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Introduction.

Let H, be the direct product of = upper half planes and G the connected
component of the identity of the group of all g=(¢®,---,g™) with g% ¢ GL,(R).
We consider G as a group of transformations in H,. Let I" be a subgroup of G
operating on H, discontinuously with a compact fundamental domain, and satisfying
(G.1) and (G.2) (§1). We fix once for all an element « in G such that I and
al’a® are commensurable, and denote by I/ the subgroup of G generated by I
and «. Let y be a representation of I’ by unitary matrices. Let {k}i=: be the
set of positive integers. We assume that y satisfies the conditions (R.1) and (R.2)
in §1. Let T=T{Ial") be the Hecke operator acting on the space of automorphic
forms of type (I, {k:},x) (see below). For the case of all k;>2, the trace of T
has been explicitly calculated in Shimizu [8]". Also for the case of n=1, k=2,
the trace has been ealculated in our previous paper [5]V. To calculate the trace
for the remaining case where at least one of k; is 2, in this note we shall regard
all k; being equal to 2 as 2+s (s>0); we carry T over to a subspace of Lz(ﬁ,“ I
isomorphic to the space of automorphic forms (§1), and extend its action to
L¥(H,,I"). We consider an integral operator in L2(H,, ") whose kernel function
depends on k; and s (§3), and join it with T. We follow the method of Selberg
(6], and get the trace formula for our case, letting s tend towards zero.

88 1-2 are concerned with preliminary statements. In §§3-4 an explicit formula
for the trace of T will be given (Theorem 1). In §5 we shall apply Theorem 1 to
some diserete groups which are defined arithmetically and give the trace of the
operator T(q) defined in Shimura [10] (Theorem 2). In §6, as an application of
Theorem 2 we shall see some equations between zeta functions of quaternion
algebras over a totally real algebraic number field, which are obtained in Shimizu
[9] for the case that all £,>2 (Theorems 3, 4).

1 These works treated the problem under the condition that I has a fundamental domain
of finite volume, more generally.
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Notation. Z, Q, R, C and K denote the ring of rational integers, the field
of rational numbers, the field of real numbers, the field of complex numbers and
the division quaternion over R, respectively. R being a ring, E* denotes the
group of all invertible elements in R.

§1. The Heeke operators.

Let H, be the direct product of = upper half planes and consider H,=
H,x(R/2z2)" with elements {(z, ¢), where z={(z",--- ,2™) e H,,¢=(p", ... ,6™)€
R*, ¢ being identified with ¢® +2r. Let G be the connected component of the
identity of the group of all g= (g™, --- ,g™) with g® € GL,(R), and G=G X (R/2zZ)"
with elements (¢,6) (0=, ---,0™)), and it acts on the space (z,¢) as

(g’ 0) (Z, 0) :(g(”Z(U, e, g(n)z(n)’ ¢(1) +arg (C(I)z(l) +d(1}) __0(1!’ cee,
¢(n) +-arg (szm'z +d(n)) _0(1!))

a(i)z(€)+b!i) " a(‘i)’ b(s’}
g(i)z(i):w—-—-'—w— eyl g\t) _ ) .
C(l)z(1)+d(l) < <C(“, d(i)>>
We denote by Z(G) the center of G and by ¢ the canonical homomorphism of G

onto G/Z(G). Let I' be a subgroup of G operating on H, discontinuously with a
compact fundamental domain. It is assumed through out this paper that

(G.1) (") is an irreducible® subgroup of ¢(G),
(G.2) I contains all elements of the intersection of Z(G) and the direct product
of SL,(R)*.

Then the subgroup I"=7"x{0} of G acts on H, discontinuously with a eompact funda-
mental domain. We identify I” with I’; so we shall write I” instead of . We
fix once and for all an element a in G such that al’a™! is commensurable with
I', and denote by I' the subgroup of G generated by I" and «. Let x be a repre-
sentation of 7'/ by unitary matrices of degree v and denote by V=C" the represen-
tation space of x. We assume that

(R.1) the kernel I', of 3 in [" is of finite index in I",
R2) x(e):f1 (sgne@)k, for e ZUN=ZG)NT .

By an automorphic form of type (I°, {kd, ), we understand a function F{z) on H,

o Cf. [8].
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taking values in the representation space of %, which satisfies the following condi-

tions:
(A1) F(2) is holomorphic on H,,
(A.2) Fly2)=x(nilr,2'Flz), for rerl .

Here, jlg,2) denotes ﬁ_[ (W2 4 duy-*i(det g )*i/2, for ge G and z¢ H,. The linear
space consisting of all F(z) is denoted by o/(I", {k},x). By the definition, Flz) is
invariant under the action of the elements of Z(F). We now define the Hecke
operator T{'al’) in /(" {kd,n). Let Ial'= U a.” be the right I"-cosets decom-
position of I'al’. For Fe o/ (I, {ki}, 1), we set

(L) T(Tal)Fi)= £ tle)ilar’, 2Pl

Let L:(H,, I') be the space of functions Flz, ¢) on H, taking values in €* and
satisfying the following conditions:

filz, ¢
(i) Flz, ¢)=( ), each fi(z, #) is a measurable function on H, taking
Solz, $)
values in C,
(il) Flrlz, 8)=x(r)Flz, ¢), for rer,
F_._,,_,A d‘b“’dy‘ i)

, dg=T1 d¢“>).
y(s)z i=1
Put G,=SL.(R)x - -+ XSLy{R) (n-times) and G1:G1><(R/2:r2)". Let C=(H,) be the
space of C~-class functions on H, taking values in €. It is well known that the

ring of all G,-invariant differential operators on C*(H,) is generated by

9 Ty i (82 2° ik 5 0 g .
(1.2) -5;5—(;—)-,11‘ =y (61?‘“2 + aymz>+y( : arm g (Isizn).

Generally, for a G,-invariant differential-integral operator L in C=(H,) and Fe
L2 H,, I'), we define LF simply by

Lf,
LFe( : )
qu

if Lf,,---,Lf, are well-defined and if LF¢ LAH,I'). Insucha case, we regard
.. 2
L as an operator in L¥H,, I'). Thus =575, 4% and ete. will also be considered

39_5(1) ’

as operators in L¥H,,I").



360 Hirofumi ISRIKAWA

§2. The decomposition of L*(H,,I).

We shall give the classification of eigen spaces of the differential operators
given by (1.2) in LXH,, I'), with the aid of the representation theory of groups.
Since Bargmann has given the classification of irreducible unitary representations
of SL,(R), we get the classification of those of G, as tenser product representations.

Now, we make each element g ¢ G, correspond a unitary operator 7', in L* B, I
of the following kind:

Tplag ) =9lag'y) ,

where

Laoon/yhiz, 0 €os o', —sin 95‘1*"‘)) . - —
= ol — ' ) 3 NICIEY N Ty Y (H
w. g <<O, 1 )( 0 ,y"”‘”2><sin ¢ cos Pt ( y (6

is the canonical isomorphism of G, onto H,. Put K=SO,(R)X --- XSO.(R) (n-
times) and denote a one-dimensional representation of K by

08 0¥, —sin g% — .
"”‘:m((c' o 0»>>‘“’exp(-«/—1 S om0y, (m=(mw, -, m™)c 2.
sin @', cos g i<t

As is well known, L2 H,,I") decomposes into the sum of a countable number of
irreducible representations and each irreducible representation enters into L¥(H,,I")
with finite multiplicity. Let (7, %) be an irreducible representation of G,. Put

o=l e |\ Txlp=0,(s)p, for all xc K},
(-9?’61%3 o).
Then .7, is a dense set of analytic vectors in 577 Denote by ®, U(®) and by
U(®)¢ the Lie algebra of G,, the universal envelopping algebra of @ and Ui®)QC,

respectively. Then as is known, we can give the differential representation of T
in %, by

T(X)g"”:(“éit‘ Tcxp{:x)59> N for Xc¢@®.
t=0

It is well known that this representation is able to be extended to the representa-
tion of U{®) and then to that of U{®)¢, C-linearly. Choose a basis of sl(2, R) as

’ ’0 3
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Put

Vi=X+v-1X, V-=X,—v-1X, and D=XI+Xi-X:.
For each 17, define elements of U(®)¢ by:
)

Xoi=(0, 0, 5,0, ---,0),

Vi=(0,---,0,V%0,---,0),

D;=(0,---,0,D,0,.-- 0.
If ¢ is an element of 7 (s,), we get

T(X;)e=v~1mw¥e,

T(VH € F(Onaio-mo.0emmn) -
e e
2

Now, we define the subspace M(m,2) of L¥H,,I") consisting of ¢ satisfying
the following conditions:

(1) Tro=o,(r)e, for sc K,

(i) T(D)p=42%¢, (1Zi<n).
We carry out the same argument as [5,§2.2] substituting X, ,;, V&, D; for X, V*,
D, respectively. In our case of n>1, we take into consideration the following
fact. Suppose there exists a function ¢ in M{m, 1) with m®=0 and 1% =0 for
all 7¢I which is a subset of [1,n], then ¢ depends only on (29,6} for jeJ=
[1,n]—I 1t follows from Proposition 1.1 in Matsushima and Shimura® that the
projection of I", into the partial product of G corresponding to j¢J is dense in
the partial product. As ¢ is an eigenfunction of 49 (j¢J), ¢ is constant and
m% =0 for jeJ. Now we get the following proposition.

PROPOSITION 1. If I' end y satisfy the conditions given in §1, the classifi-

cation of the eigen spaces in LXH,,I') for each eigenvalue-set ({—v/—1m®}, (29}
9 - C. . . . . .
of ((W)’ (4 ‘”)) which is restricted within non-negative m“’s is given by the

Table 1. In the series A, 2" ranges over all eigenvalues of 4% satisfying M({5®},
{)#{0}, (690=0,1), except "=0, ——%. In the series C, ;" ranges over all eigen-
values of 4% satisfying Mo @}, {4 9}) = {0}, except A =0, —é—.

®  Matsushima, Y. and G. Shimura, On the cohomology groups attached to certain vector
valued differential forms on the produet of the upper half planes, Ann. of Math. 78
(1963), 417-449.
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Table 1.
Series® § fm ¥} {2} E Isomorphic space to M{{m ¥}, {19})
| m@=0@), (k=even) N o ,
) 3N W} {8 ) = 1
A mI=1(2), (kes=o0dd) % M({p@L (7 (39=0 or 1)
m® =l +2r® S R |
@) e = s :
B (r9=0,1,2, ) =gk gk LT, thik, )
mW=0(2), lk;=even) e
C m®=1(), (ki=odd) O M3, kj), 12,9, 260)
m =f 209 Z‘i’x;{kﬁ——gk,»
D 0 | 0 vr

Here, V' is the subspace of V of which elements are stable under the action of I

the isomorphism of M({k;}, {%k'}é—k,}) onto /(T {kil, x) is given by

@.1) Flz, 8)— 1 (exp (—v/ =1 kip®)yok2)=1F(z, 9) ,

i=1

tor Flz, )€ M (fks), {%f k?—-%k;}).

§3. An operator K,.

In order to calculate the trace of Hecke operators acting on o/ (I, {k.}, %), we
shall write down the action of the Hecke operators carried over to the space

(o 11

by the canonical isomorphism (2.1), and extend it to the space L¥H,,I"). Thus

d

(3.1) T(ral')F(z, ¢)= T y{au) Fla; (2, ¢))

#=1

for Fe L¥H,,I"). If necessary exchanging the indexes of {k;}, we can assume,
from now on, that k= ... =k =2,k;>2 (no<jsm). For the calculation of its
trace we consider a G-invariant integral operator k, in C=(H,) defined by a point
pair invariant kernel: for s>0,

¢ Series A, B and C correspond to the tenser product representations of principal andfor
supplementary series, discrete series, and discrete and principal andfor supplementary
series, respectively,
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ki(z, 6,2, ¢) = TL(P (29, 9@, 270, ¢ ©) Y5 kP (29, 2/ 1))

)
+=1

n
XTI k%929, @t 2@ iy,

j:no+l

82) ka2, ¢)=exn (~2v =1 ig-g)| I ]2 .

z—2)2v =1 z2—2')2v/ =1’
RPN % ksl
e )= e —i
k92,8, ¢ ) =exp (—k,v/ —1 (é—eﬁ’))[ (z_«%//lz);ff ]kj '
A — S
els)= 2+4s

By the general theory, every element in M{{m}, {2%9}) is an eigenfunction of k,

and its eigenvalue depends only on ({m®},{2¥}); so we write the eigenvalue of

k, with h({m®},{2%}). We can express the operator T(I'al’), restricted to

M({{m™}, {(2%]), by k, in the following way. '
T(I'al’)F(z, ) =h({m"}, {20})

(3.3) d -
X Z Sﬁ X(aﬂ)ka(al‘ (2, ¢)’ Z’, ¢I)F(z,) ¢,)dz,d¢, .

fi=1

But for s>0, the kernel k,(z,¢,2',¢') is of (a)-(b) type in the sense of Selberg [6],
therefore

Er k(2 8, r(z', ¢'))

TC

is absolutely convergent for all (2, ¢), (z/,¢') ¢ H,, and uniformly if (z,¢) and (z’,¢')
are contained in some compact subregion of H,. Now we have

5 S Yankazilz, ), 2, ¢')dz'dg’
=§ K,(z,¢,2/,¢')dz'd¢’
where

Kz, ¢,2,¢)= 2 rx(g)k,(z, ?,9(z',¢') .

gela
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As the fundamental domain of I" is compact, the operator K, with the kernel
K,(2,¢,2',¢") is completely continuous. The next proposition is proved by the
direct calculations.

PROPOSITION 2. The eigenvalue h,({m®}, 39}) for M({m®}, {A%)) in which k,
does mot vanish is given in ‘Table 1I'. Here, the series A and D appear only
if all k=2,

Table II.
) ) Trace of
. . i G {4 i
Serles {m({)} {x(z)} Elgenvalueo?’](c{:n }; {'2 }) M(%;n](lz)},

o {29}
. Cls) \"
("8”2 [‘(1+s))
) = . n .
A m 0or 2 2(;’)-_—-1:)‘) XI‘I I’(i.*,aé‘)) tm,p

(1<i<n)
x(*3% stz -ay)

(+3) ()

alfk)=1 2.2

I'(l+s)
m =k L1 1
@) =——}2_ =
B tgism | AT g R p(}_i‘i) o to
2
=S 2
r(2+§)
altk)= 11 (—2-20 22
i€r I’(1+s)
mi=0 or 2 ;
A6 = 8 - s+2 G
Gel) ’ Xf(z +off) ( ~o))

° 1 [, 02 ()

mi =k; a=tp Ly Ixiedisng 2.9
Ged) 472 ra+ar(2

X I (2a)
JEJ, I>ng

) 1))

D miY =0 A =0 ~ 872 : 121
ru+ar(2+5

) | -
)
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The notations used in this table is defined as follows.

1 1+s

r{=

8 <2>F< 2 )
2 s ’

It 2+-—>-

(2+5)

A :5{5)(5<i) _1) ,

c(s)=

a(lk})=(4z) II (ki—1),

1

e B

4,450 are as same as defined in Table 1. In the series C, I denotes a subset of

{1,---,m¢ and TUJ={1,---,n}.
From now on, for simplicity, we regard that the series A is concluded in the
series C. Considering the trace of K, in L*H,,I'), we obtain

G K=l e g Yok 3 ), D 220,01, 10011

where
“10--- otherwise.

By Selberg [6], the second term on the right hand side of (3.4) is absolutely con-
vergent. We fix a positive number s, which is small enough. Let N be a positive
number which is large enough, and put

U={u+«/:i v; 0§u§é—+so, IvlgN} .

In U,|I'| has the maximal value ¢; and the minimal value ¢,#0. For 0<s<s,,
we have

B(———~»1+s IOy B Y v>§<&>23<3—ﬂ+«/l'iv,li§“~—~/ml ”v) :
2 2 e 2 2
(lv]=N).

On the other hand, when |v|>N, Stirling’s formula for I"-function gives

B4 et Byt ap(He i L),

Then, as lifol ¢(s)=0, we have li_’rgz( E)h.({m“’},{l“,‘l’ Jtmor=0. Now we obtain
# s m,p’

(3.5) lim tr K, = (87%)"t,+ d,( —8x%)*¢; .

840
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§4. An explicit formula for tr T(I"al).

In this section, we shall caleulate the trace of T(I'al’) in LYH,, I'). Define
the equivalence relation of elements of I'al” by

4.1) g~g =g =eygrt for rel,ec Z(IN).
Let [g) denote an equivalence class in I'al’ containing g, and put
I'igy={re I’ | g=ergr?, {for some ecZ(I'}}.

In these notations, we can write

trS Kb didedi= ¥ <2x)"trx<g)§ ko(2,0, glz, 0))dz .
MNHn

¢leerlar MNHn

For simplicity, we put

Atg9=er trg)| K, 0,9(z, 01z

On account of the assumption of 7" and of [7, Lemma 1.1}, we can classify an
element g, in I"al’ to one of the following types:

i) g.€Z(G),

ii) g, is elliptie,”

iii} g, is hyperbolic,®

iv) g, is mixed.

Case i). Suppose Z(I'al')=Z(G)NIal'+¢ and let g, be an element of Z(I'al').
Then I'al' =g, and Z(I'al')=g,Z(I"). Consequently Z(I'al") consists of a single
equivalence class. We have

Algy, s)=2z)" 1] (sgn gé“)“"S dz tr x(go)
(4.2) i1 Tig\Hn

=(2z)" I1 (sgn gi”)o(I"\HL) tr x(go) ,
where v(I'\H,) denotes the volume of a fundamental domain of I" in H, relative
to dz.
Case ii) g, is elliptic. Consider a linear transformation that maps H, into
the product of the m unit circles, and a fixed point of g, to its origin. Let (¥

® We say that an element g of G is elliptic or hyperbolic according as all the g are of
corresponding types in the usual sense, where the identify is excluded from all of these
types. If g is not the identity and belongs to none of the above types, we say that ¢ is
mixed.
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and 79 be the eigenvalues of gi” and suppose that

(i) ‘) i1
gzt 20—z
{4.3) [0} “_m‘ =gt T

go z(i) —Z Al t) — %

it)

(z0€ H, is the fixed point of g,). By a simple calculation, we get

o~

2‘._:)7; ﬁt nu’jk‘ux
[{go): Z(I)] =1 T8 —pi

(4.4) I’iﬂng Algo, s)=a({k})? (det go)i-*ii

Case iii}) g, is hyperbolic. We may assume that 0 and oo are fixed point of
go- As is well known that I'{g,) has n independent generators; let {ri, - ,7a} be
a system of such generators; (r;z )“"~X§~"’z<“>. Put 1" =log 2. Writing 21" =
pWexp (V' —10%) and log p¥ =ul{" -+ --- +u,ll’ with w; ¢ R, the set of z such
that 0<u; <1 (1=i<n) and 0O <z (1<i<n) forms a fundamental domain of
I'(go). 1t follows from the previous paper [5] that A(g,,s)=0.

Case iv) g, is mixed. At least one of ¢¢”’s is of hyperbolic in the usual sense.

[

We assume go" is of hyperbolic. If k;=2, it also follows from [5] that Alge,s)=

0. If k>2, Algo,s) vanishes following from the equation:

i (sin @)%i-2 ~
So (exp (v —160)—2exp (—v/ —1 9))k;d0“0 .

Noting that ¢,= Z trvr Y(as), we get Theorem 1.
THEOREM 1. If k:=2, the trace of T(I'al’) is given by the following formula:

Tr T(Ial’) =6sa({k)v(P\IL,) 1 I (sgn g5”)% tr (g

trylg) & pkt

T ) zuy B e Sy

Ditebirg s &
(det gé”)l“"‘"?*‘()g(» 1)7:/_)741 trvp ) .

The notations used in this formula are defined as follows;

5 _{1 ceo if Tal’ NZIG)+¢
""10.-. otherwise ’
... if klz...:]gnzz
62:-‘{ . ’
0.-. otherwise
gel'al’'NZIG),

v(['\H,); the volume of fundamental domain of /" in H, relative to the invariant

» dx(i)d It}
measure dz=[] Yy
i=1 y(:)Z

’
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a‘({ki})3(43)“”}_;1(1&‘—1) s

©; a complete system of inequivalent elliptic elements in I"al” with respect to
the eguivalence relation (4.1).
£, 7™, the eigenvalues of an elliptic element g® satisfying the formula (4.3,

Vi={wc Vizlrlv=v, for yel}.

Let §. be the set of all z=(z™, .-+ ,2™) with 2% ¢ C, Im 290, and G’ the
group of all g=(g™, .-, g™) with ¢g'® ¢ GL,(R), anew. We consider that G’ operates
on F, as the usual way. Now we shall give the trace of Hecke operators operating
on the space of automorphic forms defined on §,. Let I' be a subgroup of G’
operating on §, discontinuously with a compact fundamental domain and satisfying
(G.1) and (G.2) in §1 substituting G’ for G. Let I'* be the group of all yerlI”
such that dety®>0 (1£7=n). We shall choose @€ G and a representation y as
same as in §1. By an automorphic form on &, of type (I', {k:}, %), we understand
a function FYz) on &, taking values in the representation space of y satisfying
(A2) in §1 and (A.1)):

(A1) F(z} is holomorphic on each connected component of ..

Again we denote by o/(I",{k}, z) the linear space consisting of all F{z). Also we
define the Hecke operator T(I"al’} by (1.1).

THEOREM 1. If k;=2, the trace of T(I"al') operating on the space of auto-
morphic forms on &, of type (I, {k}, 1) is given in the following formula:

Tr T(Ial™)=d,a{ik})v(I\F,) IZI (sgn g6 )k tr x(go)
(__

(t')k."—l__,?(i}ki—l

. . rug) & & (i) 1=ki /e
(4.6) 4 [g?%s (Flg ) 70 I G (det g')
7 d
=0l =1 g B i)

The notations used in this formula are the same as in Theorem 1.

Proor. Let §,=H,,---, 9 be the connected components of §,. Each rerl”
induces a permutation of {{),}?11 and this permutation is identity if and only if
reI'*. Therefore the quotient group I'/I"* is identified with a subgroup of
permutations of {$,}. Let o/ (I't,P,;) be the set of holomorphic vector functions
defined on each $; satisfying (A,2) for I'*. If, for some ¢ and j, there exists an
element § of I" such that 6($;)=9;, then the mapping F(z)—y(8)"4(6,2)F(5(z)) gives
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an isomorphism of o/ (I'*,$,) onto o/ (I"*,$:). When there is not such a a4, we
say §; and §; are independent. We observe that there exist exactly 2%[I": I"*}
independent §;, we fix a subset, say {§,, -+, 9/} (f=2%/[[: I'*})); and ROAVARTARY
is canonically isomorphic to the direct sum of the f vector spaces o/ (Ir+,9,) for
such §;. If F, is a fundamental domain of I'* in §;, the union of F= _U!F,» is
obviously a fundamental domain of I” in ¥,. Note that, for an elliptic élzément
g of Ial’,

($ki~1
S k.(z,0,¢glz, O))dz:a({ki})(_l)n—pﬁ _“Z?T_“f_(det guir)imkire
T+igng; i=1 {9 —p
n Rl

S G )1k 2
i=pal Ch“)_,yu") (detg ) ’

if §; is defined by Im2>0 (1<i<p), Im247<0 (p+1<i’<n). Then the trace
formula (4.6) follows from Theorem 1.

§5. Discrete groups defined arithmetically.

5.1. Let @ be a totally real algebraic number field of degree m over Q. Let
g be the ring of integers in @ and E, the group of units in g. We denote by oW
the completion of @ with respect to the infinite valuations pw; of @. Let A4 be
an indefinite quaternion algebra of discriminant & over @ and assume once for all
that A® =M,(R) for 1<i<n and A9 =K for n<i<m (A9=AQ®"). Let & be
the idele group of A. The p-component of an element z in & is denoted by x,.
Let © be an order in A of the level 68’ and U the group of all idéles z such that
z, is a unit of O, for all finite prime p. We limite ourselves to orders © such
that the level 65’ is square-free. Put I'=UnNA*. Every z in J is made to act on
& by putting

2(2) = (@0 (), -+, 2@z ™)

Then I" satisfies the assumption (G.1) and (G.2). If and only if A is a division
algebra, I'\F, is compact. From now on, we assume that 4 is a division algebra.

Let % be an integral two-sided ©-ideal of norm a, and p a representation of
(O/A)* whieh we consider as a representation of V,={ze¢ Xz, € U, for all p dividing
al by means of a natural homomorphism of V, onto (D/2)*. Let ¢, n+1gigsm)
be an irreducible unitary representation of X*. We put

(6.1) D) =0(@)RPan (V)R - - Qpm(z™).
Then y satisfies (R.1). We assume that y satisfies also (R.2).



370 Hirofumi ISHIKAWA

J is a finite union of double cosets of U and A* in the following way;
A
{5.2) 3:}) Uz,A*, (w:¢ V,, h is the class number of T).
=1

Put O:=N25'Cyrs, Ui=a7"'Usx; and I'y=A*NU,; for i=1,---,h. Let 7 be the
space of ;,11 automorphic forms on ¥, of type (I",, {k}, x) and .o/ the direct product
f oA, -+, 7. Forzxzec V,and an integral ideal q in g, we denote by T(UxU) and
T(q) the linear operators in . defined as [10, §3.4]. T{q)#0 only if q is a prin-
cipal ideal and only if we can write q=¢g with a totally positive element ¢ in g.
Hence we limit ourselves that q=g¢g and that ¢ is totally positive.
Now, in the case of T(g) we shall consider the part corresponding to the last
term in (4.6), (which is denoted by t;). It follows from Theorem 1’ that if k;=2
(1£1<n), we have

13 9n
b= — Gy~ 1) — tr .+ 2la),
=R g B e
amod]‘;

where B} (q)=lx ¢ D1l N(a)g=q, Nia) is totally positive}; V'7 is defined as same as
in Table I substituting I"7 for I". Firstly we assume that there exists some
J (n<jsm) such that ¢, is not identity. It follows from Proposition 1.1 in
Matsushima and Shimura® that the projection of I'f into A" is dense in A9,
Then we have ¢,=0. Secondly we assume that all ¢; are the identities (n<jgm).
We consider p as a representation of U,=[[0F. [I';, U, denote the subgroups
of "y, U, consisting of elements 7, w such that N(y)=1, N{u,)=1 (for all pla),
respectively. Let E¢ and E, be the subgroup of E, consisting of all totally posi-
tive units and the subgroup of all elements ¢ such that £9>0 for all :>n. It
follows from Eichler’s approximation theorem that, for uc¢ U,, there exists y¢
I'} such that r=u,mod N,) for all p dividing a. Then we have Vri= V”1 for all
A. Let o’ be the restriction of p to Vi, As U/Ul»_ H g7, there exists representa-
tion gy of »1& g;" such that p’(w)=p,(Nu)). If cc Ef ,po( ) is trivial on V7i. TFor

«¢ Bi(g), we can write N(a)=qs (¢€ E7). Again it follows from the approximation
theorem that the number of the representatives of B (q) mod I"'f is equal to the
number of integral D;-ideals having norm q. Then we have

2 tryrppla)=tr, g polq) 2 Nm) 11 (2(N{p*®)-1)(Np)—1)"1-1),

ae B g o0 a1 pi@%a)
amodl“a

(@=Ipe®),
plq
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where
VE(,-‘___{Q,E V; pole)v=v for all c¢ Ed},

LeEmMA 1. [I": I't1=[E;: E{).

Proor. It is obvious that [I': I'*1=[E,: Ei]. We fix a maximal order 9,
containing © and denote by § the conducter of . Let b be an element of E| and
a an element of O such that N{e)=bmod*iNg (here mod* means the multiplica-
tive congruence). It follows from the approximation theorem that there is an
element 8 in O, such that f=amod{ and N()=b. Our lemma is thereby proved.

On the other hand, it follows from [9, Lemma 2.4] that h=m2"""{F;: E\}, I
being the class number of @.

Combining above things with (9,8§3.2-3.3 and Appendix], we obtain

THEOREM 2. Let a=qg be a principal ideal in @ with a totally positive element
g in g. If k=2, the trace T{a) is given by the following Sormula:

Tr T(a)=6(q)(27)"*"2he D3 *4o(2) tr 1’ (q0) Tg (Nw)—1) T (N(p)+1) J;Il (ki —1)(sgn qo")

pid

~alikd, fe ) ~1° Egz i oty s )

X { N)) 1T E(N@*®)—1)(Np)-1)7'=1)

pld,0)

(6.3)

1iq
(n,066")=1

The notations are as follows. h,, D, are &, are the class number of @, the dis-

eriminant of @ over Q and the zeta function of ®, respectively. dlq)=1 if a=qe
for some g, ¢ g and otherwise d(q)=0. o({k},{p;)=1 if all k;=2 and all ¢;’s are
trivial and otherwise a({k:}, {¢,})=0. u runs over all divisors of q, prime to do’.
q=IIp*®. p, is defined as above. 2 is the set of all orders o (taken up to isomor-
phi:;n) in totally imaginary quadratic extensions of @. k(o) is the class number of
o, and w(o) is the index of E, in the group of units ino. Let K be the quadratic
extension of @ containing o; then ¢ is an embedding of the adéle of K into the adéle
of A such that ¢(0,)=¢(K,)ND, for all p; Iq,0) is the set of all ac K—@ such
that ¢(a) is contamed in the union of double cosets Uzl appearing in T(g). Put

X (z)=T0 | N{z®) |52 (1) @Dy, o[z V)@ - - - @Dy —a(x™) .
Here, @, denotes the symmetric tensor representation of GL,(C) of degree k. = is
an element in  such that N D,(z,), is a two-sided O-ideal and of norm r. v is
)

the number of prime divisor of §4'.
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5.2. Here we shall give some numerical examples. Let us take ¢=0Q(+v p)
(p>0). We assume that the class number of @ is one and that ¢ contains a unit
element of norm —1. Let A be a quaternion algebra over @ and assume that A
is unramified at all archimedean prime of ¢. Let © be the maximal order in A.
In this section, we limit ourselves to the case all k;=2 and gq=g. In this situation,
it follows from Theorem 2 that

3/2

dim 7 =20 0,2) T (V)= 1) -1

ol

Y

A4 h(o(s, f)) o(s, f)
I -y (1- (22011,
+ = Z w(o(s. ) (wlos, 1)) )H’ v
Here
s . integers in @, satisfying 4—s? is totally positive,
f . integral ideal in @, satisfying (s?—4)f~? is an integral ideal in 9,

o(s,): the order in K(s)=@¢(~'s?—4) with the discriminant (s?—4){? over @.
The summation runs over all o(s, f) (taken up to isomorphism).

By the functional equation of {,(s), the first term in right hand side of (5.4)
is equal to (1/2){,(—1). If p is a square-free, we can use the explicit formula for
Co{~1) given by Siegel. Note that in the summation of the right hand side of
{5.4) s which satisfies the condition is only 0, 1, +4/2 or =+ 1:t;/ 5,

Considering
the numbers of residue classes for the conductor § of ofs,f) in the principal order
oy(s) which are prime to & in 04(s) and in o(s,f), we get

h{o(s, f)) h{oy(s)) ( < ) )
- = N N{
whols, )~ wionts) )
The consideration of the zeta function of K(s) gives the following lemma.
LEMMA 2. Suppose K(s)=Q(+v p,v —D) with a square-free positive number’D.
Then we get

Hofs)) = (2)5-h{— D)h{ ~pD)
where h(D,) (D€ Z) denotes the class number of Q(v'Dy); the factor 2 appears only
if p=2, D=1,

Summing up above things, we obtain the following formulae.

i) @zQ(VZ)dlmy=~1+uﬁ£I( () —1)+ — H}( (¢<~;‘Z§)))

£

25 (1-(24)),

2l
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where £(6)=3 if 6 is divisible by v/ 2 and otherwise &(3)=5.

ii) 9=Q(+v'5),dim r/_-1+€0—pn( () — 1)+_31_ %(1“( Q}('\/D‘—hg) ))

SIS 0-(),

where {,y is a primitive 10-th root of 1.
i) @=Q(v'p), (p>5; suppose @ satisfies the conditions as above),

dim £/=~1+—;-g0(_1) T{NE-1)+ h{—3p) I (1_< oV —3) ))
pid 6

pié P
+ A2 p (- ().

§6. Zeta functions of quaternion algebras.

6.1. In §6, we admit a definite quaternion as A. Let ki (1<i<m) be non-
negative integers. Let i; be an injection of A into M,(C) (n<<igm). For i>n,
put g (z¥)=|N(z®)|~ "E’QQA-;(L-(CC‘“)) in (5.1).

Firstly, we assume A is a definite quaternion algebra. Let M{o, (ki}) be the
space of all continuous functions f(z) on J, taking values in the representation
space of y’, which satisfy

(6.1) Sluza)=x"(u) f(z),
for all we U,ac A*. Define an endomorphism T(UyU) on Mlp, ki) by
(6.2) T(WyU) fw)=Z 'z flex "2),

for UyU=U 2,U
P
Let us assume all ki=0. Denote by @4, P4 the adéle of @, the infinite part
of @4, respectively. Let ¢ be a character of (fo/(b*(l} gf," ) @F.), and p, the repre-

sentation of T]g; defined in §5.1. For ve VES, ue U, ac A*, put
pla
Jooluz@)=¢(N(x))eo(N(u)v  (1=2<h),
and M,(p) denctes the subspace of M{p, {0}) consisting of such £, for all ¢ and v.
As is well known, [@F: 0*(11 ) (@%e)]=h2™/[Ey: ES]. If g is a totally positive
P
element in g the trace t; of T{qg) restricted on M,{p) is given by

’ 2m

(6.3) tx=m;]*hotrvsgpo(m > N I (2Np®)-1)(Np)-1)"-1),

nigg plHd’,q9)
(gg= II p*®).

(n,08")=1
pigg
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Note that, unless an ideal g can be written in the form g¢g with a totally positive
element g of g, ¢, vanishes and the trace of T(a) on M(p, {0}) also vanishes. From
now on, if all ki=0 we consider the trace of T(q) on M'(p,{0})) which is the or-
thogonal complement of M(p) in M(p, {0}) instead of M(p, {0}), and we also express
the restriction of T(q) to M’{p,{0}) by T{a).

Secondly, we assume A is an indefinite division algebra. Let 571 be the space
of all automorphic forms on §, of type (I'z, ki+2, -, kn+2}, ) and 7 (p, {K)) the
direct product of 57, -, .57,. Note that, for T(g), we have

= =10 gy o tr, 5 00la)
3 . )

X 3 Nmw 11 (Z(N(t‘“m)—‘l)(N(p)ul)“lwl)’

g pid Q)
(1,887) =1

where #({ki)=1 if all k=0 and otherwise 5({k}})=0.

6.2. In this section A may be definite or indifinite. Let 3, p,q, i} be in §5
and §6.1. In the same way as in [9), we define a Dirichlet series® of a complex
variable s by

(6.4) L) =2 T{@N@™,

q
where the sum runs over all integral ideals g in g prime to a. We regard {(s)
as a matrix-valued function fixing a basis in M(p, {i}) or in &7 (p, 1k}). We write
LA, D; p, ki ) for L(s).

6.3. Let 6,8 be integral square-free ideals in @ prime to each other and ¢
a prime ideal in @ prime to d§’. Let £,0’,0” be orders of level §¢7,dd’c, 6cé’
in division quaternion algebras A, A’, A” of discriminant &, 4, ¢, respectively.
Let 9,9, %" be integral two-sided ideals in O, 07, ” with the properties indicated
in [9,§4.1}. We choose representations p,7, & and 5 of ('/)*, ("/A”)*, (DO/A)*,
and of (O/A)*, respectively as in [9, (23)-(29)]. Let U, U., U/ be the unit groups
of 0,07, 07, respectively. Denote by p.., 700, 5.0 and by 5., the representations
of gF defined as the same way in §5.1. We assume that p.o, 7.0, 5eo and 5i,o
satisfy the following conditions; for ¢¢g¥,

trVE;p,,o(e)=tr‘,E;E’,,0(e) “‘tr‘,E;’E:.o(E)

try £ Neole) =try 53 Feole) —tr, 5 Heole) -

6 Cf. Shimura [10] and T. Tamagawa, On the {-functions of a division algebra, Ann. of
Math. 77 (1963), 387-405.
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We regard that two matrix-valued function f{s), g{s) are identified if there exists
a non-singular matrix M such that Mf(s)M=g(s). By the same argument as
in {9,§4], we have

THEOREM 3. Let 6, 8 be integral square-free ideals in ¢ prime to each other
and ¢ a prime ideal in @ prime to 36’. Let A, A", A", D,0,9,0,7,5,8" be as
above. If ki=0, we have

LA, D' p, ki); $)D2-CA,D; &7, (ki) 9)

(6.5) ; ,
=((A”,0"; 5, kY 5)D2-4(A,0; 8, ki s)7 .

REMARK. In the case =0, the above theorem is also valid without the limi-
tation that A4, A’ and A” are all division, by [5, Theorem].

6.4. Let 4, 5 be the same as §6.3 and let O, £’ be orders of level 46’ in
division algebras A4, A’ of discriminant 9, respectively. Let 2, %’ be integral two-
sided ideals of O, such that %, =%, for all p, and put a=N(XA). Let o be a
common representation of (0/%)* and of (O//A')*. We assume p satisfies (R.2).
Again with the same argument in (9, §4], we obtain the following theorem.

THEOREM 4. The notations are the same as above. If ki=0, we have

(6.6) UA,D; 0, i}; 8)=C(A", 95 o, (Ki; 5) .

References

[1] Eichler, M., Eine Verallgemeinerung der Abelschen Integrale, Math. Z., 67 {1957),
267-298.

[2] GelPfand, I. M. and 1. I Pyateckii-Sapiro, Theory of Automorphic functions, Amer.
Math. Soc. Transl., 26 (1963), 173-200.

{31 Godement, R., The Decomposition of L¥G/I") for I'==SL(2, Z), Proc. Symp. Pure Math,,
Vol. 9. Amer. Math. Soc., 1966, 211-224.

[4] Godement, R., The Spectral Decomposition of Cusp-Forms, Proc. Symp. Pure Math.,
Vol. 9. Amer. Math, Soc., 1966, 225-233.

[5] Ishikawa, H., On the trace formula for Hecke operators, J. Fac. Sci. Univ. Tokyo,
Sec. TIA 20 (1973), 217-238.

[6] Selberg, A., Harmonic analysis and discontinuous groups on weakly symmetric Riemann
spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87.

[71 Shimizu, H., On discontinuous groups operating on the product of the upper half planes,
Ann. of Math. 77 (1963), 33-71.

[8] Shimizu, H., On traces of Hecke operators, J. Fac. Sci. Univ. Tokyo, Sec. 110 (19633,
1-19.

7 X, Y being matrices, X&2 Y denotes the direct sum of X and two copies of Y.



376 Hirofumi IsHigawa

{91 Shimizu, H., On zeta functions of quaternion algebras, Ann. of Math. 81 (1965), 166-
193,

{10] Shimura, G., On Dirichlet series and abelian varieties attached to automorphic forms,
Ann. of Math, 76 (1962), 237-294.

(Recieved May 30, 1974)

Department of Mathematies
Faculty of Science
University of Tokyo

Hongo, Tokyo

113 Japan



