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§0. Introductions.

The present paper is concerned with some spectral properties, especially with
the limiting absorption principle, of uniformly propagative systems and their per-
turbed operators. The investigations of such systems were initiated by C. H.
Wileox [11]. The spectral property and the scattering theory of them have been
investigated by C. H. Wileox, J. R. Schulenberger, T. Kato, and others {2] [7] [8]
[9]. In these works however, rather stronger assumptions on the rate of the
decrease of the perturbation were assumed, except for a remark in [2].

On the other hand, S. Agmon [1] recently proved the limiting absorption

principle for general elliptic operators under weaker assumptions on the pertur-
bations.

In this paper we use Agmon’s method, especially a result which we call here
Agmon’s Lemma, and prove that the limiting absorption principle holds for uni-
formly propagative systems under weaker assumptions. The writer is informed
by T. Ikebe that he proved the limiting absorption principle in a similar but
somewhat different way.

An almost equivalent result is recently obtained by T. Suzuki [10] using rather
abstract methods.

Our main results are stated in Theorem 1.1, Theorem 1.3, and Theorem 1.7.

§1. Notations and Theorems.

The following notations will be used throughout this paper.

R the n-dimensional euclidean space with a generic point z="(z,, -+ -, 2,);
&*; the dual space of R with a generic point &=, -+, &,.);
C™: the m-dimensional unitary space with a generie point {=4({;, -+, {w)-

Inner products in B®, &" and C™ are denoted by (z, z’)=i xxf, ¢, E’)-*:Enl £,4f and
=1 Feel
€ Y= (L), respectively. We write (z, )=o), (¢,6)=1¢I* and (€ O=[(I* for
=

brevity.
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Dj::{:'”'i“‘“’“ ’ j:.::lvzr RN (2

AR, (R*): the space of rapidly decreasing functions and its dual space;
(K™, Z'(R"): the space of test functions and the space of distributions.
. the Fourier transform .77 »..77; its restriction to a subspace of #’ is also

denoted by -, for example .#: L* L%

For the pair of Banach spaces X and Y, B(X, Y) and B.(X, Y) denote the spaces
of all bounded lincar operators and compact linear operators from X to Y, respec-
tively. When X=2Y we write B(X, X)=B(X) and B.(X, X)=B.(X) for brevity.
For a closed operator 1: XY, D(T), R(T), N(T), o(T), 0,{T), and p(T) stand for
the domain, the range, the nullspace, the spectrum, the point spectrum and the
resolvent get of 7, respectively. For {ep(T) we put R ()=(T—) . For a
densely defined operator T: XY its adjoint operator is denoted by T*: Y*-X*.

In the following part of this paper we shall deal with the spectral properties
of selfadjoint operators associated with differential systems of the following form
operating on C™valued functions defined on R®

(Lo) LoD)= le AD,
(L) L(D)=M(z)" ;2 A,D, .

Qur assumptions are as follows.
(A.1) L, is the uniformly propagative system in the sense of Wileox, i.e.,
(a.1.1) the Ay, ---, A, are m xm (Hermitian) symmetric matrices;

(a.1.2) the roots 2,(¢) of the characteristic equation p(2, &)=det(i] -}ﬂ:‘, A,£)==0 have
i=1

constant multiplicity for all £ ¢ £\ {0}, and 4,(3)+0 for any £ e 5"\ {0} unless
A(&)=0 for all ¢ 57 Here I is the m < m unit matrix.
(A.2) M(x)==(m(x)) is an m >.m matrix depending on x € R" satisfying the following
conditions;
(a.2.1) there exists a constant C,>0 such that
(1.1) Cil2Ps (&, M@)e)<CrY 31 for all 2€ 5" and all xe R*
(a.2.2) there exist constants ¢>1 and C,>0 such that
1.2) sup | m,(x)—d,; 1 = Co(14-1 2 |®)7%* for all xe R, where d;,=1
if 4==J and §;,;==0 if i=7.

In order to state the theorems we have to define the operators L, and L
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precisely and to introduce some auxiliary spaces. For o€ R! and a non-negative
integer s we put

Hi,a:{uef’(R“; Cyilluily; = 5.1 Deux) F(1-+{ e )?)ode \v\}

Hio={ue s (R O g = 2 | (D) ME@ D )L+ Fleirda<eot

We write for brevity HS.,, HY,., Hi, H!, H, and H}, as H,, H,,, H* H,, H,,
and H:, respectively.

Since the formal differential operator L,(I)) has constant cocfficients, it has a
natural selfadjoint realization L, in the Hilbert space H,. Namely, L= "1 L, (5).47,
where the operator L,(%) is the maximal operator determined by the multiplication
by the symbol Ly(5)=2>] 4,%,. Let J be the identification operator from H, to H;
defined as (Ju){x)=u{x) for all u€ H,. Then J* is an operator determined by the
multiplication by M(x)~t. Define the operator L by

(1.3) Lu=J*LyJu , u€ D(Ly=J*D(L,) .

Obviously L is a selfadjoint operator in H;.

Main results in this paper are summarized in the following theorems and
corollaries.

THEOREM 1.1. Let I,=R'“\{0} and let [[*=={{e C*; Im =0} be the upper or
the lower half plane of C'. Let ¢ be any positive number. Under the as-
sumption (A.1) the following statements hold.

(1) Let P, be the orthogonal projection onto N(Lo) in Hy. Then R, (()(1-~Py)

(Im & #0) can be extended to 11U Ty as @ B(Hy, 10/, H, -1 o)-valued locally
Hilder continuous function. Furthermore Ry ({) (Im{#0) itself can be
extended as a B(Hy,q 1o Ho, ~aso2)-valued locally Hilder continuous fune-
tion. Weput R, (14i0)=] me, Jaxigand I, (/‘MO):«hmRLu(f;Hc)(1~ AR

where the lvmit is consmdeo'ed i B(Hs, qvorm Ho,-a4o) and B(Hy g0,
Hi, _qso0:), respectively.
(2 For any u€ Hy,qron and i€ 1, (Lo—A Ry (ii0)u=u holds in the sense
of &,
COROLLARY 1.2. Let I,=R'"\{0} and let K be any compact subset of C* satis-
fying KNR'cI,. Then there exists a constant Cx,, depending only on K and

e>0 such that
(14) " (1—Pyu "HO —(1+e )/2( CK s“ (Lo— C)(IMPO)Z“ H”o,(;“)/z '
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(15) ” u "”0,-(1 y;)/zg CK"“ (Lo—c)u nHo.(Hc)/’:

Sor all we€ Hy, 0N D(Ly) and all {€ K.

THEOREM 1.8. Let assumptions (A.1) and (A.2) be satisfied, and let I be
any interval not intersecting with o,(L)U{0}. Then the following statements
hold.

(1) R (Im{+#0) con be extended to I1*UI as a B(H,., Hy, -sn)-valued

locally Hilder continuous function. We put R,_(ZiiO)=IBilrf)1 R, (A +1e).

(%) For any w€ Hy 4. and i€, (L~AHR,(Axi0)u=u holds in the sense of
2.

COROLLARY 1.4. Let I be as in Theorem 1.8 and let K be a compact subset

of C* with KNR'cl. Then there exists a constant Cx>0 depending only on
K such that

(1.6) ”u”n, = Crl(L—0u “”1,0/2 Jor all we DILYN H, 3. and all (e K.

L8275

COROLLARY 1.5, o(L)\ay(L) 18 absolutely continuous.

Concerning the point spectrum o,(L) and the corresponding eigenfunctions we
obtain the following theorems.

THEOREM 1.6. Let assumptions (A.1) and (A.2) be satisfied. Then each
eigenfunction u; of L corresponding to eigenvalue 1€ o (L)\{0} belongs to H,,,
for any ¢>0. Moreover there exists a constant C;,, such that |u.| ,,MéC,;,,,llu 2,
holds for all eigenfunction u; corresponding to A€o, (I)\{0}, where for fixed
>0 the constant Cy,, can be taken independent of 2 if i is in a compuact subset
of ax(L)\{0}.

THrROREM 1.7. Let assumptions (A.1) and (A.2) be satisfied. Then o,{L)\{0}
is discrete and the only possible accumulation point is the origin; that is, the
eigenspace corresponding to each eigenvalue 1€ v (I)\{0} is finite dimensional
and a,(L)\{0} does not have any limit point in R'\{0}.

§2. Proof of theorems.

In this section we will prove theorems and corollaries stated in §1. First we
will introduce some notations which are necessary for the proofs. As the con-
sequence of the assumption (A.1) the distinet roots of the characteristic equation
p(2, &=det (1] -3} A,5)=0 can be enumerated as 2,(5)>2,.,{8)> - -- >4 >8>
24(8)> -+ D> A4 >2_,8), where 2(§) is the constantly vanishing root when it
exists, and will be omitted otherwise. The roots 2,(¢) are positively homogeneous
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of degree 1, and they satisfy — 2 &)=7_(—§). We put S;={8€ 5", i (&)=sign j}
(5#0), then S, are C~ compact hypersurfaces without boundary and they satisfy
S;=—S_, (8ee [8)]).

For each 7, define

! S, /:)(2 Ag =y idi,  TU&)={i€CY |i—if8)|=d,8)>0},

-

where d,(§) is chosen so small that I',(¢) does not enclose any root of p(4, &)==0
except ,(¢). Let P, be & ~1P(8).5 H,—>H,, where P,#) is the maximal operator
determined by the multiplication by 16,(5). Then the following statements hold.
(See, for example, [8].)
2.1) {P}j==y,...,u i8 & complete system of projectors in H, reducing

the operator L, .
2.2) LoPar=3""1i )% P for all ue H, .

In what follows, using the above results, we shall construct a spectral repre-
sentation of L,. We write R.={22=0;2€ R'}. The symbol sign 7 is used to denote
4+ or — as well as +1 or —1 according to 7>0 or 7<0.

For each j#0 we define the non-degenerate C*-mapping F,: 2*\{0}->Raiyn, X S,
by F,&)=(2,(¢), (sign 5)&/2,(&)) and the operator [;: D(5%; C™)—D(Ryign s LH(S,;C™)
by (7, 1), )=F(F;i' (¢, »)) for f€ 2(5% C™. Then the following fact is obvious.
(2.3) There exist a positive C~-measure dojfw,) on S, and a measure dp.(y)

on R. such that ', can be extended to a unitary operator [*;: L¥(&"; C™)—

Lz(d.oaignj; IJ?(Sj, d"j; Cc™).
Define I'; by F,—:f,-ﬁ"'P,zf"‘,ﬁ,‘;T, then the following relations (2.4), (2.5), (2.6)

and {2.7) can be verified easily.

(2.9 (T Low)(p)= (I ju)(p)  a.e. p€ Rargny, for all ue H, .

(2.5) F,P‘-::O \Vhen 'iij .

(2.6) If ue Ho,,,(a> %—) then (I"u)(-): Reigns~L(S,, da; C™) is locally Holder con-
tinuous.

2.7 If we define I',(u): H, L3Sy, doy; C"‘)(u>é~> by Ij(mu=(I"ju)(p) for

2€ Rsigny, then the mapping I',(:): Raga,— B(Hy. s LS, doy; C™) is locally

Hoélder continuous.
ProOF or THEOREM 1.1. For non-real € C*, we have R;,Q(C):g, R, QO P~ P,
70
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Therefore it is sufficient for the proof of the first part of the theorem to show
that R, ({)P;(5:#0) can be extended to [T U, as a B(Hy, vy Hi -1 +072)-valued locally
Holder continuous function. To this end we let M be the operator determined by
the multiplication of the function (1-+]z]*)~@*/* and prove that MD,R,({)P,M
(Im £:£0) has an extension to /T£UI’ as a B(H,)-valued Holder continuous function,
where I’ is an arbitrary closed interval contained in I,. It is clear that the above
mentioned result follows from this. We give the proof for the case I’C(D, o).
Let i€ I’ and put [”=R\I’. Let E,(d# be the spectral measure for L,. Then
the cquation
(2.8) MD,;RLU(C)P,M:—::MI),‘R,,O(C)P,EQ(I’)M?FMDkRLO(C)P,EO(I”)M (Im ££0)
holds. Since i¢ I’ the limit value as //* 9¢£—2 of the second term on the right hand
side of equation (2.8) obviously exists locally uniformly for 2€ I’. Since I'c(0, )
the same is true for the first term if j is negative. Thus we assume j>0 in
the following.

For u, ve H, it is clear that Mu and Mv€ H, vn. Therefore by (2.3), (2.4),
(2.6) and (2.7) we obtain the equation

2.9) (MD, Ry, (Q) P Eol 1) Mat, v) 1= (PyEol 1) Mut, DoPy Ry () M),
= (" (Es(I"YMu), I' (D, P,RLO(?,)M’U));.?(M o2 135 fudo5i0™)

*S (I (E()YMu)(p), I'y(De Py Ry, () M) 225, 00:0m8 04 (12)
R
~S (I (Mu)p), I {DP Ry ©) M) (1) 125 0o i @04 (£2) -

1

Since Dy==+""12,. %7, where §, is the maximal operator determined by the multi-
plication by &, we can express I",(DkP,RLO(f)Mv)(p) as O (M) /(e—0)=
D ()] () Mvj(—C). Here O,(g) is a B(LAS,, du;; C™))-valued C=-function on R,.
Using this expression, we see after simple caleulations that the right hand side

of (2.9) is cqual to

g (-J'W MP Sy D (p< 1" () Mo, u> do (1) -
Jr\ g€ Hy

Therefore as an equation for B(H,)-valued functions the following equation holds:

(2.10) MD.R, © P,-EO(I')M::g -#1 CM[‘,-(,u)”“‘/’)k(‘u)"‘[ Ty Mdo (19 .

-
Here MU, (1)*®,()*" (0) M: I'>B(H,) is a B(H,-valued locally Holder continuous
function. Therefore the application of the famous Privaloff’s theorem shows that
the left hand side of (2.10) can be extended to /7*UIl’ as a B(Hy)-valued locally
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Holder continuous function and the first part of the theorem is proved.
Statement (2) of the theorem can be proved easily using the theory of dis-
tributions. (Q.E.D.)
Here we record the following two lemmas for later use. The first one is
proved implicitly in the proof of the theorem and the second is a direct consequence
of the first.
COROLLARY 2.1. Let i€ R'\{0} and Ic R*\{0} be a closed interval containing
2 in its interior. Then in B(Hs.qeom, Ho,-aion) the following equation holds:

(2.11) RLO(zim):mK L P e ()
Jponrp—=2 i>o
ﬂw'i L s rrrwde dTis S POR® Aoz
Jroarp=d i< signj- signi dz

“+ g PIEO(CIZ) — “%'Po i
j#0 Jre p—2 4
Here the symbol p.v. stands for Cauchy's principel value.
COROLLARY 2.2. Let ie R\{0} and let u€ H,, (¢>1/2). Then of I'j(Hu-==0

for all j satisfying sign j=sign 2, the following equation holds:

(2.12) SRy, (A i0)u) (@)= s PTG
= A8 —4
PROOF OF THEOREM 1.3. For (€ C'\ R! we put G()=(Ly—{JR.({) and Go(0)=
(L—QJ 'R (0). Then the following equations hold:
(2.13) R OGQ=JR , GG =1,, and G,OGEQ==Iy, .

Hence, since it is known that R, () (Im{+0) can be extended as deseribed in
Theorem 1.1, it is sufficient to show that G0 =G~ (Im {+0) can be extended
to 11t UI as a B(H, s, Jos)-valued locally Holder continuous function. By as-
sumption (A.2) the following relation at infinity can be verified easily.

(2.14) M(x)y-*—I=0(z|"% as |z]| oo,
Therefore by the result of Theorem 1.1 we find that
GolQ=J - (J* =T YL Ry Q) =T - (J¥—T ) Lo Ky, () (1~ Py)

(Im££0) can be extended to H*UI as a B(H, s, Hism)-valued locally Hoélder
continuous function. We denote the boundary value thus obtained by G,(41:£10).
Using the resolvent equation for R, () and taking the limit as {-21£10 we get
the following equation for G,(A+10) in B{(H, s/, H; 5120
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@15) Gyt i) =J- +[(J*—J ) Ly Ry, () + (J*—J ) (1~ 1) Lo Ry, (i) Y (1 0)]
== Gy ([ T+ (A=) GE)(T*—J ) Lo Ry, () RS, (A£10)] .

In taking the limit we used the following two facts: (A) LoR; (i) can be considered
as a bounded operator H;,—H;, for any s€ RB' and any integer s; (This fact
can be proved ecasily by the use of the Fourier transform.) (B) Since G(i)=
J+(I—JJ*) Lo J R, (3) € B(H, 372, Hy.512), G(3) is the inverse of Go(i) € B(Hy,s72, Hy,010)-

Now we prove that Gy{1=+i0)€ B(H,.a5, Hy.52) is an invertible operator, that
is, we prove the existence of Go{1+10)~'€ B(H, 552, Hy.3:). To this end we first
show that

(2.16) K. () =G J*—J ) 4R, ()R} (A£10) € Beu(Ho,s7) -

By Theorem 1.1 and fact (A) given above, we have L,R, ()R} (2:£10)€ B(Hs,q+0r:
H{i _iy.) for arbitrary e>0. Take ¢>0 so small that 1-+¢<4. Then using Rellich
theorem and the diagonal argument we can easily sec that

(2.17) (J*=J Y Lo Ry, () R, (A:70) € BoolHo, 570, Hi,a12) -
(2.17) and the fact (B) show that (2.16) holds. Now (2.15) can be written as
(2.15%) Go(AEi0) =G () (J+ A~ K (D) .

Hence if we are able to prove —1¢ ¢,((1—1)K+(2), then the application of
Riesz-Schauder’s theorem shows the existence of Go(A-+40)"1. In what follows we
prove that the supposition —1€e,((1—1%)K+(3) results in a contradiction. Let
~1€0,((A—1)K+(2) and ¢. € H,,j, be a corresponding eigenfunction. For any ¢>0,
we put vs,=Rp (Akide. and ve=FR, (A290)p. € Ho, 5. Then by Theorem 1.1
we have J-'v.#0 obviously. Since G,(Axi0)c.=0 and J 'R, (Axi0)ps=J vy,
l‘i{r‘x)(L»—x)J“vj,,::O holds in H,, .., that is, lsmg LJ ve,=2J'v: holds in H,_sp.

This implies lim Loty ==lim J*LJ vy, ==2J*J vy, and hence Lovs—AJ*J 'w:=0 in
£} 0 £i0

the sense of distribution. Hence, if we can obtain J~'v. € H,, we get (L—2)J 1v:==0
and the contradiction oceurs, since we assumed A€ l.

Let us prove J 'vi€ H, or the equivalent fact ».€ H,. Since other cases can
be similarly proved we restrict ourselves to the case ICR.. Since the above
argument shows that ¢z=(Le—Avy=A(J* ' J'—I)v; we obtain

(2.18) (R AL 0)¢s, 02p= v, AT¥ T —Dvse)

where <,) denotes the natural coupling between Hy,.4. and Hysn. Since the
definition of J* means (J* 1J vy ()= M{x)v.(¥) and M{z) is a2 Hermitian symmetrie
matrix by the assumption, the last member of (2.18) is a real number. Hence
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the left hand side (R, (1+10)¢+,¢+> must be a real number also. Since the other
case can be similarly proved we give the proof for the -~ case only, and the
sign + is omitted in the following. Now applying Corollary 2.1 we obtain

2.19) Ry (10, ‘;):p.v.g ;—1_-— 2 (e, T s aoemson
—iz ST WP+ 2| Lpe, B P,
d2 = iF0 dpa p—

~—2~(Poso, O, -

In the equation (2.19) all terms except for —iz 2 | 1",(D¢ |lizs j_,,(,j:cm,%%ﬁ are real
i>e
numbers. Therefore I'{)¢=0 for 7>0. Then the application of Corollary 2.2

shows

(2.20) F (R 0+i0)) @)= 3 BOLIE
A 20—
And I',(e=0 (7>0) implies
2.21) the trace of 15,(5)(¢7 ¢){&) on the hypersurface 3% vanishes,
where 2i={fe & 1,(6)=1}.

Let >0 be so small that the ball {{£]<2y} does not intersect with >4 for any
770 and let ¢(&)e D(&"; RY) be a function satisfying

(2.22)  ¢(£)=0 for |$t>%lv|,¢(6):1 for |§1<Iy%l, and 0<=¢(§) <1 for all £€ =",
Then by (2.20) we get obviously

? & ( )((/(-’)(5) J(&)(”‘ )(5)
2.90 F(R, R+i0)e) (€)= ¢ RIEAYA el A\ {“ 1 —¢ 9 .

By the choice of ¢(8), 2,(6)—2+0 on the support of ¢(¢). Hence the first term on
the right hand side of (2.20)’ con be rewritten as ¢(E)(i AL~ (F)E) and has
=1

the same regularity as (F¢)(¢). As for the second term, (1_..¢(5))13,(5) are C»-
class bounded functions. Therefore (I —¢($))13,(€)(5*" o) (&) e H%®, Then using (2.21),
by the repeated application of Agmon’s Lemma {given in a lecture at Obherwolfach,
1971, see {12]) we get F (R, ,(A+1i0)p) € Hp!nW/H=14ne.® for any positive integer n.
Therefore R, (1+i0)¢€ H, and this means v€ H,. Thus we have proved that
Go{2+10)"1€ B(H,, 32, Hy,3/2) exists. Local Holder continuity of G,(2410) and state-
ment (2) of the theorem are proved easily. Q.E.D.)



128 Kenji Yasua

Corollary 1.4 follows from Theorem 1.3 obviously and Corollary 1.5 is proved
easily by the application of Corollary 1.4.

For the preparation of the proof of Theorem 1.6 and Theorem 1.7 we prove
the following lemma. In the remaining part of the paper we identify u€ H,,, and
Jue H,,, for any 0€ ' and omit the symbols J or J7! and the indices 0 or 1.
We use the notation H? for any o€ R' to denote the usual Sobolev space of
order ¢.

LEMMA 2.3. Let assumptions {A.1) and (A.2) be satisfied. Letu, be an eigen-
Sfunction of I corresponding to the eigenvalue 2€ o (L) {0).  Put (Ly—AHu;=/,.
Then the following statements hold:

(2.23) fi=(M(x)—Du, (€ Hy) ;
(2.24) ' fi=0 for all j satisfying sign j==sign 4.
Proor. Lu,=:2u; means Lyuy=AM(@)u,. Therefore f;= (Lo—Duy=2{M@y—DHu; €
H, which proves (2.23). Apply I, to the both sides of (Lo—Xuy=f,, then
(2.25) )= (e— D)) for a.e. p€ Raigny, j#0.

Here in the right hand side of (2.25) (I";u;) (1) belongs to L:(dosign s L*(S;, doy; C™)
and in the left hand side (/",u;)(y) is continuous because f,€ Hy (3>1). Therefore
(I f YW= f2=:0 for all j satisfying sign j=sign 1. (Q.E.D.)
We remark here again that (2.21) means that the trace of ﬁ,({-‘)(ﬁ‘"r 1)) on
the hypersurface X4 vanishes. This fact will be used frequently in the sequel.
Proor OF THEOREM 1.6. Let u; be the eigenfunction of L corresponding to
2€ a,(I)\ {0}, and put fr=(Lo—Au;. Then by (2.23) of Lemma 2.3 f1€ Hs and hence
(“f)e H%. Applying the Fourier transform to (L,—2u;=f;, we obtain

(2.26) <§1A,e,—z AU E=(FTFIE) .

Let >0 and ¢(8) be a function determined as (2.22). Then (}ﬂ‘;‘ Ag,;—2) is non-
=1
singular on the support of ¢(¢). Therefore using Lemma 2.2 and Lemma 2.3, we

get from (2.26)

@2)  FWO=pOE AL~ FHO+ X (1._¢(5)>_..__..WP1<§>((§"-";><8 ,
gl Jm gt \S)—

(2.219) the trace of ﬁ,(e)(ﬁ"fz)(.f) on the hypersurface X%, vanishes
for all j satisfying sign j=-sign 4, .

Then the application of Agmon’s Lemma which was mentioned above implies
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(2.28) (Fu)reH and ullys-sCllSf s,

where C; is the constant depending only on 4 and d, and which can be taken in-
dependent of 2 when 4 is in a compact subsct of KR! \M0}. Therefore remembering
(2.23), we obtain

(2.29) ;€ Hyy and  Jlu; l’u6_‘§:61” Uzl

Now (2.23) and (2.29) imply f,€ H.;_,. Then repecating the above process, we obtain
with another constant C; which has the same property as above

(2.30) u€ Higyy and fluglly, . SClluglly .

25~-1)
We can repeat the above process arbitrarily many times. Hence the statement
of Theorem 1.6 holds. (Q.E.D))
PROOF OF THEOREM 1.7. Let 2, belong to ¢,(L)\{0}, and u, be corresponding
eigenfunctions for k=1,2,---, %, --- which arc orthonormalized. It is sufficient
to prove that 2,—i€0,(L)\{0} never occurs. Let A—A€ o, (LI\N{0}. Theorem 1.6
implies that {u,} forms a bounded subset of H, for any «>0. Put Je=Lo—2)u,,
then by Lemma 2.3 we have that {f.} forms a bounded subset of H, for any ¢>1.
Applying Go(2,+10) to fi=(L,—A)u,, we obtain

(2.31) Gu(xk“i‘io)fk:[lif? (L”(zk+i5))RLu(fzk +ie) (Lo — ),
::Iilm [L—(1k+is)][uk+‘ieRLu(2k - 5e) Uy ]
clo
=lm [—ie+1eGe{A,+ i) Ju, =20 .
€10

Therefore using (2.15) and (2.16) we obtain
(2.32) k::_(zx“'i)K(zk)fk .

By (2.16), K(&) is Be(Hjn)-valued locally Holder continuous function on I\ {0}.
Hence by (2.32), we can choose a subsequence {fy}, of {f.} which converges to
f=€ Hyp, in Hy. We denote this subsequence by f, again. Choose ¢(8) € C<(57)
as (2.22). Then by Lemma 2.3 and Corollary 2.2 we get

(2.33) the trace of P,(f)(f f{(&) on the hypersurface 3% vanishes
for all j satisfying sign j=sign2i;

PAOCFHIE) | (l—p(@) X PO~ 106)

(2.34) A (fk)(s):¢($)1% W & 0 —n 4
WAGIESAG)
2
= (R A0 ) DL

7
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The first and the third terms of the middle member are convergent in H. Put
hg(é):;:(lwtj)(f))Ziﬁ’iﬁ(fﬂﬁl@u. Then as in the proof of Theorem 1.6 {h} forms
w0 A6)—4

a bounded subset of H? for any ¢>0. On the other hand Theorem 1.1 shows that
SRS, (A-1-10)f,) forms a bounded subset of H; %% and so does {h}. Thus {& 1k}
is bounded simultaneously in H, and H'y,. Therefore Rellich’s theorem and the
diagonal argument show that there exists a subsequence {A,} which is convergent
in H. Hence {#(u:)} is convergent in H, which means {u,} is convergent in H.
This contradicts the the fact that {u,} is orthonormal. Q.E.D.)

Concluding remarks.

ReEMARK 1. We record here the immediate corollary of Theorem 1.3 and the
abstract stationary method of seattering theory developed by Kato-Kuroda {4] and
Dieé [2].

THEOREM 2.4. Let assumptions (A.1) and (A.2) be satisfied. Let P, and
P, be the projection operators in H, and H, onto the absolutely continuocus
subspaces of H; and H, with respect to L and Ly, respectively. Then the wave

operators

(2.35) W.(L, L) J*)==s-lim ¢"**J¥e " 0P, ,.
t—oboo

(2.36) WLy, L; J)=s-lim P [
testoo

exist. Therefore the absolutely continuous parts of L and L, are unitarily
cquivalent.

REMARK 2. As another application of Theorem 1.3 we can obtain the eigen-
funetion expansions for the system in a generalized sense with their applications

to scattering theory. We discuss the subjects elsewhere.
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