The support property of a Gaussian white noise
and its applications

By Shigeo KUSUOKA™

1. Introduction

A Gaussian white noise is the probability measure g on S’(R?) sueh that
S exp (is<f, w>5,)y<dw>:exp<_L§ o)
St(rd) 2 Jpe

for any € S(RY, where S{R? is a space of real valued rapidly decreasing smooth
functions defined in a d-dimensional Euclidean space R? and S’(R?) is a space of
real valued tempered distributions defined in RZ. S/(R%) is, however, so large
that continuous nonlinear functionals on it are rather poor, and thus S’(R%) is
not suitable to study nonlinéar transformations of white noise.

Therefore it is useful to find support linear subspaces with mueh continuous
nonlinear functionals. Here we say that E is a support linear subspace, when E
is a Borel subset of S/(R% as a set, E itself is a topological vector space, and
#{E)=1. The purpose of the present paper is to introduce several weighted Sobolev
spaces easy to analyze, and to study as to when they become support linear
subspaces.

Let us shortly summarize the content of our paper. We will introduce some
weighted Sobolev spaces and give the necessary and sufficient condition for them
to become support linear subspaces in Section 3. We will show in Proposition 3.3
that the set

(1—4)4*{log @—ADY1E1+[z )42 {log (2+]2 )} I?LP(RY),

1< p<co, has pg-measure one (resp. zero) if and only if s>1 and £>1 (resp. s<1
or t<1), where 4 is the Laplacian in R¢ and [x2=xf+ .. 4.
We will also show in Proposition 3.4 that the set

(1= 44} 1 log (2— A1)} (1] x P)**7{log @-+|x )} /P LP(RY),

1<p<oo and d>2, has v-measure one (resp. zero) if and only if s>1 and t>1
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(resp. s<<1 or t<1), where v is the free measure for Boson fields and 4, is the
Laplacian in any d—1 dimensions. These results have been proved by Reed and
Rosen [7] in the case that p=2.

We will study in Section 4 about the relations between weighted Sobolev
spaces and pseudo-differential operators. We will consider in Section 5 the follow-
ing nonlinear stochastic pseudo-differential equation

p(Dx)X_b(ql(Dx)Xr ey qn(Dx>X) = Wy

where W is a Gaussian white noise, b: R*—>R is a smooth funection, and p(D,)
and ¢;(D,), i=1,...,n are pseudo-differential operators. We will show the exist-
ence and uniqueness of a solution X under some conditions.

The author wishes to thank Professor H. Kumano-go for his valuable advice,
and also wishes to thank Professor Y. Okabe for useful conversation and his hearty
encouragement. '

2. Preliminaries

DEFINITION 2.1. We say that a complex-vahied smooth function p(x, &) defined
in RXR? belongs to a elass S», mcR, if plx, & satisfies the following two
conditions:

5-1) P, &=plw, —§) for any (z,§) € REXR?, and
(S-2) for any multi-indices «, 8, there exists a constant C.ps such that
[0508p(w, &) 1< Cays(EYm 141,

Here z denotes a conjugate number of a complex number z, a=(a,...,a;) and
B=(fy,..., B, are multi-indices whose elements are non-negative integers, |8|=
Bt oo APy, KE={1+{ERY2, [E]=(5F+ -+ +&D)13, and

0 0

0, =—, aé,;asj’ g=1,...,d,  o5=0%1..- 554, b= ... ofu.

J axj

REMARK 2.1. S™ is a Fréchet space with semi-norms | |, n=0,1,2,...,
defined by

|p1i" =sup {|95a%p(x, &) [K&Y=+181; o] +|Bl<n, =, &€ R4,

DEFINITION 2.2. A smooth function k{x) defined in R?¢ will be called a smooth
tempered weight function, if k(x) satisfies the following three conditions:
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(K-1) there exist positive constants m and C such that C{(@)"<kzx) and
k(z+y) < Ck(z){y>™ for any z,¥ € R?,

(K-2) k{z)=Ek(—=z) for any x € R¢, and

(K-3) there exist real constants m. and C, for any multi-index « such that

[8%k(x) |<Cul)™=  for any x€ RS
The set of all smooth tempered weight functions will be denoted by K.

REMARK 2.2. If k() belongs to K, k{z)™ also belongs to K.
For any p(x, &) € §™, we get the pseudo-differential operator p(X, D,), a continu-
ous linear operator from S(R?% into S{R% defined by

1

(p(X, D.Ju) ) =<§> Sme“-ép(x, ga(e)de

for " each ueS(R‘l), where z-&=x,&+ --- +a46, and ﬂ(E)ZS e iylx)dr is a
Rd
Fourier transform of u.
We can also get pseudo-differential operators k(X) and k(D,) for any ke K
defined by

1

(k(X)w)@)=k@)uz)  and (k(Dz)u)(w)=(§

)"Smew-wsm(s)ds

for each u e S(RY. It is easy to see that £(X) and k(D,) are extensible to continu-
ous linear maps from S/(R% into S’(R9).

DEFINITION 2.8. We say that a complex-valued smooth function a(x, &) defined
in R¢XR?* belongs to A™, mecR, if for any multi-indices « and S, there exists
a constant C.s such that [050%a(x, £)|<Cosa)y™(Ed™ for any x, € R* For any
alx, & € A™, we define the oscillatory integral Os[al by

03[a]=Os—S§e'”'fa(ac, £)dude

= lim “ iy, aly, E)dede,
RAXRd

el0

where 1.(z, & =ylex, e8), € (0,1), for a x(z, &) € S{R?) such that 2(0,0)=1.
By virtue of Kumano-go and Taniguchi [6], Os[a] is well-defined and does not
depend on yx(zx, &).

REMARK 2.8. _A™ is a Fréchet space with semi-norms | |m,., ©#=0,1,2,...,
defined by
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|a|m =sup {|o50fa(z, &) Kap™(E)™; |a|+|BI<n, x, £€ R

It has been proved by Kumano-go and Taniguchi [6] that there exist an integer
n and a constant C for any m such that |Os[al|<Cla}m,. for any ac A

3. Weighted Sobolev spaces and support of a Gaussian white noise

DEFINITION 3.1. Let ¢ and p belong to K. For ue S/(R%, we say that u
belongs to W5’ 1< p<oo, if p(X)o(D,)u belongs to L?(RY). Wy* is a Banach
space with a norm | |l,e,, defined by [lufle,.,=le(X)o(D)ulyL,.

PrOPOSITION 3.1. (1) S(R? s dense in Wy".

@ (W =W‘.§—1”’ _1, where E' denotes the dual Banach space of a Banach
space E and 1/p+1/g=1.

8) W2 is a Borel subset of S'(R%).

Proor. By Remark 2.2, we see that p(X) and ¢(D,) are homeomorphisms of
S(R% and those of S’(R%). It is known that S(RY) is dense in L?(R%), so we get
(1). Itiseasy to see that (u, v)re=(0(X)o(D,)u, 0~HX)o ™ (Ds)v),2 for any u, v € S(RY),
which implies (2). In order to prove (3), letV be a countable dense subset of
S(R%Y. Then e S/(RY belongs to W* if and only if

sup {l s:<u, Wyslvllo-t0-1,y; vEV, v260}< 00,

This implies (8). Thus our proposition has been proved.
Let g be a probability measure on S§’(R% such that

[, o2 tisch s =exp (5 | 1.t0) )

Rd

for any feS(R%. The existence and uniqueness of such a probability measure g
is guaranteed by Minlos-Sazanov-Kolmogorov’s theorem.
The following is our main theorem.

THEOREM 1. Let g,0€ K and let 1<p<oo. Then p(W3*)=1, if and only if
s € LAR% and p € L*(RY).

REMARK 3.2. Since g is S(R%-ergodic, u(W3*)=0 unless pg(W5*)=1.
Before proving Theorem 1, we will prepare the following.

PROPOSITION 8.2. Let ¢ € S(R?). Then there exist constants C and m such
that
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||¢<D,,>ung.p.psCnuua.p,pLd @y P ) de

for any w€S(RY. Here C and m depend only on p.

ProoF. Since ptc K by Remark 2.2, there exist constants C and m such that
o Ha+y)<CoHa)lyd>™. Let v=p(X)o{D,)%. Then we obtain

19(D)ulZ,0,5=l0(X)¢(D,)o(D,)ulz?
= Smp(xm (@ (D)o (X)) () Pdw

= Ld p(@)rda

gCPdem“ vim—y—y>md(— dy]

S p-1<x_y)v(x—y>s$<—y)dy|”
Rd

The Young inequality proves that
I4(D )unw<cnvnn5 <widdy
=Cllullopy S | S )l dy.

This completes the proof.

Now we prove Theorem 1.

Let ¢(x)=exp<—%lx]2> and ge(n)=g(ex) for ¢>0,

First we will prove the ‘only if’ part. Assume that u(W5°)=1. Then we get
SW lawll?, 5, pet{dw) < o by Fernique [1]. It follows from Proposition 3.2 that

10

0<5<1

8.1) sup Sw”"( )o(D.)ge(D w52 pldo)

0<5<1

=sup S‘”’”Sb LYWIZ, 0, (dw) <

Since (¢(D,)¢:(D,)w) (x)=<(o-¢e)(- —x),w(-)y is a smooth funetion in 2z for any
we S'(RY, we can define Xc(x, w) by Xelx, w)=(c(D,)¢:(D,)w)(x) for any z € R? and
we S/{RY. Then {X.(lw,w); x€R? is a stationary Gaussian random field with
mean 0 and a spectral measure (-—-> 121:(8)|2d ¢ under the probability measure

pldw). Therefore we obtain
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|, 1oX10(DIg Dl ) =SW,, (| e xio,w) Ipdw>#(dw)

o {3 ponsiona)”

] .
where cp=<_21_>”g e exp(——;—ﬁ)dt. Thus (2.1) implies that
T R

151{15)1 SW;’,"' l0{X)o(Dc)ge(D)wlZapeldw) = S pdﬁp((»—) SRd 2d8> <

This shows that p € L?(R%) and ¢ € L*(R9).

Conversely we will show the ‘if’ part. Suppose that p € L?(R?) and ¢ € L*(R9).
Since o{D.)¢:(D,Jw is a smooth funetion for each we S/(RY, we can define X.(z, w)
by Xe(z, w)=(e(D,)¢:(D,)w)(x} for any x€ R* and we S'(RY. Then {Xe(x, w); € R%
is a stationary Gaussian random field with mean 0 and a spectral measure
<2 > (£)2 ¢e(€) fd& under the probability measure p{dw). So we get

[, o, 1960l ot =G, | totean( () | otertoteerpae )™

where we consider |[u]s,0,,= unless % belongs to W%°. Therefore Fatou’s lemma
proves that

j i [ (D12 o) < B (D ).

S (Rd) m—oo §(rd)

Let 2={we S'(RY; hm @110 De)llon0,p< o0}, Since Wy* is a separable reflexive
Banach space by Propos1t10n 8.1, {¢yn(D)w; m=1,2,...} contains a subsequence
which is convergent in Wi° for any we Q. On the other hand, ¢y,(D)w—w,
m—co, in S’(R%, which shows that QcW3*. Since u(2)=1, we obtain p#(Wz*)=1.
This completes the proof.

Now we give some examples.

Example 1. Let 1<p<oo, a,(x)={a)"4log (1+<{x)H} /%, and
ps(x) =<y~ {log (L +<xD?)}™*/?, s, T€R.

Then it is clear that o, and g, belong to K for any s,t€ R, and it is easy to see
that ¢, € L¥R% and p,€ L?(R% if and only if ¢>1 and s>1. So we get the fol-
lowing by Theorem 1 and Remark 2.1.

PROPOSITION 3.3. #(W2*)=1 (resp. 0) if and only if t>1 and s>1 (resp.
t<1 or s<1).
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Example 2. Assume that d>2. Let 1<p<oo,

~t]2

4ol N\-diA+L2 a1,
& (m) =<2 1+ ;%) {10% 24+ ;1303>} ’

and p,(@) =<{z>~#*{log (1+<@>H}*/?, s,t€ R. Then it is clear that & and p, belong
to K for any s,tc R. It is easy to see that & € L*R% and pseLP(R“) if and
only if £>1 and s>1. So Theorem 1 implies that p(W3*)=1 if and only if s>1
and t>1.

Let o,(x)={a>5,(x). Then <(D,>* is an isomorphism from W3¥" onto Wy¢’.
Let y=<{D,>'g be the image measure induced by g through <(D,>*: S'(R%)—
S’(R%. Then »(Wi’)=1 if and only if £>1 and s>1. However, v is the free
measure for Boson fields.

Therefore we get the following.

PROPOSITION 3.4. Let v be the free measure for Boson fields. Then
p(Wies)=1 (resp. 0) if and only if t>1 and s>1 (resp. t<1 or s<1). Here

d=1 N\=dj4+1)z d=1 \\-ti2
a,(x)=<1+ E__‘,l oci> {log 2+ ‘_[,loc,>}

p,(@)={zy~4*{log (1+<xp?)}™*/, s, t€R.

and

This fact has been proved by Reed and Rosen [7] in the case when p=2.

4. Weighted Sobolev spaces and pseudo-differential operators

It is not easy to analyze W3 in general, o, p€ K. Hence we will introduce
a better subclass G} of smooth tempered weight functions in this section.

DEFINITION 4.1. We say that a smooth function h{x) defined in R? belongs
to a class CW,,,I,,,,Z, —oo Ll My<my< oo, if h(x) satisfies the following four conditions

(W-1) there exist positive constants C; and C, such that Ci{z)™2<h(®) < Colmd™
for any x € RY,

(W-2) h(—x)=h(z) for any z <€ R?,

(W-3)  there exist positive constants m; and C; such that h{z+y)<Csh(z)<yd™s
for any «,¥ € R?, and

(W-4) for any multi-index «, there exists a constant C. suchvthat |o2h(z) |<
Clzy~h(x) for any x € RE.

We also define a class 9§ by
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CT/V: U {Wml»mg; Oéml_mzél}o

REMARK 4.1. (1) It is clear that G/, ,m,C K.

@) Let h{®) €W myumy Then k(&) €Sm™, hiz)™ €D _mg—my;, and <xp"h(w) €
Y myemomgims M E R.

8) Let heCWml,mz and h;, 2>0, be a function given by hi(@)=h({iz) for any
x€ R Then ki € Wompmye

The following two propositions are due to Kumano-go [3].

PROPOSITION 4.1. Let plx, &) € S™, mecR. Then the continuous linear map

p(X, D} from S(RY imto S{RY is extensible to a continuous linear map from
S/ (RY into S’(RY).
PROPOSITION 4.2. Let p;lx, & GS"’:, 7=1,2. Then a smooth function q(x,E)

given by

d
el &) :<%) Os— S g 11, (1, &+ 7)pylc-+y, E)dydy

belongs to S™*m2, and q(X, D,)=p,(X, D,)p:(X, D,). Furthermore a smooth Sunction
r(x, &) given by

r(z, &) =qlz, &) —pilw, &)p.(z, )

belongs to St and the mapping from §™ X S™2 into S™i+met by which (s, p,)
corresponds to r is continuous.

The following proposition is due to Kagan [2] and Kumano-go and Nagase [5].

PROPOSITION 4.3. Let 1<qg<co. Then there exist a constant C and a positive
integer m such that

Ip(X, D)ulle<Cl ol [u]1e
for any plx, &) €S° and any ue S(RY).
The following shows an advantage of /.

LEMMA 4.1. Let p(z, & 8™, me€R, and hiz ) € Wonimgy — 0 <M<y <o,
Let hi, 0<2<1, be smooth functions given by hilx)=h(az), and ¢gi:: REXR—R be
smooth fumctions given by

q:(w, &) =<%)d halx)10s— SS e~V ip(m, -+ haln+y)dydy

for any x,£€ R%  Then qi(x, &) € S™ and q(X,.D,)=hi(X)"'p(X, D hi(X) for any
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2€1(0,1). Moreover rilx, §)=qalx, &) —plx, &) e SmoY, and for any integer m, there
exist a constant C and an integer n' depending only on h,m, and m, not on p or
2, such that |7 [ " <CilplY.

ProoF. It is clear that

pla, §+1)=p(, &+ jd; &; Slae,.p(w, E+07)de.
Let

o, =5 ) 05— [ | - plo, £+ nhato-+u)dud.
Then we obtain

(4.1 Gal, ) =pl, &halx) +(%)" 5, g d60s— Sg e,y ;. @, E)dydn,

=1
where

To1,iWs 75 T, ) =0¢,p@, E+ONOhal@+y),  j=1i,...,d
and 0<8<1. It is easy to see that

ol 7 al o ’ — 4 atal
0y 05 0506r 02,50, 75 @, &)= §<T>0*ﬂ 1057708+ plw, £+07)07 " By hale )
T<a
(24 '
=1 Z < . >2ia+a/|0\ﬁ:|az—7’al§+ﬁ aéjp(x, E+077)

r<a
where <a>=<a1> (ad)
r 71 7a

The definition of S™ implies that

X (8570, ) (A -+ 2y),

1627708 8¢, p(x, &+ 6m) |<LE+Onyma B+ B0
<L)y mg 1B p |
The definition of G}/,,.m, also implies that
| @5 0y;1) (2 + 29) |< Casr,sha @) Yo"

for some constant Cayw,; independent of 2, where m; is as in the condition (W-3)
in Definition 3.1.
Therefore we get

4.2) 10205 02081 0,0,5 (U, 13, E) 1< 2C a8, jYP™I A D Voo s

m=|me|+my+|8]+1, for some constant Cu,p.ap;. Observe that Co,#".a,8,; depends
only on o, B, a, 8,3, m, and h, not on 2 or p.
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(4.2) shows that 656?1‘5,;,,-(1/, 7; @,8 €A™ as a function of (y,n) for any a,p
and %, &€ R Thus it follows from (4.1) and Remark 2.3 that for any multi-indices
a and p, there exist an integer n’ and a constant C,s depending only on «, 8, m
and h, not on p or 2, such that

|0%0%(qa(x, &) — (@, £)) |<ACu sl PIEVCEY™0 118 for any , &€ RY.

This proves »i(z, &) € Smo~* and ga(z, &) €S™. We can prove that ¢:(X,D,)=
ha(X)'p(X, D)ha(X) similarly as in Kumano-go [3] Theorem 1.1. This completes
the proof. :

Let S™ denote the set of all pséudo-differential operators p(X, D,)’s induced
by p(@, &) e S™. _
COROLLARY TO LEMMA 4.1, Let h, k€S and PcS», meR. Then
k(D,)"*h(X) " Pk(D)h(X), hX)k(D,)*Ph(X)k(D,),
(DY 'W(X)PR(X)K(D,) and h(X)k(D,)*Pl{D,)h(X)
belong to S™.

PROOF. By the definition of 94/, there exist real numbers m, and m, such
that 0<m,—m.<1 and k€ G} ,.,,n,. Using Proposition 4.2, we get Pk(D,) € Smtm,
and Pk(D,)—k(D,)P€ Sm™-1, This and Lemma 4.1 imply that h(X )T1PE(D)h(X) —
PI(D,) € Smtmi1,

On the other hand, it follows from Remark 4.1 that k(%) € T py—m CS ™,
which implies that k(D,)"t€ Sm. Observe that

Pi(D,)—k(D,) P, hMX)*Pk(D,)h(X)— Pk(D,) € Smtmy=1 = Smimy
and
K(D,)""h(X)* PE(D,)h(X ) — P=k(D,)"*(h(X)~* Pk(D,)h(X) — Pk(D,))
+k&(D,)" (Pk(D,) —k(D,) P).
Then we obtain k(D,)"*W(X) 1 Pk(D)h(X)—Pe S by Proposition 4.2. So we have
got k(D) h(X) " Pk(D,)h(X) ¢ S».
The proofs of the other are similar.

THEOREM 2. Let o,pc GV, p(x,£) €S meR, and 1<q<co, and let #z)=
o(x){x)™™. Then there exist o constant C and a positive integer n such that

NpX, Dulwse <ClplPlullwee  for any we S(RY).

Here C and n depend only on ¢, 0, m and q. Hence we can regard p(X,D,) as a
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bounded linear operator from Wi° into Wo°.

Proor. It is easy to see that
Ip(X, D)ully?e =lp(X)a(D){ Dy p(X, Do)o(D,) " 0(X) " 0(X)a(Dy)utl s

Since (DY p(X,D)eS, we get p(X)o(D)Dy"p(X, DJo(D) p(X) €S by
Corollary to Lemma 4.1. It follows from Proposition 4.1, Proposition 4.3 and
Lerama 4.1 that there exist a constant and a positive integer % such that

I9(X, D)ullws-e <Clplile(X)o(D.)ul e
for any u<c S(R?. This completes the proof.

LEMMA 4.2. Let p G and k(&) € §°.  Let ps, 1€ (0, 1], be elements of I} given
by oa(x)=p(x) for any x € R®. Then there exists a constant C such that

(D) ullwheal (il g+ 2 - C)ullwiez
for any 1€(0,1] and uwe Wi
PrOOF. It is clear that

1k(Dy)ullwher=llpa(X )k(Dz)ullLZ
<[&(Da) (X ull 2+ 1 (02(X) k(D) 02(X) 71 — k(Do) 020X Y] 2.

Thus it follows from Lemma 4.1 and Proposition 4.3 that there exists a constant C
such that

li(D: )ullw; 02 (IVell o 42+ C) [l oa (X )l 2,

which completes the proof.

5. The unique existence of a solution of a certain stochastic pseudo-differential
equation '

Let b(y,,...,Y,) be a bounded smooth function defined in R* with bounded
first partial derivatives, i.e.

{ \ :?ll), W

l ; yem}, i=1,...,n.
| oy lleo

Let g,(€), =1,...,7, be elements of 57, 7€ R, and p(f) be an element of S,
m € R, such that |p(&)|>0 for any £ € R? and ple) e S,
Now let us consider the following stochastic pseudo-differential equation
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(5-1) p(Dx)X*b(ql(Dx))L ey qn(Dz)X) = Wr

where W is a Gaussian white noise. We say that a Borel map X from S’'(RY

into S’(R% is a solution of the equation (5.1) if X satisfies the following two
conditions:

(C-1) q;(D)Xw), j=1,...,n, are able to be identified with locally L' meas-
urable functions on R? as elements of S/(R% for p-a.e. w. Then we
can define a bounded funetion blq,(D,) X(w),...,q,(D,)X(w)) defined in R?
for p-a.e. w.

(C-2)  p(D)X(w)~blg(D)Xw), ..., e.(D) Xw))=w in S’'(RY for p-a.e. w.

j;’ N o lge<L. Then
ERIC .
there exists a solution of the equation (5.1), and if X and X are solutions of the

equation (5.1), then X(w)=Xw) for p-a.e. w.

THEOREM 3. Assume that m>r+% and :V‘_,I H
=

PROOF. Let oy(w)={yy~", 7€ (0,1] and t=%(m_r+£‘2£>, and pale) = (ary—4ie,
2€(0,11, for any x€R® Then it is clear that ¢y 1€/ NLARY, and so
p(W;r*A)=1 for any 5,2€(0,1]. Observe that a,(D,yp(D,)™Y, j=1,...,n, are con-
sidered as bounded linear operators from W;»’# into Wyt by virtue of Theorem

2, and that every bounded measurable function belongs to Wrf% for any 7,2€
(0, 1].

Let By, be an operator from W3i»"t into W3»2 given by
(By,a) (%) =b(g (D) p( Do)~ u(), . . ., ¢, (Do) p(D,)~ i)
for any e R%.  Let gy,;(8)=¢;(€)p(€)"04(&)~". Then it is easy to see that

lim ||gy, jll z==llg; 07l 1=, i=1,...,n.
710

So there exists some #, € (0,1] such that

é || ob
LA | Jl o<1,
Z |5y M sle<
Lemma 4.2 implies that there exists constants C;, j=0,1,...,n, such that
(5.2) ”UHW;’W"J: oz (Do) vllwh o2

<(A+2-Co)flvllwea,

(5.3) @z, s(D)vliwha< (ligny, il o+ 2- CH|vllw ez
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for any veE Wy
Then for any u,, u, € W,%’%, we obtain

| By, ath1— Bno,zuzuw 2922 (142 Co)|| Bry, 211 — Br, l“z“w‘ £z
1/2
_<1+z-co>[g 03(0)"] (Bry )5 (B 1) 0 uzdw]
R

g(1+z.co)[g d,o;(oc)Jé :;’

X r0,5(D2) oo Ds) (g — ) (@) umx]‘”

<(1+2:Co) 3,

H

b
a—” “qﬂo,j(Dz) Gﬂo(Dz) (ul - uz) ” Wé’ P2

<(+1- Co[i

| o et 2:0) =tz

Thus there exist 2, € (0,1] and C€ (0,1) such that
”Bvo,xoul_Bvo.zguznwgvo"’ioéC“u1—uz“wgvo”’io

for any u,, uz € W,20%4,

By virtue of the fixed point theorem for contraction maps, we see that
I—Byy,,: Wi —W,i0% is a bijective bicontinuous map, where I denotes the
identity map on Wm0,

Let X: §/(RY)—S’(RY be a Borel map given by

Xw)=p(D,) H{I—=Byy.z) 1w if we W,y %,
and

Xw)=0 it weSRNWw.

Then it is obvious that X is a solution of the equation (5.1).
On the other hand, assume that X is another solution of the equation (5.1).
Then we get

(D) X(w)=w+blgy (D) X(w), ..., ¢.(D)Xw))  for p-a.e. w.

Since p(W,70*%)=1 and every bounded measurable function defined in R? belongs
to W,n’%, we know that p(D,) X(w) € Wyro*% for p-a.e. w. Thus we see that
(I— Byy.20) (0(D,) X(w)) =w for p-a.e. w, which shows that X(w)=X(w) for p-a.e. w.
This completes the proof.

The property of the solution of the equation (5.1) will be investigated in the
forthcoming paper.
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