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Introduction.

The purpose of this half of the paper is to complete our study of finite
groups with a standard subgroup isomorphic to Sp.(2) begun in the first half
of this paper [10]. Specifically, we prove

MAIN THEOREM. Let G be a finite group and suppose L is a standard sub-
group of G isomorphic to Spe2). Furthermore, assume that Co(L) has cyclic
Sylow 2-subgroups and that if G#G’ then O(Ng(XNSO(G') for every 2-subgroup
X of G'. Then if LO(G) is not a normal subgroup of G, the normal closure
(L% of L is isomorphic to one of the following Chevalley type groups:

05(2), 0£(2), Us2), SU(2), L«2),
Ud2), Lq(2), Spe(4), SPe(2)XSps(2).

Some remarks may be in order on the assumptions of the main theorem.
The case that Cgz(L) has noncyclic Sylow 2-subgroups has been treated by
Aschbacher [1] and Aschbacher and Seitz [2]. The second assumption is
concerned with the Unbalanced Group Conjecture (see Harris [157). If
O(Ng. (XNZO(G") for some 2-subgroup X of G, then the conjecture implies
that (L% is of known type. Thus if the conjecture turns out to be true, the
second assumption becomes superfluous. Conversely, we may use the main
theorem in the inductive proof of the Unbalanced Group Theorem (see [23]).

Our proof of the main theorem utilizes the so-called “pushing up” method
and thus follows the same line of arguments as inthe previous paper [8]. The
bulk of the paper is devoted to the construction of 2-local subgroups that
resemble certain of the parabolic subgroups of the Chevalley type groups listed
in the main theorem. Once this is accomplished, the results of [10] enable
us to construct a semisimple subgroup G, isomorphic to the Chevalley type
groups in question with L=G, In order to complete the proof of the main
theorem, we must, of course, show that G, is a normal subgroup of G. For-
tunately, this problem has been treated by Seitz [19, lII] in a more general
context. We will appeal to the results of his paper except in the case
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Go=Sp2)XSp,(2), where a more effective method is available thanks to a
product fusion theorem of Shult [207.

As remarked in the introduction of [10], Sp«(2) is one of the four excep-
tional groups for which the “induction” method of Seitz [197 breaks down.
What follows is my understanding of why Spe2) is an exceptional group. In
studying groups, G, with a standard subgroup, L, isomorphic to Sp27), one is
naturally lead to sections, X=Y/Z, of G containing a noncentral involution, z,
such that

Cx(z)={>X KX O(Cx(z)),

where K is the image of LNY in X and K=Sp,2"). If n>1, the result of
[8] shows that A=<K?*) is isomorphic modulo center to

U4(2n)> L4<2n); U5(2n): L5(2n>’
Spi2%), or Sp2) X Spu(2™).

All of these groups actually occur in the known examples of G. When n=1,
an unpleasant phenomenon occurs. The results of Harris and Solomon [16]
and others indeed show that B=<{(K")¥> is isomorphic modulo center to

U2), L{2), Us2), L(2),
Sp4), AsX A, or UL3).

However, what we need is the structure of A, and there is a gap between A
and B. Moreover, UJ3) does not occur in any known examples of G. Diffi-
culties arise when we try to prove that B/Z(B)=U,3) and that either A=2RB
or A is contained in a subgroup of X isomorphic to Sp,(2)XSp.(2). Another
difficulty arises when n=1 because we can not utilize the Cartan subgroups
of L.

Our notation is standard and for the most part taken from [11]. Possible
exceptions are the use of the following:

m(X) the 2-rank of X.

I(X) the set of involutions of X.

EXNX) the set of maximal elementary abelian subgroups of X.

X? the subgroup of X generated by the squares of elements
of X.

E(X) the product of the quasisimple subnormal subgroups
of X.

FXX)=F(X)E(X) the generalized Fitting subgroup.

X wreath YV the wreath product of X by Y.

XxY a central product of X and Y.
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f(XmodY) the preimage in X of f(X/Y), where f is a function
from groups to groups.

Zny n22 the cyclic group of order x.

FEon, nz=2 the elementary abelian group of order 27

Eyn(X) the set elementary abelian subgroups of X of order 2™

Dy, =3 the dihedral group of order 2n.

2 123 the symmetric group of degree n.

We use the “bar” convention for homomorphic images. Thus if G is a
group, N is a normal subgroup, and G denotes the factor group G/N, then for,
any subset X of G, X will denote the image of X under the natural epimor-
phism G—G. A similar convention will be used when a group G has a permuta-
tion representation on a set 2, where we write X% instead of X.
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1. Preliminaries.

In this section, we collect some helpful preliminary results. In the first
two lemmas, p will denote an arbitrary prime integer.

(1A) LEMMA. Let A be a p'-group of automorphisms of a p-group G. Then
the following holds:
(1) if A, A, arve normal subgroups of A such that G=Cg(A)Cs(A,) and
Co(ANCs(Ar)=1, then G=Cx(A)XCs(A,);
(2) if CalA)AG, then G=C(A)LG, AL

Proor. For a proof of (1), see [8], (D). If Co(A)<G, then [Cs(A), G, A]
=1=[A, Cs(A), G]; so [G, A, Cs(A)J=1 by the three-subgroup lemma [11],
Theorem 2.2.3. As G=Cg(A[G, AJ by [11], Theorem 5.3.5, (2) holds.

(1B) LEMMA. If P is a p-group of class at most two, the exponent of
P/Z(P) is at most equal to the exponent of Z(P). In particular, if P is a
p-group such that |P'|=|Z(P)|=p, then P is an extra-special p-group.
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Proor. This follows from the commutator identity [x®, y]=[x, ¥]"?, which
holds in groups of class at most two: see [11], Lemma 2.2.2.

(1C) LeEMMA. Let z be an involution of a group G, A a subgroup of G,
and B a {A, zy-invariant subgroup of [A, zJ with B=0%(B). Then if [Cow(2), B]
=1, [O(G), B1=1.

PrOOF. See (1]) of [8].

(ID) LeMMA. Let R be an S,-subgroup of a group G and S a normal sub-
group of R with R/S abelian. Let x be an involution of R—S and suppose that
each extremal conjugate of x in R is contained in xS. Then x&G'.

Proor. This is Lemma (1E) of [9].

(1E) LeEMMA. Let E be an elementary abelian 2-subgroup of a group G and
let z be an involution of Ng(E). Then the following holds:

(1) e*(E, 2)={E, {C(2), 2} ;

(2) 1E: C(2)| =1Cx(2)| and equality holds if and only if I(zE)=2%;

) if 1E: Ce(2)|24, then Ns(KE, )SN(E)NN(Cx(2), 2).

PrOOF. See Lemma (1C) of [9] and its proof.

(IF) LEMMA. Let Q be a 2-group of order 2°* admitting an automorphism
a of order 2 and a nontrivial automorphism p of order 2°—1 such that

(1) a« and p commute with each other under the action on Q, and

(i) Cyla)=En.
Then Q is either elementary abelian or homocyclic of rank n.

Proor. This is a consequence of Theorem B of [18].

(1G) LeMMA. Let AZB=C=D be a chain of 2-groups such that D*<B,
C*<A and AZZ(D). Furthermore, assume that therve is an involution z€ B such
that C=Cy{z) and B=<{z)A. Then D*ZLA.

PROOF. Suppose by way of contradiction that D?£A. Then D/A has a
Z;-subgroup X/A containing B/A. Since A=Z(X), it follows that X is abelian,
hence X=Cpx(z)=C. This is a contradiction as C/A4 is elementary abelian.

(I1H) LeMMA. Let D be a 2-group, A an elementary abelian subgroup of
index 4 and order at least 8, and z an involution of Cp{A)—Z(DYJA. Let H be
a group of automorphisms of D leaving A and z invariant, and suppose |C.(H)|
=2 and H is irrveducible on AJC,(H). Then D*=C4(H) and Z(D)=A.
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ProoF. Let B=<(z)A, I=C,(H), and J=<{z)I. Then B=Cpy(z) and |D: B}
=2, so [ D, z] is an H-invariant subgroup of A of order 2. Thus I=[D, z] and
J=<zP>, which shows that both [ and J are H-invariant normal subgroups of
D. Now D/J is not cyclic and so (D/])*<B/J. As H is irreducible on B/J,
we have D?*<J. Then (1G) applied to the chain I=</<B=D shows D*°<I], and
so D*=] as D is not abelian. As D can not be extra-special, we have I<Z(D).
Also, J£Z(D)SB as Cx(z)=B. Since H is irreducible on B/J, it follows that
Z(D) is maximal in B. Thus I<ANZ(D) and the irreducible action of H on
A/I shows that Z(D)=A.

(11) LEMMA. Let z be an involution of a group G and suppose C(z)=
(DX KX O(C(z)) with K=Sp,2). Furthermore, assume that z is not a central
involution of G and let M=EFE(G). Tnen M satisfies one of the following con-
ditions:

(1) M/O(M)=AsXAs and [O(M)|=3;

(2) M=U2), L{2), Us2), Ls(2), or Spu4);

3) M/OWM)Y=U3).

Furthermore, we have C(M)=0(G) and O(C(2))=Cow(2z). If (1) holds and if M,
M, are the components of M, then Mi=M, N(M)=N(M,), G=<{2>N(M,), and one
of the following holds:

(l.a) C(M)=M, ;0(G) for each 1 and N(M,)/C(M)C(M)=Z, or E,;

(LY C(M)/O(GY=Sp2) for each i and N(M)=C(M)C(M,).

If (2) or (3) holds, then G=<{2yMO(G) and {z>KCpu(2)=<z>X Cy(2).

PrOOF. Let L=K' and G=G/O(G). Then L=A,, L<1C(2), <z>€Syl,(Cer(L))
and C(z)/LCo{L)=Z, Furthermore, z& Z*(G) by hypothesis. Therefore, The-
orem 2 of [16] shows that F¥G)=FE(G) and that one of the following holds:

(i) F%G)=LxL and z interchanges the components of F*G);

(ii) F*(G) is a simple group of sectional 2-rank less than 5;

(iii) FHG)=UL2), Ls2), or S_p4(4).

If (ii) holds, the structure of F*(G) is known by the main theorem of [1Z2].
Moreover, the structure of Cp(Z) is known by Section 19 of [3], a table on
p. 441 of [2], and Appendix 1 of [5] (when F*G) is an alternating group, the
knowledge is standard). Hence we have that FXG)=UL2), L{2), or U,3) in
Case (ii).

Let X be the complete inverse image of F¥G), A an S,-subgroup of Cx(2),
B a z-invariant S,-subgroup of Nx(A), and P/A=Cy4(z). As A<DB, we have
A<P, so 1#£[P, zZ]<0%(C(2)) and the structure of C(z) shows [O(C(z)), [P, z1]
=1. Thus [O(G), [P, z]]=1 by (1C) and, since X/O(G) has no proper non-
trivial subgroups normal in G/O(G), it follows that X=Cx(O(G))O(G). Therefore,
X=MO(G) and hence C(M)=0(G).
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Assume that (i) holds. Then M/O(M)=Asx A, and if M, M, are the
components of M, then Mi=M, NM)=N(M,), and G=<{2DN(M,). Inspecting
the Schur multiplier of A, we have that M;= A; or A, for each i, where 4, is
a 3-fold cover of A,: see a table on p. 60 of [6]. If My=A,, then O(M,)=0(M,),
as otherwise Cy(2)=A, against the structure of C(2). Therefore, |O(M)|=3.

Now C(M)NC(M,)=1 and, consequently, M;<C(M,_)CsAut(M,)=PI'L,9) for
each 7. As CENCUM)C(M,)=C(M)), the structure of C(Z) shows that either

(@) C(M,.)=M, for each i, or

(b) C(M;)=Spy2) for each i.

Also, N(M,)/MC(M,)<0ut(M;)=E, and, since MC(M)INMC(M)=M, it follows
that N(M.)/M is an elementary abelian 2-group. Furthermore, since I(ZM)=z7,
it follows that
NEEM)NN)=(CENNM)M,
and hence
NEDM)NNM)={a>M ,

where @ is an involution such that <@>M;=Sp,2) for each i. This forces
IN(M,)/M|<4. Hence if (b) holds, then N(M)=C(M)C(M,). As N(M)=NQ),
(1.b) holds. Clearly, (a) implies (1.2).

Now assume that (ii) or (iii) holds. Then M/OM)z=U3), UL2), LL2), U2),
Li(2), or Sp,(4). Inspecting the Schur multipliers of these groups, we have
that O(M)=1 unless M/O(M)=U,3): see [6] and [14] (for U,2) we have to
use an unpublished result of Steinberg). Also, Z induces an outer automorphism
on M and Cg(3)=Sp.2) by [3] and [5]. Thus <Z>K=(Z>xCgz(2) and hence
(KCoun(2)=<z>X Cu(z). Unless M=U,3) or Sp.(4), |Out(M)| =2, see [21],
and hence we have G=<Z>M. If M=Sp,4), then Out(M)=Z, and the involutions
of Aut(M)—Inn(M) are all conjugate under Inn(#/): see Section 19 of [3].
Hence G=MC(Z) and then G=<Z)M. Assume M=U«3). Then z is a diagonal
automorphism, so <Z>M<G. As Cz(2) contains an S;-subgroup S of M and as
Cx(S) has odd order, Sylow’s theorem shows that z6=27, hence G=DMC(Z).
Therefore, G=<Z>M in this case as well.

Now |G : M| is a power of 2 and Cz(Z)= A, or Sp,(2), so O(Ca(Z)=1 in all
cases. Hence O(C(z))=Cy»(2). Thus all parts of the lemma hold.

(1]) LEMMA. Lei G be a group satisfying the hypothesis of (1) and A an
Eg-subgroup of K. Assume that O(G)=1 and that there is an Nyx(A)-invariant
subgroup D of order 27 such that Cp{2)=<2)A and D*<A. Then N(2>A)=Nx(A)D
and there is a subgroup M of index 2 saiisfying the following conditions:

(1) M=UL2), L2), Sps4), SpL2XSpL2), or UL3);

(2) G=<(2DM;

3) Cu(z)=K;
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(4) either M=U,3) or ALZ(D).

Proor. We first construct a subgroup M of index 2 satisfying (1) and (2).
Let E=E(G). Since |G|,=|Ng(A)D|,=2% (1) shows that one of the following
holds:

(@) E=Uy2), Li2), Sp4), or U3);

(b) E=AXAs
Furthermore, if (a) holds, then G=<{2>M and so M=EF satisfies (1) and (2).

Let H be a Z;-subgroup of Nx(A) and set I=C,(H). Then |I|=2 and H is
transitive on (A/I)*. Let B=<2)A and D,/B=Cp;z(H). Our hypothesis implies
that [D, z]1=A. Hence |D,/B|=2. Otherwise D,=D, so D=BCy(H) and then
A=[CxH), z], which is a contradiction as [ A, H]+#1. Hence if we set Q=
[D, H]A, then [Q/A|=4 and H is transitive on (Q/A)*.

Assume that (b) holds and let E=FE,XE, with Ei=F,= A, (1) shows that
if C(E;)#E,-; for each i, then M=C(E;)C(E,) satisfies (1) and (2). Assume,
therefore, that C(E;)=E,_; for each 7. As in (1I), we have that

NK2DEYNNME )=<e>E,

where e is an involution such that <{eDE;=Sp,(2) for each i. Assume that
N(E)#<e>E. Then N(E)/E=E, and there is a subgroup X of N(E;) contain-
ing E such that X/E, has a semidihedral S,-subgroup of order 16. As I(X/E,)
<E/E; and as X?#X, it follows that J(N(ED)=<edE. As G/E=D, we
conclude that <J(G))p={(z, e>E. Of course, this is true even if N(F,)=d{(e)E.
Now Di=I and Z(Dy)=A by (IH). This implies that D,=FE,XD; and, con-
sequently, Dy—=02(D)<<{z, e>E. Also, [D, HI<[D, E]1=F as HZE. Therefore,
D=[D, H1D,<{z, e>F, and hence A=[D, z1=(z, e>EY=E. However, this is a
contradiction as Cg(z)=4,. Thus we have shown that there always exists a
subgroup M of index 2 satisfying (1) and (2). Furthermore, Cy(2)=Sp.(2) by
construction of M.

Now A=[D, zZ]=M. So K=K'A=M and then Cy(z)=K by the above
remark. Also, we have A=BNM<N(B) and so zV®=zA=z". This implies
that N(B)=Ny.,(B)D. Since we are assuming O(G)=1, (1I) shows that C(z)
={z>X K and consequently Ny, (B)=<z>Nx(A). Thus N(B)=Ng(A)D.

Assume that M=U/3). Clearly, Q=M ; so let Q=S=Syl,(M). Then S has
exactly two E-subgroups A, and A, and T=<{A4A, A,) is of type L. 4.
Furthermore, S=<{x)>T, where x is an involution acting as a field automorphism
of Lg{4) on T. Assume that A<Z(D). Then Q=CsA4) and, in particular,
|Cs(A)| =25, This forces A=ZT. We assume A<A, without loss of generality.
Then Cr(A)=A, and so |Cs(A)|=2°. Comparing orders, we have that Cs(A)=0.
So A<A,<Q and since H is transitive on (Q/A)% it follows that Q is
elementary abelian. However, this is a contradiction as m(\)=4.
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The proof of the following result is parallel to that of (1I) and is omitted.

(IK) LEMMA. Let z be an involution of a group G and suppose C(z)=
X KXO(C(2) with K=L,2). Furthermore, assume that z is not a central
wmvolution, and let M=E(G). Then M=L44), SLy4), or L{2)X L2). Further-
more, C(M)=0(G), Cu(z)=K, O(C(2))=Co(2), and |G : <z2>M]| is odd.

(IL) LeEmmA. Let K=Uy3) and Q a Dg-subgroup of K. Then the following
holds -

(1) each elementary abelian 2-subgroup of K is conjugate to a subgroup of Q;

(2) each fours subgroup of K is novmal in some Sy-subgroup of K.

ProoOF. Let S&Syl(K), so that S=Z7, wreath Z,. Let M be the subgroup
of S isomorphic to Z,XZ, z the involution of Z(S), and N=0,Cx(z)). Then
N=Z,xDg, ZIN)<MNN<N, and there is an element x<=Cx(z) such that (MA\N)*
FMNN. As MAN=ZN)QM), 2. (M)*£M and so we may choose an involu-
tion t€,(M)*—M. Let {a, b} be a basis of M such that a’=>b. By an easy
computation, we have that each fours subgroup of S is conjugate to <a? b*> or
{t, a®b®>. As <{a?, bH»=02,(M) and ¢, a*r*»=0Q,(M)*, the fours subgroups of K
are all conjugate to 2,(M). This proves (1) and (2).

2. Properties of Sp2).

In this section, we fix notation for L=Sp(2) following (2.1) of [10] and
record some facts about L. We identify L with the group of matrices, X, with
entries in GF(2) satisfying

where ‘X is the transposed matrix of X and blank spaces denote zeros. Let U
be the subgroup generated by the lower triangular matrices in L and set

1 1 1

1 1 1.
Thus UeSyly (L) and (U, <r, s, t>) is a BN-pair of L. We define
P1:<U) S) t> > P2:<Uy 7’; S> >
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A=04P), As=0y(Ps),
Ky=PinPPrr,  Ky= PP,
UlemUrstsr’ U2~_~ UmUtst‘rsz‘

Furthermore, we define

/1 \ /1
11 1
e 1 D e 11
1 11
11, \ 1
1 1
1 1
bl_ 1 l ’ bZ"“ l 1 )
1 1 1
1 1 1 1
1 1
1 1
b3_ 1 1 1) b4’_ 1 1 1 2
1 1 1
1 11
1 1
1 1
B 1 B 1
bs= 11 s T
1 11
1 1

Finally, we let ac=[a,, a.], [,=<b.>, 1,=<bs, by, bs>, and H=<bb\>.

Now we list those properties of L which we shall frequently use in later
sections, We shall omit their proof whenever we feel them to be well known
or they may be checked by easy computations involving matrices.

(ZA) LeEMMA. The following conditions hold :
(1y Ny(A)=P; for each i,

2y Pi=A;K; and A;NK;=1 for each 1;

(3 K,=Sp.2) and U,=<as, bs, bs>=Syl(K});
4) A,=FE,; and A=<a,, a, b;, by, b ;

(5) Koz Ly(2) and U,={ay, a,>€SylL(K,);

(6) A,=FEg and A,=<b;; 1=<i<6).

The following two tables show the action of elements of K, on A,.
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Table 1.
x x%0 x%1 x%2 X" 5
|
b, by by b, bs b,
b by by b, by by
173 bg blbgbg bs b1 b5
by by by bob, be b,
bs b.bsbs bs bsbsbg bs by
b(; bzbc b4b6 be b4 bg
Table 2.
x ‘ x% xP8 x% xP x* xt
a, a, Ao aobiby,  aob, a; b,
a, oGy A1biby a; aqb, G ay
b | b b b b b b
b2 bz bz bz bz b4 b2
by bobs by by b, b, ay

(2B) LEMMA. The following conditions hold :

(1) Z(U)=<by, b;

(2) A, is the only Eg-subgroup of U;

(3) if X is an Es-subgroup of A A, and XA,=AA,, then X=A,;
(4) A; is self-centralizing in L for each 1.

Proor. (1), (2), and (4) easily follow from (2A) and Table 1. In order to
prove (3), assume by way of contradiction that X=A4,. Choose an element
xeX—A, Since XA,—AA,, it follows that XA, =C4(A)=A;NA, Hence
x& A, Now <a,, sy is contained in N (A)NN(A,) and Table 2 shows that it
acts transitively on (A4,4,/A,)%. Hence we may assume x<Sg,4, Then
xeaOCAg(ao):ao<b3§(Alr\Az), and as x& A, x<Sabi(ANA,). There exists an
element y= XNa, 4, Write y=a,b with b€ A,. Then by Table 2,

ab=y=y"=(a,b)**=(a,b*)*=a,b,b,b%°

and hence bb,=bb~%<[A,, a,]. However, Table 1 shows [ A,, a,1=<bb,, by).

(2C) LEMMA. L has four conjugacy classes of involutions and we may choose
by, b, bibs, and b,b, as their representatives.

ProoF. See Section 7 of [3].
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(2D) LEMMA. The following conditions hold :

(1) I,4P, and A,/I, is a natural module for K;=Sp(2);

(2) involutions of A, are conjugate in Py to by, by, o7 bibs;

(3) I, is the only Ki-invariant nontrivial proper subgroup of A

PROOF. As K,={a,, bs, s, t>, Table 2 shows [;<{P;. Let bars denote images
in A,/I,. For two elements

x=afahblbdr and y=afrafebiebsz,

where a;, Bi 7 0; 1€1{l, 2}, are integers read modulo 2, define (x, y)=
Byt Biye 7182+ 01, This is a nonsingular symplectic form on A, and K,
preserves it. Hence (1) follows. Consequently, we have that K, acts transi-
tively on A¥. Hence (2) follows.

Assume that X is a K,-invariant nontrivial subgroup of A, If X+#I[,, then
A,=1.X by (1); so b, or b, is contained in X. Table 2 shows by~ai~ab:b,
and b,by~bia,~b,a.b, under K;. Hence <{b;, b,><X and consequently X=A,.

We shall denote by 4, and 4, the conjugacy classes of b, and b;b, in P,
respectively.

(2E) LeEMMA. The following condilions hold:

(1) I,<4P,, As/l,is anatural module for Ky= Ly(2), and I, is ils dual module;
(2) involutions of A, are conjugate in Py to by, by, biby, o7 bsby;

(3) I, is the only K,-invariant nontrivial proper subgroup of A,.

ProOF. As K,=<a,, a,, 7, s), Table 1 shows [,<{P.. As a basis of A,//,
and I,, choose {b,1,, bol,, bsls} and {by, by, b}, respectively. Compute the matrices
of a., @, r and s with respect to these bases. The remaining parts of (1) then
follow immediately. Computing the centralizers in P, of by, by, b1y, and bsby,
we have that they have 7, 7, 21, and 28 conjugates in P, respectively. Hence
(2) follows.

Suppose that X is a K,-invariant nontrivial subgroup of A, If A,#X+#1,,
then A,=I,X and I,nX=1 by (1). In particular, |X|=8 and so 5;€X by the
above paragraph. However, Table 1 shows that b;~b,~b;b.b, under K, hence
b, X, a contradiction.

We shall denote by 2., 2., 2, and 2;, the conjugacy classes of b,, by, b.b,,
and b;b, in P,, respectively.

(2F) LEMMA. The following conditions hold:

(1) Culb)=P:;

(2) if b=bi, by, 07 biby, then C(b)=0%(Ci(b)) and <b> has no complement in
C.(b).
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Proor. By (@2D), P,=Cy(b,). As P; is maximal parabolic, (1) holds. 1If
b=b,, (2) follows from (1) and (2D) (3). If b=b, or b;b,, then we check by
direct computations that Cy(b)=0%{(C.(b)). Indeed, C.(b,) is an extension of a
2-group by L,2)X Ly2), and C.(b;b,) is an extension of a 2-group by L.(2).
From Table 1, we obtain (a,b,)>=0b, and (a,b;)*=5,b,. Hence the remaining part
of (2) follows.

(2G) LEMMA. We have A,/I,=Ca, s (H)X Cay 1 (H).

3. Initial reductions.

In this section we begin the proof of the main theorem of this paper. Let
G be a finite group with a standard subgroup L isomorphic to Sp.(2). Assume
that C(L) has a cyclic S,-subgroup and that LO(G) is not a normal subgroup
of G. Let z be an involution of C(L) and set C=C(z). The symbols used in
Section 2 for various objects defined for Spe(2) will retain their meaning for
the balance of the paper. Let V=U<{z), B;=A(2), and [;=1,{z) for ie{l, 2}.
Furthermore, let 4=2z"¥1 and £=2z"¥», The main result of this section is
Lemma (3F), in which we determine 2.

(3A) LEMMA. The following conditions hold
(1) C=LXxCg(L);
(2) 2°N\C+{z}.

ProOOF. By hypothesis L<C. As Out(L)=1 by [21], (1) holds. As LO(G)
is not a normal subgroup, z&Z*G) and so the Z*-theorem [7] yields that
2°\C+{z}.

(3B) LEMMA. We have {z>&Syl,(Cc(L)).

Proor. Let TSyl (Co(L)) and choose an element g G such that z#z8<
UT. This is possible by (3A). Then T=C(z!)=C#% As z°¢ induces an Iinner
automorphism on L, C.(z8)=LNC? contains an Eg-subgroup A by (2C). The
image of AXT in C¥/Cys(L)¢ is abelian of rank at least 6 and its exponent is
equal to that of T as TNCo(L) =1. As C¢/Co(L)Y*=L by (3A), (2) and (4) of
(2B) force |T|=2.

(3C) LeEMMA. We have z°N\A,=.

PROOF. Suppose that zf=)H for some beA, and g=G. Then Cyb)=
0% (Cr(b)) by (2D) and (2F); so C.(h)S0¥(C8)=Lex<(z8>=L2#x<b). Hence C.(b)
=Crnre(b)X<b>. This, however, is impossible by (2F).
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(3D) LeEMMA. The following conditions hold:
(1) B, is the only Essg-subgroup of V;
(2) R=z°"\B.,.

Proor. (1) is a direct consequence of (2B) (2). Let g€G and S B,. Then
BE'<C: so there is an element ceC such that B '=Bj§ by (1). Thus cgEN(B,)
and z¢=z¢=z¥», This proves (2).

(3E) LEMMA. The following conditions hold:
(1) C(B)=B,0(C) for i1, 2};
(2) N(B1By)=N(B)NN(By).

Proor. (1) is a direct consequence of (2B) (4). (3D) shows N(BB,)=N(B,).
Hence if geN(B.B;) and X=B%, X is an E-subgroup of BB, such that XB,
=B,B,. By (8D) (1), B.n\B,=X and so Y=XNL is an FEs-subgroup of AA,
such that YA,=A,A,. Thus Y=A, by (2B) (3) and then X=Y<z)=18,, proving (2).

(3F) LEMMA. We have |2|=8 or 64. If |2]=8, then R=1{z1\Vz02, or
(U202, If |2]=64, then 2=zA,, (2} Uz 225, 25, 12} J282,V282, 2y,
or {20, Uz02, U227 0. If X is a subgroup such that Ng(By)< X< N(B,),
then z¥={z}\JVz82,, i=1 or 2.

PROOF. First of all, (3A) (2), (2C), and (3D) (2) show that £ {z}. Hence
O is a union of two or more conjugacy classes of Ny(B,) contained in Bf;
that is, {2}, 224, 2., 28255, 224, 21, 2, 21, and 2. However, 02, £, and
2., are not contained in £ by (3C). Furthermore, C(B) < No(B,) and N(B;)/C(B;)
is isomorphic to a subgroup of Aut(B,); so | 2] divides |G L,(2)|=2%"-3*.5-72-31
%127. Hence we have that 2 is one of the sets shown in the lemma or [Q2[=15
or else |£2]=36. The same holds for z* when X is a subgroup such that
Ng(By)< X< N(By).

Suppose that |2]{=15 or 36. Then N(B,)* is a primitive permutation group
and the stabilizer Ny(B,)? of z in N(B,)° is isomorphic to the simple group
Ly2). Hence N(B,)° is a simple group and has order 22.3%.5.7 or 2°-3*.7.
Inspecting the list of simple groups of such order given by [13] and [22], we
see that N(B,)?=U,3) with |£2|=36 is the only possibility.

Now C(2)=C(B,), so N(B,)/C(By)=Uy3). Let bars denote images in
N(By)/C(B,). Then B, is a fours subgroup of N(B,) and so normal in some
S,-subgroup of N(B,) by (IL). As N(B.C(B))=N(B,B:)<N(B:) by (3E), | 4]|=
[N(B.): No(B))| is "divisible by 4. Moreover, (3C) shows that 4 is a union of
conjugacy classes of Nq(B,) contained in zA,;; that Is, {z}, {zb.}, 24, and zd,,.
Hence |4]=16 or 32 and so |N(B,)|,=2" or 2.
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Now V is a Dg-subgroup of NM(B,). Hence if X is an elementary abelian
2-subgroup of N(B,), then X¢<V for some g&N(B;) by (1L) (1). Then (3D) (1)
shows that B, is the only E,,-subgroup of NM(B,). Thus |G: N(B,)!| is odd
and |G|,=2" This, however, contradicts [N(B)!,=2%

It remains to prove the last statement of the lemma. [t is, however,
immediate from the last remark in the first paragraph, as we have already
shown that [z¥| is a power of 2.

It is not difficult to see that |£2]=64 implies Q=2zA4, (see Section 6). This
leads to the following trichotomy :

1. @={z\Vz0,;
2. Q2= {Z} UZQz 3
3. [ Q2]=64.

We shall treat each of these cases in different sections.

4. 03(2) and O;(2).
In this section, we study the following situation :
HypoTHESIS 1. @={z}\UzQ,.

We shall prove the following :
THEOREM 1. Under Hypothesis 1, <LS>=0z(2) or 0 (2).

The proof involves a series of lemmas. We begin by studying the struc-
ture of M(B;). Let D,=0,N(B,)) and V,=VD; for i {1, 2}.

(4A) LEMMA. The following conditions hold :

(1) N(Bo)=Nc(B2)D, and Ne(Bo)N\Dy=B,;

(2) commutation by z induces an isomorphism D,/B,—A,/1,:
3) Z(Dy)=I, and Z{D,)=As,.

PrROOF. By Hypothesis 1, N(B,)/C(B,) is a 2-transitive permutation group
on £. The stabilizer No(B,)/C(B,) of the point z is isomorphic to the simple
group Ly2). As N(B;)/C(B,) can not be simple by [22], N(B,)/C(B,) has the
regular normal subgroup X/C(B,). Set Y=Cy,(0(C)O(C). Then Ny(B,)<Y
and, as C(B,;)=B,X O(C) by (3E), Y <N(B,). Hence Y=N(B,) and X=Cx(O(C)O(C).
Thus X is 2-closed and (1) follows.

Now 4d,=<ab; a, b€£2> by Hypothesis 1. Hence A,<D, and Z(DyM A1,
Moreover, we have A,£Z(D,). Otherwise, commutation by z would induce an
isomorphism D,/B,—[D,, z1, while [D,, z]=A4, by Hypothesis 1, a contradiction.
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Thus Z(D.)N\A.=I, by (2E) (3) and, in particular, [,IN(B,). As AT, D,/ 1,
and as K, acts irreducibly on A,/I, by (2E), we have A, Z<7(D,/1,). Further-
more,

“.10 CD2/12<Z>:B2/[2

by Hypothesis 1. Hence (2) and (3) follow.

(4B) LEMMA. N(B,) has a normal subgroup C, satisfying the following
conditions :

) D,=B.C, and B.NCo=A,;

(2) ZCy=Ci=I,.

PROOF. By (4A) (3), I, and A, are normal in N(B,;). Let Y eSyl(K,) and
set C,=[D,, Y]. Then C, satisfies the condition (1) above, as ¥ acts irreduci-
bly on D,/B, by (4A) (2). Furthermore, (1F) and (41) show that C,/[, is
abelian. This forces Co<IN(B,), as |Dy/1,: Z(D,/I1,)| >4 by (4A) (3). The same
lemma shows A,£Z(C,). Hence Z(C,)<A,, as otherwise the irreducible action
of Y on C,/A, yields that C,=A,Z(C,), which is a contradiction. Therefore,
Z(C)=I, by (2E). Then C3i<I, by (1B) and so C3}=I, again by (2E).

(4C) LEMMA. The following conditions hold:
(1) MB)/Bi=Ng(B1)/B:XDy/By;

2) D,/B.,=Z,;

3) ZDy)=A, and Di=I,.

PROOF. Since Np,(B:By)=N(B,) by (3E), it follows that N(B)ZC. Hence
A+ {z}. On the other hand, Hypothesis 1, (2C), and (3D) (2) show that 4={z}
or {z, zb}. Thus 4d={z, zb;}. Hence |N(B,):N¢(B,)|=2, and both I, and [,
are normal in N(B,). Let bars denote images in N(B,)/C(B,). Then K,=Nc(By)
is a subgroup of index 2 isomorphic to Spu(2). If Cymp(K)=1, then N(B))
= Aut(Sp2))=PI'Ly9). But then C(B,//)=C(B,) and N(B)) is isomorphic to
a subgroup of Aut(B,/J.)=GL(2), which is a contradiction. Therefore, N(B)
=Ni(B)xX with X=Z, Now O(C) centralizes N,,(B:B,) by (4A)(2) and
N(B,)=Np,(B:B;)N¢(B,), hence N(B1)=Cx,(0(C)O(C). (1) and (Z) now follow
as in (4A). (3) is a direct consequence of (1H).

In order to prove an analogue of (4B) for N(B,), we require the following
lemma :

(4D) LemMa. We have V= V..
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PROOF. As |V.:V|=2, V,=NV)<NB,) by (3D) (1). Thus ViD, is a
2-subgroup of N(B,) containing V,=VD, As V,eSyl,(NB,)) by (4A), we must
have V.D,=V, and hence V,<V,.

Now let S=UC, and C,;=D,nS. We prove the following :

(4E) LemmMa. G, is a normal subgroup of N(B,) and the following condi-
tions hold :

(1) Dy=B.C, and B,nC,=A;

(2) C, is elementary abelian ;

(3} Vo=NCy).

PrROOF. As V,=<(2>S and <z>=<D,<V, by (4D), C, is a maximal subgroup
of Dy such that D,=<z)>C,. Hence (1) holds. Now S/Cy=D; and A.C,/C, is a
fours subgroup of S/C,. Since ACo/Co=CC/C,<S/C, and since C,C,/C, is
elementary abelian by (4C) (3), it follows that A C;=C,C,. Consequently, C,=
A(CNGC,) and so Ci=(CNC)*<I;NI,=1 by (4B) and (4C). As &%(D,)={B,, C},
we have C,<IN(B,).

It remains to prove (3). Since C,/A,=A,/I, as A,-modules by (4A), it fol-
lows that C,C,/A,=ACy/Ay=2DyxD,.  As CiNAy=ANA,, ClAJA, is an Es-sub-
group of C,C,/A, and so C,A4,<C,C,. Hence if g€C(C, and X=C¢, then X&
&s{C14,) and moreover [ XN\A,|=8. By (ZB) (2) XL A, A, so as |CA,: AA,
=2, Y=XNA,A, is an E,-subgroup of A,A4, and |YMNA;|=8. Then (2B) (3)
forces Y=A,. Therefore, X§CCIAZ(AI):CICAZ(AI):CI(A1/\Ag):C1. This shows
that C,=N(C,). Hence V,=VC,<N(C)).

(4F) LEMMA. B, is the only E ug-subgroup of V..

PrROOF. We first show m(C,)=6. Let X be an elementary abelian subgroup
of C, of maximal rank and assume, by way of contradiction, that |X|=2"
Then [,< XA, by (4B) (2) and, as K, acts transitively on (A4,/I,)%, we may
assume b, XA, Furthermore, 4=|XA,: A,|, as otherwise A,=<X and then
the irreducible action of K, on C,/A, yields that A= Z(C,), contrary to (4B) (2).
Since [Ne(B,): C(b))N\N{B;)|=7 and since by& Z(C,), we conclude that |b¥E2|
=14. However, as 4, and /, are normal in N(B;) by (4A), bV ®» is a union of
conjugacy classes of N¢(B,) contained in A,—I, (that is, 2,, 2., and £2:) and
so [bY#2|#14. This contradiction shows m(C,)=6.

Now let X be an elementary abelian subgroup of V, of maximal rank and
assume, by way of contradiction, that X=B, It follows from 4.0, AE) (1),
and (4B) (2) that &%(D./1,)={B,/I,, C;/I,}. Hence X£D, as X£C, by the last
paragraph. Also, if we set Y=XN\D,, then Y=Cp(X) or Ce(X). Conjugating
in N(B,), we may assume that {a,>D,<XD, Then (4A) and (4B) show
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Cr(X)=Crlae)=<bs, b,
Cuayr 1L X)=C oy 1,(a0)= by, bspla/1s,
Copraf( X)ECryia,(a0)=Cuy 1{@o).

As a consequence, we have [Cp(X)|=2° and |C,(X)|=2°% Hence if |Y]=2°
then Y=C, and so [,<Y=C,,(X) by the last paragraph, a contradiction.
Therefore, XD,={a,, a,>D, or <{a,, a;»D,;. In either case |Y|=2° and con-
sequently | Y1, =22 by the last paragraph. However, in the former case we
have Co,a(X)2Couy 1, (X)=<bDI, [Tz, s0 |Cp(X)] 2" and [Ce(X)|=2% In the
latter case, we have C,(X)=<b,>. Hence we have a contradiction in either
case. :

Using (4F), we next prove the following:

(4G) LEMMA. The following conditions hold:
1) V,eSylAG);
(2) SeSyl(G").

Proor. As V,eSyl(N(B,), (1) is a direct consequence of (4F). Now
U=L=G and C=[K,, C,1<G"; so S=UC,<G’. We argue that £ is the set
of extremal conjugates of z in V,. If u is an extremal conjugate of z in V,,
then there is an element g&G such that zfé=u and Vé=Cy,(u). In particular,
Bf<V, and so Bf=RB, by 4F). Thus ucz¥¥%=0. Since SNL=, we have
z& G by (ID). As V,=5<(z), (2) holds.

Next, we consider the structure of N(C,). We let M,=E(N(C;)mod ;) and
prove the following :

(4H) LemMMA. The following conditions hold:
1) M/C=UL2) or L(2);

(2 CMI/CI(Z)Zchx/Q ;

(3) SeSyl(My);

@ [M, 0(O)]=L

PrROOF. By (4E), &*(D)={B,, C} and so MD)NNC)=N(B,). Hence if
bars denote images in N(C,)/C,, then
CE)=NB)=<Z>x K;x0(C).

Furthermore, V,eSylL(N(C,)) by (4E) and (4G), and consequently, Z is not a
central involution. As |V,|=27, (1I) yields that M,=U,2) or L42) and that
YK =&)X Cx (2).
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Now C,=S=G’ by (4G) (2), and hence M,=C,M{=G’. Hence M,<N(C)NG".
Since SeSyL(NCONG") and |S|=|M,]|,, it follows that S=Syl,(M,). In partic-
ular, 4,<M, and so, as K,=KjA, and as K|<M, by the above paragraph,
K,<M,. Therefore, Cy (2)=K..

It remains to prove (4). By (1I), O(C)=O(N(C))) and hence [M,, O(C)]=1.
Furthermore, as O(C) stabilizes the series 1< A,<C,, [C;, O(C)J=1. Therefore,
LM, O(CY]=1.

We are now in a position to complete the proof of Theorem 1. Let M,=
K,C,. Then the lemmas (4A), (4B), (4C), (4E), and (4H) show that z, L, C;, M,
ie{l, 2}, and S satisfy Hypothesis (2.2) of [10] with M,/C,=U,2) or LJ2),
M,/Cy= Ly(2), and |S5]=2 Furthermore, (4A) (3) shows that S centralizes
(UNU,*)*=<b,>. We may, therefore, apply Theorems I and 5 of [10] to
conclude that G,=<M,, M,> is a z-invariant quasisimple subgroup with L<G,
and Go/Z(G)=0§(2). Furthermore, C(G,) has odd order by (3B) and, in partic-
ular, Z(G,) has odd order. Hence Z(G,)=1 as the Schur multiplier of 07 (2) is
of type (2,2) and the Schur multiplier of Oz(2) is trivial: see [6], a table on
p. 60.

Now we prove the following :

(4) Lemva. If g€G and 22 N(G,), then g& N(G,).

Proor. By (4H) {4), O(C) centralizes G,=<M,, M,>. Since C=<{z>LO(C), it
follows that C=N(G,). Now suppose g=G and zf=N(G,). Then z¢<G, as
Go=G’ while z& G’ by (4G). Results in Section 8 of [3] show that Aut(G,)
has precisely two conjugacy classes of involutions outside Inn(G,). Since
2°N\B;#2zA, by (3D) and Hypothesis 1, it follows that z¢*=2z for some k< N(G,).
Thus g€ CN(G)=N(G,).

Now since (41) has been proved, results in [19, III] show that G,0(G)<G.

Hence (L% O(G)=G,0(G) and, since [(L%, O(G)]=1 by (1H) of [97, it follows
that (L%>=G, Thus we have proved Theorem 1.

5. Ug2) and L2).

In this section, we consider the following situation:
HYPOTHESIS 2. Q2={z}\UzQ,.
We shall prove the following:

THEOREM 2. Under Hypothesis 2, {L°>=Uy2), SUL2), or L2).
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As in the case of Theorem 1, the proof begins with an analysis of the
structure of M(B,). Let D;=0,(N(B;)) and V,;=VD,; for i€ {1, 2}.

(5A) " LEMMA. The following conditions hold:

(1) N(B)=N¢(B,)D, and N(By)N\D,=B.;

(2) commutation by z induces an isomorphism D,/By—I,;
(3) I,=Z(D»).

PROOE. (1) follows as in (4A), the first paragraph of the proof. Hypothesis
2 shows I,=<{2>—R. Hence I,aN(B,) and consequently I,NZ(D,)#1. Thus
I,<Z(D,) by (2E) (3) and, as [D,, z1=I, by Hypothesis 2, commutation by z
induces an isomorphism D,/B,—1T,.

(65B) LEMMA. The following conditions hold:

(1) NMB)=N¢(B)D; and Neo(B)ND,=B;;

(2) commutation by z induces an isomorphism D./B,— A/1;;
3 Z(Dy)=I and Zy(D)=A..

Proor. Arguing as in the first part of the proof of (4C), we have that

Let bars denote images in N(B,)/C(B;). Then N(B,) is a 2-transitive permuta-
tion group on 4, and the stabilizer Ny(B,) of the point z is isomorphic to ..
If N(B, has no non-trivial solvable normal subgroups, then F*(N(B)) is a
simple group of order 2235 with a=<8 and b=2. By [4], F¥N(B))=4; or A..
But then N(B,) is isomorphic to a subgroup of Aut(4;)=2Y; or Aut(A.)=PI'Ly9),
which is impossible as |N(B))|,=2%. Thus N(B,) has the regular normal sub-
group. (1) now follows by the argument in the first paragraph of the proof
of (4A).

Now A,=<ab;a,b=4> by (5.1), and hence A,<iD,. Therefore, (2D) (3)
shows that Z(D)NA.=I, or A, and that A,/[,<Z(D,/I;). Furthermore, (5.1)
shows

(5.2) Npy1(2)=Bi/1;.

Therefore, Z(D,/I.)=A,/I, and, as [D,, zJ=A; by (5.1), commutation by =z
induces an isomorphism D,/B,—A,/I;. The above discussion shows that Z(D;)
=1, or A, and that if Z(D)=I, then Zy(D;)=A, Suppose that Z(D)=A4,.
Then commutation by z induces an isomorphism D,/B,—[D,, z]=A, Since
this is impossible, it follows that Z(D,)# A,. The proof is complete.

(5C) LEMMA. N(B) has a normal subgroup C, satisfying the following
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conditions:
(1) D,=B.C; and B,nC,=A4,;
(2) C, is an extra-special group with Z(C))=I,.

Proor. (5B) and (5.2) show that the chain A;/[,=<B,/I,<B,/I,£D./I,
satisfies the hypothesis of (1G). Therefore, DI<A,. We define C,=[D,, HH*] A,
(see Section 2 for the definition of H and s). Since HH® acts fixed-point-free
on A,/I, by (2G) and since D,/B,=A,/I, as HH*modules by (5B) (2), it follows
that C, is a HH*invariant subgroup satisfying (1). Furthermore, C,/A,=A,/],
as HH®-modules.

For any subgroup X of G, set X*=X~C(H). Then |C¥/[,]=16 by (2G),
and CC§,11(2):A§‘</11 by (5.2). Moreover, H® acts on C¥ as [H, H*]=1. Thus
C¥/I, is abelian by (IF). Furthermore, C¥NC#¥ =I, by (2G); so C,=C¥C¥° and
hence C\/I,=C¥/I,xC¥ /I, by (1A). Thus C,/I; is an abelian maximal subgroup
of D;/I, and, as |D,/I,: Z(D,/I,)|>4 by (5B) (3), it follows that C,<IN(B,).
Consequently, C,/A,=A,/I, as Ny (B,-modules by (5B) (2). In particular, K,
acts irreducibly on C,;/A,, and so arguing as in (4B), we have C;=Z(C)=I..
Therefore, C, is an extra-special group by (1B).

(D) LeMMA. N(B,) has a normal subgroup C, satisfying the following
conditions :

1) Dy=B8,C; and B,nCo=A4,;

(2) C, is elementary abelian.

ProoF. By Hypothesis 2, [,=<2><IN(B,). K, acts transitively both on
(By/J2)* and on (D,/B.,)* by (5A) (2). Hence B,/[,=<Z(D,/],), and D,/], is
elementary abelian provided that I(D,/].)£ B,//..

We show I(D,)£ B,. Assume that this is false and let X be an elementary
abelian subgroup of V, of maximal rank. If X=#B,, then X£D,, and as D,
stabilizes the series 1</,<J,< B, by the last paragraph, the argument of the
proof of (4F) shows that [Cp(X)|=2° and that if [XD,: D,|=4, then |Cy(X)]
=2% As |X|=2", this yields a contradiction. Hence B, is the only E,-subgroup
of V,. However, this implies that V,=Syl{(G), contrary to | V.| <|V,|. There-
fore, I{D,)%£ B,.

The above discussions show that D,/], is elementary abelian. Hence

(63 Di<I,

by (1G) applied to the chain [,<J,<B,<D, This, in particular, shows A,<D,.
We show that A, is in fact the center of D,, using an argument in the first
paragraph of the proof of (4F). (5A) (2) and (3E) (2) imply that

(54 [Np,(B1): By|=4.
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As b,=Z(N(B)) by (5B), it follows that [b{®?|=<14. As in (4F), this is possible
only if BYE2=0,, or if |N(B,): C(b)N\N(B,)|=7. Hence b,=eZ(D,) and (2E) (3)
yields that A,=<Z(D,). As Cp(2)=DB, we have Z(Dy)=As.

Now let X be an S,-subgroup of K, and let ¥ be an X-invariant subgroup
of D, such that D,=B,Y and B,nY=I, Such Y exists by Maschke’s theorem.
By (1F), Y is abelian and so C,=—A,Y isan abelian subgroup satisfying the con-
dition (1). Furthermore, C,<IN(B,) and C,/A,=I; as Ne(B,)-modules by (BA).

We define E=Nc/(B;). Then |E: A,]=4 by (5.4). Moreover, we have
E<V, For VEN(E) and VEZN(D,), and so VED, is a 2-group containing
VD,=V. As V,ESyl(N(B,), we must have VED,=V,, hence EXV, Thus
ED,/D, is an abelian subgroup of V,/D, containing A,D,/D,. As A,D,/D, is
self-centralizing in V,/D; by (5B) (1), it follows that ED,=A,D,, hence E=
ASLEND,) and |EnD,|=2°. This shows ENCi£A, as CinAs=ANA, As
(ENC<I,nI,=1 by (5C) (2) and (5.3), we have A,<Q(Cy. As K, acts irre-
ducibly on C,/A4, we conclude that C, is elementary abelian.

(5E) LEMMA. The following conditions hold:
1 1CnGI=25;

2 Cczlll<ao>:<b3y CinCo /11

(3) {Celan|=2"

ProoF. Let E=N¢(B,). As shown in the last paragraph of the proof of
(58D), E=ALEND,) and |ENnD;|=2°. Now

(5-5) 8*<D1/[1>: {81/11; Cx/lx}

by (5.2) and (5C). END,/I; is elementary abelian by (6D), and ENnD.£B, as
B,NCo=A4.nA,. Thus END,=ENC,.. As CNC.=Ng,(B)=E, CinCo=ENCy,
and (1) follows.

Now [E, aJ=BiNC:=As. As |Ceya(as)|=4 by BA) (2), Copa(a)=E/A,
and hence Cg,r(a)=E. Using the expression E/I,=(A,/JIXENC,/I,) and
noticing that C,/I, is abelian, we obtain

CE,f11<ao):(<b3; ANAD/TNENC /).

Hence (2) follows. Consequently, Co,(a0)=<bs>Ccincae). As Cyis extra-special
and C,NC, is a maximal abelian subgroup of C,, we have |CiNGy: Conolao)l
=2 and hence (3) follows.

(5F) LEMMA. C, is the only Ese-subgroup of V..

Proor. The argument is similar to that of the second paragraph of (4F).
Let X be an elementary abelian subgroup of V, of maximal rank, and assume
that X#C, Then X<£D, as &%D,)={B,, C;} by (1E) (1) and (5D) (2). As in
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(4F), we have that |Cp,(X)|=2" and that if [XD,: D,|=4, then [Cp(X)|=2°
Hence |X|=2% which is a contradiction.

Now let M;=E(N(C;)mod C;) for i= {1, 2}. Using (5F), we next prove

(5G) LEMMA. The following conditions hold:
(1) My/Co= Ly(4), SL4), or Ly(2)X Ly(2);

2 CM2/02(2)2K2C2/C2 5

) <z>M, contains an Sy-subgroup of N(C,);
4) LM, &(C)]=1.

Proor. As remarked in the proof of (5F), &€%(D,)={B,, C,} and so N(D,)=
N(B;)SN(C,). Hence if bars denote images in N(C,)/C, then CZ)=NB,=
zZ>X K,x O(C). In particular, V,&Syl,(C(Z)). Now |V, <|V.|, hence V,& Syl,(G).
Then (5F) shows V,&SyL(NV(C,)); so Z is a noncentral involution. (1), (2), and
(3) now follow from (1K). For the proof of (4), see the proof of (4H) (4).

Using (5E) and (5G), we next sharpen (BF).
(5H) LEMMA. C, is the only E.s-subgroup of N(C,).

Proor. Let bars denote images in N(C,)/C, and let X be an elementary
abelian 2-subgroup of N(C,) of maximal rank. Suppose that X<£M,. By (5G),
involutions outside M, are all conjugate to 7 and V,=SylL(CEZ), so X is
conjugate to a subgroup of V, But then X=C, by (5F), a contradiction.
Therefore, X<M,. Consequently, m(X)<m(M,)=4 and hence |XNC,|=2°.

Now suppose X contains an element 1 that is conjugate to an element
of K,. Then [Ce(x)]|=2% by (BE) (3); so the above paragraph yields that XNC,
=Cg,(x) and that |[X|=2%

Assume, by way of contradiction, that X=1. If M,=L,4) or SL,4), then
M, has only one conjugacy class of involutions. Hence if X<S&Syl,(/7,), then
X is one of the two members of &%S) and so <d,, @ >=X™ for some i< {1, 2}
and me M, But then X"NC,=Ce,(a)=Cc,(a;) and hence Culag)=Cyla:), a
contradiction. Therefore, My=M,: X M,, with (M, *’=M,,= L,(2).

We assume, without loss of generality, that <ﬁ, X>§§e$y12(M2) and that
S#=S. Suppose X£M,; for each i. Then X contains a nonidentity element
that fuses into K, hence |X|=2¢ Thus X is one of the four members of
6’*(5) and, since [7:Cg(§), it follows that g,=X. Then XNCy=C¢,(a,} and, in
particular, XNC,=X°"\C,. It also follows that <{d,, d>=<(X, X®>™ for some
te{l, 2} and me M, But then we have X™N\Cy=C¢,(a,)=C¢,(a;), a contradic-
tion. Therefore, X<M,,, say. Then |X|=<4, hence | XNC,]=2" and | X"\ConX*|
=2°. Since &, is conjugate to an element of <X, X*> and since <X, X*> central-
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izes XN\Con\X?, (BE) (3) yields that }X|=4 and that | XN\C~X?|=2°. But then
(o, @>=(X, X®™ for some i€{l, 2} and meM,, and hence X"NC,NX*"=
Ce,lag)=Ceyay), a contradiction.

(51) LEMMA. If CIZV, for some x=C(by) and 1€ {1, 2}, then C}=C..

Proor. We argue that z26N\C;=@ for i {l, 2}. This is obvious if =2,
since m(C)=7 whereas C,=F,. Suppose that z°NC,#¢. Then since C; is
extra-special of order 2°, V must contain an extra-special subgroup Y of order
27, We have m(YN\By<m(Y)=4 and so, as |V/B,|=2% V/B,=Y/Y"B, How-
ever, this is impossible as V/B,=D, whereas Y/Y B, is elementary abelian.
Therefore, 2°\C,=J.

Let X=C? and suppose that X+#C,. Let bars denote images in C(b,)/<bp.
Then Cg,(2)=A4, by (5.2), and so B,—C,=2% by (IE). Also, &D)={B,, C;} by
(55). As Z°~\X=0, it follows that X~\D,=X~C,. In particular, X£D,. Now
let tildes denote images in N(B,)/D, Then 1#X<K,=Sp,(2), hence |X|=2°
and | X~C,[=25. Thus X centralizes a 5-dimensional subspace of C;. Since
C./A. =7, as K,-modules by (5B) (2), it follows that X* consists of conjugates
of b, in K’l: see Table 2. As b, is a transvection of K1;Sp4(2), this is possible
only if |X|=2. But then |X~C,|=27, which is a contradiction as C,/A,=A,
as <by>-modules and so b, can not centralize a hyperplane of C..

Now we prove an analogue of (5G).

(5)) LEMMA. The following conditions hold:
1) M,/C=UL2) or Li2);

2 C<z>M1/CI<Z):<2>chl/C1 ;

(3) <z2>M; contains an S,-subgroup of G;

4) [M, O(CYyl=L1

PrROOF. By (5.5) &X(D./I)=1{B./I., C./I,}. As ND)Y=N({,) by (56B) (3), it
follows that N(D)=N(B)=<N(C,). Hence if bars denote images in N(C.))/C,
then C(2)=<2)>Xx K, x O(C).

We argue that Z is a noncentral involution. Indeed, Z(V,)<Z(D,)=1,, hence
ZV,)=I,. Hence N(V)<C(b,) and (5I) yields that N(V,)EN(C,. Now, NC)
contains an S,-subgroup of G by (5H) and so |G|,=2* by (5G) (3). In particular,
IN(V): V.| is even. Hence V,&Syl,(MC,)) and thus z is a noncentral involu-
tion. Furthermore, we have |N(Cp|,<2". The result now follows from (1I).

We have arrived at the goal of our 2-local analysis.

(5K) LEMMA. The following conditions hold:
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(1) M, and M, have a common z-invariant Sg-subgroup S such that Cy(z)=U;
@ CM1/01<Z):K1C1/C1-

PROOF. By (5]) (2), V.=(z>M,. Let V.<T eSyl,(Kz)M;) and set S=TN\M,.
Then S&Syl,(A4,) and S is z-invariant. Also, T&Syl(G) by (5]) (3) and so, as
MCH=C(by) by (5C) (2), TeSyl(Cby). As C,=C(b,) by (D) (2), T contains a
conjugate X of C, in C(b). We show X=C,<S. Let bars denote images in
C(b1)/<b:> and let tildes denote images in N(Cy)/C,. Then M,=U,2) or L(2)
and <§>Clg1(§):<2>}?1 by (6]). If X<£S, then )?m?l\?ﬁk@ ; S0 there is an element
beM, and an element neMN(C,) such that z5cX® and ¥,=SylL(CEH) by
Section 19 of [3]. Then X*m<V, for some meN(C,) by Sylow’s theorem,
which however contradicts (5I). Therefore, X<S.

Now m(XN\C)=m(C,)=5, hence |X|=2% From the structure of M., it
follows that X is the unique Ej-subgroup of § and that IXmXN/lI:& Now
bibe=[b,, @] Ki<M, hence b5,V .M. As bb,cz(V,) and as XAV, is an
Egsubgroup of V, \IM,=Z,x Dy, it follows that b5, £V, Take an element
x€X such that *=bb,. Now B5;bs centralizes the E,-group C,nC, while
Table 2 and (5B) (2) show |Ce(8:he)| 2% Thus Ce,(bsbe)=C1N\C, and (1E) shows
that ¥ is conjugate to bsbs under C,. Consequently, Cs(%)=C,NC, and, com-
paring orders, we have that X~\C,=C,N\C,.

Now CVI(AM\Az/A):Ale and CAZDI(ClmC2/[1):A2C17 hence CV1<C1f\C2>:
ACo (CiNCo)=AL{C:NC,). Since X V.=2Cr (CiNGy), we conclude that XN\ V,=
ALCiNCy). Now zeN(X) as X is weakly closed in T with respect to G by
(BH).  Also, Cx(2)SXN\V,=A,C.NC,) by the above, hence Cyx(z)=A, Thus
& X)=1{B,, X} and then X<N(B,) by (1E). (5H) now shows that X=C,.

Since A,<C,<S by the above, K,=KA,<M,. Thus, Cﬁl(%):[%l. Also,
U=S and so as zgS, we have Cs(2)=U. Now C,C,/C; is an E,~subgroup of
T/Cy; so T/CiCo=D; and S/C,C,=E, by the structure of <Z)H,. Similarly,
T=N(C,) by (5H) and C,C,/C, is an E.-subgroup of T/C. So C,C,<M, and
TNM,/C,C, is an E,subgroup of T/C,C, by (5G). If S#=TA\M,, then S/C,C,
and T'mM,/C\C, are the E,subgroups of T/C,C,=Ds. But as z&S and ze M,,
this yields a contradiction. Therefore, S<M,. The proof is complete.

We are now in a position to complete the proof of Theorem 2. The
argument is similar to that of Theorem 1. It follows from (5A), (5B), (50),
(8D), (5G), (5]), and (5K) that z, L, C;, My, i< {1, 2}, and S satisfy Hypothesis
(2.2) of [10] with M,/C,=U2) or L{2), My/Co= L(4), SLi4), or L(2)X Ly(2),
and |S|=2%. Since C, is abelian, Theorems 2 and 5 of [10] show that G,=
{M;, M,y is a z-Invariant quasisimple subgroup with L<G, and G,/Z(G)=UL2)
or Ly2). By (3B), ((G,) has odd order, and hence G,=U,2), SU2), or L«2):
see [6], pp. 59-60.
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Suppose zf&N(G,) for some geG. Then 286G, as m(Ce(x)=9 for each
x€I{G,). Results in Section 19 of [3] show that there exist precisely two
conjugacy classes of involutions in Aut(G,)—Inn(G,). The argument of 4D
then shows that g&N(G,). Thus an analogue of (4]) holds in this case as well.

As in the case of Theorem 1, results in [19, lII] show that G,0(G)<G, and
hence it follows that (L®>=G, Thus we have proved Theorem 2.

REMARK. At one place in [19, 1], after showing that Oy(Ce (b)) <t C(by),
Seitz uses his basic induction hypothesis to prove that O (Co (b)) <C(by). In

our notation, Ox(Cgy(b:))=C; and O¥(Cs,(by))=M,. Therefore, we need not use
the induction hypothesis here. '

6. Ui(2), L(2), Sps(4), and Spy(2)X Spy(2).

In the balance of this paper, we consider the following situation :

HypoTHESIS. |[Q]|=64.

As may be imagined, our 2-local analysis under this hypothesis is the
hardest. However, the analysis follows the same line of arguments as in
Sections 4 and 5. In this section, we study the structure of N(B,), i=1, 2, and
the relationship between them. Let D;=0,N(B,)), V,=VD,, and Fi=Np,(J)
for 1= {1, 2}.

(6A) LeEmMMA. The following conditions hold :

(1) N(B)=Nc(B,)D, and Ne(B)IND,=DB,;

(2) F,<AM(B,) and commutation by z induces isomorphisms F,/By—1, and
D,/ Fy—A,/1,;

(3) Z(Dy)=I, or A, and if Z(D,)=I,, then A,<Z,D,).

PrROOF. Let bars denote images in N(B,)/C(B,). Then N(B,) is a transitive
permutation group on 2 and the stabilizer Ny(B,) of the point z is isomorphic
to the simple group L,(2). Let N(B,)/X be a composition factor. Then N (B,)
£X by (3F) and so No(B)NX=1. Also, M(B,)=Ni(By)X by [22]. Set Y=
Crap(O(C)O(C). Then Ne(B)EYIN(By). If Y#N(B,), then I'=z" is equal
to {z}\Vz2, or {z}\Uz2, by (BF) and, for any geN(B,)—Y, "¢ is a Y-orbit
such that I'*nI'=@. However, the Ng(B,)-orbit decomposition of £ shows
that such Y-orbits I"and I'¢ do not exist. Hence Y=N(B,) and (1) follows.

Now zz*€[D,, z] for any x&D, and so |[D,, z]|=|Q2{=64 while, on the
other hand, [D,, Z]<B, Hence [D,, z] is a maximal subgroup of B, and,
moreover, it is Ky-invariant. (2E) (3) forces [D,, z]J=A, Therefore,
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6.1) Q=2z4,.

Since Cp,(2)=B, and since £2=zA,, it follows that 1<Z(D;)<A,. By (2E)
(3), Z(Ds)=1I, or A, 1f Z(D,)=I,, then as A,=B,—02D,, [,<A,NZ(D,). Thus
A =27,(D,) again by E) (3). Let D,=D,/I,. Then since [D,, Z]=4,<7(D,), it
follows that commutation by % induces an epimorphism D,— A, with kernel
F,. Consequently, F,<{N(B,). An element x of D, is contained in F, if and
only if z*<zl,. Hence[F,, z]=I, and, since I,<Z(F,), commutation by z induces
an isomorphism F,/B,—1,.

(6B) LEMMA. The following conditions hold :
(1) N(B:)/CB)=(N(B)/C(B))OLN(B,)/C(BY));
(2) bieZ(N(B).

ProOF. Set P=Np(B.Bs). Then
(6.2) P<N(B;) and |P: B,}=4

by (B3E) and (6A) (2). Thus [4] is divisible by 4. Also, 4<zA, by (3C), and 4
is a union of conjugacy classes of N {(B;). Hence

(6.3) Ad=1{zt\Vzd,, {z}\Jzd,, or zA,.

Let bars denote images in MB,)/C(B,). Then K,=N (B, is a subgroup of
index 16 or 32 by (6.3) and isomorphic to X, In particular, O(N(B)=1. If
O(N(B))=1, then FXN(B,)=A; or A, by [4], and then N(B,) is isomorphic to
a subgroup of Aut(A4;)=2%; or Aut(A,)=PI'L,(9). Since this is not the case, we
must have O N(B)#1. A similar argument shows that either N(B,)=
NAB)OLNBL) or N(By/OLN(B)=PI'Ly9). Set X=0,N(B)). Then [X, K]
#1. For if [ X, K{]=1, then K; would centralize each element of z*, which
contains at least 8 elements, a contradiction. Hence if N(B,)/X=PI'L(9), then
X=F, and C(X)=X. However, this implies that N(B)/X=PI'L,9) is isomor-
phic to a subgroup of Aut(X)=GL«2), a contradiction. Therefore, N(B,)=
No(B)X.

Now let YeSyl(X). Then A,QY as A,=<ab; a, bed> by (6.3). Hence
ANZ(Y)#1, and as X=YO(C) and [A;, O(C)]=1, it follows that A,NZ(X)+1.
Then b,& A,~Z(X) by (2D) (3), and since b, Z(No(B,)), (2) follows.

(6C) LeMMA. We have Z(Fy)=A,.

Proor. Let P=Np/(B,B.). Then PEN(B,) and |P: B,|=4 by (6.2). Since
P<C(by) by (6B) (2), '=b{c®2F2 contains at most 14 elements. (6A) (3) shows
that /" is a union of conjugacy classes of N.(B,) contained in A,—/,; that is,
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2, 2., and 2. The only possibility is that {'=£,. So b, is a central
involution of Ng(By)F, and since F,<INy(By)F,, it follows that b,€Z(F,). Thus
I,<Z(F)N A, and (2E) (3) and Cr,(2)=B, imply that Z(Fy)=A,.

(6D) LeMMA. There is an element d=Np(B,) such that z°=zb,.

ProOOF. First of all, F,=<Cp,(A,) by (6C). If F,<Cp,(by), choose d =Cp,(by)—F
so that [V, d]=F.. This is possible as V acts on Cplby)/Fs 1f Fo=Cpby),
then D,/F, acts regularly on 6,1, by (6A) (3); so we choose deD;—F, so that
pe=b.b,. Then [V, d]J<F, in either case and since commutation by z induces
an isomorphism D,/F,— A,/I,, it follows that [d, z]1€b,[,. Write z?=zb;a with
a<], and choose an element f&F, so that z/=za. Then z%/=zb,; so replacing
d by df, we have z%=zb, and bi=bh, or b,b,. In particular, d normalizes
{z, by, by, b>=B:1"\Bs As C(AiNA)INNL{ A=A A, implies that C(B,;N\B)N\N(B.)
=B,B,X0(C) and as N(B.B,)<N(B;), we obtain that deN(B;), proving the
assertion.

(6E) LEMMA. The following conditions hold :

(1) N(B)=Nu(B:)D; and No(BIND,=B;;

(2) Fi<dN(B) and commutation by z induces isomorphisms F\/B,—1, and
D,/Fi—A/l;

(3) Z(D)=I, or A, and if Z(Dy)=I,, then A;=<Z,D,);

(4) Fi=I, and Z(F)=A..

Proor. First of all, (6D) together with (6.3) implies that 4=zA,. Let bars
denote images in M(B,)/C(B,) and set X=0,NB,). Then N(B)=N(B)X by
(6B) and so | X|=32. As usual, (1) will follow once we prove X=Cx(O(CHO(C).
Set Y=Cyup(O(C)O(C). Then No(B)=Y<IN(B;). Choose an element d as in
(6D). Then since [D,, O(C)J=1 by (6A) (2), we have deY and so ['=z"
contains zb,. If Y=+N(B)), then for any geN(B,—Y, I'¥ is a Y-orbit such
that I'n["¥=. However, the Ng(B))-orbit decomposition of 4 shows that
such Y-orbits I” and I'® do not exist. Hence Y=N(B,;) and (1) follows. (2)
and (3) follow by the arguments parallel to those in the last paragraph of the
proof of (6A). Finally, (4) is a consequence of (1H).

For any subgroup X of G, we let X*=XNC(H), where H={bsbs"*> as defined
in Section 2.

(6F) LEMMA. Let Q=[D,, HH*JA,. Then the following conditions hold:
(1) <D, H, sy=NQ);

(2) Dy=QF, and QNnF.=A;;

(3) Q*=[Q* H*]Il, and Q*/ I, =E; or ZyXZy;
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(1) Q=Q*Q* and Q*NQ¥=1;
5) Dy sI=Q.

PROOF. (6E) (2) shows that D}<F, and that K, acts transitively on (D,/F)%.
Hence D*<B, and (1G) applied to the chain A,/[,<B,/I,=F,/I,=D,/I, yields
that

6.4) DiZA,.

(1) is now immediate from the definition. Also, since Cp 4, (HH®)=F:/A; by
(BE)(2) and (2G), (2) follows. Consequently, commutation by z induces an
isomorphism @/A,—A,/I,, and the argument in the last paragraph of the
proof of (5C) shows that Q*/[,=E, or Z,xZ, and that Q/I,=Q*/I,xXQ*/I,.
Hence Q*=[Q*, H*1I,=[Q, H*1I,, and (1A) (2) shows that Q=Q*xQ*". (6E) (4)
shows Fi=FE;.XDs. So F, has precisely two elementary abelian maximal sub-
groups. Since B, is one of them and normalized by s, it follows that [Fi, s
<A, Hence [D, s1Z0Q.

We note that an analogue of (6E) holds for Ng(B¥).

(6G) LEMMA. The following conditions hold:

(1) N BE=Nc{B¥H)DF and NeBHNDF=BT;

(2) F¥<ANg(B¥) and commutation by z induces isomorphisms I'f/BF—1I; and
D¥/Ff— Af/1y;

(3) ZAD¥H=I, or A¥ and if Z(D¥H)=I,, then AF=Z,(D¥);

(4) F¥*=I, and Z(F¥)=AF;

(5) D¥F=Q*Ff and Q*NF{=Af.

ProOF. (6E) shows that an element x&D, normalizes B¥ if and only if
z¥ezA¥, or [x, zZ]€Af. Hence |Np(B¥): B;|=8 and Ny (B¥)/B1=Cp,5,(H)=
B,D¥/B,. Since | N(B¥): N(B¥)| <8 by (3C), it follows that N(B¥)=N(B¥)Np,(Bf)
=N,(B¥)D¥. Hence (1) follows. (2), (3), and (4) may be derived from the cor-
responding assertions in (6E). Since |Q*: AF|=4=|F¥: AF| and Q*NFF=AF
by (6F), (5) follows.

(6H) LEMMA. Let GF=G*/O(G¥*). Then G* has a subgroup M*=M*/0(G*)
of index 2 satisfying the following conditions:

(1) M*=UJ2), Li2), Spsd), SP2)XSp2), or U3);

@) G¥=<=a>M*;

3 C'Jﬂ(é):Kﬂ—;s;

(4) either M*=U3) or AFLZ(D¥);

(5) QF=M*
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ProoF. This is a consequence of (1]). We have that Ce(2)=C*=<{2) XK}
X HO(C) and that Af is an FEgsubgroup of K7 (6G) shows [Df|=2" and
DEAC*=B¥. Also, DI*< A¥ by (64). As N(AMNKPENLLA)SNDF), (1)) im-
plies that there is a subgroup M*=M*/0(G*) of G¥ of index 2 satisfying
(1)—(4). As {H®, IDSK7T=M*, (6F) (3) shows Q*=M*.

(61) LEMMA. Let the notation be as in (6H) and assume that M*=UJ3).
Let XF=0,4NgzB7) and YF¥=XFnM* for ic{l,2}. Then the following condi-
tions hold :

(1) Nm(BH=Ng(BHXF, Ne(BONXF=B¥, and | X} : BF|=8 for each i;

(2) if M*=Sp4) or Spua2)xSpu2), then AFZZ(XF) and YF is elementary

abelian for each i;
(3) if M*=UL2) or Ly2), then AFSZ(XF) for exactly one value of i, and

By if AFSZXT),

z<y_i*>g{ S AT
Z, if AFLZ(XF);

4 X¥=DF.

PROOF. By our assumption and (6H), G*F=<Z>M* and M*=Uy2), L,2),
Sp4), or Sp2)XSpL2). Furthermore, Ca)=K7=Sp2), so both the action
of z on M* and the embeddi_ng of K7 in M* are uniquely determined up to
conjugation by the elements of M* and relabeling of elements of K7 by its
graph automorphism: see (1.1) of [10] and its proof. Thus (1)—(3) may be
checked by direct computations involving matrices. (4) is a consequence of
6G) (1).

Now we state the main result of this section.

(6]) LEMMA. For each i€{1, 2}, N(By) has a normal subgroup C; satisfying
the following conditions:

(1) D;=B,C; and B;nCi=A;;

2) 1CNG|=2°;

3) CinVsi=ACNGy);

@ (CinVe )=l
Furthermore, theve are two possibilities for the structures of C, and C, and the
relationship between them: either

(5) C,=Es0 0r DgxDgxDgxDexE, and Cy=Eye, or

(6) Ci=DexDgxDyxDgxZ,, Ci=A,, 2(Co)=ZC)=CinF; and CiNCo=Z(C;)

(CTaV/(0M))

We divide the proof into four parts. First, we prove
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(6K) LEMMA. Assume AFZZ(D¥). Then N(B)) has a normal subgroup C,
such that

(1) D,=B.C, and Bi"C,=A4,, and either

(2) M*=Sp4) or Sp2)XSp2) and C,=E,mn, or

(3) M*=ESp4) or SPpL2XSp(2), Ci=A,, Ci=I,, and ZC)=102,(C.)=C,\F..

PROOF. TFirst of all, M*¥=U4(2), L{2), Sp4), or SpL2DXSp(2) by (6H) (4).
We define C;=Q(DfnM*). As Q<D, by (6F), C, is a subgroup of D;. Further-
more, C¥=DFf\M*, |C§F: Q*|=2, and DF=<{z>C} by (6G)—(6I). Thus C, satisfies
(1). Now either C¥ is elementary abelian, or Z(C¥)=E,, by (6]). Furthermore,
in either case [C¥, H*]=Q* and H°® acts irreducibly on Q*/A¥, and in the
latter case we have C¥/A¥=Q*/AFxX Z(C¥)/A¥ by (6G). Hence we deduce that
C¥=Q*+Coy(H*) and Cey(H’)=E,. Notice that Coy(H*)=C¢ (HH®). Now s N(C))
by (6F) (5) and so Q*° centralizes C;(HH®). This together with (6F) (4) shows
that

(6.5) Ci=Q*«Q*+Cc (HH?).

Then C,/I; is abelian by (6F) (3) and, since | D,/I,: Z(D./I,)| >4, it follows that
C.<AIN(B)). Now if M*=Sp,4) or Sp 2)xSp,2), then C¥*=1 and so Ci=I.
Assume M*=U,2) or L{2). Then Z(ICH=RQ(CH=E.,, C¥=I, and C}*=Apr
Hence Ci=A, Ci=I, and Z(C)=2,(C)=A,Cc(HH?). As Fi=ACy(HH®) by
(6E), we have Z(C,)=C,~F.. The proof is complete.

Next, we prove

(6L) LEMMA. Assume AFLZ(D¥). Then N(B,) has a normal subgroup C,
satisfying the following conditions:

(1) D=B.C; and B,N\Ci=A4,;

) Ci=DgxDegxDyxDegxZ, 0v Dyt DgxDgxDexE, with Ci=1, and A Z(C)=C,NF..

PrOOF. As Df=Q*F¥ and A¥=Z(F¥) by (6G), our assumption implies that
AFLZ(Q*). It also follows from (6G) that H® acts irreducibly on Q*/Af and
on A¥/I,. Thus we must have Z(Q*)=I,, and as Q*/I; is abelian by (6F) (3),
(1B) shows that Q* is extra-special with Q**=I,. As H® is transitive on
(Q*/A¥)?, Q¥= DD, is the only possibility.

Let Z*=Cps(Q*/I). Notice that Q*=[Df, H JAF INe(BY) as H*AF INo«( BY).
If Z*=Q* then (6G) yields that C(Q*/I)NNe(BF)=Q*HO(C), so0 Ng{BF)
/Q*HO(C) is isomorphic to a subgroup of Out(Q*)= L,(2) wreath Z,. However,
(6G) (4) shows that [FF, Noe«(BFIZAF and so Ng{BF)/QFHO(C)=E, X Ly2).
This contradiction shows that Q*<Z*<D¥.

Now we define C,=QZ*. Then C{=Z* and, as Z*/I, is abelian, (1A) (2)
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shows C¥f=Q*+C¢+(H®). Then an argument in the proof of (6K) shows that
the condition (1) and (65) hold in this case as well. As Co(HH?)=Ccnr,(HH®)
~Z, or E, by (6E), (2) holds. Consequently, C,/I, is abelian and then C, is
normal in N(B,).

Next, we prove

(6M) LEMMA. Let M* be asin (6H) and assume M*=Sp4) or Sp2)XSp2).
Then Z(D,)=A.,.

REMARK. We show later that the assumption on M* may be dropped.

PROOF. Set X=0,Nm(BF) and let X be a preimage of X in Ng(B) such
that BX< X<Ns(B¥). Then | X: Cx(BF)|=|X: XNC|=8. Since | N(B¥) : No(BF)|
<8 by (3D)(2) and (6.1), it follows that N(B¥)= XNy B)=XC(Bf)Ns(B¥). Also,
Ny AH=C(AF)N(AF) implies No(BF)=C(BF)N¢«(B3). Hence XC(BF)AN(BY).

Let Y={(a,, a5, By and Z=Nycwz>(Y). Then as Y eSyl,(C(B¥)), a Frattini
argument shows that XC(B¥)=ZC(B§) and, consequently, 17 ZNC(BF)|=8. Also,
Z<N(Y)SN(B,) by (3D), and ZNC(B)=YO0(C). Hence if bars denote images
in N(B,)/D,0(C), 7 is a 2-subgroup containing <&, &> and normalized by
(a,, ap=L,2). Since N(B)=Ly2), we must have 7Z={d,, d@,>, and since
D,O(C)=D,x0(C) by (6A), it follows that [ZND,: B,|=8. As [ Np(BF): Bl
<2, |Z~Ds~\F,: B, =2 and hence |(ZNDy)F,: B,|232. Now since AF=72(X)
by (6D), it follows that A¥=Z(X) and hence Z<C(A¥). Also, F,.<C(A¥) by (6C).
Thus, (ZND:)F,<Cp,(Af) and, consequently, [Dy: Cpy (b)) =2. The argument of
(6C) together with (6A) (3) now shows that Z(D,)=A..

Now we come to the

PrOOF OF (6]). We determine |Vin\Val. As W (A NA), | VNV, V]
<8. It easily follows from (6A) and (6E) that VinVy=Nyp(Bs)= VNp(Bs-1)
for each 1. As |Np,(B)): B;| =8 by (6.2) and (6D), we have that

(6.6) [ VinVs: VI=8.

Let C, be as in (6K) or (6L) according as A¥=Z(D¥) or AF¥£Z(Df). Then
[C.A\V,: A,|=8 by the above. As (CNV)=[,=D,, (C:N\V2)D,/D, is an abelian
subgroup of V,/D, containing A.D./D,, and so we must have C,n\V.=AD,.
Thus

CiNV,=A(CiND,) and |Ci\Dy: AN Aa|=8.

Hence zCiNPe=2z(A,NA,) and [CiN\D,, zJ=A:"A,. Now set
R=ACin\Dy).
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Then RN\B,=A, by the modular law and |[R: A,|=8 by the foregoing. Also,
zE=2z(A,NA;) and
[R, z1=ANA,.
Hence
IRNFy: Axl=4 and [RNF,, zZ1=A.NI,.

Now (Cin\D.)*<A,ND,<B, and so RB,/B, is an elementary abelian subgroup
of D,/B, not contained in F,/B, As K, acts transitively on (Fy/By)* and
(D:/F5)% by (6A), D,/B, must be elementary abelian. Then using (1G) first to
the chain A,=<B.=<B,<F, and next to the chain A,/[,<B,/I,<F,/[,<D,/I, we
obtain

Now I,=Z(D;) for each i by (6A) and (6E), and so I1L,2Ch(CinD,). Let ¢=
[s, a»). Then ¢ normalizes both C;~\D, and A,, and ¢ acts on A,/ILI, irreduci-
bly. Hence C(Cin\D,)=I,I; or A, Also, by (6C) A, centralizes C;~\F,, which
is a maximal subgroup of C;"\D,. Thus [C;~\D,, A,] is a c-invariant subgroup
of AinA, of order 1 or 4. Then the action of ¢ on 4,14, implies that

LCiND,, AdSANT,.
Now
R*={C,\D,), LCinD., AT,

Hence R*=A:NA4, and then (RB.)*=(R{(2>)*=(R? [R, z]><A,NA4, Let a=
[r, adls, a.] and X=RB,NR*B,N\F, Then X’<(RB,)*N\(R®B,):<(A,NA)N
(AiNAy)*=<b>=],. Thus X/J, is elementary abelian and, as |F,: RB,NF,|=2,
B,/].<X/].. As K, acts tramsitively on (B./],)* and (F,/B,)*, F,/], must be
elementary abelian, and then (1G) applied to the chain J,<J,<B,<F, shows that

Fi<l,.

Let Y be an S;-subgroup of K, and take a Y-invariant subgroup Z of F, such
that F,/I,=B,/I,xZ/I,., We define

E,=AZ.
By (1F) Z is abelian and, as A,<Z(F,) by (6C),
E; is an abelian subgroup of F,
such that F,=5,E, and B,NE,=A, As |F,: Z(Fy)| >4,
E,AN(B)).

Now commutation by z induces an isomorphism F,/B,—I, which is commutable
with the action of K,. This in particular implies that ¢ acts irreducibly on
RNFy/ Ay as [RNF,, Z21=AiNL. As [F,/A,, ¢c1<E,/A,, it follows that
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RN\F,=RNE,.
Consequently,
CinF, 1s abelian.
Now define
E.=CNF;.

Then E,<N,.(B)=CnV, by (6E) and (3E), so |E;N\D;: AinA,|=2 and
LE.ND,, z1=I,. So E.ND,£C.NF, and, as {C;\Ds: C,NF.|=2, we have that

CiND=(ENDJCiNFy).

Now either E,ZZ(C)) or E,=AZC) with [Z(C)l=4. If [Z(Cp|=4, then
LACY, AdSZCONAs=I, and so [Z(C), I,)=I,nI.=1, which forces Z(C)<
EnD, Thus, if |Z(C;)|=4, then

CinDy=Z(CHC:NFs) and [Z(C), A=
In any case,
CinD, is abelian.

Suppose that (6K) (3) holds. Then A,<Z(D,) and so commutation by z
induces an isemorphism D,/B,— A,. This implies V,/B,=U, so V,;/B; has only
one E-subgroup by (2B). Now let A=(C;"\ V)R and B=<{(z2)A. Then B/B;=
DyA\Vo/BxXB.B,/B, and so B/B,=E. Thus V,<N(B) and, as |V,: UC,|=2
and A=BNUC,, we have V,<N(A). Let bars denote images in N(A;N1.)/ AN,
and notice Vi< N(A,AIY). Then A=(C. Do)l 4,4, and (C:n\Do)loA:A=11,.
As (C,A\DyI, is abelian and as Z(A,A)=1,1, it follows that Z(A)=(Cin\Dy)l..
Thus Vi<N(C.nD)I,) and then V,; normalizes Q,(CiN\Do))=(EinND:),. But
then [Ci, L1=CiNEND),=END,<E, which implies that I, centralizes
C,/E,. This is a contradiction as C,/E,;=A,/I, as modules for [,. Therefore,
(6K) (3) does not hold, and there are three possibilities for the structure of C;:

1. ClgEgm;
2. Cy=DgDegxDex Doy
3. Ci=DgxDxDyxDgxZ, .

In each of these cases, (CiNFo?=<I;nI.,=1 so, as K, is irreducible on E,/A,,
E, is elementary abelian.

In Case 1, (C:;~\Dy)?*=1 and [C;N\D,, A,J=1 by (6M). In Cases 2 and 3, (C:n\Dy)*
:(Z<C1)(C1f\F2))2:Z(C1>2§[1 and [CiN\D,, A,1=[Z(Cy), A1=1,, while [Cin\D,, A.]
<A,NI, as shown before. Thus

{ 1 in Cases 1 and 2,
Ri=
I, in Case 3,
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and in any case, [CiND;, A.]=1. Hence F,<Cp(4,) and, as K, is irreducible
on D,/F,, it follows that
Z(Dy=A,.

Consequently, commutation by z induces an isomorphism D,/B,— A, Also,
R is abelian

and, as |RE,: RNE,|=4, |[R, E,J|=2. Since [R, E,] is contained in Di=A4,
and normalized by <U, s>, it follows that

LR, E,]<1,.
Now we define
Cy=<R, R*, R*,

where b=[7, a,]. As RnF,=RNE., RNE, is a maximal subgroup of £, with
[RNE,, z1=ANI:=<b,, by, and hence [R°NE,, z]=<(b,, bs> and [R°N\E,, z]=
<bs, be>. Therefore, there is an element e¢<E, such that E,—<e)(RNE,),
ReNR*NE,=<e>A,, and [e, z]==b,. Consequently

EgéCZ .

Since [R, E,]=I, and R’=1, it follows that [C,, ¢]=<I, and hence [D,, <e>A,]
=<by, bs>. Now a’ normalizes <b;> and hence [D,, <edA,], but af does not
normalize <b,, bs>. This forces [D,, <edA,]=<b,>. Hence [R, e]=<{b >N bsy=1
and, since E,=<e)(RNE,), it follows that [R, E,]=1. Therefore,

[Cs, Exl=1.

Now A,<C, and [(,, z]=A, Hence D,=B,C, and, as [E,, z]#1, we have
B.NC,=A, and C;n\F,=F, Moreover, C,=C,,(E,) and so C,<IN(B,). Clearly,
CiNCo=C;N\D, and C,n\V,=R=A,C,~nC,). Thus we have shown that C,,
1={1, 2}, is a normal subgroup of N(B,) satisfying (1)-(4) of (6]). It remains
to prove that (5) or (6) of (6]) holds. In Cases 1 and 2, R is elementary abelian
and hence so also is RE,. As K, is transitive on (C,/E,)*, it follows that C, is
elementary abelian. In Case 3, R*=I; and hence £2(RE,=F, which implies
C3=A, and 2,(C,)=E,. Also, C, can not be abelian and hence Z(C,)=E,. Finally,
CiNC=CND,=Z(CXCNF)=Z(C,(C:NZ(Cy)). Thus we have proved all parts
of (6]).

(6N) LeEMMA. The following conditions hold:

(1) commutation by z induces an isomorphism D,/B,— A, ;
2) ZD)=D3=A,;

3y b,=Z(Vy) for each i= {1, 2}.
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ProoF. (1) and (2) are implicit in the proof of (6]). Since b;€Z(V)NZ(D),
(3) follows.

(60) LEMMA. Let A=(C,n\VXCon\ V1), B=<{2> A, and N=N(B)YNC(by). Then
the following conditions hold for each 1:

(1) ViENxg(B)ENND:NVi-i);

(2) N=NCNVi-a)

PrOOF. By (6]) (3), BD;=A;.D,. We assert that B/B; is the only Eu-i-
subgroup of V,/B; whose product with D,/B; is equal to A,;-;D;/B; Indeed,
B/B;=D;"\Vs../B;X B,B,/B; is elementary abelian of order 2% by (6.4) and
(6N) (2). If =1, then A,D./Fi=A,A,/I, by (6E), and the assertion follows from
the fact that A,/I, is the only E,-subgroup of A;A,/I,: see Table 1. If 1=2,
then A,D,/B,=A.A, by (6N) (1), and the assertion follows from (2B) (3). Since
A, :D; <1V, and b, Z(V;), we conclude that V,;=<N. Since D;N\V,;=DiNB, (1)
follows.

Let bars denote images in C(by)/<b>. Then C;N\V,EE€x(B) and CnV,e
ex(B) by (6]) (4). Hence A=(A,A,)(C:nC,) and C,n\V, is the only Ess-sub-
group of A. Let Xe&,(B) and suppose that X£A. Then since [(XNAXC,NCy)l
<23 it follows that | XA : XNC.NC,1 <28, hence [ XNC.NC,|=2% However,
since B=AX, XnC.nC.=Csn5,5)=C:NC,nF:.. This is a contradition as
|C:~ConF,|<8. Thus we have shown that C,n\V, is the only Ess-subgroup
of B. Consequently, N<N(Co\ Vo).

Let Ye&u(B) be such that |7(C,nV)|=2", and suppose YZA. If
[PAA: 7NC.nC,1 =22 then |¥N\C,C,|=2¢% and this yields the same contra-
diction as before. If |PAA: TNC:NC,al =28, then (FNAYC:NCo)=CnV, by
the last paragraph and so |7(C.n\V.)|=2°, a contradiction. Therefore, Y<A
and hence T(ConV)=4 and |¥NConV,1=2. As Z(A)=C.NC, has order 2’,
we must have ¥ACon\V,=C.nC, and consequently A=Y A,4, and TNA,=
A,~\A, Thus Z=Y~A.A, is an elementary abelian subgroup of A4, such
that ZA,=A.A, and ZnA,=A,NA, An easy computation using Table 1 gives
Z7=A. Therefore, 7=2(CinCy)=C:NV, which implies that C,n\V, is the
only E-subgroup of B whose product with C,N\V, has order 2°. Hence
NZENC NV

7. Sps4) and Sps2)XSps2).

In (6]) we have shown that the structure of C, is quite different according
as Z(C)*=1 or Z(C,)*+1. Therefore, we shall separate these two cases from
now on. In this section, we consider the following situation:
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HyproTHESIS 3. [£2]|=64 and Z(C,)*=1.

This implies that either A¥<Z(D¥) and Ci=1 or AfLZ(D¥) and Ci=
Dy« DgxDex D+ E, with Ci=I,: see (6])-(6L). Also, C3=1 by (6]) (5). We shall
prove the following :

THEOREM 3. Under Hypothesis 3, if either G=G' or G#G’ and O(Ng (X))
=1 for every 2-subgroup X of G’, then {L%>=Sp4) or Sp2)XSpy2).

The argument is similar to that of Theorem 2. Fifst, we prove an analogue
of (5G).

(7A) LEMMA. Let M,=E(N(C,) mod C,). Then the following conditions hold :
(1) M,/Coz= Ly4), SL4), or L(2)X Ly(2);

2) CMz/Cz(Z):K2C2/C2 ;

(3) <M, contains an S,-subgroup of N(C,);

@) LM, O(C)]=1;

(5) Ci=EM..

Proor. As Ci=1, &4Dy)={B,, C;} by (1E) (1). Therefore, the assertions
will follow from (1K) just as in (5G) once we verify that, in N(Cpo=N(Cy)/C,,
Z is a noncentral involution.

We show N=ZNC,). Notice that V,=N=ZNC.,nV, by (60). C(learly,
AD(CoN\Vi=B/Con Vi X Co/Con\ V. Hence A D <Cx(B/CinVi). As CNV.=
D.NVi=B and &¥D,N\V)=1{B,, C;n\Vi}, we have Cy(B/C;n\V)<Nn(B,) and
hence Cy(B/ConVDECwnpy(AiD:/D;). The structure of N(B;)/D, shows that
A:D, is the only Sy-subgroup of Cy,y(AiD:/D,). Therefore, A;D, is the only
Se-subgroup of Cx(B/C,\V,), and since Cy(B/Con\ V)<Y, it follows that A, D, <IN.
Now Cp,(A))=Cy(As)D,=B,D,=D, by (6N), and hence C, p,(ConV:)=C,. There-
fore, NS N(C,).

As a consequence we have V,=<N(C,), and since | V,|=2¢ it follows that Z
is a noncentral involution. Hence (1)-(4) follow. Also, C, is an E,,-subgroup
by (6]) (2), and so (1)-(3) show that C;=<M,.

Next, the argument of (5F) and (5H) yields
(7B) LeEMMA. G, is the only Esi-subgroup of N(C).
Our proof of the following result requires the hypothesis on G'.

(7C) LemmMa. MCy) has a z-invariant subgroup M, with C.<M, satisfying
the following conditions:
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(1) M,/Ci=Sp(4) or SpL2)XSpy2), and M, <IN(Cy) if M./C;=Sp(4);
2) CM1/01(2>:K1C1/61 ;

3 [M,, O(C)I=1;

4) G=M.

Proor. If Ci=1, then &% D,)={B,, C;} by (1E) (1), so N(D)=N(B)=N(C,).
Suppose that Ci==1. Then AF*LZ(D¥) by (6K) and so Z(D,)=I, by (6E) (3).
Furthermore, &%(D,/I,)={C,/I,, F;/I;} by (6E) (4) and (6L). Thus N(D)=
NCH)NNF,). The same lemmas together with Hypothesis 3 imply that &%(Fy)
={B,, C,"\Fi}. Hence N(D,)=N(B)ZN(C,) in this case as well.

Let bars denote images in N(C,)/C.. Then C(Z)=<¢Z>x K, xO(C) by the last
paragraph. Also, eXDN\V,/I)={C."\V,./I,, Fi/I,} ; so the arguments of the
second paragraph of the proof of (7A) show that N=N(C,. In particular,
C,=N(C,), and C, is an Fse-subgroup of N(C.) by (6]) (2). Now N(C,) contains
an S,-subgroup of G by (7B) and so

7.1) [Gl=2"

by (7A). Hence |N({C)!,=2°. Now we let X=X/C,=F(N(C,)). Then (1I) shows
that either X=Sp,(4) or X/O(X)=A;x A,. Furthermore, if X=Sp,(4) then C,<X
and K,=K{A,<X, and so M,=X satisfies (1)-(4). Therefore, assume that
X/0(X)=AgX A, Set Y/C,=0(N(Cy)) and Z/C;=0(X). Since C,=&(N(Cy),
(Lb) of (1) must hold in N(C,), and so there exists a subgroup M=M/C, of
N(C,) containing <7, C,> such that M/Y=Sp,(2)xSp,2) and N(C))=<zpM. If
Z=1, then XC,=Sp,(2)xSp,(2) and K,=KA,<XC,; so M,=XC, satisfies (1)-(4)
(O(C) centralizes XC, by (1I) and (7A) (4)).

Therefore, assume Z=+1. Then |Z|=3 by (1I). We show that this case
does not occur. As A,=[C,, 7] centralizes O(CE)=0(C), [4,, ¥1=1 by (1C).
This implies that Y=A(A4,C,). Now Table 2 and (6E) show [Cq,/1,(bsbe)| £2°,
hence Cgyrr,(b:b)=CinCo/I, and then Cuyp,s 1 (b:ib)=Con\Vi/I,. Also, since C1=1,
and Cy(A,/I,)=B,, it follows that C,,c,(4:/[,)=C,. Hence if Ci=1, then Z(A.C,)
=C,NC,, while if Ci=I, then Z(A,C,/I)=CiNCs/I,. Therefore, YNC,NCy).
Let ye¥. Then AN(CnVY)Y=ANCNCNVYY=ANCNCNTVHY= AN
(CiNC)¥=ANCiNC=ANA,.  Thus A, CoNV)¥/A, is an Ey-subgroup of
A,C./A,. Now A/A, is the only E,e-subgroup of A,C;/A; and C,n\V,/I, is the
only E.s-subgroup of A/I,: see the proof of (60). Thus we conclude that
Y=NMCnVy).

Assume that Cze(ConV)=C.. Then Z=N(C,) by the last paragraph and
so [Z, C,]=1. Hence if we set M,=<(X, Cp>, then M,/Z=Sp,(2)xSp,(2) and
Z=7(M,. However, this yields a contradiction as the Schur multiplier of
Sp(2)=2, has order 2: see [17], Satz V. 25.12. Assume, therefore, that
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Cz0,(ConV1)>C,. Since Co (bsbs)=CiNGC,, it follows that Cec(ConVi)=C,s So
Cze,(ConVDZCC, and as | ZC,: CiC,| =3, ZC,=C.Cr,(Con V). Thus [CNGC,, Z]
=1 if C¢=1, and [CiNC./I,, Z]=1 if Ci=I,. Hence if we set C,=<(CiNC,)*),
then either [C,, Z]=1 or [C,/I,, Z]=1. Now A1:<(A1mA2)Kf>§CO, hence
C:N\V,=A(CiNCy)=C,. Hence C1:<(C1r\V2)K1,>§C0. Thus C,=C, and either
{Cy, Z1=1 or [Cy/I,, Z1=1.

Now take an S,-subgroup Z, of Z so that Z,=X’. This is possible as X/C;
is perfect. Then [C,, Z,]=1, so 1<Z,=O(Ny(Cy). Also, since C,=[C,, K, 1=G/,
C,=C,=G’. Thus our hypothesis forces G=G".

Let <z)C,C,=T eSyl,(Kz)M,) and S=TN\M,. Then T=<2)S, and T <Syl,(G)
by (7A) and (7B). Since zeG’, (1D) shows that S contains a conjugate x of z
Since C,C,/C, is an Es-subgroup of M,/C,, (7TA) (1) shows that we may choose
x€C,C,. Now x&C, and |Co(x)]|=2° as m(C)=7. Since |C,|=2"%, (1E) shows
that I(xC,)=xC. We assert that

Ci=(CiNCXCiNCy)Pe.

Indeed, C:N\Con(CiNCo)*t normalizes BN\ B.N\(Bi\By)*'=<b,, z> and so is con-
tained in C;N\F,. Moreover, it intersects with A; in [,. Hence its order is at
most 4 and, since |C;: C;N\C,|=2% the assertion follows. Consequently, Ci*\xC,
contains an involution and then C,n\z%+ @, which is a contradiction. Thus we
have proved the lemma.

As a final step of our 2-local analysis in this section, we prove the follow-
ing:

(7D) LEMMA. M, and M, have a common z-invariant S,-subgroup S such
that Cs(Z>: U.

Proor. By (7C)(2), V,=<{z>M, and UC,C,=M,. Let V,C.C,=T Syl,((z>M,)
and set S=T\M, Then S=Syl,(M;) and S is zinvariant. The assertion is
now verified by the argument in the last paragraph of the proof of (6K).

Now we complete the proof of Theorem 3. As in the cases of Theorems 1
and 2, results in [10] show that there exists a z-invariant semisimple subgroup
G, containing L such that G,/Z(G,)=Sp4) or Sp2)XSp{2). Furthermore,
1C(Gy)] is odd by (3B). Im particular, |Z(Gy)| is odd and so Z(G,)=1 by a
table on p. 60 of [6].

Assume first that G,=Sp{4). In this case, we argue just as in the last
paragraph of the proof of Theorem 2. Since m(Ce(x))=12 for every x<I(G,)
and since Aut(G,)—Inn(G,) has only one conjugacy class of involutions, it fol-
lows that an analogue of (4I) holds. Then the results in [19] shows G,0(G)<G.
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Hence <L% =S p4).

Therefore, assume that G,=Sp{2)XSps(2), and let Gy=G,;XG,, where G,=
Gi=Spe(2). Let zeT eSyl{N(Gy) and S;:=TNG,. As |C(G,)] is odd and Out(G;)
=1, we have |T1=2" and so T€Syl,(G) by (7.1). Also, T=<(2>S, and z°"\S,=
as m(Ce (x)=12 for every x€I(G,). Thus z& G’ by (1D), and since S,=G7, it
follows that S;&Syl(G”). Now S, contains a z-invariant E,i-subgroup £ such
that Ng(E)/E= Ly2)X Ly(2). Let Ng(EY/ E=N,/EXN,/E with N;/E= Ly2). (7B)
shows that E is conjugate to C, so the structure of N(C,)/C, shows that
Ng(EYAIN(E), see (TA). Consequently, N(E) permutes NV; and N,. Let E,;=ENG;
for each ©. Then E;=Cz(N,.;) and so N(E) permutes E; and E,. Since S,&
Syl(Ng (E)) and S,=MNE;), we conclude that Ng(E)SNE)INN(E:).

Let S;=S,\G; for each 1, so that S,=S,XS,. We claim that S; is strongly
involution closed in S, with respect to G’. Suppose, by way of contradiction,
that x4=S,—S; for some x<I(S;) and geG’. Conjugating in G, we may
choose x€E; and x=E—FE,. But S,&€Syly(G’) and as E is the only E;s-sub-
group of S,, xé==x" for some heNs(E), and so x*€E; by the last paragraph.
This is a contradiction proving the claim. We can now apply Corollary 2 of
[207 to conclude that (L% =Sp(2)xSp(2): see (6R) of [9].

8. U,(2) and L,(2).

In this section we consider the following situation:
HyYPOTHESIS 4. [£]=64 and Z(C,)*#1.

This implies that AFZZ(D¥) and C,=DgxDgxDgxDgxZ, with Ci=I,: see (6])
and (6K). For the structure of C,, see (6]) (6). We shall prove the following:

THEOREM 4. Under Hypothesis 4, <L>=U,2) or L.(2).
First, we sharpen (60).

(8A) LeMmMA. The following conditions hold for each 1:
1) N=V,Ny(Dy-in\Vy) and Vin\Na(Ds-inVi)=VinVs;
(2) INy(D:N\Vs-i): Ny(B)[=2;
(3) Ny(DinVi) ENDHINNC).

Proor. Fix ie{l, 2} and set X=V N \Ny(Ds-:\V,). Then V,nV,<X and
X normalizes B;N\D;-;n\V;=B."\B,. (3C) shows that V=Cx(z) has index at
most 8 in X, while | VinV,: V|=8 by (6.6). Thus we have X=V,N\V,, proving
the second equation in (1). Consider the action of N on B=B/Cy_;"\V; Since
B=<z>A and N=<N(A), it follows that |N:Cy(®@)|=£|A|=2". As Cy(z)=



148 Kensaku Gowm1

Ny(DsoinVy) and as [ Vi G (B)=1V:: VinV,|=2%", the first equation of (1)
holds.

Now B=5,B,D,"\B,B,D,. 1t easily follows from this and the structure of
N(B;) that Ny(B)=D;N(B.B,): see (6A) and (6E). Hence |Ny(B;): V:|=3]0(C)},
and so (1) shows that

INy(D:NV2): Ny(Bo)|=|Ny(DeN Vi)t Ny(Bo)l.

Let n denote this index.

Assume n=1. Then Cx(B/CiNV.)S<Ny(B;), and the argument in the second
paragraph of the proof of (7TA) and of (7C) shows that N=N(C,). Thus Z(C)<C,
by (6]) (6). It also follows from (6]) (6) that b,eZ(C)ZLC,n\F,. Since commu-
tation by z induces an isomorphism C,/A,— A, that carries Cy"\F,/A4, onto I,
it follows that C, is generated by the conjugates of Z(C.) under K, As Cg,(by)
=K, £N(C,), two distinct conjugates of Z(C,) under K, intersect in the identity
element and so commute with each other. However, this implies that C, is
abelian, a contradiction. Therefore, n=+1.

Now Z(D))=I, and &¥D,/1)={C,/I,, F;/1}, s0o N(B)=N(D)ZNCHNNF).
By (6E) (4), B, is one of the two members of &*(F,). Hence

[NCF): N(Byl=2.
In particular, N(B,)<N(F,) and N(F,) normalizes D,=0,(N(B,). Thus
@D N(D)=NF)SNCY).

Now FiENy (B)=V, by (6E). So &X(DiN\V,/I[)={C:n\V,/1,, Fy/1}, and hence
Ny(DINV)ENy(F). Thus n=2 and (3) holds for i=1.

By (6]) (6) and (60) (2), ZCHNV,:=2:(ConV)<IN. Also, Cyr(Z(CHNV)=C,
as CV2<A2):D2 by (6N) (2). Thus Ny(V,)SNy(Co) and, as Dy=(D:N\V)Cy, Ny(Vy)
NNy (DNVIENDINNC,). Now V,ESyly(Ny(B,)) and Ny(Bo) ANy(D.NVy) by
(2). Therefore, a Frattini argument shows that Ny(D.N\V)SN(DHNNC,).

Now we let D,=0,(ND)NN(CY)) and V,=VD, for each i< {l, 2}. We next
study the structure of N(D)NN(C;). As shown above, N(D)NNC)=N(D,).

(8B) LeEMMA. The following conditions hold:

(1) N(D)INN(C)=N(By)D, and N(B)"\Dy=D,;

(2) commutation by z induces an isomorphism D,/ Dy— Co/Z(Cs)
() ZD/ Z(C.)=Cy/ Z(Cy).

Proor. Let X=N(D,)N\N(C,) and let bars denote images in X/Z(C,). We
consider the action of X on D,=<&>C, Since Z>=F, and since &XFy=
{B.,, ZIC,)} by (6]) (6), it follows that Ci(Z)=N(B,. Consequently, Cz(D,)=
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D,O(C). Notice that [D,, O(C)1=1 by (6A) (2). The same lemma shows that
K, is transitive on (D,/<z>)*. Since Cx(2)<X by (8A), it follows that 2¥=2C,
and that X is 2-transitive on Z%*. Arguing now as in (4A), we obtain the
result.

(8C) LemMMA. The following conditions hold:
ey N(Dl)/01:1V<Bl)/D1XD1/D1;
(2) Di/D\=2Z,

Proor. As remarked in the proof of (8A), |N(Fy): N(B,)| =<2 and N(D,)=
N(F). Thus [N(D): N(B)|=2 by (2) and (3) of (8A), and N(D,) acts on the
E-group D,/F,. The argument of (4C) then shows that there is a normal
subgroup X of N(D,) such that N(D,)=N(B)X and NBINX=D0C). 1t
therefore suffices to prove that N(D,)ZC(O(C)O(C). Certainly, N(B)=C(OCHO(C)
by (6E). (1) and (2) of (8A) show that there is a 2-subgroup Y=Ny(D.N\ V)N
Ny(Do\ V) such that VA V,<Y<LNy(B,). By (8A) 3), YD, is a 2-subgroup of
N(D)AN(C,) containing V, and so, as V,ESyl(N(DINN(C,) by (8B) (1), YDy,=
V. As [V, O(CY]=1 by (8B) (2) and as N(D)=YN(B,), we have that N(D,)=
C(O(C))O(C) as desired.

(8D) LEMMA. N(D,) has a normal subgroup C. satisfying the following
conditions :

ey [jlleél and Dxﬂér:Cl;

2) C, is extra-special of order 2'* and Z(C’l)zll.

PROOF. This follows from consideration of the structure of G*=G*/0(G*)
and Ng«B¥) discussed in (6G), (6H), and (6I). Since D,/D,=Z, it follows that
D#/D¥=7, hence 2°=|V#|<|G*|,. This implies that M*¥=U,3). Also, since
ARLZ(D¥), it follows that MFxSp,4) or Sp(2)XSpu2). Therefore, M*=U,2)
or LJ(2), and by direct check, we obtain that Ng(DF) is an extension of a
group of order 28 by L,(2) and that O,(Nm(DF)NM* is an extra-special group
of order 2. (Here we have used the fact that the action of Z on M* and the
embedding of K7=Sp.2) in M* are unique up to conjugaticn by the elements
of #M* and relabeling of the elements of K7° by a graph automorphism of K7%
see (6]) and (1.1) of [10].) Now NgdD)=Ngz=(D¥). Comparing orders, we have
that equality holds here and that D¥~\M* is an extra-special group of order 27
As &X(Dy/I)={C#/I,, F¥/I.}, it then follows that Cf=D¥N\My. Now we define

él:Cl(El*ﬂM*) .

Since C,<AN(D)), €, is a subgroup satisfying (1) and Cy=Dfn\M*. By (1A), C¥
=[C¥, HJxCes(H®). Also, [C¥, H]<Q* and Q*=[Q*, H°JI, by (6F). Therefore,
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[C¥, H']=Q* is extra-special of order 32 and Cg:(H®) is extra-special of order
8. Notice that Cer(H")=C¢(HH?®). Now since Z(C)=Z,, it follows that D./c,
=D,/C;XCp(Z(C,1))/C.. Consequently, N(D,) centralizes D,/C, and, in particular,
seN(C,). Thus [Q¥, Ce(HH®Y]=1 and as C;=Q*Q*C¢,(HH®) by (65), we
conclude that Cle**Q*S*C@I(HHs). Therefore, C, is extra-special of order 2%
and Z(C)=I,.

(8E) LEMMA. N(D)NN(C,) has a normal subgroup oR satisfying the follow-
ing conditions:

oY) DzzDzéz and Dzmézzcz;

2) C,/Z(Cy) is elementary abelian.

Proor. Consider the structure of N(D)NN(C,)/Z(C,) discussed in (8B).
Then (1G) shows that D,/C, is elementary abelian. Hence if X is an S,-sub-
group of K, there is an X-invariant subgroup C, satisfying the condition (1).
Since E¥(Fy)={B., Z(C,)}, it follows that Ng,(F,)=Ng,(B,)=C,, and then (IF)
shows that éz/Z(Cg) is either elementary abelian or homocyclic of rank 3. In
any case, éz/Z(Cz) is the unique abelian maximal subgroup of DZ/Z(Cz) and so
CoANDINNCs).

Now A,=Di<C, by (6N) (2). Since K, is irreducible on Z(C,)/A4,, it follows
that Z(C,)/A,<Z(Cy/A,). Suppose C./Z(C,) is homocyclic of rank 3. Then
Z(C,)) A< Z(Cy/ As) by (1B), and as K, is irreducible on Q4C,/Z(C)=C./Z(Cy),
we have C,/A,<Z(C,/A,). Thus commutation by z induces a homomorphism
C‘Q/C2+>C2/A2, and its image is a complement for Z(C,)/ A, in C,/A, by (8B) (2).
However, since C,/A,= A, as K,-modules by (6N) (2), this yields a contradiction.
Therefore, C‘Z/Z(Cz) is elementary abelian.

(8F) LEMMA. The following conditions hold :
@O Ifl-_<~NN(D1m Va); .
2) VeinNEN(D.NVy) and [V,NN: V| =2,

Proor. (8A) and (8C) show that Ny(D;NV.) contains an S,-subgroup of
N(D)). Hence V,=VD,=Ny(D:NVy). Let V,£XeSyl(Ny(D,AV)). Then
| X: V,|=2 and X=<N(D,)NN(C,) by (8A). So XD, is a 2-subgroup of N(D,)N
N(C,) containing VD,=7, and, as V,=SylL(N(D)NN(C,)) by (8B), we have that
Xg?z. Thus VZK\NA,\—(DZ(\VI):X. As BND,=D,nV,, we have that 172/\N§
Ny(D,n\V,) and hence VszzX. This proves (2).

(8G) LeMMA. The following conditions hold:
® 614]\7§
@ C,ANIN.



Standard subgroups, 11 151

Proor. Notice that C,<N by (8F) (1). We argue as in the second para-
graph of the proof of (TA). See also (7C). First of all, V.ENENCNVs). As
A,D,/C:\Ve=B/C;AV,xC,/CiNV, we have A,D,<Cy(B/CiN\V,). Next, as
Cy(B/C:N Vo) = Ny(DinVy) = N(Dy) by (8A) (3), we have Cx(B/CinVy) =
Cywwp(ADi/Dy). Then the structure of N(D;)/D, shows that A,D, is the only
Ss-subgroup of Cy(B/CiN\V,): see (8C). Thus A,D, <IN and, since Cap (CiNVo/I1)
=C,, it follows that C,<IN. Analogous arguments show that A(C,AN)<N.
Also, ZICHINV1=2(Con V<IN by (6]). Thus (2) will follow once we prove

®82) Cayc,nm (ZCHNV)=CoAN.

Let X denote the left-hand side of the above equation. Then C,=X=Cynnx(ls)
=D,~N as [,<Z(D,) by (2E) (3). However, X#D, or DN as z&C(Z(CHINV)).
Notice that |D,AN: C,|=4 by (8F) (2). Now &XD,\N/Z(Cyp))=1D./Z(Cy), C.n
N/Z(C,)} by (8B) and 8E), and Ci=A,=Z(C,)n\V; by (6]). Hence if X+C,NN,
then 2,(X/Z(CHNV)=Co/Z(Cs)\V: and so, as X<IN, C,<IN. This yields that
A,;=C3i<N, which is a contradiction because [ A,, CAl];éAsz‘l. Therefore, X=
C.n\N as desired.

(8H) LEMMA. We have Z(C)<Z(C,).

RROOF. We proceed as in the paragraph of the proof of (6]) in which C,
is defined. We have that C,=(R, R%, R, where R=C,n\V,, a=[r, alls, a.],
and b=[y, a,]. Set E,=Z(C,). Then there is an element e¢<E, such that E,=
(e RNE,), R*NRNE,;=<{e>A,, and [e, z]=b,. Also, |E,: RNE,|=2 by the

Py

first paragraph of the proof of (6]). Now set X=C,nN. Then

by (8.2). This implies firstly that D,<Cp,(A4,), and so the irreducible action
of K, on D,/D, shows that
A=ZDy).

L]

Secondly, we have |[X, E,J1=2 as |E,: RN\E,|=2. As A,=C3<1C,, the irre-
ducible action of K, on E,/A, shows that [c,, E,J=<A, Thus [X, E,] is a
subgroup of A, and centralized by {a,, a,, s>. Hence

LX, E.]=<b .

Similarly, since [X, z]E,/E, is a <{a,, a,y-invariant Z,-subgroup of C,/E,, it
follows that [ X, z1E,=RE, Then as C,=<(R, R% R%, (8B) (2) implies that
C,=¢X, X¢, X*. Therefore, [C,, ¢]<<b). Hence [D,, <e>A,]<<b,, bs> and then
[D,, <e>AJ=<bo> as aj normalizes <be, D,, and <e>A, but does not normalize
{by, be>. Hence [ X, e]=<<b>n<bs>=1 and, since E,={(e>)(RNE,), it follows that
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[X, E.]J=1. Thus C,<Cg¢,(E;) and the irreducible action of X, on C./C, shows
that E,=Z(C)).

(81) LEMMA. We have N<N(C,).

PROOF.  Set X=N(D.AN)NMC.NN). We argue that XSN(DHNNC,). As
Do(ConN)=C,, it suffices to prove X=<N(D,). Since &¥D,N\N/Z(C,)=
{D,/Z(C,), C‘ZmN/Z(CZ)}, it follows that {(Bf><D, Let Y=<(BD2. Then Y is
K-invariant and B,<Y=<D, Moreover, F,Y=D, as D,=<FP:>=((B,Z(C,))’2>=
YZ(C,). As commutation by z induces an isomorphism D,/B,— A, that com-
mutes with the action of K, and carries F,/B, onto I,, 2E) (3) forces Y=D,.
Thus (B£>=D, and, consequently, X=<N(D,).

Now since A.D,/Cor\N=A,(C.AN)/Cor\NxC,/ConN, it follows that A,D,
gC(Al(CA‘Zr\N)/C‘mN). The above paragraph shows that

C(A(CNNY/ConN)=Croprnien(ADo/Dy) .

Thus A,D, is the only S,-subgroup of C(Al(ész)/ész) and, since N nor-
malizes C,A\N and Al((fgf\N):B(C‘sz) by (8G), it follows that N normalizes
AiD,. Since Cyu,5(Z(C)NV)=C, by (8H), the result follows.

Now we define Mi:E(N(CA‘i) mod C‘i) for each ic {1, 2}.

(8]) LEMMA. The following conditions hold :
(1) Ma/Co=Ly(4), SLi4), or Ly(2)X Ly(2);
@) Cuyre()=K.Co/Cs; i
(B) (=DM, contains an Sy-subgroup of N(C,);
@ [M, 0O)1=1;

(B5) Ci=M, and |C,C,| =2,

PrROOF. The argument in the first paragraph of the proof of (8]) shows
that MD)NN(C)=N(D)N\NC,). Hence if bars denote images in N(C,)/C,,
then C(2)=(Z xK,xO(C). Moreover, C,<N(C,) by (8), and the image of C,
in N(CAZ)/CA‘2 is elementary abelian of rank at least 4 as C%z]l and C,=FE,,.
In particular, Z is a noncentral involution, and hence (1)-(4) follow as in (5G).
(5) is a consequence of (1)-(4).

(8K) LeEMMA. The following conditions hold :
(1) M:/Ci=UL2) or Ly(2);

@ C.‘Il/él(z>:Klél/él ;

(3) [, O(C)]=1L

ProOF. Our aim is to use (1I) in conjunction with (1]). Let bars denote
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images in N(C.)/C.. As Z(D)=I, and &%D./I1)=1{C./I,, F./I.}, (81) shows
that N(D)=N(D)<N(,). Hence C(Z)=<(3>XxK,x0(C). Furthermore, NN,
by (8G) and, in particular, z is a noncentral involution. Thus N(C‘l)/é1 satis-
fies the hypothesis of (1I). As A,nC,=A,NA4, A, is an Egsubgroup of K.
Similarly, as sz\CI:C]mC2 by (8A) (1), D, has order 2. As BND,=D.NV,
and as Ny(D:N\VI=ND,) by (8A) (3), we have NNND)=Ny(D:~V,). This
together with (8A) (1) implies that Cp(Z)=D,N Vi=B,={(Z>A, as D,nVi=
BACinC.) by (6]) (3). Clearly, D, is invariant under Ng, (A,)=N;(4,4,), and
Di=A,<Z(D,) by (6N) (2). Hence if we denote by tildes images in N(C,)
/O(N((fl) mod Cl), then there is a subgroup X of index 2 such that X= Uy(2),
Li(2), Spyd), or Sp(2)xSp.2) and such that Cx#)=K, by (1J). Furthermore,
the involutions outside X are all conjugate to # under X by Section 19 of
[3]. Set E,=Z(C,). Then E,<Z(C,) and C, is a subgroup of D, such that
D,/ A,=B,/A,xC,/A, In particular, |C(E,)[,=2¢, hence we must have E,<X.
Set ¢=[s, a;]. Then (&> is a Z,subgroup of Ng(4,), s0 |Cpyz,(¢)|=2 and ¢
acts transitively on ((52/52)/C52/§2(5))*: see the second paragraph of the proof
of (1]). Thus & acts transitively on (C,/E,)* Consequently, C,=E,[C,, :1=X
and hence
D.nX=C,.

Since 5?:& by (6]), we conclude that X=Uy(2) or L {2). The assertions now
follow from (1I).

(8L) LrmmA. The following conditions hold :
(1) M, and M, have a common z-invariant S,-subgroup S such that Cs(z)=U;
(2) Z<C1C2/CI)ZZ(C2)C1/C1

PROOF. We continue with the notation of the proof of (8K). By (1J), Dy=
02(1\](;)371((2)152)), and we have shown that C,=D,~\M,. Furthermore, E, is an
Ese-subgroup of Z(C,). (L.1) of [10] shows that the action of Z on A4, and the
embedding of K, in M, are unique up to conjugation by the elements of M,
and relabeling of elements of X, by a graph automorphism of K.. Thus we
may identify E, with the set of matrices of the form

¥
S

[ 1

in M,z=Uy2) or Ly(2). Here we are using usual matrix representations of M.
Furthermore, b, is a transvection of 3, and b, is an involution that is not a
transvection.
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We argue that C,<N(C,). First, notice that C,<C(b;,) by (8H). Let g=C,
and set X:élg. Since ég/Cz;Az/I2 as modules for ¢=[s, a,], we have that ¢
acts irreducibly on C,/C,n\N, and hence C,(C,nN)<C,C,. Thus Xéél(égf\N).
Now l(:‘lmégl =27 by (8]) (5), so C.nC,%£C, and then we have ész:(élmC‘z)Cz.
Thus X;élcz and X<C,. We have shown before that ¢ is transitive on
(C,/E.?%, and Ci+#1. Hence 2,(C,)=E, and X<E,. Now b, centralizes C,~C,/I,
by (8H). On the other hand, as ICA1/11(56>]:22; (6E) (2) shows that |Cé,/11(5e)l
<2%. Thus Coyz,(be=CinCy/l.. Similarly, |Cs, 1 (b)]=<2% as [Cy1,(bs)|=2%
Notice that if x=X, then Xm(:‘l/[1§C@1/,l(9E). Now assume that X contains a
conjugate of b, Then |XNCi/I1={Ce,r,(be)| <2° and so |X|=2% So X=E,
and, as X®<J,, X contains an element of be(élméz). But then X=Cé¢,z,/1,(bs)
:(CA{\C‘Z)EZ/I1 and so X:(C‘I/\C‘Z)Ez, which is a contradiction. Therefore, if
X+1, X consists of conjugates of b, Since b, is a transvection in FE,, it

follows that _
2 if M,=U2),

]X1§{ _
4 if Mi=L(2).

In any case, | X|<4 and so {Xm@1/11|§23. Now assume X+#C,; and take an
element xeX—C,. Then % is conjugate to by, so | XNCi/Ii|<|Ce,u (2) <25
Thus Ce, 1 (8)=XNCy/I; and then Cyxs,r(x)=X/I,. (1C) of [8] now shows
that e XC,/I)={C./1,, X/I}. Let e XC;NE,—C,. Then e=X—C, and so
(CiNE;, e><XNE, However, this implies that |C,N\E,| <|XNE,|, a contra-
diction as XmEzz(C‘lmEz)g. Therefore, we have X=C, for all g< C., proving
éz§l\7(él>-

Now consider the image of (:‘2 in N(CI)/C‘I. Since it centralizes E, and
has order 2%, we obtain that it is identified with the group of matrices of the
form

1 Y

l1
*
* lJ

in M,=Uy2) or L, 2. In particular, we have Z(C‘léz/él):élEz/él, proving
2). Also, €,C,/C, is normal in an S,-subgroup of M,/C.. Hence we may
choose a z-invariant S,-subgroup S of M, such that U<S and C,C,<4S. We
argue that SSNC,). Let g=S. Then g normalizes C,E,=Z(C,C, mod C,) and
so normalizes C‘ImC}:Z(ClEZ mod [,). Now since él is extra-special of order
2'1 it easily follows that Z(C’lméz)zclr\Ez and that C@I(ClmEg):élméz. Thus
g normalizes C‘2=C@1@2(C,(\E2). The argument of the last paragraph of the
proof of (5K) now shows that S<M,, proving (1).

*
*
£

ERE R .

Now, as in the cases of Theorems 1, 2, and 3, Lemma (8L) ends our 2-local
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analysis under Hypothesis 4 and therefore the proof of Theorem 4.

9. Conclusion of the proof of the main theorem.

Let G, be the normal closure of L in G and let bars denote images in
G/O(G). Then L is a standard subgroup of G isomorphic to Sp,2) and Ca(D)
has cyclic Sylow 2-subgroups. Furthermore, if G#G’ then O(Ngz (X))=1 for
every 2-subgroup X of G’. As [ is not normal in G, Theorems 1-4 imply that
G, is isomorphic to 05(2), 0F(2), Us2), Ls(2), Ux(2), LA(2), Spe(d) or Sp(2) X Spe(2).
Now let A be a zinvariant Sylow 2-subgroup of Ng,(U) and let B/U=C45(2).
Then [B, z]<U<L and [B, zZ]#1 as U<B. By (1C) [B, Z]1=C6,(O(Gy)), and
since G,/O(G,) has no nontrivial proper subgroups normal in G/0(Gy), it fol-
lows that Gy=Cg(O0(G)O(Gy). Thus 0(Go)=2(G,) and, inspecting the Schur
multipliers of the above-listed Chevalley type groups, we have that either
0(Gy)=1 or G,=SUg2). This completes the proof of the main theorem.
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