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§$1. Introduction.

Let 2 be an algebraically closed field of characteristic zero. We ghall
work in the category of schemes over A.

For any n-dimensional algebraic variety V, we have defined the space
Tu(V) of logarithmic M-forms of V where M is an n-tuple of non-negative
integers my, -+, m, ([13,[3]). If there is a proper birational morphism f: W
—V, then Ty(V)x=Ty(W) via the linear map f* induced from f. Hence the
logarithmic M-genus fsM(V):dim Ty(V) is invariant under proper birational
maps (Proposition 1 in [11). We have shown that if V is of hyperbolic type,
ie, £(V)=n, then the group of proper birational maps of V into itself is a
finite group (Theorem 6 in [17).

We note that if Z is a closed subset of codimension =2 of a non-singular
algebraic variety V, then

Tu(V=2)=Tx(V)

by a Hartogs-type theorem. We say that a rational map ¢: W—V is a weakly
proper birational map if there are algebraic varieties V,=V, V,, -+, V,=W and
rational maps ¢;: V;—V,_; such that each ¢; is one of the following four
types: 1) ¢; is a proper birational morphism, 2) ¢7' is a proper birational
morphism, 3) V;_, is non-singular and ¢;: V;=V,_,—Z; ;,CV,_, is an open immer-
sion where Z;_; is a closed subset of codimension =2, 4) 7' is the open im-
mersion of the type 3), and such that ¢=¢,---¢,. Then ¢ induces the isomor-
phisms @*=0f--0¥: Ty(V)STy(V) S =Ty(W). Hence Py(V)=Py(V)=-=
IBM(W). When such a ¢ exists between W and V, we say that W is weakly
proper birationally equivalent (or WPB-equivalent) to V. Our purpose here is
to prove the following '

THeoREM 1. If V is an algebraic variety of hyperbolic type, then the group
WPB(V) consisting of weakly proper birational maps of V into itself is a finite

Zroup.

A weakly proper birational map is abbreviated by WPB-map. A rational
map f: W—V is called a WSR-map if there is a WPB-map ¢: Y—W such that
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g=f-¢ is a morphism of Y into V. Then for any M=(m,, -, m,), n being
dim V, we have
g* @*
Tu(V) 2, Ty(Y) & Tu(W).

Hence the linear map f*=¢* *-g¥: Ty(V)—T,(W) is defined. Moreover, if f is
dominant, f* is injective. Therefore, letting WSB(V) be the group generated
by birational WSR-maps (, which are abbreviated to WSB-maps) of V into itself,
we have the representation

s WSB(V) — GL(Tx(V)).
By this representation, we shall prove

THEOREM 2. If V is of hyperbolic type, then WSB(V) 1s a finite group.
Hence WSB(V)=WPB(V).

§2. Linear system A4,(1).

Let V be a non-singular algebraic variety of hyperbolic type. Take a
completion V of V with smooth boundary D. Then by definition there exists
m>0 such that @,: V—@,(V) is the birational map, @, being the rational
map associated with |m(K(V)+D)|. Fix such an m. We eliminate the points
of indeterminacy of @, by a proper birational morphism g: V*—V such that
V*=u~(V) is non-singular and V* is a completion of V* with smooth boundary
D*=p %(D). Then @%=0,,- ¢ is the rational map associated with |m(K( V) 4+ D%)|.
Consider the normalization of @%: V*—®,(V), which we denote by f: V7.
Hence, W is the normalization of Q,.(V).

We have the following linear system on w:

A (V)= Ful m(K(T*)+D¥) [={fid ; A= |m(E(V¥)+D*)}.
Note that 4,(V) may be incomplete.
PropPoSITION 1. A,(V) depends only upon V.

Proor. First, consider a fixed V and another V* and a proper birational

=
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Fig. 1.
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morphism p: V#—V satisfying the same condition as V* and #. Then there
exist V* and ¢: V¥V satisfying the same condition as V* and £ such that
there exist birational morphisms ¢: V*—V* and ¢,: V*—V* in which t=p-o
=p-0; (Fig. 1). Write D*=¢"Y(D*)=r"Y(D) and D¥=07'(D*)=c"Y(D). We have
by the logarithmic ramification formula ([1]),

K(V*)+ D*neo*(K(V¥)+ D*)+ R, ,
R, being the logarithmic ramification divisor of o] V*. Hence,
| (K (V%) D*)| =o*| m(K(V*)-+D¥)| +-mR, .

f-0is a proper morphism which is induced from the rational map associated
with |m(K(V*)+D*)|. Thus

(f-0)ul mUK(T*)+ D¥)| =fu- 00 | (K 79+ D%) | - faosR o= ful m(K(7%) 4+ D).
Similarly, we get
(fo 0| m(E(T*) 4+ D¥)| = Foa | m(E(T )+ D?)1,

where f, is a proper morphism which is derived from the rational map asso-
ciated with |m(K(V#)4+D*%)|.

Next, we consider another arbitrary completion 171 of V with smooth
boundary D,. We may assume that there exists a proper birational morphism
2: V,—V. Then D;=2"'D. Take a complete non-singular algebraic variety
V¥ and a proper birational morphism g, : V¥—V, satisfying the same condi-
tion as V* and ¢. By choosing a suitable V¥ we can assume that L, =g 1 2- 14
is a morphism. Then f-2, is a morphism derived from the rational map asso-
ciated with |m(K(V¥)+D¥)|. By the same argument as above, we get

(f- 2| (KT + DF)| = fu | m(K(V*)+D¥)].
Q.E.D.

In general, @,, is not a morphism. @, : V— W is induced from @,, and @, (D)=
S {D)=/f(D*) is a closed set of W. We are interested in the behaviors of
A (V)Y and @,(D) under proper birational morphisms and open immersions of
type 3) in § 1.

Let V, be a non-singular algebraic variety and ¢: V,—V a proper bira-
tional morphism. Let 172 denote a completion of V, with smooth boundary D,.
¢ defines a rational map &: V,— V. Consider V¥ and u, as in the previous
argument. ¢ defines a rational map ¢, which may be assumed to be a morphism
(see Fig. 2). Since ¢ is proper and birational, we have the isomorphism:

o*: To(V) 2, T(Vs),

which defines the isomorphism ¢: W—W. By the logarithmic ramification
formula,
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|m(K(VE)+D8) | =¢* I m(K(V*)+D%)|+mR,, .
Then
il VoY= fox| m{K(VE)+D5)|
=S P* | m(K(V)+D¥) | +ms xR,
=fi|m(K(V¥)+D%) | +mfs$*R,,
=fedu(V).
Moreover, ¢f,(DF)=r¢¢ *(D*)=f(D*). Thus we obtain

PROPOSITION 2. For a proper birational morphism ¢: V,—V, we have the

isomorphism ¢ : W—W, which satisfies
9[’*(/11%( Vz)):/lm< V) 2
$O(D)=0,.(D).

Let Z be a closed subset of V of codimension =2. By Z we denote the
closure of Z in V. Perform a finite succession of monoidal transformations on
V with non-singular centers in Z. Then we have a proper birational morphism
J75 V5V 'such that V* is non-singular and g '(D)+Z* Z* being the closure
of #{(Z) in V* has only simple normal crossings. In other words, V*is a
completion of V*=V—Z with smooth boundary g '(D)+Z*. Then we have

PROPOSITION 3.
Supp(An(V—2)s)=Supp(An(V)an) Z f+(Z*)
0, Z2UD)=0,(D)D.(Z).
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Here, the symbol A, indicates the fixed part of a linear system A.
PrOOF. We may assume that @),-x is a morphism f. Then by definition,
we get
Au(VY=Fs | m(E(V*)-+ u (D))
=¥ |m(K(V)+D)| +fumR,,
and
An(V—=2)=Fi | m(K(V¥) 4 (D) +2%)]
= F(lm(K(V*)+ (D)) | +mZ%)
=Au(V)+mfo(Z%).
Hence Supp (/Im(V—Z)ﬁx):Supp(/lm(V)ﬁi)Uf*(Z*). On the other hand, since Z*
is the closure of p'(Z), we have Z*<FK,. Thus
A (Warzmfe(Z%)  and so Supp An(V)axDf«(Z%) .

Accordingly, Supp(4,(V—2)5)=Supp(4.(V)s,). The latter part of Proposition
3 is obvious. Q.E.D.

§ 3. Proof of Theorem 2.

Let ¢: V—W be a WPB-map. Then by definition there are algebraic
varieties V,=V, V,, -, V,=Y and rational maps ¢;: V,—V;_; each of which is
one of the four types 1),2),3),4) in §1 such that ¢==¢,---¢;. Considering non-
singular models, we may assume that, all V; are non-singular. Let V be a
completion of V with smooth boundary D. Choose m>0 such that @,=0, y:
V—0,(V) is birational, since &(V)=n. By @: V—X=0,(V), we denote the
normalization of @,,: V—0,(V). ¢; induces the linear isomorphism T,(V; )=
T.(V;), which defines the isomorphism ¢;: (D,,L(Vj)’é@m(vj_l)’. Here Vj is a
completion of V; with smooth boundary D; and Tn(V;)=HO(mK(V)+D)).
Then by Propositions 1 and 2,

‘,[’j (Supp Al Vj)ﬁx):SUpP An( Vj—l)ﬁx
and if ¢; is a proper birational morphism, then
PAOP(DN=0F(D;.),

where @3 is the normalization of the rational map associated to |m(K( Vj)—i—Dj)].
If ¢, is the inverse of a proper birational morphism, then

GTHPL(D; )=(P#(D,)) .

On the other hand, if ¢;: V;=V,; ,—Z,.,CV,., is the open immersion with
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codimension Z;_,=2, then @P=0¢>, $;=id and
DD )=04(Z;_,\ID; )=04(D; )IOG(Z,;_,).
Therefore, letting X=0,(V), S=0,(7) and ¢=¢,¢,: S—X we have
¢ (Supp An(Y)ax) =Supp (AnV)sx)
“ {and HOR(DY)+A=D(D)+ 4’

where 4 and 4’ are sums of closures of certain @Y(Z;). Since g=/f-u: Y-V
is a morphism, we may assume that §: ¥Y—V is a morphism after changing ¥
if necessary. g induces the linear isomorphism T,(V)XT,(Y) which defines the
isomorphism %: S—X. Then writing

2y=Supp 4n(V)ax, 2v=SuppAn(V)sx and Dy=D,,

we get

nM2y)=2, and DC3(Dy).
Hence

0,.(D)CP,.2(Dy)=hDL(Dy) .
Put Fy=the purely 1-codimensional part of @P(Dy)
and Fy=the purely l-codimensional part of @'(D).
Then,

WEyUFp)DE,UF, .
Moreover, by (*) we obtain
H(ZyUFp) =3, UFy .
Since 4 and ¢ are isomorphisms, we have
hp 2y UF) =Yy IFp) D, UFy .

The isomorphism p=h¢™': X—X satisfles 7(2,\JFy)=23,\JF, by virtue of the
following

LEMMA. Let X be a noetherian space and F a closed subset of X. If an
wsomorphism n: X—X satisfies n(F)DF, then n(F)=F.

Proor. We have a descending chain of closed subsets: FDyp 'FDy7°F
D---. Since X is noetherian, there is an »>0 such that » "(F)=7"""'(F). Hence
n(F)=F. Q.E.D.

Therefore, any WSB-map f of V into itself induces n= L= {as PGL(P (V) B);
a (VY =0,(VY,a(XVF)=2,UF,, & being the automorphism of X=0,(V)’
induced from «a}. Thus we have the group homomorphism By : WSB(V)—.C
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such that B,(f)=%. Since &), : V—X=0,(V) is birational, By is injective.
Hence if WSB(V) were not a finite group, the affine algebraic group £ would
have a non-trivial connected component ¢. Thus

GCAut (X—2,UFy).

Thanks to Aut{X—2,UF,)CAut (Reg (X)—2,\UF}), we have ¢C
Aut (Reg X—2,UF},). Hence

F(Reg X—2 ,UF,)<n.
Since X is normal, codim (@,(D)—F,)=2. We have
£(Reg X— 2, VO (D))=F(Reg X—2,UF,)<n.
Moreover,
HX—0, (DN X—-2, VO, (D))=&(Reg X3,V (D) <n.

On the other hand, setting V,= V—(D;;l(@;n(D))CV, we have a proper birational
morphism @, V,: Vo—X—0,(D). Hence

n=k(V)S&(V)=(X—0n(D)<n,

which is a contradiction.

§4. Minimality of affine algebraic varieties and quasi-abelian varieties.

THEOREM 3. A WSR-map ¢ of a normal variety V (resp. non-singular
variety V) into an affine algebraic variety A (resp. a quasi-abelian variety) is, a
morphism.,

ProOF. By definition, there is a WPB-map ¢: Y—V such that ¢-¢=g is
a morphism Y—A. By the definition of WPB-map, there are algebraic varie-
ties and rational maps as follows:

¢ ¢
Y=v, AR Vi e > V> Vo=V,
=1y .

We use the induction on /. Hence a rational map ¢,—=¢-¢,: V;—A is a mor-
phism. If ¢7! is a morphism, ¢ is of course a morphism. If ¢, is a proper
birational morphism, then ¢ is strictly rational and hence ¢ is a morphism.
If ¢,: Vi=V—ZCV, Z being a closed subset with codimension =2, is an open im-
mersion, ¢,: V—Z—A extends to a morphism V—A, which is ¢. In the case
where A is a quasi-abelian variety, we assume V to be non-singular. Then it
is clear that Y, V,_,, -+, V, could be assumed to be non-singular. Hence by the
similar argument as above, we complete the proof.
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COROLLARY. Let V, and V, be affine algebraic varieties. Then V, is WPB-
equivalent to V, if and only if the normalization of Vi is isomorphic to that of
V.

Example. Let V be an affine normal algebraic variety of dimension =2.
Take a few points p,, -, P, V. Then

Aut (V—(py, -, pr))=P Bir (V—(ps, -+, B, )CWPB (V—(py, -, pr)=Aut (V).

$5. Fixed part of A, (V, V).

Let V be a normal algebraic variety with P (V)=1. Take a normal com-
pletion V of V and define a linear system A,(V, 17) on V as follows: Let
" V*—V be a non-singular model of V such that V* is a completion of V¥==p"*(V)
with smooth boundary D=V*—V* Then a linear system /z*[nz(K(V*)+D)I
does not depend on the choice of V*, which we call the logarithmic m-canonical
linear system of V. And we write this as A,(V, ).

PROPOSITION 3. Let V be a normal variety with P.(V)=1 and ¢ a proper
birational map of W into V, W being a non-singular algebraic variety. Suppose
that there is a closed subset Z of W with codimension =2 such that ¢(Z)
contains an effective divisor H. Then the closure Hin V is a component of

A/ mY(An(V, V)a)-

PrROOF. Let W be a completion of W with smooth boundary Dy. Since
@~ (p| V*): V*—W is a proper birational map, we may assume that P=p (@] V*)
and ¢: V* W are morphisms after changing ¢ suitably. From the logarithmic
ramification formula, it follows that

m(K(V¥)+ Dy~ m(K(W)+ Dy) +mR, .

Then
AV, Y= pgp* | m(K(T)+ Dy )| +mpsR,, .
Since (z] V) (@p(Z)=¢ HZ)NV* is an effective divisor, we have
R,=the closure of ¢~*(Z)NV* in 7.
Hence

AV, Mgz mpRy=mH.
Q.E.D.

COROLLARY. Let V be a non-singular algebraic surface with P,(V)=1 and
suppoe A (V, V)ex=0, V being a normal completion of V. A WPB-map ¢ :W—V,
W being non-singular, turns out to be a morphism. Hence, WPB(V)=Aut(V).
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§ 6. Saturated equivalence and W~PB-equivalence.

Let R be a subset of the set of birational maps which defines an equiva-
lence relation R of algebraic varieties. For simplicity, we write R=R. We say
that R is saturated if R satisfies the following property (S): Let V and W
be algebraic varieties and f: V—W a morphism. If there exist an algebraic
variety U and a morphism g: U—V or A: W—U such that f-geR or h-feU,
respectively, then f and g or % belong to R.

For example, the proper birational equivalence is saturated. However, WPB
is not so. Hence, put

W={f: V—> W, there exist U and g or % such that
f-g=WPB or h-feWPB, respectively}.

Note that if f€9¥, then we have, for any M=(m, ---, m,), n-being dim V,
Pu(U)zP (V)= P y(W)=Py(U)
or
Pu(V)ZPy(W)zPy(U)=Py(V).
Hence P, (V)=P(W). Define
WWPB={fifn; [ EW),

which defines a WWPB-equivalence. Needless to say, Py is a WWPB-invariant.
In the same way as in §§ 1, 2, 3, we can define WWPB-map, WWSR-map, WWSB-
map; WWSB(V), WWPB(V). We have the following

THEOREM 4. If V is of hyperbolic type, then WWSB(V) is a finite group and
hence WWSB(V)=WWPB(V).

Proof is easy and omitted.

THEOREM 5. Let V be an algebraic variety of dimension n=2 or 3. Suppose
that E(V)=k(V)=0 and ¢(V)=n. Then V is WWPB-equivalent to an abelian
variety.

Proor. We may assume that V is non-singular. By V we denote a com-
pletion of V with smooth boundary D. The Albanese map «: V- is a
birational morphism by Ueno’s Theorem [5]. Put F=a(D). Then by Theorem 5
[3], codim F=2. Therefore

F—a(F)CV 2> A—F, a° being a|V.
Since (V—a Y(F)—A—F)ePB and (A—FcC_., A)WPB, a° belongs to 9. Hence
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.. the quasi-Albanese map ay of V is WWPB-map. Q.E.D.

WWPB may not be saturated. We introduce a sequence of birational
equivalences of certain kinds:
W PB=WW" PPB.

Moreover, we have the notion of W”PB-map, W’SB-map, W'PB(V), W7"SB(V).
Finally, W*PB=\UW"PB is introduced. Then it is clear that W*PB is satu-
rated. ’

133,(V) is a W*PB-invariant. We have the following final

THEOREM 6. If V is of hyperbolic type, then W'SB(V) is a finite group.
Hence W=SB(V)=W=PB(V).

We can prove the minimality of affine varieties and quasi-abelian varieties.

PROPOSITION 4. A W*SR-map ¢ of a normal algebraic variety V (resp. non-
singular variety) into an affine variety A (resp. a quasi-abelian variety) turns out
to be a morphism.

Proor. For simplicity, we assume that ¢ is a W*SR-map. We use the
same notation and proof as in the proof of Theorem 3. It suffices to prove
that ¢ is a morphism under the assumption that ¢,—=¢-¢,: V;—A is a mor-
phism. If ¢7! is a morphism, ¢ is of course a morphism. Assume ¢, 9. We
have an algebraic variety U and a morphism g: U—V; such that ¢,-geWPB
or a morphism 4: V—U such that 2-¢,cWPB. ¢,-g is a morphism U—A such
that g-¢,=WPB. Hence by Theorem 3, ¢ turns out to be a morphism. Next,
we consider A. Then take the normalization p: U'—U of U. We have a
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morphism 4’: V—U’ derived from k. Then A’-¢,€WPB and so ¢- A" : U'—A
is a morphism by Theorem 3. Hence ¢ turns out to a morphism. The similar
argument will do for quasi-abelian varieties. Q.E.D.

REMARK. It is expected that the following statements for an algebraic
variety V of dimension n are equivalent to each other:

a) V is W?PB-equivalent to a quasi-abelian variety,

a) V is W=PB-equivalent to a quasi-abelian variety,

b) &#(V)=0 and ¢(V)=n,

¢) dim W*PB(V)=n and #(V)=0.
We have seen that a)=a)’,a)’=>b) and c).
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