Spectral and scattering theory for Schrodinger operators
with Stark-effect, 11

By Kenji YAJIMA®

§1. Introduction, assumption and theorems.

The purpose of this article is to make some remarks on the author’s pre-
vious paper [18], which we refer to as [I] hereafter. In [I] we studied some
spectral properties and scattering theory for Schrédinger operator HE of “the
form

(1.1 H"‘:'—'——LA-{—eE-x—{—V(x),
2m

S : . 0 \2 0 \2

which is a model Hamiltonian for the Stark-effect. Here A=(—> —l—--~+( > ,
0x, 0xy

m (mass) and e (charge) are positive constants, E<R" (electric field), and ¢E" x,

V(x) are multiplication operators (V(x) is a real-valued function). We choose

the units and coordinates such that m=—;—, ¢=1 and E=(e, 0, ---, 0), e>0, and we

write as Hf=H¢=—A+ex,+V(x). In [1], we considered the operator H¢ as a
perturbed operator of Hy=—4-+-cx, in the Hilbert space 4= L3 R"), and proved
that, roughly speaking, if V(x)=o(|x,[7%%9), ¢>>0, as x;——o0 and V(x)=o(x,)
. as x;—oo, then i) the spectrum o(H¢) of H* fills up R' and consists of absolutely
continuous part o,,(H*®) and point spectrum o,(H®); ii) wave operators Wi=
?;1121 et %=1 evist and are complete: R(Wo)=.4,.(H?)=the absolutely con-
tinuous subspace of 4 w.r.t. H®; iii) the absolutely continuous part H. of H® is
unitarily equivalent to H§ via the wave operators. Therefore the scattering opera-

tor S*=W*We is a unitary operator on 4 and commutes with Hi. Then by a
spectral representation theorem, H§ and S° are simultaneously diagonalizable :
s={A; 2R} and S*={5%(2); A= R}, where I is the identity operator and
S¢(2) is an operator on an accessory space h=L*R"!) (see (2.3) and (3.1)).
S¢(4) is called scattering matrix.
Here, continuing the study of the operator H*, we shall discuss the following
two problems. (We assume n=3 hereafter).
a) The analyticity of the scattering matrix S°(1) w.r.t. 2 (holding >0

* Partially supported by Fdjfi-kai and Sakko-kai Foundations.
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fixed).
b) The asymptotic behaviour of scattering operator S¢ as the coupling con-

stant ¢>0 approaches zero.
These two problems will be treated separately, under different conditions.
However, the asymptotic behaviour of the poles of S%(2) as ¢—0 connects these
two problems. To state our results we prepare the notation and conventions.
C is the complex plane and C,={z=C: Imz=0}. For 1=p=<co, LP(R™ is the
Banach space of all p-summable functions equipped with the norm || |.7:

I e=({ 17 i7dx) ",

S(R™) is the space of all rapidly decreasing functions and $’(R™) tempered distri-
butions. For fe&’, ¥f=f stands for its Fourier transform. For s, pE R},
HY(R™) is the weighted Sobolev-space :

HYRM={fe8": |1+E)" AT @) se= /1 us<co)

HR™)=H{R" and LYR™")=HYR". H}R") is a Hilbert space and the dual
space of Hi(R™) is HZi(R™). Under our conditions H* is selfadjoint and we write
as

Re@)=(H*—2)"", Ria)=(Hi—2)", Ryz)=Ri(z) and R(z)=R().

Spectral measures of H®, Hi, H=H°, and H,=H] are denoted respectively by
E«(d2), Ei(d2), E(d2), and E(d2). o,(H) is the point spectrum of H. For
Banach spaces X and Y, B(X, Y) is the space of all bounded linear operators
from X to Y, and B.(X, Y) all compact operators. B(X)=B(X, X) and B.(X)=
B. (X, X). X* Y* are the dual spaces of X and Y, and for TeB(X,Y),
T*eB(Y*, X*) is the adjoint operator of 7. In addition to the usual weighted
L%spaces LYR"™), we use one-sided exponentially weighted L%spaces L2, (R™),
beR:
Lia(BM={f€ LL(B": (gx)+e =1y — x| a=1fll 22, <00},

where y(x,)eC™(R") is such that y(x,)=1 for x,>—1, and y(x)=0 for x,<<—2.

Theorems, formulas and etc, of [I] are referred to as Theorem 1.1.I, Lemma
2.2.1 and etc.

Our Theorems read as follows.

THEOREM 1. Suppose that V(x) satisfies the following condition (EX): There
exist a constant a=>0 and two real-valued functions Vi(x) and VLx) such that

a) V(x)=(e*"y(—x )+ y(x D(Vi(x)+ Vo)),
b) Vix)e L=(R™ and Klilr*n Vi(x)=0,
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&) (4| x|V V)€ LXR™ for some p>12“- (p=2 if n=3) and 7>1.

Then the following statements hold.

i) For any b satisfying 0<b<<a/2, R%(z) (z€C.) can be extended to C as a
B(Li(R™), Ly (R™)-valued meromorphic function of z&C. We write the func-
tion extended from C. as Ri(z).

i) S and S*(A)! can be expressed as a B(LYR™“))-valued function of
AE R and they can be extended to C as B(L¥R™ ))-valued meromorphic functions
S¥(z) and S(z)7! of z=C.

iily The non-real poles of S(z) and S(z)~* are the same as those of R:(2)
and R:(z), respectively.

THEOREM 2. Suppose that V(x) satisfies the following condition (VSR):
There exist a constant 6=>1 and two real-valued functions Vi(x) and Vix) such
that

a) V(x)=0+x)%(V(x)+ Vx)),
b) Vix)eL*(R™ and Vix)eLPR™ for some p>% (p=2 if n=3).

Then the scattering operator S¢ comverges strongly to the scattering operator S
associated with H and H, as ¢ approaches zero: s-lim S=S.

i

THEOREM 3. Suppose that V(x) satisfy both conditions (EX) and (VSR) and
that o, (H)=@ for all e>0. Then the following statements hold.

i) For any negative eigenvalue p of H, there exists a neighborhood U of u
such that for e sufficiently small there are exactly (counting multiplicities) m(p)
poles of S(z) (or S(2)™Y) in U, and all of these poles converge to ¢ as ¢ tends
o zero, where m(y) is the multiplicity of the eigenvalue 72

il) There occurs the spectral concentration at p. (For the concept of spectral
concentration, see Howland [6], Theorem 2.1.)

iii) If pis a simple eigenvalue, then the location of the pole of S¥z) or
S¥(2)" which approaches p as ¢ tends to zero is asymptotically described by the
Rayleigh-Schridinger series.

REMARK 1.1. The assumptions (EX) and (VSR) are stronger than the as-
sumption (A) of [I]. Hence V(x) is Hi-compact; the wave operators W< exist
and are complete.

REMARK 1.2. Under an additional smoothness condition to (VSR), Avron
and Herbst [1] proved o,(H*)=@.

Topics related to these results have been studied by several authors. For
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one-dimensional case, Titchmarsh [15] proved the analyticity of the resolvent
Re¢(z) under fairly general conditions. For more than 2-dimensional -case,
Herbst [4] studied the analyticity of R%(z), using dilation-analyticity machinaries
(see also Herbst-Simon [5]). Topics related to Theorem 3 have been studied in
conjunction with the phenomena of spectral concentration by Conley and Rejto
[2] or Kato [10], and an abstract theory for it has been developed by Howland
[6], [7] and [8]. However, unfortunately, the analyticity of the scattering matrix
associated with this concrete operator, Stark-effect Hamiltonian, has not been
proved so far and therefore the relation of the poles of S*(z) and the so-called
“resonance” energies has not been completely settled. The problem about the
convergence of S¢ to the “switched off” scattering operator S has been complete-
ly open. So, in spite of the fact that our conditions on potential are too
restrictive to accommodate the Coulomb potential, we hope the present note still
has a little interest.

This work was done while the author was on leave from the University of
Tokyo and visiting the University of Virginia. The author would like to express
his sincere thanks to the Department of Mathematics of both universities. He

thanks Dr. A. Jensen and the referee who pointed out errors in the original
manuscript.

§2. Lemmas.

In this section we present several preliminary lemmas which are necessary
to prove the theorems. We write G(p)=(1/3)pi+ pi(pi+ -+ p2) for p=(py, -~
pr)ER™ We define integral operators U® and U*, ¢=0 as follows:

(2.1) W Xxy=@rey e escwr-emrfp)ap,

(2:2) (U Yxy=(@me) 2| et oo nief(p)dp.

As we showed in Theorem 2.4.]1, U¢ is a unitary operator in 4 with U=
(U™ and

(2.3) Hi=(U*y*x,U*.

We define an operator-valued function T§(2) from 4 to h=L¥R" ') of
AE R as

TS(Z)f(y)=(2m)'"”SRne““’””'”' -enief(p)dp,

n-1
where p'=(ps, -, pn) and y-p'= X y;p;+:. By the unitarity of U¥s and the
j=1
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relation (2.3), it is obvious that {T§(2), h, —co<Ci<Cco} gives a spectral representa-
tion of Hj, that is, i) for any fe4, TiA)f is an h-valued square integrable func-
tion on R', and ii) for any Borel set JCR!, TYDLE(DS 1=y, (DTA)f for ae.
A€ R!, where y,(2) is the characteristic function of I.

We first assume V{(x) to satisfy the condition (EX). We write as A(x)=
| V(x)|** and B(x)=]|V(x)}*?-sgn V(x). A and B are the multiplication operator
by A(x) and B(x).

LEMMA 2.1. Suppose V(x) satisfies (EX). For each A€ R', T2, A)=TiDA is
a bounded operator from I to h. Moreover B(9t, h)-valued function T2, A) of

AE R can be extended to C as an entive analytic function. The same statement
holds true for T2, B).

ProoF. This lemmas is essentially proved in [1]. TFirst of all by Sobolev’s
embedding theorem, A(x)f(x) can be written as

2.4) AQ)f(x)=(e®r o2 y(—x ) +x(x ) g(x)=g.(x)
where ge H(R") and | g]z-:=Cllf], C is independent of fe.4. For geC3(R™,
ED)=@ry (e — by e g () x

is an entire function of z decaying rapidly to all réal direction. If e;=(1, 0, -+, 0)
€R' and —a/2<<q<<0,

1A+TpD7 8Pt igren L2 my I+ p 1) F(em1+200 2 (— x,) g ) p)]
A+ p D (e Py (x )X P =Cl gl -

since the multiplication by a C*-function with bounded derivatives is a bounded
operator in H¥R™) for any seR*. Hence for gCQ(R™), we get

(2.5), (THD)g:)(y)=e e @i /4200 (2 pe)-n/2

Xgei€"1(2P1+y'P’ -4 -sp1pi+apyp 2)/3)+5_lql‘p?g"1(p+iqlel)dp ,
by changing the region of integration R™ to R*+ige;, —a/2<<q;<<0. Therefore
it is obvious that T§(1)g, is the restriction onto the real line of h-valued entire
analytic function T§(z)g.. Furthermore, by Minkowski’s inequality, Parseval rela-
tion and Schwarz’ inequality we get

25 [ Ti(2)g:I= exp(—e~(qt/3+ Re z:q)-@re) (" dpiesiwrizmeny

X(A+1pD
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-(n- se~ly-pr -ie=1¢p® ~3piq2 .2 ln
X||(2me)~ 1”2§ ey grieT il smad e Hiselarp
R

X1+ p1l)—1§1(P+iQ1e1>dp/H

< exp (—egt/3+Re z-g)2ne) 7( |7 (14 e ramst-mmen g p, )

x((eroer 2t gy H 2 +igsenl dp)

=Cle, q1, Ollgla-1,

where C(e, gy, {) is a constant depending only on e, ¢;, £ and this constant can
be taken uniformly when { varies on a compact subset of the complex plane C.
Therefore the standard limiting procedure and Weierstass’ theorem imply the
statement of the lemma. (Q.E.D.)

REMARK 2.2. The proof of the lemma shows actually Ti(z)e*iy(—x,)+
yx))e B(H(R™), LAR"*)) for any b>0 and s€R! and z=C.

COROLLARY 2.3. If V(x) satisfies condition (EX), ARY2)B, z&C. can be ex-
tended to the whole complex plane as a B.(H)-valued entire analytic function.
We write the function extended from C. as AR§ .(2)B. Then

(2.6 AR5 (2)B=AR{2)B2ri[ T{Z)AV*Tz)B, z<C..

Proor. We only prove that ARi(z)B can be extended from C. to C. The
other case can be proved similarly. Let us take an open precompact interval I
of the real axis. We first note that AR{2)E{I°)B can be analytically con-
tinued across the interval I and for z=C. the continued function is equal to
ARiz)E{I)B. This can be seen from the following facts:

a) ARY2)ENI)B=LAU* (1 +0)72 (s )1 —2) "y pelx ) (2, +0) 72U B

by (x+d)y,x)(x,—2)'€ B(%) can be analytically continued across the in-
terval [ ;

¢y LAU*](x,4i)y "% and (x,+12)" Y2 U*B< B(4), by statements 4) and 5) of
Lemma 2.1.1, interpolation theorem and Sobolev’s embedding theorem.

On the other hand, considering as an operator in %, we have
[TsDAT*T(A)B
A—z

(see Kuroda [7]). Since [T§DAJ*TA)B is the restriction of the B(H)-
valued entire function [T§2z)A]*T§(z)B, Cauchy’s integral formula shows that
ARY2)EYI)B can be analytically continued across I and the extended function

ARs(z)Eg([)Bzgl 41, zeC.
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can be written as ARY2)Ey)B+2rni[Ty2)AT*[Ty=z)B] for zeC.. Thus for
completing the proof, it suffices to prove AR{(i)B< B.(4). However, this is
obvious (see the proof of Theorem 2.5.I). (Q.ED)

Now we want to discuss the asymptotic behaviour of Riz) as ¢ |0 for z in
the closed cut plane C.\JR!. We first prove the following lemma.

LEMMA 24. For o€ R! there exists a constant C>0 independent of 0<<e=1
such that

(2.8) (142272 RE (£ )14 2% 2| g =C.

Moreover, if 1<0,
2.9 [A=DRY DA +x%)7*| pan=C.

PrROOF. We give a proof only for Ri(i) with ¢=0. Ri—i) with ¢=0 can
be proved similarly and the case o0<<0 can be proved by duality argument. For
proving (2.8), it is sufficient to prove the case where ¢=0, 1, 2, ---, by virtue of
the interpolation theorem. For (2.9), clearly it suffices to prove only the case
o=1. The inequality (2.8) for ¢=0 is obvious. Let us prove (2.8) and (2.9) for
o=1. If feCy(R™), it is obvious that

2.10) FRIGTH(p)=e i 54( prr+ie ail —i) e Pif(p).
Hence writing as K{g, p’):%g +qp'*—iq (qe R, peR" "), we get
2.11) Ms(i)sﬁ*ﬂp):;ig; eiK LK@ Isf(g, prydg

By partial integration, the right hand side of (2.11) is equal to ¢ times

@12)  (+in?) i+ e“ffm-v'>-K«w'>>~a%<<1+iq2+ip'2>~lxf(q, g .

P1
Taking derivatives of (2.11) and using partial integration, we get

2.13), %(Ms(i)sr*fxm:%S;eidfww—Kw>>/5<1+ip2>{<1+iq2+ip'2>-l

o e e eaf
X —dig g i 0, 0,

219, g (@ROF = | ermerrari i, g
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(2 i ke 0 ( 2g—p0ps £, ,
+%Sp1e1ufcm,p> K. p >>/e§5(1iqiq—2_€?;%.f(q, P ))dq , j=2.

In any case, j=1, 2, -, n, we get
(2.14) H%@Rﬁi)&”*f}”
J

1+p2+p/2

=[S e T

(1f0. 01+ 5 |52 (g, 1))
By (2.12), we also have
(2.15) A+ pUF ROF*/ XM

<aifie[] emon(ue SEPEELY g, g1 3 [ Lt ) )ad].

Now we apply an elementary inequality that for 0<e=1, a=1,

216 [ {2 e 22 nasf axzc” farax,

where C, is a constant depending only on 2= R'. Thus relations (2.8) and (2.9)
for ¢=1 are obtained by combing (2.14) and (2.15) with (2.16). The rest to
prove is the relation (2.8) for 0=2, 3, --~. For such o, (2._8) can be proved by
repeating the above procedure, so details are omitted here. (Q.ED)

COROLLARY 25. If p>o>1, (1+x3)?2R{(D(14+x%)P2c B (%) and
(2.17) lifrolll(1+x2)"’2R5(i)(l+xz)“’”—(l-!-xz)‘”zRo(i)(Hx?)""”ll=0 .

Proor. We denote as K the Hilbert space H*n\ L2 equipped with the norm
I/ 1x=(f 1%+ f132)" and as K* its dual space. Clearly K*=H"*+LZ, with
the norm |flg+=inf {(|gl&-+[RlE2 )" f=g+h, geH™® heLl}, the injec-

tion map L2,CK* is compact and Cy(R™) is dense in K*. By resolvent equation,
we have

(2.18) IR —0f —Ro(=0f 22, ZIRY—Df —R(—i)f |«
Ze|Ri(—DxR(—Df | Zell xi Ro(—Df |

for feCP(R™). Since ||R§(—1)] B*,L2 ) is uniformly bounded by the dual state-

ment of Lemma 2.4, (2.18) implies that R§(—17) converges to R (—i) strongly in

B(K*, L2,), hence in norm in B(LZ,, L2,) which implies (2.17) by duality.
(Q.E.D)

LEMMA 2.6. Suppose V(x) satisfies the conditions (VSR), A(x)=|V{(x)|*? and
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B(x)=|V(x)|**sgn V(x). Then there exisis a constant C independent of ¢ and
z&C. such that

(2.19) | ARs(2) B peary=C max (|| Viicarey-z | vl carner)

where >0 is a constant such that ve LMD-T(RMALMDH(RY. Moreover
AR§(2)B can be extended to the closed cut plane C.\JR' as a B(4)-valued Holder
continuous function. We write the boundary values as AR¥A+10)B.

PrOOF. By the relation of Avron-Herbst [1]:
(2.20) eitHgf(x):e—iszzl—isLS/S(e—itHof)(xl_etz} x/) ,
we get easily,
2.21) | Ae 55 Bf|=| Ae~*"(Bf )|, (Bf)(x)=(BfXx:1—et? x').
Hence usual technique for proving —J4-smoothness of potentials (see Kato [11] or
Ginibre-Moulin [3], and the proof of the following lemma) implies (2.19).
(Q.E.D.)
LEMMA 2.7. Suppose V{(x) satisfies (VSR). Then for any zC.URY, lifloq
|AR{(z)B—AR(z)B|=0. Moreover, 1lhis convergence is locally uniform in
zeC.,\JR.

Proor. We prove the case Im z=0 only. The other case can be proved
similarly. By virtue of the inequality (2.19) it suffices to prove the lemma in
the case where V,(x) and V,(x) in the expression (VSR) (a) for V(x) are smooth
bounded functions (three ¢-argument). By the resolvent equation, we have

(2.22) AR{(z)B=AR}1)B+(—2)AR{(2)(1+x*)/*-(1-+x*)°*Ri() B,

where 1<o<d. In the right hand side of (2.22) the first summand AR:()B
obviously converges to AR,())B in B(#) by Corollary 25. In the second sum-
mand, (1-+x*)??Ri(()B& B..(4) and converges to (1+x2°2R,()B in B.(%).
Therefore it is sufficient to prove that AR§(z)(1+x%)79/% converges strongly to
AR()(1+ %592 Let fed and write (1+x2)"7/2=C(x). Then

AR{(2)Cf(x)— AR(2)Cf (%)
=i e Aeienicf at—i[" et Ac-inocy i

:iSjeitzA(e—ietzl—ietSIS_l)e--itH()(Cf)L(x)dt

+i§0 ¢t Ag o[ (CF),—Cf J(x)d1t .
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Let us take p and ¢ such that 1= p<n<g<co and A, C€ LAR")NLYR"™). Then,
writing as ¢'=2q/g+2, we have

(@23) [Tnaemeon_ne- ey at

é{S:” A(e-isml—ista/s_l)”q(4n.t)—n/q”C”qdt

AN L o R T IR 1T
and
@2 [ lAeempen—CHld
<" Atz O = Ol dt+ ] AL G PN CH = CTl

Obviously, for r=p or ¢, and #'=2r/r-+2, we have

(2.25), | Aemtetar-tetts—1)|| <2| Al ;

(2.25), liglllA(e“'s””l‘i”s’a——1)HT:0 for any t>0;
(2.26), 1(CF ), —Cf Il =(Cf Yxs—et?, x)—(CH Y- Z21CUAS
(2.26), l;lrlrgn(Cf)t—CfIIT,=O for any >0.

Hence by Lebesgue’s dominated convergence theorem, lixrglllARs(z)CffARo(z)Cf\l
el

=0, which proves the lemma. (Q.E.D.)

§€3. Proof of Theorem 1.

Here we prove Theorem 1, assuming the condition (EX). We first remark
that if we define A(x)=|V(x)|/* and B(x)=|V(x)|"2sgn V(x), all assumption of
Kuroda’s abstract theory [12] are satisfied, and therefore the existence and the
completeness of wave operators holds, although this fact is proved in [I] under
weaker assumptions. Furthermore by Theorem 6.3 of [12] (see also Yajima
[17]), scattering matrix S(2) can be represented as an operator in h=L*¥R"Y)
as

(3.1), S()=1—2miTi4, BY1+ARA+i10)B)*Ti4, A)*
and

3.1 Se (D) 1=14+271iTi2, BY1+ARi(2A—10)B) T4, A)*
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except for 1o 4(H®) where (1+ARi(2+10)B)"! fails to exist.
For Im z#0, we can easily see (see Kato [117),

(3.2) R¥(2)=Ri(2)+LBRiZ)I*(1+ AR2)B) " ARY(2) .

For zeC. and 0<b<a/2, ARKz), BRiy(z)e B(L%w, %) and they can be extended
to C as a B(L%y,, 4)-valued entire analytic functions by Corollary 2.3. Moreover
Corollary 2.3 tells us that AR{z)B< B.(4) for z&C. and it can be extended to
C as a B.(4)-valued entire function AR .(z)B from C. and/or C., respectively.
Therefore by the well-known theorem for operator-valued analytic functions
(Steinberg [147]), (1+ AR5 .(2)B)™' is a B(4)-valued meromorphic functions and
at each of its pole the principal part of (1+AR; .(z)B)"! is of finite rank. Thus
Ri(z), z€C, can be extended to C as a B(L%y, Li_s)-valued meromorphic
function Ri(z) and for z€C,,

(3.3) Ru(2)=R5 (2)+[BR; (D * 1+ AR5 .(2)B) " ARS .(2) .

At each of its poles the principal part is of finite rank. This proves the first
statement i). To prove ii) we define as

(3.4, SUz)=1—2niT§(z, BY1+AR: (z)B) Tz, A)*
(3.4), Se(2)=1-+27iT%(z, BY14+AR; _(2)B) Tz, A)*.
By Lemma 2.1, (3.1),, (3.1), and the argument for the proof of i), it is obvious
that (a) S°(z) and S*(z) are B(h)-valued meromorphic functions and at each of

their poles the principal part is of finite rank; (b) the restriction of S*(z) and
S:(z) to the real axis are Sé(4) and S*(2)~!. This proves ii) and the equation

(3.5) Se(2)8:(2)=82)S*(2)=1 .

Now we prove iii). Suppose first that z=z,&C is a pole of Ri(z). It is clear
by (3.3) that there exists a vector 0%#fe.4 such that (1+AR:.(z)B)f=
(14 ARi(20) BYf £ 27iT§(Zo, A*Ti(20, B)f=0. Since 14+ AR(z,)B is invertible, it is
easy to see that 0+#g=T5(z,, B)f€h and

(3.6) g+27iT(z0, BY1+ AR(20)B) ' T5(Z, A)*g=0.

Since AR (20)B=AR§(z))B for z,=C, (3.4), (35) and (3.6) clearly imply that
z=2z, is a pole of S(z)**. Let us assume now conversely that z=z,=C. is a
pole of S(z)*'. Then there exists 0= g<h such that (3.6) is satisfied. We set
S=(1+ARi(z0)B)*TiZ,, A)*g. It is easy to see that f+0 and

3.7 (I+AR§ .(z0)B)f=0,
(3.3) J=ATHZ)*g+AR(2) VT o(2)*g .
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By Theorem 2.5 [1] and Remark 2.2, (3.8) implies Bfe Liy,. Thus (3.7) implies
fE R(ARS .(20)), and fe& N([LBR; <(2)]%). Therefore (3.3) and (3.7) show that z=
2, is a pole of R:(z). (Q.ED)

§4. Proof of Theorem 2.

We prove here Theorem 2. The way of the proof is similar to that used
by the author in a different context [16]. Here we assume V{(x) to satisfy the
condition (VSR).

LEMMA 4.1, For any compact interval I=[a, b],
4.1) s-l}gn EsD=EI).

Proor. If f, ge LY{R™) with p>1, we have by Stone’s theorem and Lemma
2.7,

4.2) lim (E5(Df, g)=lim (27ri)“’gl; <(R§(A+10)— R§(2—10))f, g>d2
:(2751’)“52 <{RA+i0)—R,2—10)f, g>d2

=(E S, &)
Since |E¥DI=1, (4.2) implies Wiiom Ei)=E ). On the other hand, setting as
g=f in (42), we get leigrgllEé(I)fll:llEo([)fll for fe L¥{R". Thus by Banach-
Steinhaus’ theorem, E5(I) converges strongly to Eq /) as ¢ | 0. (Q.E.D)
LeMMA 4.2. s-gl}gn We=W..

PrROOF. Let us take a compact interval I=[a, b] such that Ine,(H)=2.
Then it is well-known that AR A=+1i0)B is norm-continuous on I and (14 AR A+
i0)B)~* exists for every A=]. Hence by Lemma 2.7, we can see easily that for
sufficiently small ¢>0, (1+ARA+10)B)™* exists and converges to (I+AR(1=%
i0)B)~* in norm as & | 0 uniformly on 1</ (Neumann series expansion). Thus by
the above argument and Lemma 2.7 again, if p>1, RQxi0)=R§A+Li0)—
Ri(2+1i0)B-(1+ ARy (A+i0)B)* AR§A+1i0) converges to R(1+10) in B(LE, L2,)-norm
as ¢ | 0 uniformly on I. Now using the expression of the wave operators in
terms of the resolvents (see Kuroda [12] or Kako-Yajima [9]), we have for f,
ge L},

43)  lim (WELDS, g)

=lim (B, )+
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+lim (Zm')‘le (AR A+10)f, B(R*(2+i0)— R*(2—i0))f)d2

=(EDf, g)+(2ﬁi)'ISZ(ARo(Xii0)f, B(R(2+10)—R(A—i0))/)d 2

=W.E), ).
Since ||WLENDI<1, (4.3) implies W-}iom WeEs([)=W_.EyI). Then

4.4 sim WiESD=W.E«I),

since Hm| Wi ES(Df|=lm[ E{DA = E(DFI=IW.E(Df| for any fes by the

isometry property of We, W. and Lemma 4.1. Let us take f€.% such that
E)f=f. Then, 1@{1;1||W§(E3([)—E0(I))f||:O by Lemma 4.1 and (4.4). This fact

proves the lemma, because i) the linear hull of {E,J)f:fe4, I[CR! is a compact
interval such that Ine,(H)=@} is a dense set of 4 since o,(H) is discrete and
Hy=—4 is absolutely continuous; ii) operators W< are isometries on 4.

(Q.E.D)

PROOF OF THEOREM 2. Since S:=(W3i)*W¢ by definition, we immediately
have vz-lloimSE:S by Lemma 4.2. On the other hand |[Sf|=|Sf]=Ifl for
any ¢>0, since theiwave operators are complete and hence S¢ are unitary. Thus
s-lim S¢=S. (Q.E.D)

ei0

§5. Proof of Theorem 3.

In this section we assume V(x) to satisfy both (EX) and (VSR). Let us take
an eigenvalue #<0 of H. We take a small complex neighborhoed UCC of pu
such that g is the only eigenvalue of H in U. Since we assume that H* has no
eigenvalues, the poles of Ri(z) near p appear only in C;. We prove statements
(i) and (ii) by exploiting Theorem 1.5 and Theorem 2.1 of Howland [5]. Setting
e=nz0, A;.=A(x), B.=B(x) and T.=—4+¢ex,, we check his hypothesis. Hy-
pothesis I is obvious; Hypothesis Il is proved by Corollary 2.3. In Hypothesis
1L, (b), (c) and (e) are obvious; (d) is easy since | AR{(z) —AR2)f || Zel AR(2)x.|
|Rs()f1=e|lmz| Y ARW2)x | pcay and [|[AR(z)x.||<oo. To prove Hypothesis III,
(a) we need the following :

LEMMA 5.1. If 2€U, and Rez=p<0, |Tiz, Alpwr.m=Ce ¥ for some
d>0, where d and C are determined only by p and U. ’

ProOOF. Calculating the integral appearing (2.5), explicitly we have for any
sufficiently small ¢,<0,
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6D ITHC Al=Cexp(—e (Lt Re C-Im 0g,) )2re) || 2 (gs, Im0),

where Flq;, Im&) is a polynomial of |¢g,|** and Im{ of order 5. By (5.1) the
statement of the lemma is obvious. (Q.ED.)

By (2.6), Lemma 2.7 and Lemma 5.1, as ¢ | 0, AR;,.(2)B converges to AR(z)B
uniformly on U, in operator norm, which proves Hypothesis I, (a) of [5]. Thus
by Theorem 1.5 [5] and Theorem 1, we get i). ii) is the consequence of Theorem
2.1 [5]. Statement iii) can be proved by a standard method (cf. [4]) and we
omit the proof. Q.ED.)

Concluding Remark. By a similar argument employed by Steinberg [14],
we can easily prove that the poles {z,} of S°(z) and S°(z)* (or Ri(2)) are actually
simple ; z,’s are the points where the equation (—d4ex;+V(x)u(x)=z,u(x)
has a solution u,(x)e L%, for some 0<b<a/2; the residue of Ri(z) at the

pole z, can be written as > <-, Up ;> Uny where u,;'s are solutions of the above
nj

equation belonging to LZ%._;. However, we shall not discuss the details here.
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