The nonlinear transformation of Gaussian measure on

Banach space and its absolute continuity (I)

By Shigeo KUSUOKA™

§1. Imtroduction.

To begin with, let us introduce some preliminary notions. For real Banach
spaces E and F, E* denotes the dual space of E with the strong topology, Iz
denotes the identical map on E and .L*(E, F) denotes the Banach space consist-
ing of all bounded linear operators from E into F with the operator norm. For
real Hilbert spaces H and K, .C%H, K) denotes the Hilbert space of all Hilbert-
Schmidt operators from H into K with a Hilbert-Schmidt norm.

We say that (g, H, B) is an abstract Wiener space if o4, H and B satisfy
the following condition (W-1) and (W-2).

(W-1) B is a real separable Banach space, and H is a real separable Hilbert
space densely and continuously included in B.

We identify H* with H, then B* is naturally regarded as a dense subset of
H and the inclusion map from B* into H is continuous. And moreover the
relation z«lu, v>p=(u, v)x holds for any u<B* and veH.

(W-2) p is a Gaussian probability measure on B such that

[ expv/ L pucu, Daptdar=exp(—5 lul)

for each u=B*.

Throughout this paper we promise that (¢, H, B) denotes an abstract Wiener
space.

In this paper we study the following problem. Let F be a measurable map
from B into H. Our problem is to study when the image measure (Iz—F )y on
B through Iz—F: B—B is absolutely continuous relative to g, and to give the
explicit form of its density function.

R.H. Cameron and W.T. Martin are the first to study this problem. In their
paper [2], they dealt in the case that B is the space of all continuous functions
on the interval [0, 1] and g is an ordinary Wiener measure. L. Gross [5] and
H. H. Kuo [8] extended the work of R.H. Cameron and W.T. Martin for general
abstract Wiener spaces.

x) Partially supported by the SAKKOKAI FOUNDATION.
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From a viewpoint of stochastic differential equation, this problem was studied
by V. Girsanov [4] and M. Motoo [117, and they showed that Ito integral appeared
essentially in the density function. _

In 1974, R. Ramer [13] introduced an abstract version of Ito integral (we
will call it Ito-Ramer integral), and he solved our problem under some assump-
tions, one of which is that F: B—H is continuous. But his assumptions are
sometimes so strong that we cannot apply his theorem to stochastic differential
equations. He conjectured in his paper that we could solve our problem under
some weaker assumptions than his. We give one of answers to his conjecture
in this paper.

Now let us shortly summarize the content of our paper.

We give some tools for later use in Sections 2, 3 and 4. We also introduce
an Ito-Ramer integral as an abstract version of Ito integral in Section 5 follow-
ing the idea of Ramer [13].

The main results are stated in Sections 6, 7 and 8. We say that a meas-
urable map F: B—H is an 4 —C* map, if there exists a Hilbert Schmidt operator
DF(z): H—H for each ze B such that (1) VF(z+-h)—F(2)—DF()h|g=o(| hlg)
for each zeB as [Allz—0, and (2) DF(z++): H—L%H, H) is continuous for
each z&B. We prove the following in Section 6.

THEOREM 6.2. If F: B—H is an 4 —C*? map and Iyz—DF{(z): H—~H s in-
vertible for p-a.e.z, then (Iz—F Yt s absolutely continuous relative to o

THEOREM 6.4. Let F: B—H be an % —C* map, and assume that I—F: B—B
is bijective and Iy—DF(z): H—H is invertible for any z=B. Then Upg—F)'p
and p are mutually absolutely continuous.

— -1
We shall also give the explicit form of the density function As—F)7p in

du
Theorem 6.4.

Here let us explain the difference between Gross-Kuo’s result, Ramer’s result
and ours. In Kuo [8], Theorem 6.4 above has been shown under the assumption
that the image of F is contained in B* and F: B—B* is continuously Frechet
differentiable. (The presentation of Gross [5] is different from this.) In Kuo's
case, DF(z): H—H, z& B, becomes a nuclear operator automatically. In Ramer
[13], Theorem 6.4 has been shown under the assumption that F: B—H and
DF: B—.r%H, H) are continuous. But we shall prove Theorem 6.4 without the
assumption of the continuity of F: B~H and DF: B—.C%H, H). This is the
different point from Ramer [13].

We give some extended theorems of Theorems 6.2 and 6.4 in Section:7.

There we do not need to assume that F(z+-): H—=H, z=B, is continuous
any more.
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In Section 8, we prove a certain Sard type theorem and give a certain
sufficient condition under which g is absolutely continuous relative to (I5—F)p.

The author wishes to thank Professor Y. Okabe for useful conversation and
his hearty encouragement.

§2. Prelimirary material.

In this section we note some known results about an abstract Wiener space
(¢, H, B). Let ®(E) denote the set of all projections of H with a finite dimen-
sional range included in E for each vector subspace E of H. Then P(E) is a
directed set with usual order induced by the inclusion of ranges. It is obvious
that any projection P belonging to @(B*) is extensible to a bounded linear
operator P: B—B*. R. Carmona [3] proved

PrROPOSITION 2.1. Let {P.}%_. be an increasing sequence of elements of P(B¥)
strongly converging to Iy, then lz— Pzl 5—0, n—oo for p-a.e.z. Moreover, for

any 1< g< oo, SBllz—Fnlequ(dz)—»O, 71—00,

The following is well-known. (See for an example R. Ramer [13].)

PROPOSITION 2.2. For any Hilbert Schmidt operator K on H, there exisls a
measurable map K:B—H such that | Kz—KPz| g—0, P=®(B*), in probability

with respect to p, and SBHKzH%{p(dz):trace KK*,

We call K the stochastic extension of K. For each Pe®(B*), it is easy to see
that Pz=Pz for p-a.e.z and so we identify P with P.

The following are also well-known. For the proof, see H. Kuo [9] Chap. 1
Section 4 and Chap. 2 Section 5.

PROPOSITION 2.3. The inclusion map from H to B is a compact operator.

PROPOSITION 2.4. For each ueB, let N, be an operator on B defined by
Nuyz=u for any z€B. Then the image measure (Ip—Ny) 'yt is absolutely con-
tinuous relative to g, if and only if u belongs to H. Furthermore, for each

Nyt
=, O @mexp(pi, 2o ),

PROPOSITION 2.5. Let K be a bounded linear operaior from B into B¥,
and assume that Iyz—K is invertible as a map from H into itself. Then K is a
nuclear operator on H, Iz—K: B—B is invertible and (Ip—I)"'p is absolutely
continuous relative to p. Furthermore,
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dp—K) 'y 1
g @= et — ) exp(5n<Kz, Do 1Kzl ).

§3. FH'-class maps.

In this section we introduce an infinite dimensional analogue of the classical
Sobolev space. Let E denote a real Banach space.

DEFINITION 3.1. (1) We say that a map f: R—FE is absolutely continuous
if, for any —co<a<b< oo and >0, there exists some d(e, @, b)>0 such that

i}l I ft)—f(s)lz<e holds for any integer n and a<t,<s;<t,<sp + 12 <Sp=h,

i:l \ti—s:| <d(e, a, b).

(2) We say that a map f: R—F is strictly absolutely continuous, if f: R—F
is continuous, f(¢) is strongly differentiable for almost every ¢ and it satisfies

that Si‘%(t)HEdt<oo and f(b)-f(a)zgij—{(t)dt for any —oo<a<b< o,
df

where W(t) denotes strong derivative of f at t.

PROPOSITION 3.1. (1) Given a map f: R—E, [ is absolutely continuous if f
13 strictly absolutely continuous.

(2) Assume that E is reflexive and f: R—E is absolutely continuous, then f
is strictly absolutely continuous.

See V. Barbu and Th. Precupanu [1], for the proof.

We say that F: B—E is strongly measurable, if there exists a Borel subset
2 of B and a separable closed subspace E, of E such that F(2)CE,, Flo: 2—E,
is measurable and p(£2)=1.

DEFINITION 3.2. We say that a strongly measurable map F: B—E is
stochastic Géteaux H-differentiable (abbreviated by S.G.D.) if there exists a
strongly measurable map DF: B—_£*(H, E) such that %E*w, F(z+th)—F(z))5
—gplt, DF(2)h>y in probability with respect to g, i—0, for each ueE* and
heH. DF is called a stochastic Géteaux H-derivative of F.

REMARK 3.1. By virtue of Proposition 2.4, F(z--th) is determinate for
p-a.e.z. without depending on a version of F, so is DF(z).

DEFINITION 3.3. We say that a strongly measurable map F: B—E is ray
absolutely continuous with probability one (abbreviated by R. A.C.), if there exists
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a strongly measurable map F,: B—E for each heH such that F (z)=F(z) for
pa.e.zeB and F #(z+th) is strictly absolutely continuous in ¢ for each z=B.

DEFINITION 3.4. We say that a map F: B—E belongs to H(B—E; dp) if
F: B—F is strongly measurable, S.G.D. and R.A.C.

PROPOSITION 3.2. Let F: B—E be an element of H(B—E; dy). Then for
cach heH and —o0<a<b<oo, | |DF(z-+shhlzds<co for pa.e.z€B and

~ ~ b
Fh(z+bh)—Fh(z+ah):S DF(z+sh)hds for p-a.e.z.
Here F, is a version of F as in Definition 3.3.
Before proving our proposition, we shall introduce some notion. For each
finite dimensional subspace K of H, we define the probability measures px and
#xl on B by szﬁK/z and /;KL:(IB—IN’K)y, where Px is the orthogonal pro-

jection from H onto K and Py is the stochastic extension of Px. Let {ky, -, ka}
be an orthogonal base of K. Then it is easy to see that

@D | fouda=| st Lda@ux(d)

:SBXRnf<Z+ Enl xjk,)pcx_l_(dz)@(%)mexp(_% ,é x%)dx

for each bounded measurable function f on B.
Now let us prove our proposition. We may assume that |Allz=1 without
loss of generality. Let K=Rh. Since Fn(z-4th) is strongly differentiable in ¢

for a.e.t and Y “%ﬁh(zqtth)”Edt<00, it is easy to see that

(3.2) %{FNh(z—HH—‘:)h)—ﬁh(z-Hh)}a%ﬁh(z—l—th) for a.elz, )

with respect to ylgj_(dz)@)(j-)lme“z”dt as 7—0. It follows from Definition 3.2

2
and (3.1) that

%E«u, Foz+t+o)h)— Fylz+th)ds—elu, DF(z+thhyg, 0,

/
in probability with respect to ‘uKL(dz)(X)(E%)l 28—42/zdt, which implies that

4
dt
with respect to pux 1 (dz)@dt. By the definition of pr i, it is easy to see that

(3.3) Fo.(z++thy=DF(z-+th)h  for a.e.(z, £
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(3.3) holds for a.e.(z, t) with respect to u(dz)®dt. This completes the proof.
ReEmark 3.1. By (3.3) we get

ﬁh<z+bh>—F‘h<z+am:SZDF(th)hdt for pxL-a.e.z.

DEFINITION 3.5. We say that a measurable function w defined on B is
strictly positive, if there exists a measurable function @, for each heH such
that

(1) dnz)=w(z) for p-a.e.z and
(2) Inf{@,(z+th); —T<t<T}>0 for any z=B and T>0.

The following theorem shows the stability of HY(B—E; du).

THEOREM 3.1. Let F, (n=1, 2, ---) be an element of HYB—E;dp), let F
be a strongly measurable map from B to E, G be a strongly measurable map
from B to L=(H, E), and let w be a strictly positive measurable function on B.
Assume furthermore that

(1) F@)—Fu2)z—0 in probability with respect to yu as n—oo and

@ | Ic@hlwEudz<eo and | 1GE@R—DF hlsu()udz)=0, n—eo, for
each heH. Then F belongs to H{B—E; dp) and DF(z)=G(z) for p-a.e.z.

Proor. For simplicity, we assume E=R. Take a measurable map Fon:
B—R as in Definition 3.3 for F,. Let K=Rh as in the proof of Proposition 3.2,
then by Remark 3.1 we obtain

(3.4) ﬁn,h(z+bh>-ﬁn,h(z+ah):g’;DFn(z+sh)hds for pxl-a.e.z

The right and left hands of (3.4) are continuous in ¢ and b. So there exists a
o-compact subset £2; of B such that px | (2,)=1 and (3.4) holds for any z€£,
and a<b.

Taking a subsequence if necessary, we may assume F nnl2)—F(z) for
p-a.e.z. So there exists a g-compact subset 2, of B such that px 1 (£2,)=1 and
for each z€ £,

(35) Fo w(z+th)—F(z+th), n—oco, for a.e.l.
By assumption (2), we get

SByl-{l(dz)ﬂR[ Glztth)h—DFo(a-th)h | @ u(z+1R)e-2dt—0

where W, is a function on B as in Definition 3.5. So we may assume that there
exists a g-compact subset £, of B such that px | (£2;)=1 and
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SRlG(z+th)h—DFn(z+th)hW/h(z—l—th)e“mdt—@,
n—oo, for each ze£,. By virtue of Definition 3.5 (2), we obtain
3.6) S" |G(z-tth)h—DFy n(z-th)h | dt—0

for any a<b and z&£2,.

Let 2,=2,n2:n2;, then by (3.4), (3.5) and (3.6) it is easy to see that
pr 1L(2)=1, ﬁn_h(z—l-th) are convergent as n—oo for any ¢ and ze£, and
lim F, 4(z-+th)=F(z-+th) for a.e.(z, t) with respect to px L (dz)®dt.

Moreover we can see that

limﬁn,h(z—l—bh)—limﬁn,h(z-l-ah)-——gbG(z—l—th)hdt
for any a<b and z=2,. Let 2,=Q,+Rh, then £, is o-compact in B and
u(29)=1. Define a map F,: B—R by
. lim Fon(z) if ze0,
Fu@=y =

otherwise.

It is easy to see that F w(2)=F(z) for p-a.e.z and

. Fh<z)+g‘c(z+sh>hds if 220,
Folztth)= 0
otherwise.

Therefore F is R, A.C. On the other hand, it is easy to see that
%{ﬁh(z—}—th)—ﬁh(z)}—ﬂ(z)h, t—0, for pa.e.z

This completes the proof.

§4. The partition of unity.

DEFINITION 4.1. For any subset A of B, we define a function p(-; A):
B—T[0, o] by

inf{|hllz; he(A—2)NH} it (A—2nH+Q,
olz; A)= )
co otherwise.

Then we get the following.

ProrosITION 4.1. (1) If subseis A and A’ of B satisfy ACA’, then p(z; A)
zplz; A for each z€B.

(2) For any subset A of B and heH, plz-+h; A= hily+plz; A) for each
ze B.
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(3) Let {An}n 1. 1S increasing subsets of . B and A= U Ay, then o(z; Ayg)
| p(z; A), n—oco, for each z<B.

PROOF. (1) and (2) are obvious, so it suffices us to show

(4.1) limp(z; A)<p(z; A)  for each z€B.

However, (4.1) is obvious when (A—z)N\H=@. Therefore we will show (4.1)
when (A—z)NH#@. For any ¢>0, there exists hE(A z)mH such that IlhIIH
=p(z; A)+e. Since h+z= A and 4, TA there exists an mteger n, such that
htz= A, for each n=mn, So he(A, ——z)mH which 1mp11es olz; Ap)=p(z; A)+e
for any n=n, This cornpletes the proof

THEOREM 4.1. (1) If Kisa compact subset ofB then p(-; K): B—[0, o]
is lower semi-continuous.

(@) If G is a o-compact subset of B, then p(-; G): B—[0, ] is measurable.

PrOOF. (2) is an immediate consequence of (1) and Proposition 4.1 (3). So
it is sufficient to show (1). Let A,={z€B; p(z; K)<a} and S,={he€H; |h|z=<a}
for each ¢=0. It is obvious that A,DK+S,. On the other hand let z€ A,,

then there exists a sequence {h,}5-,C(K—z)~H such that llhnllyéa-}—%. By

virtue of Proposition 2.3, taking a subsequence if necessary, there exists heH
such that h, converges to h in B as n—co and |hlz=<a. In view of the
closedness of K, we get z+h<= K, which shows that zeK+S,. So we obtain
A CK-+S,.. According to Proposition 2.3 S, is compact in B, so is A,. This
completes the proof.

REMARK 4.1. Let ¢ be a smooth function on R with compact support and
G be a g-compact subset of B. Let g(z)=¢(p(z; ) for each z€ B with the
convention that ¢(c0)=0. Then g is a measurable function on B and
lg(z+h)—g2)| =clhl g

for each ze B and heH, where

c=sup{‘%(z‘)‘; teR}.

THEOREM 4.2. Let E be a separable reflexive Banach space and F be a
wmeasurable map from B to E and suppose furthermore that there exists a positive
constant ¢ such that |F(z+h)—F@\e=cl|hllyg for each zB and heH. Then
there exists a measurable subset D, of B and a map DF: B—_L=(H, E) such that

(1) uDy)=1
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(2) ltin(?%(‘F(z—]—th)—F(z)):DF(z)h for any ze D, and heH, and

'(8)" DF(-Yh: B—E is-measurable for each h<H. ' ‘

In particular if DF: B—_L"(H, E) is strongly measurable, F belongs to
HY(B—E; dp).

ProoOF. Let V be a countable subset of B* such that V is Q-module and
dense in H. Then F(z--tv).is strictly absolutely continuous in ¢ for any z= B
and vV by virtue of Proposition 3.1, and so F(z-+tv) is strongly differentiable

in ¢ for a.e.t. Let D= {zeB —{F(z+rv) F(z)} is convergent as r—0, rEQ}
then D, is measurable and p(D,)=1. Let G(z; v)—hm—{F (z+7v)— F(z)} for
each veV and zeD, then G{(-;v): D,—FE is measurable Since F(z-}+tv) is
continuous in ¢, we obtain G(z; 1}):1333%{]: (z-+tv)—F(2)}.

We claim the following (4.2) and (4.3).
4.2) Glz;rv)=rG(z;v) for each rQ and z=D,=D,,.

(4.3) Let Doyo,={z€DyN\DoyN\Doyivy; Glz; v:)+G(z; 0:)=G(z; v1+vy)} for each
Vi, Uzev, then ‘u(D’Dl,Ug):l'

(4.2) is obvious. (4.3) is also obvious whenever v, and v, are linearly dependent
over . So we prove (4.3) when v; and v, are linearly independent over R.
Since E is separable and reflexive, - E* is also separable. Let {u,}%_, be a
countable dense subset of E* and let fulx, y; 2)=glun, Flz+xv:+yv,))>5 for
each x, yeR and zeB. Then f.(x, y;2) is Lipschitz continuous in (x, y).
According to H. Radmacher [12], f,(x, y; 2) is totally differentiable in (x, y)
for a.e.(x, y). So let

Ar= {ZEDvlmszmDvﬁvz; eUn, G(z; v1+0v:)05
=plttn, G(Z; Vet plita, G(z; V:))E}
and Ar={(x, y)eR?; z+av,+yv.= A"}, then R®\ A? is of Lebesgue measure zero

for each z< B, and accordingly

A= e LD (xskyons (3, )= ATD=1,

where K=Ruv,+Rv,. This shows (4.3).

Now we can prove Theorem 4.2. Let Dy=N\{Dy.0,; v1, v2€V}, then D, is
measurable and p(Dy)=1. For each zeD,, Gz, -): V—FE is a Q-linear map by
virtue of (4.2) and (4.3), and furthermore

Gz v)llE—hm [Flz+t)—F@le=Zclvlz .
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So we may extend G(z;-) to a bounded linear operator DF(z): H—E. Let
DF(z)y=0 for ze B\D,, then DF(-)h is a measurable map from B to E for each
heH. Moreover for any heH, veV and zeD,,

En;l\%(F(z+th)—F(Z))—DF @],
éﬁl‘—i—(F(z—}*tv)—F(Z))“G(Z; ”>LIE

I (F (- th)— Fe+)]_+IDF @)=z

S2¢clih—vlg.

Since V is dense in H, we get

@”—1—(F(z+th)—F(z))—DF(z)hHH=O .

This completes the proof.
The following is immediate conclusion of Theorem 4.2 and Remark 4.1.

COROLLARY TO THEOREM 4.2. Let G be a o-compact subset of B and ¢ be a

smooth function on R with compact support. Then g(-)=¢(p(-; G)): B~R
belongs to H(B—R; dy) and

IIDg(z)H,gw(H,mésup{,%-(t)\ ; tER} for p-a.e.z.

§ 5. Ite-Ramer integral and 4-C' maps.

In this section we introduce Ito-Ramer integral which is an extension of
Ito’s stochastic integral in some sense. This was first introduced by R. Ramer
[13] and the result in this section owes much to Ramer’s results.

Let F be an element of H(B—H; dy). We define a measurable function
LpF on B by

LpF(2)=(F(2), Pz)y—trace PDF () for each Pe®(H),

where P is a stochastic extension of P. Then LpF(z) is defined for p-a.e.z.

DerFINITION 5.1. We say that a map F: B—H belongs to 9(L), the domain
of L, if
(1) F belongs to H(B—H; du),
(2) DF(z) belongs to L*H, H) for p-a.e.z and
(3) there exists a measurable function LF on B such that LpF(z)—LF(z2),
Pe®(H), in probability with respect to p.
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We call LF the Ito-Ramer integral of F.

REMARK 5.1. If F belongs to 9(L), then DF is a strongly measurable map
from B to L% H, H).
The following is due to R. Ramer [13].

THEOREM 5.1. Let F be an element of H(B—H: d ) and assume that DF(z)
belongs to L*H, H) for p-a.e.z and

|, P+ IDP@| 2, ) puld) <o
Then F belongs to 9(L) and

[, LP@Iruan = UF@BHIDE@ . ) pd)

DEFINITION 5.2. We say that a measurable function w on B is a positive
weight function, if
(1) w(2)>0 for each ze B and
(2) w(z+-): H-R is continuous for each z< B.

REMARK 5.2. Any positive weight function is strictly positive.

THEOREM 5.2. Let F be an element of HYB—H; d ) and w be a positivz
weight function. Assume that DF(z) belongs to L% H, H) for p-a.e.z and

| 0PI IDF @ s, o} w@ptdz) < oo

Then F belongs to D(L). Furthermore there exists a positive measurable function
k defined on B dependent only on w such that

SBI LF(z)] zk(Z)H(dZ)égB{HF(Z)H?{‘F IDF(2)l%2cu, m>} w(z)p(d2) .

1
PROOF. Let An:{zeB; w(z—%—h)g% for any heH such that llh[lyéz},

n=1, 2, ---. The continuity of w(z-+-): H—(0, o) assures the measurability of
Ay. Since p is a Radon measure on B, there exists a o-compact subset G, of
B such that G,C A, and u(A,\G,)=0.

Now let ¢ be a smooth function on R such that lo@®) =1 and |¢'D]=4

for any teR, ¢()=1 for || g%, and ¢(#)=0 for |¢| g%. Let ¢ (z)=¢(np(z; Ga)),
then ¢, belongs to H(B—R; dy) and 1Dl roca, y <4n for p-a.e.z by virtue
of Corollary to Theorem 3.2. Let Fo(2)=¢,(z) F(z) furthermore. Obviously F,

belongs to H(B—H; dy) and it is easy to see that DF,(2)h=(D¢.(2)h)F(2)+
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$a(2)DF(z)h for each heH and p-a.e.z. Since D¢,(z)=0 and ¢,(z)=1 for
pa.e.z€ G, we get
(6.1 F(2)=F(z) and DF,(z)=DF(z) for pa.e.zeG,.

It is easily seen that [|[F(2)|z=|F(2)|z and

HDFn(Z)Hﬂ(H, m= HF(Z)“HHDQ/Jn(Z)H.r‘”(H,R) ‘|‘ “DF(Z>“.L‘2(II, 0
sdnl|F g+ 1DF cecm o -
On the other hand, ¢,(z)=0 and D¢,(z2)=0 for pa.e.zcB satisfying olz; Gy
>%. Therefore we get F,(2)=0 and DF,(z)=0 for p-a.e.ze B satisfying
1

Hence we obtain

| 0P+ IDF D s, o} )
< WP+ IDFae) escn, ) w22

§33n2SB{IIF(2)H%+ IDF @)%z, 0} w(@)pldz)<oo,

which implies F,e (L) in view of Theorem 5.1. Moreover let

1 1

kn<z)= ZTW if ZEGn,

0 otherwise.
Then we have

[, LAk u(ptda)

=i F @IS HIDF@ s, s} w(ptd2) .

However, (5.1) shows that :
(5.2) 16,2 LpF(&)=y6,(z) LpFa(2z).  for p-a.e.z€B
and any Pe®(H). We define a measurable function LF on B b& ‘

LRz  if zeG,

LF(@)=3 LF(z) if z€Gu\G,, n=1,2, -,

0 ‘ | otherWise. , |
Noticing that y(L;J Gr)=1, we seé that LpF(z) converges to LF(z), P€@(H), in
probability\ with respect to g So F belongs‘to @(L)‘ ‘Fﬁrthermox;e let 2(z)=
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2}1 ka(2), then 2(2)>0 for p-a.e.z, and it is easy to see that

SBI LF(Z)lzk(z),u(dz)giB{HF(Z)H%—{— IDF @) %2, mo} w(z)p(dz) . '
This completes the préof. - ‘ .

DErFINITION 5.3. We say that a measurable map F: B—H is an 4-C* map, if

(1) for each z= B, there exists a Hilbert Schmidt operator DF(z): H—H such
that {|F(z+h)—F(z2)—DF@h|g=0o(|hlz) as |hllz—0, and '
(2) for any zeB, DF(z+-): H-.L*H, H) is continuous.

COROLLARY TO THEOREM 5.2. Any 4-C' map belongs to D(L).
Proor. For any 4-C' map F: B—H, let )
w@={1+[F@I%+IDF @2, m}

Then it is easy to see that w is a ‘positive weight function and

| UP@IHIDF@ ) a2 dz)<oo.

So our assertion has been proved.

§6. Nonlinear transformation of y and its abselute continuity.

DEFINITION 6.1. For each element F bf (L), we define
o v
d(z; F)=3Iu—DF@)exp{ LF @)~ IF@lk} -

Here 6(A) denotes the Carleman-Fredholm determinant of an operator A: H—H.
For Ke.r?(H, H), the Carleman-Fredholm determinant of Iy—K is defined by

O y—K)=T1 2 exp (1=22),

where the 2,’s are the eigenvalues of Iz—K counted with their multiplicities.
It is easy to see that -

(i) odp—+): L¥H, H)— R is continuous,

(ii) 8 zg—K)=det(Iy—K)exp(trace K) for any nuclear operator K: H—H, and
(i) U p— KNI g— K))=6(I g— K)o z— K,)exp(—trace K K,) for any K, K,=
L¥H, H).

THEOREM 6.1. Let F: B—H be a measurable map belonging to D(L). Assume
that there exists a constant ¢, 0<c<1, such that |F(z-+h)—F(@)|a=cllhln for
each z& B and heH. o ‘

Then
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(1) Ig—F: B—B is bijective,
(2) the image measure (Ig—F)y induced by p through Ip—F is absolutely con-
tinuous relative to y, and

(3) ng(z)y(dz)Zng((IB—F)z)[d(z; F)lpu(dz) for any positive measurable func-
tion f on B.
PrROOF. Step 1. Let $={G: B—H; G is measurable and it satisfles that

1Gz4+-h)—G@ | a=cllhlly for any z& B and hH}, and for any GE&, we put
inductively

uy(z; G)=0,
{ Uns1(z; G)=G{z+tu,(z; G)) for each z=B and n=1, 2, ---.
It is easy to see that
lunsi(z; G)—ualz; Gla=clualz; G)—un-az; Glu
=Gz .

So there exists u.(z; G)=lim u,(z; G) in H. We also get
1
6.1) lulz; G)”HéTC”G(Z)“H and

©2 Jale; O —uale; D=1 16

Obviously u«(z; G)=G(z+u.{z; G)), which implies
(6.3) (Up—GYztuslz; G))==z.
This shows that I—G: B—B is surjective.

On the other hand, suppose that (Iz—G)z;=Uz—G)z, for some z,, z,= B.
Then z,—z,=G(z,)—G(z,) e H and

lz1—=zell p=1G(2eF21—2:) — Glzo) | s =l 21— 22l 1 -

This proves z,=z,, and so I—G: B—B is injective.
Hence we have proved that
(6.4) Iz—G: B—B is bijective for each G ¢, and
(6.5) Up—G)'z=z+ulz; G).
This proves (1) in our assertion.
Step 2. Take P,e®(B*), n=l,2,--, such that P,1Iy strongly and

Lp,F(z2)~LF(z) for p-a.e.z and let F,(z)=P,F(z). It is obvious that F,&%.
Since uy(z; F)=uqz; F,)=0 and

Un+1(2 5 F)—Umsi(z; Fr)=Fztunlz; F)—Fy(zFun(z; F)),
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we see inductively that un.(z; Fo)—un(z; F) in H, n—co, for each m. By virtue
of (6.2), we get

lalzs F)—tiale; F)lns 25

This proves that u.(z; F,)—u«(z; F) in H, n—oco. Therefore by (6.5) we obtain
(6.6) (Up—Fp)z—(Is—F) "z

in B, n—oo, for each z= B.
Step 3. We will prove the following.

Claim 1. For any continuous bounded function g on B,

[ 5= Fo-apaz)

=, 6@16Un—P.DF@) [exp{ L, F@— PP} d2).

Let {ey, -, ¢;} be an orthonormal base of E=P,H, and let Fn(z1, z2)=
F.(z;+2z,) for each z;€E and z,&B. Then F,(-, -): EXB—E is measurable.
It is easy to see that

6.7) Ig—Fu(-, z.): E-E
is bijective and Lipschitz continuous for each z,= B, and
6.8 Up—Fal+, 22)) '2s=Ip—Fn) (21t 25)— 22

for each z,€F and z,=B. Therefore we obtain

g(Up—Frn)"'z)pu(dz)
I
=, (027§ mrt ) e 000 (o) o= § it

=(o )" et e (@ Fot, (5 xies) 2o~ 3 sf}duidxa.

Since I E—F' +(+, z2) 2 E—E is homeomorphic and Lipschitz continuous, by virtue
of R. Radmacher [12]

Bng((IE—Fn(’, z))'l(é1 xjej>+z)exp{——§— é x?}dxl---dxm

-

Xexp{ 21:) —fix; 2)* }dx1 dxn

=S3mg(]§l xjej—kz)‘ det (

where d;,; is Kronecker’s delta and



Shigeo Kusuoka

filx; Z):<ei: Fn(]_le xjej+2)>H-
According to Proposition 3.‘2, we get
e, m '
3%, (x; z)—(e,-, DFn(glxkek—{—z)ej)H for a.e.(x, 2)
with respect to dx; - dx,Qugl (dz).
So we obtain

‘det(&i,,-— of 9

GXJ

eXD{—_% é (x5—fix; Z))Z}

=aet(1a—PoDF( 3, w0s2)) fexn(— 5 5 )
Xexp{(P,J(ﬁ‘i xjej—l—z), Pn(g‘,1 xje,))H———;—
= (é(IH—PnDF( szl xiej'—{—z»’exp(— % ,: )

XeXP{LPnF<§)1 xjej—}-z)—%

P,f(é x,»e;—{—z)

4

2o mert=)[,}

for a.e.(x, z) with respect to dxln-d‘xmx‘uE_L(dz). This proves our assertion.
Step 4. Let g be a positive bounded continuous function on B. Then we get

[ =P

=lim| g(Us—F)2)u(d2)

=lim{, 2()1 30 w—PuDF@)| exp{ Lr, Fl2)~ 2 | PF @I} pd2)

=| g@lde; )l pdz)
by (6.6) and Claim 1.

So for any positive bounded measurable function f on B we get

[/ Ua=Priamdaz] f@lde; Pluds.
Replacing f(z) by f((Iz—F)z), we obtain
6.9)

[ f@uaazl rws—m2lde; Pl uds

for any positive measurable function fon B. This proves (3) in our assertion.
In view of Theorem 4.2, we get [DF(@)| > m=c for p-a.e.z, and so
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0l y—~DF(z))>0 for p-a.e.z. Hence |d(z; F)|>0 for pg-a.e.z. Now (2) in our
assertion is an easy conclusion of (6.9). This completes the proof.

LEMMA 6.1. Let Fy and F, be elements of D(L) and F; be an element of
HYB—H; dy). Assume furthermore that

(1) Ug—F)pu is absolutely continuous relative to p,
@) (Iz—F)z=Una—F)Is—Fo)z for pa.e.z, and
(3) Iyn—DFy2)=(Iz—DF(Is—F)z))Ig—DFy2)) for p-a.e.z.
Then Fy belongs to D(L) and it satisfies that d(z; F)=d({(Iz—Fyz; F)d(z; Fy)
for pa.eiz. . '

PROOF. thice that DF((Ip—F.)z) and d{((Iz—F.)z; F,) are well-defined for
p-a.e.z, because (Iz—Fy)p is absolutely continuous relative to p.

According to our assumptions (2) and (3),

Fy(@)=F\((Is— F2)z)+ Fu(2)
and .
DF(z2)=DF,((Ig—F)z)Ig—DFy2))+DFy(z)e .L*H, H) for p-a.e.z
So
' LpFy(z2)=(Fy(z), Pz)g—trace PDF(z)
= LpF\((Ip— F2)2)+ LpFo(z2) +H(Fi((I5—F2)z), PFy2))n
+-trace PDF,((Ip—Fy)z)DFy(z) .

Since LpF,(z)—LF\(z), P=®(H), In probability‘with respect to g and (Izp—Fy)p
is absolutely continuous rglative to u, LpFy((Ipg—Fyz)— LF(Up—Fyz), PeP(H),
in probability with respect to p. Hence we obtain
LpFy(2)— LF\((I3—Fy)2)+ LEy2)+(F((s—Fo)z, Fi(2)u
ttrace DF(Iy— F2)DFz),
Pe®(H), in probability with respect to g. This shows that F; belongs to 9(L)
and
LE(z)= LF((p—F)z)+ LFy(z) +(Fi(ls—F2)z), F(z)n
-+trace DFy((Iy— Fo)z)DFy(2) |

Using th<is fact, we can obtain d(z; F:)=d((Iz—F,)z; F\)d{z; F,) by easy calcu-
lation.

THEOREM 6.2. Let F: B—H be an 4-C* map and D be a measurable subset
of B, and assume that Iy—DIF(z): H-H is invertible for p-a.e.z€D. Then
(Is—F)Yplp) is absolutely continuous relative to p, where plp is the restricted
measure of p to D. In particular, if (Ip—F)|p: D—B is injective, then it satis-
fies that
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o, oo @etd2Z] fWUa=P2)dGe; F)| a2
for any positive measurable function f on B.

Proor. Step 1. Let X, be a countable dense subset of .£L2(H, H), and let
{Pa}%=: is an increasing subsequence of ®(B*) strongly converging to Iz, and put
K=A{PrKPy; K€ Ko, n=1,2, -} N {Ke L¥H, H); In—KeGLH)},

where GL(H) is a set of all invertible bounded operator from H onto H. Then
it is obvious that X is dense in L2(H, H)NIg—GL(H)) and every element K
of X is extensible to a bounded linear operator K from B to B* Moreover let
&V be a countable subset of B* such that <V is dense in H.

For any KX and n=1, 2, -, we define a subset A%* of B by

1
(6.10) 5&"———{26 B IDFz+h)—DF@E) e2ca. = 55 1Ta—=K) " ecar,

for any heH such that nhn;é%}.

Since DF(z+-): H—.C?(H, H) is continuous for each z& B, A%" is a measurable
subset of B.

We also define a measurable subset A%” of B by
1
(6.11) A%g":{zeB; lIF(Z+h)—F(2)—DF(Z)h|[H§m”(ly”—K)"ln—ff‘”m,m

for any heH with nhqu%}.

It is obvious that A" 1 B and A%™ ! B as n—oco for each K& X. Furthermore,
for each Ke X, veV and n=1, 2, ---, we define a measurable subset A(n, K, v)
of B by

6.12)  An, K, v)=AL* N A%"

1

24 1= K)o, m

n{ee B IDF@—Kl s mr =

1
and |F(@)—Kz—vllu= 51— K" "ear.m}
It is easy to see that DC\U{A(n, K,v); KeXx, vecv, n=1, 2, ---}. By (6.10),
(6.11) and (6.12), for any zeﬁ(n, K, v) and heH with th]H§%, we get

(6.13) |IDF(Z+h)'“K||_£2(H,H)
= ||DF(Z+h)—DF(Z)”.rch,H)+ HDF(Z)—K]I.!Z(H,H)
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< 4o 10— K e
and
(6.14) |Fz+h)—K(z+h)—v| g
S| Fla-h)— F(&)= D@l -+ (o)~ Kz—vln
FHIDF@)—K| s~ ol k|
= g M=Kt

Step 2. By virtue of Proposition 2.5, I B——ff : B—B is homeomorphism for
each K= X and

(6.15) Us—K) pld2)=|d(z; K)| p(dz) .
For any Ke X and vey, let
Fr ()=F(I3—K)2)—R([3—K)z—v
=(F—K—N)I,—K)*z,

where Nyz=v for each z=B. It is obvious that ﬁ,m,: B—H is an %-C' map
and that

(6.16) Us—F)@)=Iz—N)Uz—Fx JIs—K)z
for each z=B. It is also easy to see that
6.17) DﬁK,D(Z):(DF(([B—I%)_IZ)—K)(IH—K)—I for each zeB.

Assume that ze([B—fN()ﬁ(n, K, v) and thlﬂg%||(IH—K)"1||‘15w(H,H), then
in view of (6.13) and (6.14) we get

(6.18) ”FK ? Z+h)“H<‘” Tp—K) Y| Yeocqr, . and
1
(6.19) ”DFK v(Z—l‘h)”ﬁcH H)sz—
Since /Nl(n, K, v) is measurable, there exists a o-compact subset A(n, K,v) of B

such that A(n, K, )CA(n, K, v) and p(A(n, K, VA, K, »))=0. Then we
obtain

(6.20) HUDNIHA, K, v); Ke X, ved), n=1,2, --})=0.
Let ¢ be a smooth function on R such that ¢(t)=1 for [tl_ 3> ¢@)=0 for

|t|g£ and |¢’(?)| =4 for any teR, and let

¢’(Z> b, . o(2) 915 nlldg— K oo, II)P(Z' I "X)A(H K, v).

Noticing that g!z(z—Hh)F x.o(@+th) is strictly absolutely continuous in ¢ for any
z€B and heH, by virtue of (6.16), (6.17) and (6.18) we get
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6.21) ld(z4n) E g oz B)— @ F koD
§3i|'%¢(z+th)ﬁz<.u(z+fh)+¢(2+th)DﬁK.U(Z-%—th)h“Hdt

<[5 I B 00025 U= RO AR, K o))
X “FVK,v(Z"‘fh)”de wllIg— K)o bl e

+{ plet e IDF e+ cocr, oIt
§%]|hllg for any z€ B and heH.
According to Theorem 4.2, g/)ﬁK,u: B—H belongs to H{(B—H; du) and
DG F . JAh=DYWE o2+ ¢ DF . )
for any heH and p-a.e.z. So by virtue of (6.17) and (6.18) we obtain
ID@F )@ cacrr, >
=D i wl F e, o@) - | @ DF s, of@) 2t 0

7
<t -
=13 for p-a.e.z.

Hence in view of Theorem 5.1 ¢ﬁ1;,v belongs to @(L). Thus gbﬁK,v satisfies
the assumption of Theorem 6.1, and accordingly

(6.22) | f@ueaz] rs—gFxnlde; oF el pd2)

for any positive measurable function f on B, and (IB—gbﬁ .oy is absolutely
continuous relative to g So it follows from Propositions 24 and 25 that
(Ipg—N)I B—gbﬁ z0l B—]?)y is absolutely continuous relative to .

For each Borel measurable set A of B, by virtue of (6.20) we get

wUs=F)AND)= 3 ((Up—F)7ANA(n, K, v)).

Since (Iz— F)z={U 5— NI s—¢F g )(I3—K)z for each z& A(n, K, v) by the defini-
tion of ¢, x,, and ﬁK,v, w(Ip—F)AND)=0 provided that g(A)=0. This shows
that (Iz—F)(¢|p) is absolutely continuous relative to g.

Step 3. Let us define a measurable map Gn, x,v: B—H by

G .0z =2—I5—N)U =@ x.oF 5, )Iz—K)z
for each z=B. Then Lemma 6.1 proves that G, x,, belongs to 9(L) and
623)  dz; Gu x.)=d(Us—¢F . JIs—K)z; Nyd(Up—K)z; pF g n)d(z; K).

By the definition of ¢n, k., and Fr ., we also obtain G, x.«2)=F() and
DG, x,{2)=DF(z) for p-a.e.ze A(n, K, v), and consequently we get
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624) - d(z; Gaxo=d(z; F) for  pra.e.ze An, K, v).

Propos'itiohs}?.él and 2.5 show that

S Bg(Z)/z(dZ)ZSBg((I 3—Nyz)|d(z; Ny u(dz) and

| g@udn=| g2l de; Bl wda)

for any positive measurable function g on B. Using (6.22) and (6.23), we get

| g@uan={ g-Nold(z; Nyl ptaz)

=] (s NIIs—gF .00 d(Ts—gF .25 N9
X |d(z; $F k.0l pldz)
2] 8Us—Gr 0D d; G, ) id2)

for any positive measurable function g on B.

Assume that [z—F|p: D—B is injective. Then (Iz—F)AND) is measurable
for any measurable set A. By virtue of (6.20), there exists mutually disjoint
sets C(n, K, v), KeX, ve¥, n=1, 2, -, such that C(n, K, v)T A(n, K, v)"\D,
C(n, K, v)’s are measurable and #(D\n% vC(n, K, v))=0. Then according to
(6.24), we get '
f(2)p(dz)

S(IE—-F)D

= 3 | rpmom @l @ud2)

R

=z 2 SBX(IB—F)C(n,K.u)((IB_Gn,K,v)z)f((IB_Gn &.0)7)

:n,K,v

X [ d(Z; Gn, K‘v) I /,L(dZ)
= 3 | tooxo@f Us— P2 de; P)lpd2)

T n K

z| fs=Palde; Pl

for any positive measurable function f on B.
This completes the proof.

THEOREM 6.3. Let F and G be 4-C' maps from B to H, and assume that
Up—F)Ip—G)z=z and (Ip—G)Ip—F)z=z for p-a.e.z. Assume furthermore
that Iy—DF(z): H—H and Iy—DG(z): H—H are invertible for p-a.e.z. Then
Ia—F)p=1d(z; G)| d2) and (Iy—G)p=\d(z; F)| p(dz).
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PrOOF. Let D={zeB; (Is—F)I;—G)z=Is—G)Ip—F)z=z}. Then u(D)
=1, and it is easy to see that (Iz—F)|p and (I3—G)|p are injective on D. By
our assumption, we get

(6.25) G g—F)z)+ F(z)=z—(Is—G)I p—F)z=0 for p-a.e.z€B.

Since the left hand of (6.25) is Fréchet differentiable along H-direction and the
right hand is stochastic Giteaux-H differentiable, we obtain

DG((Ip—F)2)(Iy—DF(2))+DF(2)=0,
which implies [z=(y—DG({(Ip—F)2))Ig—DF(z)) for y-a.e.zeB. By Theorem
62 and Lemma 6.1, we get l=d(z;0)=d(([z—F)z; G)d(z; F) for p-a.e.z
Similarly we get d((I3—G)z; F)d(z; G)=1 for p-a.e.z

In view of Theorem 6.2, for any positive measurable function f on B, we
obtain

¢4

[f@uanz],  r@udn

z( fs—Palde; Plpda)

Flls—F)z)d(z; F)|(dz)

B

f@)p(dz) .

B

zSBf((TB—F)(IB—G)Z) |d((Ip—G)z; F)ild(z; G)|pldz)

So
| r@uaa={ rs—Fmlde; pipda).
Replacing f(z) by f((I3—G)z), we get

SBf((IB*G)Z)y(dZ)ZSBf(Z) |d(z; F)|u(dz).

This proves our assertion.

THEOREM 6.4. Let F be an H-C map from B to H, and assume that
Is—F: B—B is bijective and I y—DF(2): H—H is invertible for each z&B. Then
(Ip—F) ' wldz)=|d(z; F)|p(dz).

PrOOF. Let G(z)=z—(Iz—F) 'z=—F((I3—F)'z) for each z&B. Then the
implicit functional theorem (see J. Schwartz [14] for an example) assures us
that G: B—H is an 4-C! map and Iz—DGz)=Iz—DF(Ip—F)"'z))"* for each
zeB. So our assertion is an easy consequence of Theorem 6.3.
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§7. Some more results about nonlinear transformation of x and its
absolute continuity.

DEFINITION 7.1. We say that a measurable map F: B—H is regular, if

(1) F belongs to H(B—H; dp),

(2) Iz—DF(z): H-H is invertible and DF{(z): H—H is a Hilbert-Schmidt oper-
ator for p-a.e.z, and ' '

(3) there exist a positive weight function w, a measurable set D, of y-measure
one and a sequence {F,}5-, of A-C' maps, such that

(i) SB{HF(Z)II%;JrllDF(Z)lI?mm,m}W(Z)y(dZKOO ,

(ii) SB{HF(Z)—Fn(Z)II%-%-ilDF(Z)—DFn(Z)H?fzm,m}w(Z)#(dZ)—>0 as n-—co,

(iif) Iz—DF,(z): H-H is invertible for p-a.e.z, and
(iv) Ip—Fulp,: Di—B is injective.

REMARK 7.1. If F: B—H is regular, then F belongs to 9(L) by virtue of
Theorem 5.2.

THEOREM 7.1. Suppose thﬁt F: B—H isrvegular. Then (Ip—F)pu is absolutely
continuous relative to p, and

| rauanz| rs—Faide; Plas
for any positive measurable function f on B.

Proor. Let F,’s be 4-C' maps and D, be a measurable set as in Definition
7.1. Then in view of Theorem 5.2, we get LF,(z)—LF(z) in probability with
respect to p(dz). - According to Theorem 6.2, we obtain

| feuaaz|  feuds

g

z[, f(U—Fa2de; F)lpdz)

=( rrs—Faolde; )l uda).

So using Fatou’s lemma, we have

[ f@udaz] rs—ralde; Pludz)

for any positive bounded measurable function f on B. By the similar argument
to the proof of Theorem 6.1 we can easily see that (/—F)y is absolutely con-
tinuous relative to x. This completes the proof.
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THEOREM 7.2. Suppose that F: B—~H and G: B—H are regular and that
(Up—F)YIp—G)z=z and (Ip—G)Ip—F)z=z for p-a.e.z. Suj)pose Sfurthermore that
d(-; F): B—»R and d(-; G): B—R are strictly positive functions. Then

(Ip—F)p(dz)=\d(z; G)| p(d=2)
and
Us—G)ldz)=|d(z; F)|u(dz) .

Proor. If we show that
(7.1) Iy={Uyg—DF{(Iz—G)2))Ig—DG(2)) for p-a.e.z and
(7.2) Ip=Uyg—DG{Iz—F)2)YIy—DF(z)) for p-a.e.z

then our theorem will be proved by the similar argument to the proof of Theo-
rem 6.3. (7.1) and (7.2) are similar, so we will prove (7.1).

According to Definition 7.1, there exist a sequence {F,}%-, of #-C! maps
and a positive weight function w: B—R such that

SB{HF(Z)——Fn(Z)H%+ IDF(z2)—DFu(@)%2cr, mo} w(2)p(d2)—0

as n—oco, On the other hand there exists a positive weight function v: B—R
such that

| HIG@IH+IDGE rcr, mvie)ptdz)<oo.

Replacing v(z) by min{v(z), 1} if necessary, we may assume that v(z)=1 for
each zeB.
Since (Ip—F)Ip—G)z=z for p-a.e.z, we get

(7.3) G(@2)=—F({(Iz—G)z) for p-a.e.z

By virtue of Theorem 7.1 (Iz;—G)y is absolutely continuous relative to g, which
shows that

74 Fu((Iz—G)z)—F((Iz—G)2)

in probability with respect to g
Take an arbitrary element 2 of H and fix it for a moment. Since G: B—H
is R.A.C., there exists a measurable map éh: B—H such that 5h(z)=G(z) for
p-a.e.z and 5h(z+th) is strictly absolutely continuous in ¢ for each z€B. Then
we get
Fol3—Gn2)=Fu(Is—G)z)  for p-a.e.z

and ~ ~
FullIs—Gr)(a+th))=Fplz-+th—Galz+1th))

for each zeB and t€R. According to the assumption of F,, F,(z+-): H»H
is continuously Fréchet differentiable, which shows that F,((Iz—Gp)(z+th)) is
strictly absolutely continuous in t for each z=B. So F,(Iz3—G)(+)): B—~H is
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R.A.C. By the similar argument we can easily see that w((Iz—G)(+)): B—R
is strictly positive. On the other hand, we get :

%Fn«fg—5h><z+th>>=DFn<<IB—éh><z+zh>>d% (o th—Gale+1h)

=DF((Is—G)z-+th){Ta—DG(z-+-th)h

for a.e.(z, Y& BX R with respect to u(dz)Xdi. This shows that F,((Iz—G)(-)):
B—H is S.G.D. and

(7.5) D(Fo(I5—G)-))2)=DFo(I3—G)2)[a—DG(2)) = L*(H, H)

for p-a.e.z.
Let p(z)={ld(z; G)|w{iz—G)z2)v(2)}V? for each z& B. It is easy to see that
o(z) is strictly positive. Using Theorem 7.1, we get

@8 {| IDEIs— XN @— DF (TG a— DG . mple)pd2)}
<{],IDFus— )2~ DF(T5—G)2) sacu. 1+ IDC @) e mlp(@)pd2)}
<[ IDPuUs— 612~ DF(Us—G)2) s sow(Ts— G2) | diz; G pld2)

x| AHIDC@ 22, (@)t d2)

<[ IDFua)— DR tsca, mw@pd 2 242] |IDG@ s vt d)}

—0 as n—oo,

By virtue of Theorem 3.1, (7.4) and (7.6), we can see that F((Uz—G)(-)): B—~H
belongs to HY{B—H; dy) and

(7.7 DF((Ig—G)-N2)=DF(Uz—G)2YIx—DG(2)) for p-a.e.z

This and (7.3) prove that DG(z)=—DF({(Iz—G)2)(I y—DG(z)) for p-a.e.z, which
implies (7.1). This completes the proof.

§8. The Sard type theorem and its application.
We prove the following Sard type theorem.

THEOREM 8.1. Let F: B—H be an 4-C* map, and let A be a measurable
subset of B defined by

A={zeB; Iy—DF(z): H~H is invertible}
={zeB; d(ly—DF(z))+0}.
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Assume that v is a probability measure on B such that the restricted measures

via and pla on A are mutually singular. Then (Izp—F)y and p are mutually
singular.

PROOF. Step 1. We prove the following.

Claim 1. There exists a o-compact subset £, of B such that p(2,)=uv(£2,)
=1 and (I3—F}£2y"G) is o-compact for any s-compact subset G of B.

By virtue of Lusin’s theorem, there exists a compact subset K, for each

n=1, 2, --- such that F|g : K,—H is continuous, y(Kn)>l—% and v(K,,)>1——711—.
Then (Iz—F)K.NK) is compact for any compact subset K of B. Let £2,=\U K,

then u(20)=v(2s)=1 and ([p—F)2,NK) is o-compact for each compact subset
K of B. This proves our assertion.

Step 2. Let ¢ be an arbitrary positive number and fix it throughout the

proof. Then y(!)m)>l—% and v(Qm)>1—% for some integer m, where

Qn={2 B} IDF(e+ h)—DF(@)| ssn. 1S 73

for any heH such that nh]IHg—% .

Notice that £2,, is measurable because F is an 4-C* map.
Take a subsequence {P,}5-. of @(B*) such that P, 7 Iy strongly, n—co,
Then pu(2,, »)>1—e and v(£2, »)>1—¢ for some integer n, where

1
2nn=0nr\{ee B; [n—PIF@lnS 55—

1
and N(‘[HHPH)DF(Z)“.CZ(H,H)ém} ;
Let £ be a o-compact subset of B such that
8.1 RC2, N2, pE)>1—e and v(D)>1—c¢.

It is easy to see that

8.2) “(IH'_Pn>DF(Z+h)H.C2<H.H)é61—0 for any heH, Hh”yg% and ze .

We also obtain

8.3 W a—P)Flz+Rm)r= for any heH, thlné% and ze#,

17
120m
because

Tg—Pp)Flz+Mla= ”(IH_Pn)F(ZN'H_*"S; 1z —Po)DF(z+th)] roca, il A mdt -
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Take a smooth function ¢ on R such that 0=¢()=<1 and |¢'(t)| <2 for
lER, ¢(H)=1 for |t| <6 and ¢(*)=0 for |t|=7, and let g(2)=¢(mp(z; Q) and
G(2)=g(2)-(Iu—Pa)F(z). It is easy to see that G belongs to H(B—H; dy) and
(8.4) DG(z)h=(Dg(2)h)-(In—Pu)F(2)+ g(z)- (I u—P,)DF(2)h

for p-a.e.z and each heH.
Hence we get by (8.1) and (8.2)

(8.5) 1DG@) ez, > SN D g | 22 car, mo - 1T e—Po) F(2) | 1
+ ”([H_Pn)DF(Z)”_L’Z(H,H)

= li for p-a.e.z, and
17 1
(8.6) G =~ — 20m <G,  foreach zeB.

In view of Theorem 5.1, (8,5) and (8.6) imply that G belongs to 9(L). We can
also see that J3—G: B—B is bijective by virtue of Theorem 6.1.

Let E=(I3—G)£, then E is measurable because Ip—G: B—B is injective.
Suppose that p(x; E)g% for some x=B. Then there exists some z=2 such
that x—(Iz—G)ze H and ||x—(IB—G)z]IH<% By (6.1) and (6.5) in Theorem
6.1 and (8.5), we obtain

05— Gy s == g g V= (o= Glelu<

which shows that o((/z—G) 'x, Q)<%. Thus we get
8.7 Up—Ug—P)F)Ip—G)x=x
for any x<B such that p(x; Jzﬁ)éi

Let E be a g-compact subset of B such that ECE and ;,/,(E\E)
(Is—GW(E\E)=0 and take a smooth function ¢ on R such that 0=¢(t)=<1 and
¢’ B]=2 for teR, ¢@)=1 for |¢t|<1, and H(t)=0 for |t|=2. Let k(x)=
Pmp(x; E)) and K(x)=k(x){x—U—G) 'x} =— k(x)G((I3—G)~'x) for each x < B.
Since F': B—H is an 4-C! map, it is easy to see that K belongs to H(B—H; dyu)
by virtue of (8.7), and we obtain

DK(x)h=(Dk(x)R){x—(I3—G)x}
T e(OUg—Ia—{In—P)DF(I3—G) %)} "Jh
=—(DE(x)R)G((Ip—G)'x)
— k() a—P)DF((I3—G) " x){In—(Iy—Po)DF(I5—G)™*x)} A
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for any heH and g-a.e.x. So we get

(8.8) HK(x)HHg—(;n for any x=B and
1 1/60 1
y <-4 _ M - -
8.9 IDE) | pocm, i <2m om + T—1/60 < 3 for p-a.e. x.

This shows that K belongs to 9(L) and
(8.10) IIK(X-l"h)—K(X)HHé%‘”h«HH for any x=B and heH.

Step 3. Let S=—Up—F)(Ig—K)+I5, then it is easy to see that S belongs
to 9(L) and d(z; S)=d((Iz—K)z; F)d(z; K) for p-a.e.z by virtue of Lemma 6.1.
Let M be a g-compact subset such that MC(z—G)EC, p(MNA)=0 and
v(M)=v(f2). The existence of such M is guaranteed by the singularity between

¢l and vl Let N=(Iz—G)M=Uz—K)*M. According to Theorem 6.1 and
(8.10), we get

8.11) pNNIz—K) 7 A)=I — K)s(Mn A)=0.
Since MC 2, (Iz—S)N=(Iz—F)M is os-compact. Notice that
Sx=—(Ip—F)Ip—K)x+x=P,FUg—K)x=P,H

for any x&B such that p(x; E)<%. By Fubini’s theorem, we get
HI=SNI={ 5 sueitapn,n L(dz)ur, u(dz)
:SBHPHH-L(dZI)SPnHX(IB—S)N—zl(zz),aPnH(dZZ)

=SBﬂanL(dzl)ptPnH((Ipny—S(- FzOU(N—z)NP,H)) .
Thus using usual Sard’s lemma (see J. Schwartz [14] for an example),

pldr=SINV= g, L (a2 |07 £, 5= DS(z17-22) 1)

N-zpNPpH

XeXDI:(S(21+Zz), zo)p—trace DS(z,+2z:) p, 1
1 2

— IStz e, ndz)

<[ peo ez, |4tz S)| o n(de)

N-zpNPpH

A

[, 145 8)1 = | dWTs—K)z; P dGz; Bl d).
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In view of (8.11), d({(Iz—K)z; F)=0 for p-a.e.z€ N, and accordingly u(({z—F)M)
=p((Iz—S)N)=0. On the other hand, (Is—F)W((Is— F)M)=u(M)=v(£2)>1—e¢.
Since ¢ is arbitrary, this shows that g and (/z—F)y are mutually singular. T his
completes the proof.

Using Theorem 8.1, we can prove the following.

THEOREM 8.2. Suppose that F: B—H is an 4-C' map such that
(1) F(z+h,)—F(z) in H n—oo, for each z€ B, whenever h,—0 weakly in H, and
(2) lim sup{%; heH and HhHHZ?’}<l for each z=B. Then p is
oo H
absolutely continuous relative to (Is—F)p.

ProoF. Step 1. Let U,={h€H; |hllz=r}. Since U, is weakly compact in
H, the image of U, through F(z-+-) is compact in H. So sup{|F(z+m){z; hcU;}
< oo for each zeB. According to our assumption (2), there exists some »>0
for each z= B such that | F(z-+h)|z<r for any heU,. Since F(z+ )|y, : U-—U-
is continuous and the image is compact, there exists some he&H such that
F(z+h)=h by virtue of Shauder’s fixed point theorem.

Step 2. Let K,={heH; F(z-+h)=nh} for each zeB. Then K,+® for any
z€B by Step 1. In view of our assumption (2), there exists some »>0 such
that K,CU,.

Suppose that {h,}2.,CK,, then {h,}5-,.CU, and so there exists a sub-
sequence {f,;} and h,=H such that hn;—he, j—, weakly in H. This implies
that F(z—l—hnj)—>F(z—l—ho), j—oo, strongly in H. Since h,=F(z+h,), we get
ha—ho, j—oo, strongly in H and h,eK,. So K, is compact in the strong
topology of H. Let K be a map from B to comp(H) such that z corresponds
to K, through K, where comp(H) is a space of all compact subsets of H. (See
D.W. Stroock and S.R.S. Varadhan [16] Chapter 12 about the topology of
comp(H) and its property.)

Step 3. We prove the following in this step.

Claim 2. Let G be an open set in H. Then

{zeB; K,CG}={z=B; inf{|F(z+h)—hlgz; heH\G}>0}.

Suppose that inf{||F(z+h)—hlz; he H\G} >0, then F(z+h)+h for any heE
H\G, and so K,CG. Conversely suppose that inf{||F(z+h)—hlxz; he HCG}=0.
Then there exists a sequence {h,}5_:CH\G such that | F(z+hn)—hallz—0, n—oo.
According to our assumption (2), {[|A.]xz} must be bounded. So taking a sub-
sequence if necessary, we may assume that h,—#h,, n—oo, weakly in H for some
hoeH. Since F(z+hn)—h,—0 strongly, n—oo, we obtain that A,—h, n—oo,
strongly and F(z-+ho.)=h, By the closedness of H\G, we get h,=H\G, which
shows that K,&H\G. This completes the proof.
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Let {h,}3-: be a dense countable subset of H\G, then
inf{| F(z+h)—hllg; he H\G}=Inf{| F(z-+hn)—hallz; n=1, 2, -}

This shows that {zeB; K,=G} is measurable. According to D.W. Stroock and
S.R.S. Varadhan [16] Chapter 12, we see that K: B—comp(H) is measurable.

Step 4. By the measurable selection theorem in D.W. Stroock and S.R.S.
Varadhan [16] Chapter 12, we see that there exists a measurable map G: B—H
such that G(z)eK, for each zeB. Then (Iz—F)Iz+G)z=z+Gz—F(z+Gz)=z
for each z&B. Let y=(I3+G)y and v=y;+v, be the Lebesgue decomposition
of v relative to p, i.e. v; is absolutely continuous and v, is singular relative to
g Then p=Ig—Fly=Up—F)v;+Uz—F)v,, But (Iz—F)v. and p must be
mutually singular in view of Theorem 8.1. So we have got v.=0, and accord-
ingly v is absolutely continuous relative to g. Thus p=(z—F)y is absolutely
continuous relative to (/z—F)p. This completes the proof.
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