Classical scattering for relativistic particles

By Kenji YAJIMA®

1. Introduction.

The Hamiltonian for a classical relativistic particle (mass m and charge ¢)
in an external static electromagnetic field described by four vector (é(x),
A(x)=(A%x), ---, A%(x)) is given as

H(x, §)=((—eA(x))*+m®)!*+ed(x),

where the velocity of light is normalized as ¢=1. The equation of motion is
given as

(1.1 dx/dt=0H/0&(x, &), d&/dt=—0H/ox(x, &) .

Here x and = R?® are position and canonical momentum. If we introduce posi-
tion-ordinary momentum variables (g, &) by ¢g=x and k=£—ed(x), (1.1) can be
rewritten in a familiar form

(L.2) dg/dt=v(k),  dk/dt=e(E(g)+v(k)AH(g),

where v(k)=Fk/(m*+£2)'? is the velocity of the particle; E(x) and H{x) are the
strengths of electric and magnetic field (Landau-Lifschitz [4]). The purpose of
this paper is to study the scattering theory for the equation (1.1), or equivalently
(1.2), under the following condition.

ASSUMPTION (A,). (1) For any j=0, 1, 2, 3, A%(x) is a real-valued n-times
continuously differentiable function on R®.
(2) There exist constants ¢>0 and C>0 such that

[0/0x)* AV(x)| =C(A+[x )71, a|=n.

Being stimulated by a success of mathematical scattering theory for non-
relativistic quantum mechanics, Cook [1] and Hunziker [3] initiated the mathe-
matical scattering theory for non-relativistic classical particles, and then it was
developed by Simon [7] and Herbst [2]. The fundamental problems there were,
as in quantum case, the construction of wave operators and the proof of their
completeness. Cook and Hunziker treated the problem in the framework of
Hilbert space over phase space L2(R®), and Simon and Herbst treated it directly
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in the phase space R°.

Here we examine the same problem in relativistic case, following Simon’s
framework [7]. In Sect. 2, we show the existence and the uniqueness of an
asymptotically free solution parametrized suitably. In Sect. 3, we show the exist-
ence of the wave operators. In these sections, we discuss the problem in (g, £)-
variables. In Sect. 4, we rewrite the results in Sect. 2 and Sect. 3 in terms of
canonical variables (x, & and then prove the completeness of wave operators.

We use the following notation and conventions. (g, %) and (a, b) are used
to denote (position, ordinary momentum)-variables; (x, &) and (y, ) to denote
(position, canonical momentum). These are related as x=gq, é=k+eA(g). For
two vectors u, veR® u-v stands for their inner product; u?=1u-u; |u|=(u*"?;
uAv is vector product. For an mXm-matrix A, |A| denotes the norm of A
regarded as a linear operator on the unitary space C™. For vector valued func-
tion f(x)=(f;(x)), df/0x stands for the matrix (9f;/0x,). For multi-index a=
(a1, tsy @g), || =a+axta; and (0/0x)%=(0/0x,)%0/0x.)%2(0/0x:)%s. If F is a
map from a Banach space to another, derivatives of F means its Frécht deriva-
tives, For two sets A and BCR™, A€B means that A is a precompact subset
of R™ and its closure is contained in the interior of B. I'=R*x%X(R*\{0}). If a
formula contains = or F signs, it stands for two formulas, one for upper signs
and the other for lower signs. Various constants appearing in inequalities are
usually written as C and are not distinguished unless stated explicitly. By con-
vention, “0O-times continuously differentiable” means continuous, and C°-diffeo-
morphism means homeomorphism.

2. Asymptotically free solutions.

In this and next sections, we describe a particle by (g, £)=R?, its position
and ordinary momentum. We write the Lorentz force as F(g, k)=e(E(g)-+v(k)
AH(g)). The main theorem in this section is the following theorem.

THEOREM 2.1. Let Assumption (A,) (n=2) be satisfied. Let (a, b)el. Then
there exists a unique solution (q.(t, a, b), k., a, b)) of (1.2) such that as t—--oo,

(2-1) [qi(ty a, b)—tv(b)_a I - O) 1ki(ty a, b)_bl - 0 .

Furthermore, for any K&I, there exists a constant C>0 independent of (a, b)eK
such that

(2.2) 1(8/8a)*(8/3b)P(g.(¢, a, b)—tv(b)—a)| SCA+]t])®
(2.3) 1(0/02)%(3/0b)°(k.(¢, a, b)—b)| =C(1+1t[)7*"

for any multi-indices «, 8 such that \e|+|fl=n—1.
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Thus there exists a unique asymptotically free solution of (1.2) parametrized
by (a, b)eI. To prove the theorem we need the following two lemmas.

LEMMA 2.2. Let (q@t), k(t)) be a solution of (1.2) such that (k(0)*+m=)'?
+ed(g(0))>m. Suppose that there exists a sequence {tn, .t 5-1C R such that ti, .
—o00 and |qt, +)| =00 as n—oo. Then there exist constants C>0 and To>0 such
that

2.4 lgi=+Ct  for £t>T,.

Furthermore the following statements hold.
(1) The limits

(2.5) lim k®=b.,  lim (g@®)—tv(b.)=a.

exist.
(2) There exists a constant C>0 such that

(2.6) [e@®)—b.|=Clt)
2.7 lg@)—tv(b.)—a.|=Clt|
for |t|=T,.
(3) ¢(t) and k() satisfy the integral equation
@8) qOy=acttob)+ |Gk —ub.)ds,
2.9 EO=ba+|Fl(s), k)ds.

Proor. We prove “4” case only. The other case can be proved similarly.
By equation (1.2) we have

2.10) (d/dt)2(q(t)2/2>=v(k(t))2+q(t); v/ k) RM)F(q(), k(1)) .

Let us write as E@)=(k{t)>+m®)'*+ed{¢(®)). Then E() is a constant of motion
EQ)=EQ)=E>m and v(k(1)*=(E —ed(g())*(E—ep(gt)))*—m?)<1. By Assump-
tion (A,), it is clear that there exist constants R>0 and >0 such that

(2.11) _ (d/dt)z(q(t)2/2)§5>0 ,

provided |g()| = R. Since |{¢{ta,+)|—00, (2.11) shows that |¢(¢)] —co and (2.4) holds:
Then by equation (1.2), we have idk(t)/dtrl éC(l»-}—t)‘Z“E, which clearly shows
the existence of the first limit of (2.5) and the inequality (2.6). By (2.6),

(2.12) [{k(®)—vb) | SCL+H=.

Inequality (2.12) and equation (1.2) show the existence of the second limit of
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(25) and (2.7). Now it is clear that the functions g(¢) and k(¢) satisfy integral
equations (2.8) and (2.9). Q.E.D)

For Tz0 and (g, b))’ we define a Banach space X7 and an integral
operator /%% on X7 as follows:

2.13) XT={(f, 8): f, g=CT, 0); RY), sup 1+ 0]

+ sup 14+ g1 = (S, )l r< oo}

(2.14) I9F, =(+f, g, 18%F, 20,
(2.15) I3, 8=\ fo(g(s)+b)—v®) ds,
(2.16) I3, 9=\ Flato®)s+1(s), b+g)ds.

We write the unit ball of X7 as BT, XT is also regarded as

XT=XTDXT,
where

X7={f (T, ); BY: sup (L4041 0] =1l 7 <eo}
ng{fea[T, 00); B): sup (L+1)*/*| f(1)| = f “X§<°°}~

LEMMA 2.3. 1) Let K&I. Then there exist constants T,=0 and 0<5<1
such that for (a, byeK, I*®* maps BT° into BT and for any (f1, g1) and (f., gs)
€ BT,

2.17) ”[a’b(fh g1)_1a’b(f2, gz)”XToéan(f1—f2, gl—gz)HXTo .

iiy For any T=0, the mapping 'K XT=(a, b, f, g)—=I**f, g) X7 is (n—1)-
times continuously differentiable.

ProOF. i) Let us take T’>0 such that for (f;, g1), (f2, g2)€ BT and (a, b)
ek,

2.18) A0+ aHo®) | > 3 O+ DI, T
Let (f, g BT. Then for =T/,
(2.19) 157, 01| [ @u/or)o+0g()g)d0ds

=2(me) H(14-1)-/* sup [(14-8)+2 g (s}
and by Assumption (A,),
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(2.20) |12:2(f, g)D)] éCS:o(l—l—s)’z'Eds:C(l+t)‘1"5 :

Here the constant C>0 in (2.20) depends only on K and the constants appearing
in the Assumption (A,). Let (fi, gv), (fe, gd€B%, T>T, and t>T. Then as
(2.19),

(2.21) [ 13°(f5, gdO—I1%(f1, g0OI
=2(me)"(1+1)"e/ sup (145)**/%[ (gu(s)— ga(s))],

and v )

(2.22)  I3%fs, ga—I5°(f1, g0®]

§S?S:{l(3F/ax)(a+v(b)s+0(f2—-f1)(8), k4-0(g:—g(s)(f2—F)(s)]
-+ (OF/ok)(a+v(b)s+ 0(f2_f1)(3), k+0(g2—g1)(3))(g2—g1)(8)I} dfds
<C{ {9 1= £ 197 (g g )S) ]} ds

SC{L+07251 sup (149) | fi()=£(5)]

(L8752 sup (14472 gy(s)—g(5)1 .
Thus by (2.19)—(2.22), we see that for T=T",
(2.23) 123f, @l erSCA+T)I(F, Dl pr»
@20 1%fs, g)—I*fs, gl e SCA+FTY*HU(Fr, g)—(fo g,

provided (f, g), (f1, g and (f;, gz)€B”. Here the constant in (2.23) and (2.24)
depends only on K&l and the constants appearing in Assumption (A,). This
proves the first statement.

ii) By a direct calculation, using similar estimates as in the proof of i), we
can easily see that I*f, g) is (n—1) times differentiable with respect to
(a,b, f, g€ KXB'. The derivative (d/da)(9/ab)'(@/0f)™(@/0g) >, g) is
(7, {, m, r)-multi-linear form O=j-+l+m+r=n—1) on R*XR3XXIXXTI to
XIx X% given as

(2.25) ((8/0a)(8/3b)3/0f)™@B/0g) T+ (f, @))at, -+, a’; bY, -, bY;
o gl e, g
3 (L@ 0k - Dl B0, - )4 D)~ O] amsco
X gL (s) -+ gh (s)bh, - bhds, if j=m=0,

0, otherwise
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(2.26) ((8/0a)(9/0b)"(0/0f)™(0/9g)IE*(f, g(a’, -+, a; b", -, b5
fhoa fmgh e, g

= > S L@+ ™4 /300, -+ 00, 0bp, ~ 8b3, 00y, - Bayndhs, -+ ks)

0‘1 fi1e.8¢=1

XF(a+v(0)s+q, b+k)]e-rw. k=g f7,(8) -
X[ P (s)gs(s) -+ g5 (8)ad, - al bh, -+ bl ds.

Clearly (8/0a)7(9/9b)(3/3f)™@/0g) I**f, g) is a continuous function from
(a, b, f, g =Kx B to the space of (j,, m, r) multilinear forms on R*XR®X
XTox XTo, We omit the details. ’ (Q.E.D,)

PROOF OF THEOREM 2.1.

We prove the case where t—co only. The other case can be proved simi-
larly. By Lemma 2.3 and a fixed point theorem for a contraction map (Loomis-
Steinberg [5], Theorem 9.4, p. 231 and J. T. Schwartz [8], Corollary 1.21, p. 15),
I®® has a unique fixed point (f*®, g®?) in the unit ball B%¢ of X70 and (f*?, g»?%
is an (n—1)-times continuously differentiable X7To-valued function ‘of (a, b)I.
Let us define as ¢.(, a, b)=a+v(b)t+f*°¢) and k., a, by=b-+-g% ) for t=T.
Clearly ¢+(, a, b) and k.(¢, a, b) are the solutions of (2.8) and (2.9) (replace a.,
by by a, b) and hence they are the desired unique solutions of (1;2) by Lemma
2.2. (2.2) and (2.3) are consequences of the differentiability of (f%?, g®? as an
XTo valued function of (a, b). ; ; (Q.E.D.)

3. Existence of wave operators.
" Following Simon [7], we define classical wave operators We as follows:

G. 1) ‘ Wea, b)=(g:(0, a, b), k.0, a, b)).

By Theorem 2.1, and Lemma- 2.3 W¢! is a C*~* diffeomorphism, n=2. Compar-
ing with the wave operators in quantum mechanics (see Reed-Simon [6]), we
ask the following question: Let (g, a, b), k¢, a, b)) be the solution of - (1.2)
with the condition - S ’ ‘ '

3.2) , qs(s, a, b)y=a-+sv(b), ks, a, b):b,
and U@, ﬁ;(t) be the mappings defined as

(3.3) 'ﬁ(txa ‘b)=(q0(t‘d b), kolt, a, b)),
3.4 | Uo(t)(a b)= (a—l—tv(b), b).

Now do hrn O(— t)UO(t)(a b) ex1st and are equal to W“(a b)?
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THEOREM 3.1. Let Assumption (A,) (n=2) be satisfied. Then for any mulii-
index o and B such that |a|+|BlEn—1,
3.5) lim (3/2a)(@/26)? 0 (—0)0(1)a, b)=(0/3a)"/36)* W e, b),

for any (a, b)eTI, where the convergence in (3.5) is uniform on every compact
subset of I

We prove this theorem only for the case where t—oco. We omit the index
“1” in what follows. To prove the theorem, we need the following lemma.

LEMMA 3.2. Let K&l and let T,>0,0<8<1 be the constants of Lemma 2.3.
For (a, b)eK and s=T, we define an integral operator I#-'=I%?, 12y as follows.

(3.6) I8, D= (s=0)| Y (s—w)o(b-+gw)—vb)du,

(3.7) 184, RO=Y (=) Y(s—)F(a-+ou-+1w), b+gw)du

where Y () is the Heaviside function: Y(#)=1 if >0 and Y({)=0 if ¢=0. Then
I%? maps XTo into XTo, BTo into BT and

3.8) (18-2(fe, gz)—lé””(fh gl)”XTo§5“(f2, gz)—(f1, gl)“XTo

for (a, )EK, (f2 g2), (f1, g0EB¥.  Furthermore I¢°(f, g) is an (n—1)-times
continuously differentiable function of (a, b, f, g)€KX BT and I{-*(f, g) and its

derivatives converge to I*[f, g) and iis derivatives as s—oo uniformly on
(a, b, f, gy KX B".

PROOF. Since Y(s—t) simply cuts off the tails of functions, the proof of
Lemma 2.3 clearly shows that 7%-? maps X7 into X7o; BT into B”¢; (3.8) holds
for (a, b)eK and (fi, gi), (fs, gy BT I¥f, g) is (n—1)-times continuously
differentiable with respect to (a, b, f, g€ Kx BT Let us prove that I¢*(f, g)
converges to I*%f, g) as s—oo uniformly in (a, b)eK and (f, g)eBT. Let
(f, g)eBT. By a similar calculation as in the proof of Lemma 2.3, we have
for t=s

(3.9) |123F, DO—T2, 901=] | 00+ g —vb)dul
<20me) (1 4-9)"*2,
G105, 9O-T8, 9l=|| Flato®utfw, b+gudu]

=C(1+s)1%;
for t=s,
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3.11) 587, BO—I3%f, DO1=11F, 9]

=| L0+ gun—vondu| 220mey o,
(3.12) 1837, O—I*S, DO1=115F, 20|

=| [Pttt s, b+ gu)du| ca+-e.
Summarizing (3.9)-(3.12), we have

(3.13) 1122, @—I3*(f, @l xre=C1+s)"4,

for (a, b)eK and (f, g)=B%, where the constants in (3.9)-(3.13) are dependent
only on K and the constants of Assumption (A,). The convergence of the de-
rivatives of I¢%(f, g) can be proved similarly. (Q.E.D)

ProoOF OF THEOREM 3.1.

We prove the case t—oo only. The other case can be proved similarly. Let
K&l By Lemma 3.2, I?? (s=7) has a unique fixed point (f&?, g2? in BTo
and (9/0a)*(3/ab)f(f2°, g@®) converges to (3/0a)*(d/ab)E(f*?, g=? in XTo as
s—oo uniformly on (e, b)eK (jal+|B]=n—1). Let ¢, a, Hy=a-+tvb)+1+*)
and k¢, a, b)=b+g¢°(t). Clearly g, a,b) and kG, a, b) (T,=t=<s) are the
unique solutions of (1.2) with condition (3.2). By the unique eXistence theorem
of the solution of the Cauchy problem for the ordinary differential equation
(1.2), we see that

(3.14) O(—$)0o(s)a, ))y=0(—T YT —s)o(s)(a, b)
=0(—To)(gTo, a, b), ks(Ts, a, b)).
Since  lim (0/0a)*(8/0b)F (g(T, a, b), ky(To, a, b)) =(8/9a)*(3/0b)* (q+ (T, a, b),

k.(T,, a, b)) uniformly on (a, b)K, the continuous dependence of the solution
of (1.2) on the initial condition shows the convergence of the limit (3.5). This
proves the theorem. (Q.E.D)

COROLLARY 3.3. Let K&I and let T, be the constant in Lemma 2.3. Then
there exists a constant C, depending only on K such that

B1 3 10/6a) @/, a, H—a—toB)I SCuL+ 1),
(3.16) S (0/0ay /a0 kst a, =D SCU+ 1D,
lal+lgisn-1

for any (a, b)eK and T, S+t=<+ts.

ProOOF. By Lemma 3.2, we get (3.15) and (3.16) replacing ¢ by &/4 in (3.15)
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and by ¢/2 in (3.16). We note now (f(t, a, b), g, a, b))=(g;{, a, by—a—1tv(b),
k2, a, b)—b) is a fixed point of I%®. Therefore g, a, b) really satisfies (3.16)
by (3.7) and using this with (3.6), we get (3.15). (Q.E.D.)

4. Hamilton formalism and completeness of wave operators.

In previous sections we described a particle by (g, %), position and ordinary
momentum. Sometimes it is more convenient to describe the particle by (x, &),
canonical variables. Especially this is the case when we discuss the relation
between quantum mechanics and classical mechanics (Yajima [9]). So we rewrite
here the results obtained in Sect. 2 and Sect. 3 in terms of (x, &. Thus we
treat the equation (1.1) here.

We write the solution of (1.1) with condition

“4.1) x(s)=sv(p+y, &)=y

as x5, v, ) and &, v, ). We define maps U(t) and U,@#) as
(4.2) Uy, n=(x(t, 3, 7), &, v, 7)),

4.3) Uy, n)={v(p+y, 5.

The relation of (g, %)-variables and (x, &§)-variables is given as
4.4 x=q, E=ktedlg.

Thus we have the following obvious relations:

(A) If (@), k() is a solution of (1.2), (x(), EN=(g¢{), kE)-Fed(g(®))) is a
solution of (1.1).

(B) If (a, b) and (y, 3) are related as

4.5) sv)t+a=sv(p+y, btedlsvb)+a)=y,
(xs@, v, ), &G, v, 7)) and (gslt, a, D), ks, a, b)) are related as
(46> Xs(t, y: 77)—_—Qs(t; a, b) ’ Es(ty y: 77):.133(1‘, a; b)_‘_eA(qs(i: a, b)) .

(Cy The map (x, §)—{q, k) defined by (44) is a global diffeomorphism on
R:X R? and its derivatives and the derivatives of its inverse map are uniformly
bounded functions on R?®XR? (global implicit function theorem, J. T. Schwartz
[87], Theorem 1.22, p. 16).

Using these properties (A), (B) and (C), we prove the following theorems.

THEOREM 4.1. Let Assumption (A,) be satisfied (n=22). Let (y, p)&l’. Then
there exists a unique solution (x.(t, v, n), §(t, v, 7)) of (L.1) such that as t—-hoo,

4.7 %8, v, P—tv(p)—y|—>0, €., v, M—nl—>0.
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Furthermore for any KEI' and multi-index « and B (Ja|+|B|<n—1), there
exists a constant Cap>0 such that

4.8) [(0/8y)°(0/an)P(x.(t, v, P—tv(n—3) | ZCapl+[t])e,
4.9) [(0/09)°(0/0m)PE.(t, y, M—|=Cap(l+]t])1¢,
Sfor any (v, p)eK and +1=0.

PrROOF. By (A), (x.(t), &E.0)=(g.(t, v, 7), k.(t, v, D) +eAlg.Ct, v, p))) is a
solution of (1.1). Clearly this (x.(t), £.() satisfies the condition (4.7). The uni-
queness of (x.(t, v, ), £.(¢, ¥, 1)) follows from the uniqueness of (¢.(t, a, b),

k.@, a, b)) of Theorem 2.1. The estimates (4.8) and (4.9) are obvious by (2.2)
and (2.3). (Q.E.D.)

We define the wave operator W¢ in canonical formalism as
(4.10) Wy, n)=(x.0, v, 7), £.00, y, 7).
Clearly W¢ are C"~!-diffeomorphisms on I

THEOREM 4.2. Let Assumption (A,) be satisfied (n=2). Then for any (v, 7)
el and multi-index a and B (la|+|B|<n—1),

(4.11) zljri{}c(3/331)"(3/377)‘QU(—t)Uo(l‘)(y, 7)=(0/0)*(0/3)PW(y, 7).
Furthermore the convergence in (4.11) is uniform on every compact subset of I
To prove Theorem 4.2, we need the following lemma.
LEMMA 4.3. Let K&I'. Then for sufficiently large |s|>0, equation (4.5)
determines a unique map (a, b)=(a(y, 5), b{y, 7)) (and its inverse (y, )=
(vs(a, b), nsa, b)) from K onto compact subset K. &I {and K,&I'). Furthermore

for any multi-index o and B (la|+ 181 =n—1) there exist a constant Cap such
that for (a, b)eK and (y, n)€K,

(4.12) 1(0/0a)*(3/0b)* (ys(a, b)—a)| =Caps(1+]s]),
(4.13) [@/8a)*(3/0b)%(9s(a, b)—n)| ZCas(l+1s])7+¢,
(.19 1(0/09)*(@/9n)(as(y, 7)—3)| =Cap(l-+1s[)72,
{4.15) [0/0)°0/3)P(bs(y, M —n)| SCap(l-+]s))-0.

ProOF. Equation (4.5) can be solved explicitly as
a=y-+s(n)—vinp—eA(sv(y)+»)),
b=n—eA(sv(n)+y).
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Therefore by mean-value theorem,

416 aly, p—y=c(| @r/IRn—c0 Ao+ d0)s Alsuin)+y)d0),
4.17) bs(y, p)—n=—cA(sv(n)+y).

The statements of the lemma are now clear by (4.18), (4.17), Assumption (A,)
and the global implicit function theorem (J. T. Schwartz [8]). (Q.E.D.)

PROOF OF THEOREM 4.2.
By property (B),

4.8 U(—=s)Uo(s)y, 7)=(g:0, aly, 7), by, 7)),
k0, aly, 9), b(y, p)+eAlg0, aly, 7), b:s(y, D)) .

The statement of Theorem 4.2 is a consequence of Theorem 3.1, and Lemma 4.2.
(Q.E.D.)

COROLLARY 4.4. Let K&I'. Then there exists a constant To>0 such that for

any multi-index o and B (la|+|BlSn—1) there exists a constant Cop>0 such
that

4.19) 10/0y)%@/0m)(xst, v, P—tw(n)—3)| =Cap+1th)s,
4.20) 10/93)*@/0mPE(t, v, P—I=Capd+1t)71,
for any t, s such that Ty<+t<+s.
ProoF. By (4.6), we have
4.21)  xlt, p, P=a—vipt=(gt, as, b)—as—vb)t)+({1+1/s(as—y),
(4.22)  &@, 3, m—n=(k@, as, bs)—bs)+e(Algs(t, as, b))—Algs(s, as, by)),

where a;=a(y, 5) and b,=b,(y, ») are functions defined in Lemma 4.3. Thus
by Lemma 4.3, Corollary 3.3 and Assumption (A,) we get (4.19) and (4.20).
' Q.E.D.)

Since U(#) and U,(#) are canonical mappings, Hunziker-Siegel’s argument [3]
yields the following completeness theorem for wave operators W¢ and W,

THEOREM 4.5, Let Assumption (A,) (n=2) be satisfied. Then there exist
closed null set e.C I such that

(4.23) W (IMe)CWHI) .

The same statement holds for We.
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Proor. By virtue of the argument of Siegel-Hunziker (Hunziker [3], Lemma
4, p. 290), we see that

e.=I'NWH WEHIN\WEHI))

has a Lebesgue measure zero. Since W¢ are C* *-diffeomorphisms on I, e. is
a closed set of I'. Statement for W¢ clearly follows from that for W¢.
(Q.E.D.)

The classical S-matrix is defined on ["\e. as
S=(W) W e =(Wet) () .

S¢t is a C""! canonical mapping.
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