Some remarks on the number of rational points of algebraic curves over finite fields

Yasutaka Ihara

To the memory of Takuro Shintani

Let F_q be a finite field with q elements, fixed once and for all. Put

$$A(q) = \lim_{C} \sup_{Q} \frac{N(C)}{g(C)}$$
,

where C runs over all complete non-singular absolutely irreducible algebraic curves over F_q with positive genus (counted up to F_q -isomorphisms), g(C) is the genus, and N(C) is the number of F_q -rational points of C. Note that there is only a finite number of non-isomorphic curves over F_q with a given genus. From the Weil's Riemann hypothesis for curves [7] one obtains immediately that $A(q) \leq 2\sqrt{q}$. The purpose of this note is to point out the following inequalities.

Theorem (i)
$$A(q) \leq \frac{1}{2} \{ \sqrt{8q+1} - 1 \} (<\sqrt{2q} < 2\sqrt{q})$$
 ,

(ii) if
$$q=p^{2m}$$
 ($p: a \text{ prime, } m \in \mathbb{Z}$), then $A(q) \ge \sqrt{q} -1$.

One may conjecture that $A(q) = \sqrt{q} - 1$ when $q = p^{2m}$. We note here that there is an analogous asymptotic estimate of the eigenvalues of Hecke operators, from above, due to Shimura [5].

Note added later. The subject of this paper is closely related to that of Manin [8] contributed also to this volume. Indeed, $A(q) = \mathfrak{S}_q^{-1}$, where \mathfrak{S}_q is as defined in [8] § 5. While Manin points out a very interesting connection with code theory, the main motivation of the present author came from [1] [2] [4]. The relationship between the two papers turned out to be rather of a mutually supplementary nature. For example, our first inequality (i) is giving some answers to the questions raised in [8] § 7, § 9 (a) and our second inequality (ii) and its proof may supplement [8] § 8. The connection with code theory exposed in [8] was essentially new to me.

§ 1. The idea of proof. (i) Let C be with genus g, and

$$\prod_{i=1}^{g} (1-\alpha_i u)(1-\bar{\alpha}_i u)$$

be the numerator of the zeta function of C, $\bar{\alpha}_i$ being the complex conjugate of α_i . For each positive integer $m \ge 1$, let N_m denote the number of F_{qm} -rational points of C, so that

(1)
$$N_m = q^m + 1 - \sum_{i=1}^g (\alpha_i^m + \bar{\alpha}_i^m); \quad \alpha_i \bar{\alpha}_i = q.$$

If q and m are fixed and g increases, the main term for N_m is the sum of $-(\alpha_i^m + \bar{\alpha}_i^m)$ $(1 \le i \le g)$, and whether N_m is large or small depends on the distribution of arguments of α_i 's. The proof of (i) follows immediately from the observation:

 $N(C)=N_1$: big \Rightarrow arg (α_i) are gathered near $\pi \Rightarrow$ arg (α_i^2) are near $0 \Rightarrow N_2$: small, but N_2 cannot be smaller than N_1 , contradiction.

- (ii) This follows from the theory of uniformization of Shimura curves over finite fields by means of discrete subgroups of $PSL_2(\mathbf{R}) \times PSL_2(k_{\mathfrak{p}})$ (\mathbf{R} : the real number field, $k_{\mathfrak{p}}$: a \mathfrak{p} -adic field) conjectured by the author [1] and solved (at least) partly by the combination of results due mainly to Shimura, Ihara, Morita.
- § 2. **Proof.** (i) Let C, α_i , $\bar{\alpha}_i$ $(1 \le i \le g)$, N_m $(m \ge 1)$ be as above, and set $a_i = \alpha_i + \bar{\alpha}_i$. Then

(2)
$$q+1-\sum_{i=1}^{g} a_{i}=N_{1} \leq N_{2}=q^{2}+1+2qg-\sum_{i=1}^{g} a_{i}^{2}.$$

By (2) and the Schwarz inequality

$$g \cdot \sum_{i=1}^g a_i^2 \ge \left(\sum_{i=1}^g a_i\right)^2$$
,

we obtain

$$N_1 \leq q^2 + 1 + 2qg - g^{-1} \cdot (N_1 - q - 1)^2$$
,

or equivalently,

$$N_1^2 - (2q+2-g)N_1 + (q+1)^2 - (q^2+1)g - 2qg^2 \le 0$$
.

Therefore.

$$2N_1 \le \sqrt{(8q+1)g^2+(4q^2-4q)g} - (g-2q-2)$$

which implies

$$\lim\sup\,\frac{N_{\mathbf{1}}}{g}\!\leq\!\frac{1}{2}\left\{\!\sqrt{8q\!+\!1}\right.\!-\!1\!\}\;.$$

(If we use $N_2 \ge 0$ instead of $N_2 \ge N_1$ in (2), we obtain $A(q) \le \sqrt{2q}$ which is slightly weaker than the above but stronger than the direct consequence $A(q) \le 2\sqrt{q}$ of (1) for m=1.)

(ii) The case m=1. Let n be a positive integer with $n\not\equiv 0\pmod p$, and C_n be the p-canonical modular curve of level n over F_{p^2} , i.e., a complete non-singular curve over F_{p^2} whose function field is the field K_n defined in [2]. Let \mathfrak{S}_n be the set of all points of C_n which parametrize supersingular elliptic curves. A characteristic property of this p-canonical model is that all points of \mathfrak{S}_n are F_{p^2} -rational [1] [2]. Put

$$d_n = [K_n : K_1] = (SL_2(\mathbf{Z}/n) : \{\pm I\}).$$

If n>1, the genus g_n of C_n and the cardinality h_n of \mathfrak{S}_n are given by the formulae

$$g_n - 1 = \frac{d_n(n-6)}{12n}$$
,

$$h_n = \frac{d_n}{12}(p-1).$$

Therefore,

$$A(p^2) \ge \limsup_{n \to \infty} \frac{p-1}{1 - 6n^{-1} + 12d_n^{-1}} = p-1$$
.

The general case. We use similar results on Shimura curves. Let $k_{\mathfrak{p}}$ be a \mathfrak{p} -adic field with $N(\mathfrak{p})=p^m$, and Γ be an arithmetically defined discrete subgroup of $PSL_2(\mathbf{R})\times PSL_2(k_{\mathfrak{p}})$ which corresponds with a congruence relation in the sense of [3] (§ 6). There are many such examples due to [6] (for 'almost all \mathfrak{p} '), [4] (for individual \mathfrak{p}). On the other hand, it is shown [3] that each such Γ gives rise to a pair (C,\mathfrak{S}) of a curve C over $F_{\mathfrak{p}^{2m}}$ and a set \mathfrak{S} of (not necessarily all) $F_{\mathfrak{p}^{2m}}$ -rational points of C, called special points, in a functorial manner. Since $|\mathfrak{S}| \geq (p^m-1)(g-1)$ ([3] § 1), g being the genus of C, and since $g \to \infty$ as we pass to subgroups of Γ with large finite indices, we obtain $A(\mathfrak{p}^{2m}) \geq p^m-1$.

REMARK. The modular curves C_n treated separately in the proof of the case m=1 correspond to $\Gamma = PSL_2(\mathbf{Z}\left[\frac{1}{p}\right])$ and its principal congruence subgroups of level n.

References

- [1] Ihara, Y., (a) The congruence monodromy problems, J. Math. Soc. Japan 20 (1968), 107-121.
 - (b) On congruence monodromy problems, Lecture Notes, Univ. Tokyo, I (1968), II (1969).
- [2] Ihara, Y., On modular curves over finite fields, Proc. Intern. Colloq. on Discrete subgroups of Lie groups and applications to moduli, Bombay 1973, Oxford Univ.

Press, 161-202.

- [3] Ihara, Y., Congruence relations and Shimura curves, I, Proc. Symp. in pure Math. Vol. 33, Part 2, Amer. Math. Soc., 1979, 291-311; II, J. Fac. Sci., Univ. Tokyo, Sect. IA 25 (1979), 301-361.
- [4] Morita, Y., Reduction mod \$\mathfrak{P}\$ of Shimura curves, Hokkaido Math. J. 10 (1981), 209-238.
- [5] Shimura, G., Moduli of abelian varieties and number theory, Proc. Symp. in Pure Math. Vol. 9, Amer. Math. Soc., 1966, 312-332.
- [6] Shimura, G., On canonical models of arithmetic quotients of bounded symmetric domains I, Ann. of Math. 91 (1970), 144-222; II, ibid 92 (1970), 528-549.
- [7] Weil, A., Courbes algébriques et variétés abéliennes, Hermann.
- [8] Manin, Yu. I., What is the maximum number of points on a curve over F_2 ?, in this volume; i.e., J. Fac. Sci., Univ. Tokyo, Sect. IA 28 (1981), 715-720.

(Received June 10, 1981)

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan