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Introduction.

Let F be a totally real algebraic number field of finite degree, and B a
quaternion algebra over F such that B@%R is isomorphic to My(R)XHX -+ X H,
where H denotes the Hamilton gquaternion algebra over R. Take a maximal
order £ in B and denote by 9% the group of units 7 of © such that the norm
Nz#(7) of 7 is totally positive. Then, 0% acts on the complex upper half plane
) in the usual manner. Let V be the Shimura-model of £O%\h, which is an
algebraic curve defined over the maximum abelian extension of F' unramified ex-
cept at infinities and characterized by certain number-theoretic properties (cf.
Shimura [19], [20]).

We shall calculate some examples of equations defining the Shimura curves
V. The main purpose is to show that a combination of various arithmetic
methods enables us to calculate the equations defining V' even when there were
no known methods for calculating the equations of V over C, i.e., when OF is
not commensurable with any triangular groups.

In §1, we state the main result which gives some examples of equations de-
fining the Shimura curves V (Theorem 1-1). In our examples, V’s are defined
over F, and our equations define V over F. Some of these seem to be new even
over C. We take the case when F=Q and the discriminant of B over @ is 2-7
as a typical example. In §2, in this special case, mainly by using Shimura [19],
[20], [21], we find three explicit equations, one of which defines V. The deter-
mination of the equation in this special case is completed at the end of §5. In
§5, we state a direct consequence of a result of Cerednik [2], which asserts that
the Shimura curve V is also obtained as a carve over Z; [resp. Z;] by using the
Mumford uniformization [14] by a certain discrete subgroup of PGL,(Q,) [resp.
PGL,(Q,)] with compact quotient constructed from the definite quaternion algebra
over @ with discriminant 7 [resp. 2] (Proposition 5-1). We pick up the true one
among the three candidates by comparing the special fibres of the minimal models
over Z, and Z, of the three candidate curves and the curves obtained by the
Mumford uniformization which correspond to V in the above sense. To do this,
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we must know certain informations about the minimal models of curves obtained
by the Mumford uniformization.

Let K be a p-adic number field and I" a discrete subgroup of PGL,(K) with
compact quotient. We denote by R the ring of integers in K and by 4 the
Bruhat-Tits tree associated with SL,(K) on which PGL.,(K ) acts in the wusual
manner. Then, by Mumford [14], we have a curve Pr over Spec (R) uniformized
by I. In §8, in the case when the arithmetic genus of Pr is greater than Zero,
we shall see that the minimal model P3! of Pr over R exists and the special fibre
of PP'® is described by a certain graph (I"\4)=i® constructed from the quotient
graph I'\4 which we regard as a graph with lengths (Definition 3-1 and Proposition
8-4). This desecription is contained in Mumford [14] if I" has no torsion elements.
Furthermore, in §4, we give informations about certain arithmetic graphs with
lengths I'\4 (i.e. when I' is constructed from a totally definite quaternion algebra
over a totally real algebraic number field as given in Ihara [9]). To be precise,
let B’ be a definite quaternion algebra over @ and take a prime ¢ of Q such that
¢ is unramified in B’. Take a maximal Z%-order O in B’, where Z<© denotes
the ring of rational numbers which are integral at every prime except ¢. Then,
the group D@x of all units in O acts on the Bruhat-Tits tree 4 associated
with SL.(Q,), and we regard the quotient graph O®*\4 as a graph with lengths.
The local structure of O@x\4 is determined completely by Proposition 4-2, and
certain global informations about D9*\4 are given in Proposition 4-8. These
conditions determine uniquely the structure of ©9*\4 in some simple cases.

By combining these, in the above typical example, we can pick up the true
one among the three candidates, i.e., we can have an equation which defines the
Shimura curve V over Q.

The author wishes to express deep gratitude to Professor Y. Ihara, who called
the subject of this paper to the author’s attention and gave the author many

valuable suggestions.

Notation.

We denote by Z,Q, R, C, Z,, Q,, F,, respectively, the ring of rational integers,
the rational number field, the real number field, the complex number field, the
ring of p-adic integers, the p-adic number field and the finite field with p elements.
For a finite set X, we denote by Card X the cardinality of X. For a ring A
with a unit element, we denote by A* the group of all invertible elements in A4,
and by M,(A) the ring of all two by two matrices over 4. For a commutative
ring A with a unit element, we denote by P! the projective line over A.
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§1. Examples of equations defining Shimura curves.

Let F be a totally real algebraic number field of finite degree, and B a
quaternion algebra over F' such that B%)R is isomorphic to My(R)X HX --- X H,
where H denotes the Hamilton quaternion algebra over R. We can assume
BRR=M,(R), and we fix such an isomorphism once and for all. We denote by
DFthe diseriminant of B over F, i.e., the product of non-archimedean primes of
F which are ramified in B. Let © be a maximal order in B. We define;

O%={y e 0*; Ng,#(r) is totally positive},
r,=90%/O3xNF»,

[*=lre B*; 0=Dr, Ny is totally positive},
['*:ﬁ*/Fx ,

where Ng,r:B*— F* denotes the norm mapping. Then, by the identification
BRR=DM,(R), the groups I', and I'* act on the complex upper half plane h=
{zZC; Im (z) >0} properly discontinuously. Hence I'.\}) and I™\} are regarded as
non-singular algebraic curves defined over C. Let V and W be the Shimura
models of I',\} and I™*\} respectively (cf. Shimura [19], [20]). Since I', is contained
in I'*, we have a morphism of algebraic curves f: V— W. If the class number
in the narrow sense of ¥ is 1, then V, W and f are all defined over F.

We consider the following special cases:

1y F=Q and D=2-3.

2) F=Q and D=2-5.

8) F=Q and D=2-7.

(4 F=Q and D=2-11.

5) F=Q and D=2-23.

6) F=Q(vV?2) and D=v'2-(8++v2)-(8—v 2).
Then, in these cases, W are isomorphic to P! over F, and our main purpose is
to prove the following

THEOREM 1-1. In the above special cases, the fields F(V) of rational func-
tions over F of the Shimura curves V are defined by the following equations
over F respectively:

1) z*+y*+3=0.

@2 x*+y*+2=0.

3) (@2—138)*-7*+2¢y°=0 .

(4) o*+y*+11=0.
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() (@*—45)*+23-+2y°=0.
6) (x*—181*+T7+2y2=0.

The case (1) was communicated by IThara. We shall take the case (8) F=Q
and D=2-7 as a typical one and prove Theorem 1-1 only in this case. Methods
in the cases (1), (2), (4) and (5) are entirely contained in the case (8), and the use
of Shimura [19], [20], [21], is sufficient for the determination of the equations. In
the case (6), besides the method of the case (3), we also need a result of Doi and
Naganuma [4] concerning the field of definition of the Shimura curve V. In the
case (3), the signature of I'y is (1;2,2), and the two points of order 2 on V are
given by putting x=0. By Takeuchi [28], I, is not commensurable with any
triangular groups in the cases (2)~(6).

§2. The special case F—Q and D=2-7.

In this section, we consider the special case F=Q and D=2-7. Let f:V-
W be as in §1. Then, by Shimura [19, 8.12], the covering V/W is an abelian
extension of type (2,2). By Eichler’s approximation theorem, there exist Tir T2
and 7, such that ;€D (1=1,2,3) and Nge(r1)=2, Npe(r)=T7 and Njplr:)=14.
Then, each 7; is contained in /™ and induces an automorphism of V over W,
which we denote by z(2), =(7) and z(14) respectively. The automorphisms =(2), (7)
and ¢(14) of V are defined over @ and {id, #(2), =(7), z(14)} is the Galois group of
the covering V/W.

Let o be an order contained in an imaginary quadratic field K and r:0—9O
be an ©-optimal embedding of s. By definition,  is an embedding of K into B
such that o=r"'(r(K)ND). Then, there exists a unique point z of § fixed by
r(K*). Hence we have a point ¢(2) of V, where ¢: 89— V is the natural mapping.
For an order o contained in an imaginary quadratic field, we denote by P(o) the
set of points ¢(2) of V obtained in this manner.

It is immediate to see that the sets of fixed points of =(2), «(7) and (14) are
P(Z[v—1)U P(Z[v—2)), the empty set and P(Z[v—14]) respectively. By Shimura
[19, 2.17], the cardinalities of P(Z[v—1)), P(Z[v—2]) and P(Z[vV—14)) are 2, 2
and 4 respectively. We put P(Z[vV—I)={P, P}, P(Z[V—=2)={Q,, Q.} and
P(Z[vV—14])={R,, R;, R, R}}. The point =(7)-P, is also contained in P(Z[v1})
and «(7) does not fix Py, hence we have «(7)-P,=P, and f(P)=f(P,). Similarly,
we have f(Q:)=f(Q.), and we can assume that f(R)=f(R.) and f(R)=Ff(R}). We
put P=f(P), @=f(Q.), R=f(R.) and R'=f(R)).

By Shimura {19, 8.2. Main Theorem I}, we have Q(v—1, P)=Q(v'—1). On
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the other hand, V has no real points by Shimura [21]. Therefore we have Q(F;)
=Q(V—=I) for i=1,2. Similarly, we have Q(Q)=Q(vV—2) for i=1,2. Let ¢ be
any automorphism of C. Since =(2) is defined over Q, P! is also fixed by z(2).
Therefore, the set {P, P,} is a complete conjugate system over Q, and P is
Q-rational. Similarly, the set {Q;, @;} is a complete conjugate system over Q, and

Q is Q-rational. By the same reason as above, Q(v —14, R)=Q(~—14, R)) is the
absolute class field of Q(v—14). If we put x=(—1+v—7)/2, then the absolute
class field of Q(v—=14) is Qv —14, v ), whose subfields are as follows:

= Qv/=Ti, V7)

QV=2V2-1) QVavI-1) Q=i V=D Qv QYT
Q'3 Qv—Td) QUV=T)

\ é

Here, «’ is the conjugate of x over Q. Since Q(*/ 242 —1) is a real field, by a
suitable interchanging of R, and R/, we have QR)=Q(v ) and QR)=Q(Vr")
for i=1, 2. Furthermore, the sets {R,, B,, B, R} and {R, B’} are complete conjugate
systems over Q. Especially, we have Q(R)=@( V=D

The genera of V and W are 1 and 0 respectively. Since W has Q-rational
points, W is isomorphic to P* over Q.

Now we consider an equation which defines V. Take an element ze QW)
such that z(P)=0, z(@)=co and Q(W)=Q(z). We put a=2z(R) and o =z(R’).
Then, we have a€Q(v'—7), and o’ is the conjugate of a over Q. It is immediate
to see that there exist x € Q(V/z(14)) such that

div (x):P1+P2'—Q1_—Q2 )
and ¥ € Q(V/z(2)) such that
div ()=R;+R,+R!+R,—2(Q:+ Q) ,

where div(x) and div(y) denote the divisors of # and ¥ regarded as functions on
V. The elements % and ¥ are uniquely determined up to @*-multiplication. We
have div(z)=div(z?) and div((z—a)-(z—a’))=div(y?). Therefore there exist a € @
and be @ such that we have

2-1) (ax*—a)ax*—a’)=by* .
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Since Q(V/z(14))=Q(z) and Q(V/x(2))=Q(y,2), we have Q(V)=Q(z,y). By (2-1)
we have Q(Q)=@Q(v'b). Since QQ)=Q(V—2), we have b=—2b? for some be @,
Therefore, if we replace z/a, a/a and b.y/a by z, « and Y respectively, we have

(2-2) (& —a)(@?—a’)-+2y2=0 .

Furthermore, we can assume that « is an integer in @(v'—7) and « is not divisible
by any squares of non-trivial rational integers. By (2-2), we have QR)=Q(V a).
Since QR,)=Q(v ), we have a=pf for some integer 8 in Q(v—7).

LEMMA 2-1. The integers « and a—a’ contained in Qv —T) are not divisi-
ble by any prime ideals in Q(vV'=T) except (V—7), (x) and ().

PrRoOF. By Morita [13}, V has good reduction at every rational prime p except
2 and 7. Since V is a curve of genus 1, its modular invariant J, which is equal
to

2H(a—a" 2 +16aa’}?/aa’ (a—a')* ,

is p-adically an integer for every p+2,7. Let p be a prime ideal in Qv =T
such that p#(v'—7), (z), (@’), and assume that p divides either « or a—a’. Then,
the above fact implies that p divides both « and a—a’ , i.e., p divides both « and
a’. Since a=g% for some integer 8 in Qv =7, p* divides « and «’. Therefore,
if we put (p)=pNZ, p? divides @. This is contradictory to the choice of a.
q.e.d.
By Lemma 2-1, by a suitable interchanging of « and o’ , we have

(2_3) a:20 orl (__7)0 oril ﬂ.'n. ,
where 7 is an odd positive integer such that the ideal {z"—=z'") is a power of the
ideal (vV—=7).

Now we need the following

LEMMA 2-2. For a positive integer n, the ideal (a"—z'") is a power of the
ideal (V' —T) if and only if n=1,2,3,5,7 or 18.

PRrROOF. The following three conditions are equivalent:

(8 (a"—=a') is a power of (V—7).

(b) a*—a"=2vV—T"" for some b=0 .

(€) 2=y’ 7"% for some b=0 and uc Z.
(@)= (b) is clear. Assume (b). Then, we have === {(—TPV7)/2 for some
odd integer w. Since rz’'=2, we have (¢). Similarly, we have (c) = (b).
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The equation (b) may be written

(D) (5)=n+ (2=t o+ (B) ez —pm—y

if n is odd, and

e R R e

if m» is even, where (Z’)zn(n—l)(n—Z) oee (n—12+1)/1-2--- 4. By this, it is
immediate to see that, if # is a solution, n is divisible exactly by 7°. By the
condition (a), if » is a solution, every positive divisor of #» is also a solution. By
[11, [12], [15] and [22], the solutions with b=0 are 1,2,8,5 and 18. Let % be a
solution with 5>0. Since 7% is not a solution, we have b=1. Put n=Tm. Then,
m is a solution and m is not divisible by 7. Hence we have m=1,2,8,5 or 13,
ie., n=17,14,21,85 or 91. Actually, 14, 21, 35 and 91 are not solutions.
q.e.d.

By Lemma 2-2 and (2-3), we have obtained twenty possible values of « as
follows,

(2_4) 0{-’220 0r1(_7)0 or1x1,3,5,70r 13 .

Now we consider the congruence zeta functions Z(u; Vmod p) of V modulo
». For every rational prime p except 2 and 7, the essential part of the con-
gruence zeta function of V modulo p is equal to the Hecke polynomial associated
with ©%. This is contained in the results of Shimura [19] (for almost all p) and
Morita [18] (for individual p). The traces of the Hecke operators are calculated
by the Eichler-Selberg trace formula (cf. Eichler [5] and Shimizu [18]). Since the
genus of V is 1 in our special case, explicitly we have

1— T(p)u+pu®

Z(u; Vmodp)= A—wi—pu) ’

and
romsd 33 (10 (3))

where o runs through the set of orders in imaginary quadratic fields K such that
o contains roots of x®+sx+p=0, and k(o) denotes the class number of o, and for
a rational prime ¢, we put
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1 if ¢ divides the conductor of o,
1}:
{q (%) otherwise .

By caleulating the congruence zeta functions of the twenty curves defined by (2-2)
and (2-4), and comparing these with Z(u; V mod p) at p=38,5,11 and 17, we con-
clude that a=2z% 2z7 or 2z'*. Let Vi, V, and V, be the curves defined by (2-2)
with «=2z% 2z7 and 2" respectively, i.e., the curves V;, V; and V, are defined
by the following equations respectively:

(2-5) (2*+11)2+7+2y2=0 .
(2-6) (#°—13)2+73+2y2=0 .
(2-7) (2?1814 742y2=0 .

Then, by an explicit caleulation, the jacobians of V, (i=1, 2, 8) are with conductor
14 and mutually Q-isogenous. Therefore V, (¢=1,2,3) can not be distinguished
by their congruence zeta functions.

We can explicitly caleulate the minimal models Vi,q of V,; (¢=1,2,3) over Z,
(g=2,7). Especially, the minimal models VM exist, which are uniquely determined
by their generic fibres V, (cf. Lichtenbaum [11]). The geometric special fibres
V’i,q,a of Vi,q are reduced and have only ordinary double points, and the numbers
of components of V,,.; are 1 (i=1,¢=2), 8 (1=2, ¢=2), 9 (i=38, ¢=2), 2 (i=1, ¢=T),
6 (t=2,¢9=T) and 2 (=8, ¢=7) respectively. Therefore, V, (i=1,2,3) are dis-
tinguished by the numbers of components in the geometric special fibres of the
minimal models Vi,q of V, over Z,.

Actually, in §5, we shall conclude that V=7V, by using the result of Cerednik
[2]. However, we also need the following two sections.

§3. Minimal models of curves obtained by the Mumford uniformization.

Let K be a p-adic number field. We denote by R, = and % the ring of
p-adic integers in K, a prime element of K and the residue field of K respectively.
Let I be a discrete subgroup of PGL.(K) (=GL,(K)/K*) with compact quotient.
We fix such K and I' throughout this section. Then, there exists a torsion-free
normal subgroup I’y of I" with finite index (cf. Garland [6, Theorem 2.7]). The
discrete subgroup I'; is a Schottky group in the sense of Mumford [14]. Further-
more, we can assume that det (I")={1}, where det:PGL,(K)—> K*/K** denotes
the determinant mapping.
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Mumford [14] constructed a formal scheme over R denoted by &(4r,). In
our situation, &(dr,) is determined by K and is independent of the Schottky
group I';. Therefore we denote by < instead of “(dr,). The following facts
are contained in Mumford [14]. The group PGL.(K) acts on & over R. In fact,
we have Autp(&)=PGL,(K). We can take a quotient I',\\& of & by I'; in the
category of formal schemes over R, and there exists a unique scheme Pp, proper
over R such that the formal completion of Pr, along its closed fibre is isomorphic
to I';\Z over R. Since the quotient group I'/I"; acts effectively on Pr, over R
and Pr, is projective over R, there exists a quotient Pr of Pr, by I''/l";. The
scheme Pr is determined by I" and independent of the choice of I';. The scheme
Pr is normal, proper and flat over R, and the generic fibre Pr,, is a smooth curve
over K. In this section, we shall be concerned with a description of the minimal
model of Pr,, (in the case when the genus of Pr,, is greater than zero), which
is contained in Mumford [14] if I" has no torsion elements.

We need the following

DEFINITION 3-1. We call X a graph if the following data (a)~(d) are given
such that the conditions (e) and (f) hold.

(@) A set Ver(X), whose elements are called wvertices of X.

(b) A set Ed(X), whose clements are called oriented edges of X.

(¢) A mapping Ed (X)— Ver (X)X Ver (X) denoted by %+ (o(y), #(%)). The
vertices o(y) and t(y) are called the origin and the terminal vertex of y re-
spectively.

(d) A mapping Ed (X)—>Ed (X) denoted by y+—%. The oriented edge 7 is
called the 4nverse of y. The set {y, %} is called an edge of X.

(e) ¥=y for ycEd (X).

) oly)=ty) for ye Ed (X).

A graph X is called a graph with lengths, if a mapping

f: Ed(X)%N:{lyzygy ”'}

is given such that f(y)=f(%) for y < Ed(X). The integer f(y) is called a length
of the oriented edge y or of the edge {y,%}. A pair h=(h, h,) of bijections
hy:Ver (X)—> Ver (X) and h,:Ed(X)—>Ed(X) is an automorphism of a graph
with lengths X if A o(y)=0(h.(y)), h:(y)=hs(%) and Jhs(y))=F(y) for all yc Ed (X).

A graph is naturally regarded as a graph with lengths such that the length
of every oriented edge y is equal to 1. Definition 3-1 is similar to Serre [17],
but we do not exclude the case y=%. For a graph X, we denote by X* the
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graph obtained by putting Ver (X*)=Ver (X) and EdX*)={yeEdX); y+7}.
Let H be a group acting on a graph X, then we have a quotient graph H\X and
a natural mapping j:X— H\X such that Ver (H\X)=H\Ver (X) and Ed (H\X)
=H\Ed (X). Furthermore, if X is a graph with lengths and H,={hec H; h-y=y}
is a finite group for every y € Ed (X), then H\X 1s naturally a graph with lengths
such that the length of j(y) is equal to the length of ¥ multiplied by the cardi-
nality of H,. Especially, if a finite group H acts on X trivially, H\X is equal
to X as a graph and the lengths of edges are uniformly multiplied by the cardi-
nality of H.

Let 4 be the Bruhat-Tits tree associated with SL,(K) (ef. Serre [17]). Then,
4 is a graph, hence regarded as a graph with lengths such that the length of
every edge is equal to 1. The group PGL.,(K) acts on 4 in the usual manner.
Since I' is a discrete subgroup of PGL,(K), I',={r€'; y-y=y} is a finite group
for every y € Ed (4). Therefore we have a graph with lengths I'\4. Furthermore,
since I'\PGL,(K) is compact, I'\4 is a finite graph, i.e., the sets Ver (I"'\4) and
Ed (I'\4) are both finite. Similarly, I';\d is a graph with lengths, on which
I'/T"; acts, and I'\4 is identified with the quotient of I'\4 by I'/T";.

PROPOSITION 8-2. The scheme Pr is normal, proper and flat over R, and
the gemeric fibre Pp,,Y:Pp%Spec (K) 18 a smooth curve over K with genus

g=1+ % Card Ed((I"\4y*)—Card Ver (I'4)%) .

The geometric special fibre Pp,azPﬁéSpec (k) is reduced, comnected and 1-
dimensional and has at most ordinary double points, where k denotes the
algebraic closure of k. The normalizations of components of Pr; are k-
rational rational curves, and the double points of Prjy are k-rational with two
k-rational branches. Furthermore, the components E of Prs and the double
points x of Pr; are naturally one to one correspondent to the vertices v of
(C\4* and the edges {y,y} of (I\A)* respectively such that = is contained in
E if and only if v=o(y) or t(y). Let m be the length of y. We put

Z™ =8pee R[X, Y1/(XY—z™)
and denote by z the unique double point in the spectal fibre of Z. Then,

the completion &Prm of s, 18 isomorphic over R to the completion ﬁzm,z
Of ﬁz(m.z-

ProOF. If I" has no forsion elements, the assertions are contained in Mumford
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[14]. Therefore, the assertions hold if we replace I' by I';. The assertion about
the genus of Pr,,.is a consequence of others by using the results of Hironaka [8]
and Serre [16] concerning the arithmetic genera of curves.

Let © be a closed point in Pp,o:Pp;<Spec (k), and %’ be a point in Pp ,
lying on z, and % be a point in &2 lying on «’. Then, either (1) & is contained
in only one component of &7, or (2) £ is contained in exactly two components of
. We put

Ps={rel; r-2=3%},
('Ir)y=the(|I'); h-o'=2"} .
Then, we have a natural identification I';=(I"/I"}),». Furthermore, we put
Proj R[X?% XY, ¥?] for the case (1),
Proj R[X?% XY,zY? for the case (2),

and &=, (1). We regard X*?, XY and Y* [resp. X? XY and nY?] as sections
of & in the case (1) [resp. in the case (2)]. Especially, we have Z7|p; ,= P},(2).
Let Z; be the formal completion of P; along its closed fibre, and put

Pi=F;—{k-rational points (except the double point in the case (2))}.

Then, by the construction of &, there exists an open immersion PLG.F over R
such that &7 contains &, and ?! is I';invariant. Since det (I';))={1}, by the
composition FLCF > ' \F, Z} is also regarded as an open formal subscheme of
I'\&, and FLCI'\& is compatible with the identification I;=("/I"}),’. On the
other hand, the action of I'; on Z?} extends to actions on Z?; and P;, and the
invertible sheaf % on P;is I';linearized. The quotient I';\P; exists. We denote
by 2z the closed point in I';\P; which is the image of #. For a commutative ring
A and a group H acting on A, we denote by AZ the subring of A consisting of
all elements of A fixed by H. Then we have

I (S LAY
=(3’r1\.9,x')<”r1)x'
=(P0,5)s
=(Dps. )T
Zﬁ/\ Ii\Pz,z 5
where, the first and the last equalities are derived from Grothendieck [7]. Now

the assertions are direct consequences of the following lemma together with the
result of Mumford [14]. ’
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LEMMA 3-3. Let m be a non-negative integer. We put
P =Proj R[X? XY, z"Y?]

and L=Cpm(1). Let H be a finite group acting effectively on P™ over R
such that < is H-linearized. We denote by h the cardinality of H. Then,
the quotient H\P™ 4s (1) isomorphic to P™ over R if m>0 and the two
components of the special fibre Py of P™ are not transformed by H, and
(2) isomorphic to PO=P} if m=0 or m>0 and the two components of P{™ are
transformed by H.

Proor. First, we consider the case (1). Observe that HYP™, &£)=RX*P
RXY®Rz"Y?, and H acts on the R-module HY(P™, ). We define a homomor-
phism

j:RIX% XY, s Y2 R[X? XY,z Y]
by .7'(X2)=Q£IHQ*(X2), j(XY):ggHg*(XY) and j(zthz):ggHg*(ﬂmYﬁ). Then, by
the assumption, it is immediate to see that »=Proj(j) : P™ — P®™® ig everywhere
defined and H-invariant. Therefore, if we denote by p the natural morphism
p:P™ - H\P™, then there exists a unique morphism gq:H\P™ — P™ guch
that »=gop. It is immediate to see that ¢ is actually an isomorphism.

Next, we consider the case (2). Then, it is immediate to see that (H\P™),
=P2 and (H\P™),=P.. Since all deformations of P! are trivial, H\P™ is
isomorphic to P: over R. q.e.d.

Let z be a double point in Pr,,, and m be the length of the edge {y, %} of
(I'\4y* corresponding to x. The scheme P, is regular at z if and only if m is
equal to 1. Assume that m>1. Let P/ be the scheme obtained by blowing up
the point #, and (I'\4)* be the graph with lengths obtained by replacing the
edge {y, %} as follows:

o—"—» = o L o m—2 o 1 O (m>2)
m—2

m
Q =§ v (m>2)
2 1 1

o—>"— o > o - -0 0 (m=2)
2
Q _ 1 1 (m=2)
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Here, the numbers beside edges indicate the lengths of edges. Then, by the last
assertion of Proposition 3-2, it is immediate to see that the same statement as
in Proposition 3-2 holds, if we replace Pr and (I'\4&* by P, and (\4y*" re-
spectively (cf. Deligne and Mumford [3], p. 84). We repeat this process Pr= P/}
—Pl= ... and (I\d* = (\D¥ = (I\y*" = -+, until the lengths of all edges
become 1. We denote by P3¢ and (I"\4)*°® the resulting ones. Then, the same
statement as in Proposition 8-2 holds if we replace Pr and (I'\4)* by P7® and
(I\Jdy°¢ respectively. Especially, P3*¢ is a regular scheme.

Now we consider the minimal model over R of Pr,,. We assume that the
genus of Pr,, is greater than 0. Let v be a vertex of (r'\4y-e¢. 'Then, by Prop-
osition 8-2 stated for P3*® and (I"\4)**¢ and Lichtenbaum [11], it is immediate to
see that the component E of P:%% corresponding to » is an exceptional curve of
the first kind if and only if the cardinality of the set {y<cEd (I'\4)™#); o(y)=1v}
is equal to 1. Assume that the component E is an exceptional curve of the first
kind. Then, by Castelnuovo’s criterion (cf. Lichtenbaum {11]), we can blow down
E and obtain a regular scheme P3%’. Let (I'\4)™*¢/ be the graph obtained by
retracting the unique edge {y, %} such that o(y)=v toward the vertex i(y) as

follows :

-~ //

v i(?j) \\ ~

Then, it is immediate to see that the statement as in Proposition 3-2 holds if we
replace Pr and (IN\A)* by P3¢’ and (I"\4)™#’ respectively. We repeat this process
P35 — Pes’ = Pl — - o and (D\4)™% = (I\4)8' = (I\4)*8"” = ..., until we have
no exceptional curves of the first kind in the special fibre. We denote by Pni=
and (I"\4)=® the resulting ones. Then, by Lichtenbaum [11], P2'* is the minimal
model over R of Pr, Thus we have obtained the following

PROPOSITION 8-4. Assume that the genus of Pr,, is greater than 0. Then,
Pz 4s the minimal model over R of Pr,, and the same statement as in
Proposition 82 holds if we replace Pr and (I'\A* by Pziz gnd (I\4)="»
respectively.

In §5, we shall use Proposition 3-4 to decide the equation which defines the
Shimura curve V considered in §2.
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§4. Arithmetic graphs with lengths.

Let F be a totally real algebraic number field of finite degree, and o, the
ring of integers in F. We denote by F, and op, the completion of F at an
archimedean or non-archimedean prime v of F and the completion of o at a non-
archimedean prime v of F respectively. Let B be a totally definite quaternion
algebra over F, and © a maximal o,-order in B. We denote by D the discrimi-
nant of Bover F, and we put B, B®F and ©O,=9D ® 0p,. We fix a2 non-archimedean
prime w of F', which is unramlﬁed in B. We denote by 0@ the ring of elements
in ¥ which are integral at every non-archimedean prime of F except w, and put
QO —D@o("”. Then, 0@ is a maximal o%-order in B.

Sumlarly to Thara [9], we define;
Ty=@xjggx
D ={r e O Np/p(r) € 05, F5}
[ =D o
[*={re B<; iD@ =0y},
Tk =,

Then, we have I' .<I',cI™. Since w is unramified in B, we have an isomorphism
B,=M,F,) such that On=M,(or,) which we fix once and for all. Then, the
groups I'y, I'y and I'* are regarded as discrete subgroups of PGLy(F,) with com-
pact quotients. Therefore, by §3, we have curves Pr ++ Pr, and Pr. over oy, and
graphs with lengths I",\4, I',\\4 and I'*\4. We remark that ', I'yand I'* are
determined by the maximal o0f”-order O™. In this section, we shall describe
these graphs with lengths in the case F'=Q.

We assume that F'=@Q in the rest of this section, and we denote by ¢ instead
of w. By the definition of the Bruhat-Tits tree 4, we have;

Ver (4)=PGL.(Q,)/PGL(Z,)
=By /Q;9;
={maximal order &’ in B; O;=90, for all primes l+q},

where, in the last identification, an element x ¢ B}/Q;O; corresponds to a maximal
order £’ in B such that Oj=4D,0™! and O/=0O, for all primes ls+q. Let ¥’ and
v” be vertices of 4. We denote by ' and ©” the maximal orders as above
corresponding to v’ and v” respectively. Then, by the definition of 4, it is
immediate to see that the vertices 9’ and v” are linked by a (unique) edge if and
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only if ©’NY” is an Eichler order of level Dg, i.e., 9,N07 is Bj-conjugate to
the order [ ZZ" g"] by the identification B,=M,(Q,).

First, w% éonsiqder the graph with lengths I'\4. Let B} be the adelization
of B*. Then, by Eichler’s approximation theorem, we have B%=—=BX*- JII 7 By Bx.
By this, we have; e

Ver (D\d)y=I"\Ver (4)
=0@\B;/@;0;
:BX\B;/LI:;IWDLX-BZ° .

Therefore Card Ver (I',\4) is equal to the class number % of B. By Eichler [5],

we have

41) he - T1 (p—1)+

1 —4 1 —3
- 1— (== = 1—(—2
12 »ip 4p1D< ( 2 >>+3p%< ( v >>’
where (—_—4> and <;3—> denote the Kronecker symbol.

Let z, (p=1,--+,h) be a system of representatives of D@\ BX/Q;07%, and
Op (2=1, --+, k) be maximal orders in B such that O,,=.02x and 9,=9, for
all primes l#q. We denote by ¥ (z=1, -- -, h) the vertices of 4 which correspond
to Oy, and by v. (¢=1,---, k) the vertices of I',\4 which are the images of ¥ by
the mapping 4-—>I'\4. We put Foay:{rel’o; 7-Ba=0}, and f(vu)=Card I'os,.
Then, it is immediate to see that F(,;P:DZ/Z %, Therefore we can describe the set
{fwy), -+, flws)} as follows. If D=2, we have h=1 and f(v,)=12. If D=3, we
have k=1 and f(v,)=6. Assume D=5. Then we have f(vn)=1,2 or 8. Put h;=
Card {1=Zp=h; flv)=4} (1=1,2,8). Then, by counting the numbers of optimal

. \/——— 1 + \/_—:*—_3 . o .
embeddings of Z[v—1] and Z 5 into O, (#=1, ---, k) (cf. Eichler {50,
we have
4-2)

Clearly, we have hy=h—h,—hs.

Now we fix a vertex v, of I')\4, and consider the edges around v.. We
denote by Star (vy) the set of yeEd ([ \4) such that o(y)=v., and by Star (7,
the set of 7€ Ed{(4) such that o(§)=7,. Then we have Card Star (F,)=¢+1 and
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a natural mapping ¢ : Star (%) — Star (). By this, flv,) is a multiple of the
length f(y) of y for yeStar {(v,), and we have

g+l= ¥ )f(vp)/f(y).

yeSbar(v#

First, we consider the case Sf@wx)=1. Then, by the above facts, we have
Card Star (v.)=¢--1 and S¥)=1 for y e Star (v).

Next, we consider the case S(vx)=2. Then, we have f(y)=1 or 2 for ye
Star (vs). Since Card D=4, there exists an element €O} such that 24-1=0.
Let & be the formal scheme over Z, as in §3, and E be the component of &,
=F ;i Spec (F,) corresponding to the vertex Tu. Then, E is isomorphie to Plx
Spec (F,). The group Ol Z; (=PGL(Z)) acts naturally on the set Star (3.) and
on the F rational projective line E. Furthermore, there exists a natural bijec-
tion ¢ : Star (%s) > E(F,) which is %/ Z ¥-equivariant, where E(F,) denotes the set
of Fi-rational points of E. Let y be an element of Star (v.), and take an element
yeStar (3,) such that ¢(§)=y. We put £=d(§). Then, we have ¢-§=% if and
only if e-§=%. Therefore, the cardinality of the set of y < Star (ve) with f(y)=2
is equal to the cardinality of the set of # e E(F,) such that e i=3%.

We need the following easy

LEMMA 4-1. Let o be an element of PGL,(F)=Aut (P*X F,/F,) such that
o#1. Then, the number s of Fprational fized points of ¢ on P'X F, is given
as follows :

2 if q#2 and (tro)—4detoec F;®,
1 4f g#2 and (tro)—4deto=0, or
s= if q=2 and tre=0,
0 if q#2 and (tro)*—4dets#0, ¢F*, or
if ¢=2 and tro=1.

Since we know that tre=0 and det e=1, by Lemma 4-1, we have

Card {y € Star (v,) ; fly)=2}=1 +<—74> .

Hence we have
Card {y e Star (v,); f(y)=1} = %(q—— (—74» .
In the cases f(v.)=38,6, and 12, we can have similar processes. In the cases

Sw)=6 (D=38) and f(v.)=12 {(D=2), we also need certain explicit caleulations.
Thus we have obtained
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PROPOSITION 4-2. In the case F'=Q, the cardinality of Ver (I')\4) is equal
to the class number h of B, and the set {f(vy), -+-,f(w.)} can be calculated by
(4-2). For an oriented edge yeEd(I",\4), we have Sf=1,2 or 3, where f(y)
denotes the length of y. If we put s,,;=Card {y € Star (v.); f(¥)=1} (:=1,2,3),
the numbers s,,; are given by the following table:

Sun Swe Sus
Slog)=1 g+1 0 0
v | WG| e | e
fw)=3 5(a —(:qi)) 0 1+ —?)
f)=6 %(q—3—3 <:?1i —(—_q—?i>) 1+<—_q-> —;—<1+("T>>
Flon)=12 —+(a—6-3 <:qi4—> —4 (—‘(1—3)) i+ —“q—“)) 1+<—‘q§>

Here, ( —:4—> and <:—> denote the Kronecker symbol.
\

By Proposition 4-2, the local structure of I',\\4 is completely determined.

Now, we give a global property of I')\d. Let R[Ver (4)] be the free R-
module generated by the set Ver (4). After Serre [17], we define endomorphisms
0. (m=0) of R[Ver (4)] by

0= x @,
€ Ver{d)
dist{%,w)=n

where, dist (%, %) denotes the distance of the two vertices 7 and % of 4. Put
To=0,, Ty=6, and T,=60,+ T,—» (n=2). Then, by Serre [17], we have

0:8:=6+(q+1)0, ,
0.0,=0,0,+q0,., (n=2).
Therefore we have
(4-3) I\T.=T+qT,: (nz1).

Let R[Ver (I';)\4)] be the free R-module generated by the set Ver (I";\d), and
v : R[Ver ()] = R[Ver (I';\4)] be the R-linear mapping obtained by the mapping
Ver (4) »> Ver (I',\4). Then, there exists a unique R-linear endomorphism P(g®)
of RiVer (I',\4)] such that P(¢g™ee=¢-T,. It is immediate to see that we have
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Slow)

(4-4) P(q)vy=yesz§w 7 tHy) ,
for every vp.€ Ver (I";\4). By (4-3), we have
4-5) P(q)P(g")=P(¢g""")+qP(g"™") (n=zl).

By (4-4), it is immediate to see that 2., f(v.)'v. is an eigenvector of P(q™)
with eigenvalue 1+g¢-+¢*+ --- -+¢", and P(q®) is symmetric with respect to the
metric of R[Ver (I",\4)] such that the set {f(v,) "/2v,}%_, is an orthonormal base.

We assert that P(¢ is the Brandt matrix (cf. Eichler [5]), if we regard
P(g™ as a matrix of size hXh with respect to the base {v.};_,. By (4-5), it is
sufficient to show the assertion only in the case n=1. Let % be the vertex of 4
which corresponds to the maximal order . We define 2z,€ B; (5=0,1,---,9) by
the identification 2,=M,(Z,) as follows;

10 . 0 q]
Pl :0’1’...’ __1 , — .
“ [J‘ q] G b % [1 0

Then, the set {z;-7}%-, is equal to the set {#(§); §€Star (»)}. We put P(g)v,

=21 7v;. Then, we have,

'r;,,zCard {0§:)§q, (wpzj)'i'/:(‘fxz)'fi for some 7€ Ty}
=Card 0=7=gq; 2,9; =xz72;,O; for some y€O@*}.

By Eichler [5] and Shimizu [18], this implies that P(@)=(ri.)is1,.s. is equal to the
Brandt matrix.

Especially, by Eichler [5], we have,
@e trPa)=3(5) 45 T p-D+3 T P T (1- {i}> ,

2 12 »p sez__ G [0*:Z*] 5D »
st <2vVq”®

where 5(%):0 if % is odd and 5(%):1 if » is even, and o runs through the

set of orders in quadratic fields such that o contains roots of #*+sz+¢"=0. By
(4-5) and (4-6), we can obtain the eigenvalues of P(g).

Next we consider edges {y, ¥} of I')\4 such that y=¢y. We put Star (v.)
={yeStar (vy); y=¥%} (#=1,---,k). Take yeStar (v, and §eStar (¥, over ¥.
Since we have y=7%, there exists an element 7€ %> such that 7-3=¥. The
element 7? fixes ¥4, hence we have 7€ @;O, By this, we have an expression
r’=q"u, where n€ Z and ueD},. Since dist (¥, 7-9)=1, v,(Nzey)) is odd, where
vy, denotes the normalized g-adic valuation. Therefore » is odd. Put n=2m--1.
We replace ¢y by 7, hence we have 7y*=qu, where u€j}. Furthermore, we
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have ye®,. Since u is a unit of O, we have u—==+1, u>+1=0 or u**+u+1=0.
The case u=1: Since B is definite over @, this case can not occur.

The case u=—1: In this case, we have 7*-+¢=0.

The case #2+1=0: We have Q1)=Qu)=Q(~—1). As an ideal of Q(u), we
have (r)*=(q). Therefore we have ¢=2 and y?=2u. This implies y?+2y+2=0.
The case w*—u+1=0: We have Q()=Qu)=Q(v'—3). As an ideal of Q(u), we
have (7)*=(q). Therefore we have ¢=38 and 7*=8u. This implies 7+8y-+3=0.
The case w’+u+1=0: As above, we have ¢=3. Since we have 7*=—(1—u),
this case can not occur.

We define the set {f.} as follows;

filX)=X2+q if ¢+2,8,
[iX)=X2+2, foilX)=X+2X+2, f(X)=X>—2X+2 if =2,
fX)=X2+8, foiX)=X243X+8, f(X)=X?—-3X+8 if ¢=3.

Then, the above consideration shows that y €O, and f.(y)=0 for some f;.
Conversely, it is immediate to see that, if 7 is an element of £, such that
Fi7)=0 for some f;, then we have y€ O®> and there exists a unique 7 € Star (3,)

such that y-§=%. By this, we have
Card Star (vp) = JZ} Card {r € Op; fily)=0}/Card Oj .
k

We take the sum }}%_,. Then, by counting the numbers of inequivalent optimal
embeddings into O, (¢=1, ---, k) (cf. Eichler [5]), we have

R 1 re L __h(o) _ 10
(47 Shn Card Star /= - 3 5O T (1 {p}),

where 0 runs through the set of orders in guadratic fields such that o contains
roots of the equation f,=0.
Thus we have obtained

PROPOSITION 4-8. The eigenvalues of P(q) defined by (4-4) are calculated
by (4-5) and (4-6), and the number Card{ycEd (I',\4); y=%} s calculated by
(4-7).

By Propositions 4-2 and 4-3, we can determine the graph with lengths I',\4
in certain simple cases by a combinatorial way.

Now we consider the graphs with lengths I',\4 and I'™™4. We put D=
DiP: *** Pe—1. By the same argument as in Shimura [19, 8.12], the group I'*/I"..
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is an abelian group of type (2, --+,2). Let d be a positive divisor of Dg. Then,

by Eichler’s approximation the;rem, there exists a€£% such that Nyela)=d.
The element « induces an element of I'™*, hence an element «(d) of I'*/I',. The
group I'*/I'. is generated by z(q), z(py), -+, z(p;_1), and the intermediate group
I’y of I',CI'* corresponds to {id,z(q)}. The group I'*/I", acts on I'.\4, and I'\4
is the quotient of I',\4 by I'*/";. In general, the action of I'*/", on I' ,\4 is
not necessarily effective.

The graph with lengths I'.\4 is constructed from I';\d as follows. Let
Ver (4)=Ver (4),U Ver (4); be the disjoint union such that, for 7€ Ver (4), and
;€ Ver (4);, dist (¥, 7,) is even if and only if ¢=j. Then, we have y-Ver (4),
=Ver (4), (¢:=1,2) for yeI'y, and y-Ver (4);=Ver (4); and y-Ver (4);=Ver (4); for
yel,—I',. By this, every fibre of the mappings Ver (I",\4)— Ver (I',\4) and
Ed (" \4) > Ed (I"',\4) consists of two elements. The mapping I' . \4d > I')\4 looks
like;

m m m

| v v

- O

where o— denotes the edge {y, ¥} such that y=%, and the action of z(q) on I',\4
is uniquely determined in the above figure. Especially, I'.\4 has no edges {y, ¥}
such that y=%.

PROPOSITION 4-4. Let p be a prime divisor of D. Then, there are no edges
yeEd (I",\4) such that =(p)-y=%y. Let v,,. be a vertex of I'.\d over the vertex
ve of T'\d. Then, we have ©(p)+v,,:=v,,: 1f and only if there exists an element
a €y such that a>+p=0 if p#2 and 38, a®+2=0 or a®*+2a+2=0 ¢f p=2, a®>+3
=0 or &®*+3a+8=0 if p=38.

ProOF. The first half of the assertion is a direct consequence of the fact
that a-Ver (4),=Ver (4); (=1, 2), where «a is an element of O% such that Nyela)
=p. The second half is similar to the proof of the last part of Proposition 4-3.

Ezample. D=2 and ¢=7. In this case, we have
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d
r,\4 ) 303
ot @D (D= T, 70\ | 13 Qs 2o
~ | NV S
k I'#\4 ) o3

By Propositions 4-2 and 4-3, we can conclude that I"\d=<I",, «(T)>\4 is described
as above. Therefore we can construct 1" \4 from I';\4, and <(7) is determined,

i.e., 7(7) acts as a rotation (Q) To see the rest, it is sufficient to decide the

action of #(2) on I'.\4. Take an element ae O™ such that Nyela)=2. Since
a-Ver (4),=Ver (4); 1=1,2), «(2) fixes two vertices of I' \4. Therefore =(2) acts

P

on I'.\4 either identically or as a reflection Q We assert that -(2) acts as a
—

reflection. In fact, if «(2) acts identically on I',\4, we can assume that a-¥=%

and a fixes an element of Star (%). Then, by the argument of the proof of Prop-
osition 4-4, we have o?+2=0 or a?42«¢+2=0. By Lemma 4-1, this implies that
« has no F,-rational fixed points on the projective line over F; corresponding to
9. This is a contradiction.

Example. D=7 and ¢=2. In this case, by Propositions 4-2 and 4-3, we have

( I g Y [ ]Qz N
! \\ AR TN
Uye@\d e s\ O c1apd | = | Lo 2(3)4 A2
r<d 2.4
/7 N\ /

In §5, we shall use these examples to decide the equation which defines the
Shimura curve V considered in §2.
§5. A result of Cerednik determines the equation of V.

Let F be a totally real algebraic number field of finite degree, and T be a
finite set of primes of F such that Card T is odd and T contains all archimedean
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primes of F and at least one non-archimedean prime of F. We fix a non-archimedean
prime w contained in T and an archimedean prime % of F. Then, there exists
a unique quaternion algebra B [resp. ﬁ] over F' such that the set of primes of
F' which are ramified in B [resp. I§] is equal to T—{w} [resp. T—{W}]. Take a
maximal 08-order O in B, and define I, and I'™* as in §4 with respect to the
above F, B,w and 0%, Similarly, take a maximal oy-order Sin B and let [ -
and I™* be the groups denoted by I'. and I'* in §1 respectively, with respect to
the above F, E’,’d) and 9. We fix isomorphisms B,=~M,(F,) and BA—Mz(R)
Thus, I’y and I™ are regarded as discrete subgroups of PGLy(F,). Similarly,
I’, and I'* are regarded as discrete subgroups of PSLy(R). We have curves Pr,
and Pprs over og,. Put Pr,, ,,~Pp+ >< Spec (F,) and Pre ,=Prs >< Spee (F,). Then,
Pr. ., and Ppsy are non-singular pro_]ectwe curves over F. Slmllarly, F.\y and
r *\h are non-singular projective curves over C.

Now we assume that the class number in the narrow sense h, of Fis 1. Let
I be the ideal group of F and L be the subgroup of I generated by primes not
contained in T and squares of non-archimedean primes contained in 7. Then, by
Shimura [19, 3.12], we have a natural isomorphism /™*/I*,=I/L. Similarly, we
have a natural isomorphism I'*/I",=I/L. Therefore we have F*/F+gf*/f+.

The following Proposition 5-1 is a direct consequence of the theorem on
interchanging local invariants of Cerednik [2, Theorem 2.1] concerning the theory
of Thara [10].

PROPOSITION 5-1. Assume h.=1. Let I' and [' be intermediate groups of
r.cr*and I', ™ respectively such that I' corresponds to I by the somorphism
TXC,=I*I",. Then, there exist finite algebraic extensions M and M of F
contained in F, and C respectively, an isomorphism o:M — M over F, and
models Cr and C# of Pr., and '\ respectively such that Cr and C} are defined
over M and M respectively and Cr and Cp are isomorphic with respect to o.

Let V be the Shimura curve considered in §2. Then, we know that V is
isomorphic to V,, V, or V; over Q. To decide the equation of V, we specialize
Proposition 5-1 by‘putting F=Q, T={2,7, 00}, w=q=2 or 7, Ww=o0, I'=1I", and
['=I",. Then, there exists a finite algebraic extension K of @, such that V and
Pr,,, are isomorphic over K. We know the numbers of components of the
geometric special fibres of the minimal models of V, (¢=1,2,8) over Z, as in §2.
On the other hand, by the examples given in §4, we know
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(I D= [ A] it ¢=2,

(P \Ayin = [O] it q—T.

The graph (I, \d)®='* deseribes the minimal model of Pr,,, over Z, as in §3. We
compare the minimal models of Pr_ , and V; (:=1,2,8) over the ring of integers
in K. Then, the numbers of components of the geometric special fibres are, in
both cases Pr,,, and V;, multiplied by the ramification index of K over @,. Thus,
by the uniqueness of minimal models (cf. Lichtenbaum [11]), we conclude that V'
is isomorphic to V, over Q. In other words, the Shimura curve V is defined
over @ by the equation (2-6).

Hence we have completed the proof of Theorem 1-1 in the case F'=@Q and
D=2-17,
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