S}'(\mathbf{R}^d);\ p(D_z)u\in L^2(\mathbf{R}^d)\}$, and $(u,v)_H=(p(D_z)u,p(D_z)v)_L^2$ for each $u,v\in H$. Then it is easy to see that $H=W_2^{\sigma^m,\rho^0}$ as a set.

Let us identify the dual space H^* with H. Then it is easy to see that $S(\mathbf{R}^d) \subset B^* \subset H \subset B_0 \subset B$ and

$$(5.3) (u,v)_{H} = {}_{B}\langle u,v\rangle_{B^{*}} = (u,r(D_{x})v)_{L^{2}}$$

for any $u, v \in \mathcal{S}(\mathbb{R}^d)$. Therefore for any $u \in \mathcal{S}(\mathbb{R}^d)$, we obtain

$$\begin{split} & \int_{B} \exp(\sqrt{-1}_{B^{*}}\langle u, w \rangle_{B}) \mu(dw) = \int_{S'(R^{d})} \exp(\sqrt{-1}_{S}\langle r(D_{x})u, w \rangle_{S'}) \mu(dw) \\ = & \exp\left(-\frac{1}{2} \| p(-D_{x})^{-1} r(D_{x})u \|_{L^{2}}^{2}\right) = \exp\left(-\frac{1}{2} \| u \|_{H}^{2}\right). \end{split}$$

Therefore (μ, H, B) is an abstract Wiener space.

Recall that D is a bounded domain in \mathbb{R}^d with smooth boundary, and let H_1 and H_2 be closed linear subspaces of H given by

(5.4) $H_1 = \{u \in H \subset \mathcal{S}'(\mathbf{R}^d); \text{ the support of } r(D_x)u \text{ is contained in the closure } \overline{D} \text{ of } D\},$

and

(5.5) $H_2 = \{u \in H \subset S'(\mathbf{R}^d); \text{ the support of } u \text{ is contained in the complement } D^c \text{ of } D\}.$

Then it is obvious that H_1 and H_2 are orthogonal and $H=H_1 \oplus H_2$. Let B_1 and B_2 be the closure of H_1 and H_2 in B respectively. Then it is easy to see that

- (5.6) $B_1 = \{u \in B \subset \mathcal{S}'(\mathbf{R}^d); \text{ the support of } r(D_x)u \text{ is contained in } \overline{D}\},$
- $(5.7) B_2 = \{u \in B \subset \mathcal{S}'(\mathbf{R}^d); \text{ the support of } u \text{ is contained in } D^o\}.$

Now we get the following.

PROPOSITION 5.4. The assumptions (A-1) and (A-2) hold. That is,

- (1) $B_0 \cap B_1 \cap B_2 = \{0\}$, and
- (2) the orthogonal projection $P_1: H \rightarrow H_1$ is extensible to a bounded linear map $\overline{P}_1: B_0 \rightarrow H_1$.

PROOF. Since $g(x)^{-1}=1$ around D, we get

$$(5.8) g(X)^{-1}u = g(X)^{-1}r(D_x)^{-1}g(X)g(X)^{-1}r(D_x)u = A_1u$$

for any $u \in B_1$.

Suppose that $u \in B_0 \cap B_1 \cap B_2$. Then Propositions 5.1 and 5.3 (1) show that $g(X)^{-1}u = A_1u \in B_0$. Thus by Proposition 5.3 (2), we see that $u = g(X)g(X)^{-1}u \in H$. However, it is obvious that $H \cap B_1 = H_1$ and $H \cap B_2 = H_2$. Therefore $u \in H_1 \cap H_2 = \{0\}$. This proves (A-1).

Now let us prove (A-2). By (5.3), we see that for any $u \in \mathcal{S}(\mathbf{R}^d)$ and $v \in H$, $(P_1u, v)_H = {}_{\mathcal{S}}\langle u, r(D_x)P_1v\rangle_{\mathcal{S}'} = {}_{\mathcal{S}}\langle g(X)u, r(D_x)P_1v\rangle_{\mathcal{S}'} = (P_1g(X)u, v)_H.$

Therefore we get

$$(5.9) P_1 u = P_1 g(X) u \text{for any } u \in \mathcal{S}(\mathbf{R}^d).$$

Hence due to Proposition 5.3 (2), we obtain (A-2). This completes the proof. Since B_0 is reflexive, we see that B_0 , H_1 and H_2 satisfy all the assumptions in Section 2. Now let us study about the property of the Borel map $F: B \rightarrow B_0$. For each $w \in B$, let $f(x; w) = b(q_1(D_x)w(x), \dots, q_n(D_x)w(x)), x \in \mathbb{R}^d$, and

$$f_j(x;w) = \frac{\partial b}{\partial y_i}(q_1(D_x)w(x), \cdots, q_n(D_x)w(x)), \quad j=1, \cdots, n$$

and $x \in \mathbb{R}^d$, and let $T_j(w): L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d), j=1, \dots, n$, be bounded linear operators given by

$$T_i(w)u(x) = f_i(x; w)u(x), \quad x \in \mathbb{R}^d, \text{ for each } u \in L^2(\mathbb{R}^d).$$

Note that $p(D_x)$ can be considered an isometry from H into $L^2(\mathbb{R}^d)$. Now let $DF(w) : H \to H$ be a bounded linear operator given by

(5.10)
$$DF(w)h = \sum_{j=1}^{n} p(D_x)^{-1} T_j(w) q_j(D_x) p(D_x)^{-1} p(D_x) h,$$

 $h \in H$, for each $w \in B$. It is obvious that DF is well-defined. It is easy to see that for any $w \in B$,

$$(5.11) ||DF(w)||_{\mathcal{L}^{\infty}(H,H)}$$

$$= ||p(D_{x})DF(w)p(D_{x})^{-1}||_{\mathcal{L}^{\infty}(L^{2}(\mathbb{R}^{d}),L^{2}(\mathbb{R}^{d}))}$$

$$\leq \sum_{j=1}^{n} ||T_{j}(w)||_{\mathcal{L}^{\infty}(L^{2}(\mathbb{R}^{d}),L^{2}(\mathbb{R}^{d}))} ||q_{j}(D_{x})p(D_{x})^{-1}||_{\mathcal{L}^{\infty}(L^{2}(\mathbb{R}^{d}),L^{2}(\mathbb{R}^{d}))}$$

$$\leq \sum_{i=1}^{n} ||\partial_{j}b||_{\infty} ||q_{j}\cdot p^{-1}||_{L^{\infty}} < 1.$$

Since $m-r>\frac{d}{2}$, by virtue of Sobolev's lemma there exists a constant C>0 such that $\|q_j(D_x)p(D_x)^{-1}u\|_{L^\infty}\leq C\|u\|_{L^2},\ j=1,\cdots,n$, for any $u\in L^2(\mathbf{R}^d)$. Thus we get for any $w\in B$ and $h\in H$,

$$\begin{split} (5.12) \qquad & \|DF(w+h) - DF(w)\|_{\mathcal{L}^{\infty}(H,H)} \leq \sum_{j=1}^{n} \|f_{j}(\cdot\,;w+h) - f_{j}(\cdot\,;w)\|_{L^{\infty}} \|q_{j}\cdot p^{-1}\|_{L^{\infty}} \\ \leq & \sum_{i,j=1}^{n} \|\partial_{ij}b\|_{\infty} \|q_{i}(D_{x})p(D_{x})^{-1}p(D_{x})h\|_{L^{\infty}} \|q_{j}\cdot p^{-1}\|_{L^{\infty}} \\ \leq & C\bigg(\sum_{i,j=1}^{n} \|\partial_{ij}b\|_{\infty} \|q_{j}\cdot p^{-1}\|_{L^{\infty}}\bigg) \|h\|_{H}. \end{split}$$

Therefore $DF(w+\cdot): H\to \mathcal{L}^\infty(H,H)$ is continuous for any $w\in B$. It is obvious that for any $w\in B$ and $h\in H$,

$$F(w+h)-F(w) = \int_0^1 DF(w+th)h \ dt,$$

which implies that $F(w+h)-F(w) \in H$ and

$$||F(w+h)-F(w)-DF(w)h||_{H}=o(||h||_{H}), ||h||_{H}\to 0.$$

Thus by (5.11) and Proposition 4.4, we get the following.

PROPOSITION 5.5. The Borel map F satisfies the assumptions (F-1), (F-2) and (F-4).

Now let us prove the following.

PROPOSITION 5.6. The Borel map F satisfies the assumption (F-3).

PROOF. It follows from (5.8) and (5.9) that

(5.13)
$$P_{1}DF(w) = \sum_{j=1}^{n} P_{1}g(X)p(D_{x})^{-1}T_{j}(w)q_{j}(D_{x})p(D_{x})^{-1}p(D_{x})$$
$$= \sum_{j=1}^{n} P_{1}p(D_{x})^{-1}A_{2}T_{j}(w)(g(X)q_{j}(D_{x})p(D_{x})^{-1})p(D_{x})$$

and

(5.14)
$$DF(w)P_{1} = \sum_{j=1}^{n} p(D_{x})^{-1}T_{j}(w)q_{j}(D_{x})p(D_{x})^{-1}p(D_{x})g(X)g(X)^{-1}P_{1}$$
$$= \sum_{j=1}^{n} p(D_{x})^{-1}T_{j}(w)(q_{j}(D_{x})p(D_{x})^{-1}g(X))A_{3}p(D_{x})A_{1}P_{1}.$$

Note that A_1 can be considered a bounded linear operator in H and that A_2 and A_3 can be considered bounded linear operators in $L^2(\mathbb{R}^d)$, due to Propositions 5.1 and 5.3. Since g and $g_j \cdot p^{-1}$, $j=1, \dots, n$, belong to $L^2(\mathbb{R}^d)$, we see that

$$g(X)q_{j}(D_{x})p(D_{x})^{-1}, q_{j}(D_{x})p(D_{x})^{-1}g(X), j=1,\dots,n,$$

can be considered Hilbert-Schmidt operators in $L^2(\mathbb{R}^d)$.

Therefore $P_1DF(w): H \rightarrow H$ and $DF(w)P_1: H \rightarrow H$ are Hilbert-Schmidt operators for each $w \in B$. Similarly to (5.12), we can see that

$$T_{j}(w+\cdot): H \longrightarrow \mathcal{L}^{\infty}(L^{2}(\mathbb{R}^{d}), L^{2}(\mathbb{R}^{d})), \ j=1, \cdots, n,$$

are continuous for any $w \in B$. Thus $P_1DF(w+\cdot): H \to \mathcal{L}^2(H,H)$ and $DF(w+\cdot)P_1: H \to \mathcal{L}^2(H,H)$ are continuous for any $w \in B$. This completes the proof.

PROPOSITION 5.7. $DF(w+u)-DF(w): H\to H$ is a Hilbert-Schmidt operator for any $w\in B$ and $u\in B_1$. Furthermore, $DF(\cdot+u)-DF(\cdot): B\to \mathcal{L}^2(H,H)$ is continuous for any $u\in B_1$, and there exists a constant C>0 such that

$$||DF(w+u)-DF(w)||_{\mathcal{L}^{2}(H,H)} \leq C||u||_{\mathcal{B}}$$

for any $w \in B$ and $u \in B_1$. Therefore the map from $B \times B_1$ into $\mathcal{L}^2(H, H)$ under which (w, u) corresponds to DF(w+u) - DF(w) is continuous. In particular, the Borel map F satisfies (F-5).

PROOF. It is obvious that

$$(5.15) DF(w+u) - DF(w) = p(D_x)^{-1} \sum_{i=1}^{n} (T_j(w+u) - T_j(w))q_j(D_x)p(D_x)^{-1}p(D_x)$$

for any $w \in B$ and $u \in B_1$. It is easy to see that

$$|f_{j}(x; w+u) - f_{j}(x; w)| \leq \sum_{i=1}^{n} ||\partial_{ij}b||_{\infty} |q_{i}(D_{z})u(x)|,$$

 $x \in \mathbb{R}^d$ and $j=1,\dots,n$, for each $w \in B$ and $u \in B_1$. It follows from (5.8) that

$$(5.17) q_i(D_x)u = q_i(D_x)g(X)A_1u = g(X)g(X)^{-1}q_i(D_x)g(X)A_1u$$

for any $u \in B_1$ and $i=1, \dots, n$. By virtue of [5, Corollary to Lemma 4.1 and Theorem 2], $g(X)^{-1}q_i(D_x)g(X), i=1, \dots, n$, can be considered a continuous linear map from B into $W_2^{\sigma^0,\rho^{s_0}}$. Proposition 5.3 (2) shows that g(X) can be considered a continuous linear map from $W_2^{\sigma^0,\rho^{s_0}}$ into $L^2(\mathbb{R}^d)$, and Propositions 5.1 and 5.3 (1) show that A_1 can be considered a bounded linear operator in B. Therefore by (5.17) we see that there exists a constant C''>0 such that

(5.18)
$$||q_i(D_x)u||_{L^2} \le C'' ||u||_B, \quad i=1,\dots,n,$$

for any $u \in B_1$. Thus by virtue of Lebesgue's convergence theorem, (5.16) and (5.18), we get

$$(5.19) \quad \int_{\mathbb{R}^d} |\left(f_j(x;w'+u) - f_j(x;w')\right) - \left(f_j(x;w+u) - f_j(x;w)\right)|^2 dx \longrightarrow 0, \ \ w' \longrightarrow w \ \ \text{in} \ \ B,$$

for any $u \in B_1$. Moreover (5.16) and (5.18) imply that there exists a constant C' > 0 such that

$$\left\{ \int_{\mathbf{R}^d} |f_j(x; w+u) - f_j(x; w)|^2 dx \right\}^{1/2} \le C' \|u\|_B$$

for any $u \in B_1$. Since $q_j \cdot p^{-1} \in L^2(\mathbb{R}^d)$, $j = 1, \dots, n$, we see by (5.15), (5.19) and (5.20) that $DF(w+u) - DF(w) : H \to H$ is a Hilbert-Schmidt operator for any $w \in B$ and $u \in B_1$, $\|(DF(w'+u) - DF(w')) - (DF(w+u) - DF(w))\|_{L^2(H,H)} \to 0$ as $w' \to w$ in B for any $u \in B_1$, and that there exists a constant C > 0 such that

$$||DF(w+u)-DF(w)||_{\mathcal{L}^{2}(H,H)} \leq C||u||_{B}$$
 for any $u \in B_{1}$.

This proves the first part of our assertion. The latter part is obvious. This completes the proof.

Let \mathcal{F}_D and \mathcal{J}_{D^e} be σ -fields as in Introduction. By ignoring $\mathcal{S}'(\mathbf{R}^d) \setminus \mathbf{B}$, we obtain $\mathcal{F}_1 \vee \mathcal{N}_{\mu} = \mathcal{F}_D \vee \mathcal{N}_{\mu}$, $\mathcal{F}_1 \vee \mathcal{N}_{\nu} = \mathcal{F}_D \vee \mathcal{N}_{\nu}$, $\mathcal{F}_2 \vee \mathcal{N}_{\mu} = \mathcal{F}_{D^e} \vee \mathcal{N}_{\mu}$ and $\mathcal{F}_2 \vee \mathcal{N}_{\nu} = \mathcal{F}_D \vee \mathcal{N}_{\nu}$.

 $\mathcal{J}_{D^o} \vee \mathcal{N}_v$. Thus according to Theorem 1, Propositions 3.3, 5.5, 5.6 and 5.7, we get the following by letting $\tilde{H}(\tilde{w}, w) = H(\pi_1 \tilde{w}, \pi_2 w)$ as in Theorem 1.

THEOREM 2. Let μ and ν be the probability laws of Y and X respectively, and let D be a bounded domain with smooth boundary. Moreover let $\nu(\cdot | \mathcal{J}_{D^{\bullet}})$ denote the conditional probability measure relative to the σ -field $\mathcal{J}_{D^{\bullet}}$ under ν . Then

- (1) the restricted measures $\mu|_{\mathfrak{T}_D}$ and $\nu|_{\mathfrak{T}_D}$ relative to the σ -field \mathfrak{F}_D are mutually absolutely continuous, and
- (2) there exists an $\mathcal{F}_D \times \mathcal{F}_D$ -measurable function $\tilde{H}: \mathcal{S}'(\mathbf{R}^d) \times \mathcal{S}'(\mathbf{R}^d) \to \mathbf{R}$ such that for any $E \in \mathcal{F}_D$,

$$u(E|\mathcal{J}_{D^e})(w) = \frac{\displaystyle\int_{E} \exp ilde{H}(ilde{w},w) \mu(d ilde{w})}{\displaystyle\int_{S'} \exp ilde{H}(ilde{w},w) \mu(d ilde{w})} \quad \textit{for ν-a.e. w.}$$

References

- [1] Carmona, R., Measurable norms and some Banach space valued Gaussian processes, Duke Math. J. 44 (1977), 109-127.
- [2] Dobrushin, R. L. and D. Surgailis, On the Innovation Problem for Gaussian Markov Random Fields, Z. Wahrsch. Verw. Gebiete 49 (1979), 275-291.
- [3] Kuo, H. H., Gaussian measures in Banach spaces, Lecture Notes in Math. 463, Springer, Berlin-Heidelberg-New York, 1975.
- [4] Kusuoka, S., The nonlinear transformation of Gaussian measure on Banach space and its absolute continuity (I), J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 29 (1982), 567-597.
- [5] Kusuoka, S., The support property of a Gaussian white noise and its applications, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 29 (1982), 386-400.
- [6] Schwartz, J. T., Nonlinear functional analysis, New York-London-Paris, Gordon and Breach Science Publishers, 1969.
- [7] Yosida, K., Functional Analysis, Springer Verlag, Berlin-Heidelberg, 1968.

(Received November 16, 1981)

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan