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The purpose of this note is to prove a theorem on the propagation of ana-
lyticity of hyperfunction solutions of general systems of linear differential equations
with constant coefficients. This theorem is proved in Kawai [1] Theorem 5.2.1 in
a little more precise form when the parameter k used in the theorem is equal to
1. There we have used the theory of Fourier hyperfunctions and an inequality
due to Malgrange and Hérmander on the division of holomorphic functions by a
polynomial. The proof of the theorem given in this note is entirely different from
the one given in our previous paper Kawai [1], though it will be possible to modi-
fy the proof given in Kawai [1] to prove the general case treated in this note.
The present writer believes that the proof given in this note is the clearest one
of this sort.

Note that this theorem is proved for distribution solutions by Palamodov [1]
§15.2° by the method of a priori estimate. We follow his reasonings as for the
algebraic part, i.e., use his lemma in p. 412 of Palamodov [1], which is obvious
intuitively. We use the same notations as in Palamodov [1] and refer the reader
to the book about their definitions.

THEOREM. Let a (P-module M satisfy Ext' (M, P)=0 for i=0, ---, k—1,1%
k<n, where P denotes the polynomial ring in n variables over C. Denote by I
a compact polyhedron in R", by I',, an open meighbourhood of the (n—Fk)-dimen-
sional skeleton of II, and by R an open meighbourhood of II. Suppose that u(x)
belongs to Hom (M, B(R2)), where PH(2) denotes the space of hyperfunctions on £2,
which may be considered as a (left)-P-module by the usual action of differentia-
tion. Assume further that u(x) is real analytic in I'n,. Then ulz) 18 real ana-
lytic in a neighbourhood of II.

PROOF. First assume that k=1. Then we can assume that there is a non-
zero polynomial ¢(&,, ---, &,) which vanishes on N(M), the variety associated with
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the P-module M. (See p.138 of Palamodov [1] about the definition of N(M).)
Then applying the lemma in Palamodov [1] p. 412, we find a differential operator
QD) such that QUED)u=0 holds, where @ is a diagonal matrix and its diagonal
elements are sufficiently high powers of ¢. Therefore it is sufficient to prove that,
in general, a hyperfunction v(z) is real analytic in Q if it is real analytic near
the boundary of £, and if it satisfies RGDjv=0 in £ for some linear differential
operator with constant coefficients R(zD). Now let E{x) be an elementary solution
of R(iD), ie., RUDIE=4, whose existence iz well known.

Now consider the following trivial exact sequence (1) of sheaves, where A
and ¢ denote the sheaves of germs of real analytic functions and hyperfunctions
respectively, and 3/ /1 denotes the quotient sheaf.

(1) 0~ A= P —> B A—0.

The mapping s is by definition the natural surjection from B to B/ 4. By the
assumption on v, s(v) has compact support as an element of H®(Q2, B/ A), hence
8(v) can be considered as an element of HY(R", G/ ) if we define it as zero out-
side 2. Since HYR", A)=0, we can find a hyperfunction w(z) on R* such that
8(w)=s(v) holds. Then s(E(:D)w)=0 holds, because w(x) is real analytic in R*\supp s(v)
and R(iDjw=R(iD)v+f holds in 2 with some real analytic function f(z) defined in
£. Thus we have the following equality (2) between sections of sheaf . Note
that the integrations which appear in (2) make sense as integrations along fiber
of sections of sheaf (. (Cf. Sato [1] Theorem 6.5.2.)

(2) wiz)=R(iD,) j Elz—y)wly)dy =RGD.) SE(y)w(x—y)dy
= SE('y)R(iDz)zvtv—-y)dy:O .

Therefore we conclude that w(x) is real analytic on R* and this proves that u(z)
is real analytic in 2 by the definition of w(x).

Thus we have proved the theorem in the case k=1.

Let us now suppose that k>1 and use the induction on k.

Let « be an arbitrary (n—k+1)-dimensional face of the polyhedron 77, and L
be a linear variety of the same dimension containing #. In R* we choose a system
of coordinates so that the axes z,,---,z, lie in L. By the assumptions of the
theorem we may suppose without loss of generality that N(M) is normally placed
(in the sense of Palamodov [1]). Moreover we may assume without loss of gener-
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ality that L={z,= -+ =2,.,=1} for the sake of simplicity. Hence we can find a
non-zero polynomial g¢(&;, --+,&,) which vanishes on N(M). Then applying the
lemma in p.412 of Palamodov [1] again, we can find a diagonal matrix of size
sxs, which contains in its diagonal a sufficiently high power of ¢ and for which
QiD,)u=0 holds. Note that Q(iD.+) contains only differentiations with respect
to the variables z”={x,, ---, &) by the definition. We also denote (x, - -, ®i-1)
by 2’ in the sequel. By the assumption on 2 we may assume that QD,)u(z}=0
holds in

V:{x,! le_1!<51 zzl» Tt k*—l}x{x”! {3‘/}'!<14“S, Jxky "‘!n’} ’

where ¢ is a positive constant. Moreover choosing the constant ¢ sufficiently small
we can assume that V\W contains I',.,, where W is by definition the set

'] =1 <e, =1, -+, k=1 x{z"] |2}l S1—¢, j=Fk, -+, n} .

Now we use the flabbiness of sheaf @3/ A, which obviously follows from the flab-
biness of sheaf ¢} and the vanishing of cohomology group H'(w, (A) for any open
set w in R" (Sato’s remark). (Note that the flabbiness of sheaf B/ A trivially fol-
lows from the flabbiness of sheaf  (Kashiwara [1].) Then we can find an s-tuple
of hyperfunctions w(z) which satisfies the following conditions:

{i) supps(w) is contained in the closure of V,

{(i1) s{w)=s{u) holds in V,

and

{iii) supp s{Qw) is contained in the set

B={2'] |2~ 1]=¢, =1, ---, k=1}x{2"] |z;|S1+e, j=Fk, -, 0.

Since the matrix @ is diagonal, it is sufficient to show that any ecomponent of
wlx), e.g., w(r), the first component of w(z), is real analytic in V. By the as-
sumption of w(z) we can assume that q(iD,~)?w,{x) is real analytic outside B for
some non-negative integer p. Let E(z”) be an elementary solution of q(iD,+)” on
R e, satisfy q(iD,)’E(x")=0d(z"). Now just in the same way as in the
proof of the case k=1, we have the following equality (3) among sections of sheaf
C. There 8{z’) denotes the delta function in (k—1)-variables.

(3) w; () =q(iD:~)"Sw1(y’, y")o(z —y ) Elx” —y")dy'dy”

=q<iD,~)’§wx(x'—y', o ")y Bly")dy'dy”
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ﬁq(iDz")’.{wl(fc’, z” —y")Ely")dy”
- 50(?:]):”) (@', 3 ") Ely")dy" .

By the condition (iii) on w(z) mentioned ahove we conclude that the last term in
the equality (3) vanishes as far as x belongs to V. Therefore w,(z) is real analytic
in V, hence u,(z}, the first component of u(x), is real analytic in V. Thus we
have proved that wu(z) is real analytic in a neighbourhood of (n—(k—1))-dimen-
sional skeleton of /7. Then we can apply the induction hypothesis. This completes
the proof of the theorem.

REMARK. As is obvious from the method of the proof given ahove, it is suf-
ficient to assume that s(u) belongs to Hom (M, (B/_A)(2)).
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