On maximal p-local subgroups of S_n and A_n

By Kensaku Gomi

(Communicated by Y. Kawada)

§ 1. Introduction.

The object of this paper is to determine the structure and the conjugate classes of the maximal p-local subgroups of S_n and A_n . Here we understand by S_n and A_n , the symmetric and the alternating groups of degree n, respectively. If a subgroup H of a finite group G is of the shape $N_G(P)$ where P is a non-identity p-subgroup of G, we customarily say that H is a p-local subgroup of G. But in this paper we will adopt a little wider definition. Namely, H is a p-local subgroup of G if and only if G has a nonidentity normal G-subgroup. It is obvious that a maximal G-local subgroup in the narrow sense is also maximal in the wider sense, and conversely. We discuss the maximal G-local subgroups of G- in § 3. As for the G-, we must discuss the case G-2 separately, mainly because of the fact that G- in § 3. We discuss the case G-2 in § 4, and the case G-2 in § 5.

§ 2. Notation and necessary lemmas.

Let E_{p^e} denote an elementary abelian group of order $p^e \ge p$, and let H_{p^e} be the holomorph of E_{p^e} , i. e. the semidirect product of E_{p^e} by the full automorphism group A of E_{p^e} . We regard H_{p^e} as a permutation group on p^e letters. Namely, we let $ax \in H_{p^e}$ $(a \in A, x \in E_{p^e})$ act on $y \in E_{p^e}$ by $y^{(ax)} = y^a x$. Then E_{p^e} is regular on itself. Since A is the stabilizer of the identity element of E_{p^e} , and is transitive on remaining points, H_{p^e} is a doubly transitive group. Note that $H_n = S_n$ for n = 2, 3 and 4. Since E_{p^e} is irreducible as an A-module, E_{p^e} is the largest normal p-subgroup of H_{p^e} .

Some further notations are required. For any finite group X, let $l_p(X)$ denote the number of conjugate classes of maximal p-local subgroups of X. Let $O_p(X)$ denote the largest normal p-subgroup of X. For any positive number n, let [n] denote the largest integer not greater than n. If p° is the largest power of p that divides n, we write $p^{\circ}||n$.

Almost all of the notation concerning permutation groups are standard and

216 Kensaku Gomi

may be found in Wielandt's book: Finite Permutation Groups, Academic Press, New York-London, 1964 (henceforth abbreviated by (W)). Particularly, we let S^g and A^g denote the symmetric and the alternating groups on a set Ω , and if Gis a permutation group on Ω , G_{α} will denote the stabilizer of a point α in G. A block is a set of imprimitivity. It should be noted that if f is a mapping of a set X into a set Y, we denote by xf or x^f the image of x under f. If G is a permutation group on Ω , we often say that (G, Ω) is a permutation group. Let (G, Ω) be a permutation group. We will denote by N(G) and C(G), respectively, the normalizer and the centralizer of G in S^{ϱ} . If (G, Ω) and (H, A) are isomorphic permutation groups, i.e. if there exists a group isomorphism $\lambda: G \to H$, and a bijection $\mu: \Omega \to \Delta$ such that $(\alpha g)\mu = (\alpha \mu)(g\lambda)$ for all $\alpha \in \Omega$ and $g \in G$, we will write $(G, \Omega) \simeq (H, A)$. If there is no fear of confusion, we will use the same letter for λ and μ , and say that $\lambda:(G,\Omega)\rightarrow(H,\Delta)$ is an isomorphism. Suppose G is a permutation group on $\Omega = \Omega_1 \cup \Omega_2 \cup \cdots \cup \Omega_n$ (disjoint union) such that $\Omega_i{}^G = \Omega_i$ for $i=1,2,\ldots,n$. Then each $g\in G$ is uniquely expressed as the product $g=g_1g_2$. $\dots g_n$ where g_i are permutations on Ω such that $\Omega_i g_i = \Omega_i$ and that g_i fixes the points of $\Omega - \Omega_i$. We call g_i the Ω_i -constituent of g and denote it by g^{Ω_i} . If $\Delta \subseteq \Omega$, we denote by S^d the set of permutations on Ω which fix the points of $\Omega - \Delta$, since it is canonically isomorphic to the symmetric group on Δ .

Let (G, A) and (H, Σ) be permutation groups. Let $G^{(\Sigma)}$ denote the Cartesian product of G with the index set Σ . The Wreath product $G \cap H$ of G by H is the semidirect product $G^{(\Sigma)}H$ where H acts on $G^{(\Sigma)}$ by:

$$(g_j)_{j\in\Sigma}^h = (g_{jh^{-1}})_{j\in\Sigma}$$
 for $(g_j)_{j\in\Sigma}\in G^{(\Sigma)}$ and $h\in H$.

We let $G \int H$ act on $\Omega = A \times \Sigma$ by:

$$(\alpha, i)\{(g_j)_j h\} = (\alpha g_i, ih)$$
 for $(\alpha, i) \in \Omega$ and $(g_j)_j h \in G \cap H$.

Then, $G \cap H$ is transitive on Ω if and only if both (G, Δ) and (H, Σ) are transitive. For each $i \in \Sigma$ we set

$$A^{(i)} = \{(\alpha, i); \alpha \in A\}$$
 and $G^{(i)} = \{(g_j)_j; (g_j)_j \in G^{(\Sigma)}, g_j = 1 \text{ for each } j \neq i\}$

Then, $G^{(i)}$ is a permutation group on $\Delta^{(i)}$, $(G^{(i)}, \Delta^{(i)}) \cong (G, \Delta)$ and $\{\Delta^{(i)}\}_i$ is a system of imprimitivity of $G \cap H$.

(2.1) Suppose (G, I) and (H, Σ) are permutation groups and $\Omega = A \times \Sigma$. Then,

- (i) If $K \equiv S^0$ and $\{A^{(i)}\}_i$ is a system of imprimitivity of K, then $K \equiv S^0 \setminus S^{\Sigma}$.
- (ii) If (G, Δ) and (H, Σ) are primitive, then $\{\Delta^{(i)}\}_i$ is the unique nontrivial system of imprimitivity of $(G \cap H, \Omega)$.
- PROOF. (i) Let $g \in K$. Then g induces a permutation \overline{g} on Σ by $\Delta^{(i)}g = \Delta^{(i)}g$. Define a bijection $\varphi_i : \Delta \to \Delta^{(i)}$ by $\alpha \varphi_i = (\alpha, i)$. For each $i \in \Sigma$ set $g_i = \varphi_i g \varphi_{ig}^{-1}$. Then clearly $g_i \in S^J$ and $g = (g_i)_i \overline{g} \in S^J$ S^Σ .
- (ii) Let Ψ be a nontrivial block of $(G \cap H, \Omega)$. Suppose $\Psi \cap J^{(k)} \neq 0 \neq \Psi \cap J^{(l)}$ for $k \neq l$. Since $(G^{(i)}, J^{(i)})$ is transitive, $\Psi \supset J^{(k)} \cup J^{(l)}$. Therefore Ψ is a union of more then one, but not all of $J^{(i)}$'s, say $\Psi = J^{(k)} \cup J^{(l)} \cup \cdots \cup J^{(m)}$. Since $J^{(i)}h = J^{(ih)}$ for each $h \in H$, $\{k, l, \ldots, m\}$ is a nontrivial block of (H, Σ) , contrary to our hypothesis. Thus $\Psi \subseteq J^{(i)}$ for some i. Since $(G^{(i)}, J^{(i)})$ is primitive, $\Psi = J^{(i)}$, q.e.d.
- Let (G, Ω) be a permutation group, $\alpha \in \Omega$, and N be a regular abelian normal subgroup of G, Since C(N) = N by (W) Prop. 4.4., G_{α} can be regarded as a permutation group on N acting by conjugation. It is easily seen that $(G_{\alpha}, \Omega) \cong (G_{\alpha}, N)$.
- (2.2) Let A be a group of automorphisms of a finite group G, and C be the set of fixed points of A on G. Suppose A is primitive on G-C, regarded as a permutation group on G-C. Then one of the following possibilities occurs.
 - (i) G is an elementary abelian 2-group, |C|=1.
- (ii) G is a dihedral group of order 2p where p is a (not necessarily odd) prime, |C|=p.
 - (iii) G is a cyclic group of order 4, |C|=2.
 - (iv) G is a cyclic group of order 3, |C|=1.

PROOF. For each subgroup D of C, a coset of D not contained in C is a block of A on G-C. Hence either (1) C=1 or (2) |G:C|=2 and |C|=p is a prime. For each $g \in G-C$, $\{g, g^{-1}\}$ is a block of A on G-C. Hence either (3) all the elements of G-C are of order 2 or (4) $G-C=\{g, g^{-1}\}$ with $g \neq g^{-1}$. If (1) and (3) hold, then G is an elementary abelian 2-group. Suppose (2) and (3) hold. Then for any $g, h \in G-C$, $(g \neq h)$, $gh \in C$ and gh is of order g. Thus (ii) holds. If (1) and (4) hold, then G is cyclic of order 3. If (2) and (4) hold, then g = 2 and (iii) holds, q.e.d.

(2.3) ((W) Th. 13.3) A primitive group which contains a transposition is a symmetric group. A primitive group which contains a 3-cycle is either alternating or symmetric.

218 Kensaku Gomi

§ 3. Maximal p-local subgroups of S_n .

Throughout this section let p denote a prime.

THEOREM 1. Maximal p-local subgroups of S_n are $(H_{p^e} \int S_k) \times S_r$, with $n = p^e k + r$, $e \ge 1$, $k \ge 1$, $n > r \ge 0$.

Exceptions are $(H_2 \int S_2) \times S_r$, $(H_{2^o} \int S_k) \times S_2$ with $2^e k \neq 4$, $(H_{2^o} \int S_k) \times S_4$ with $2^e k \neq 2$ and $(H_{3^e} \int S_k) \times S_3$.

Two maximal p-local subgroups $(H_{p^0} \int S_k) \times S_r$ and $(H_{p^f} \int S_l) \times S_s$ are conjugate in S_n if and only if one of the following conditions holds:

- (i) (e, k, r) = (f, l, s)
- (ii) $(p^e k, r) = (s, p^f l) = (4, 2)$ or (2, 4).

REMARK. $(H_2 \times S_2) \times S_\tau \subsetneq (H_2 \int S_2) \times S_\tau \subsetneq S_4 \times S_\tau$, $(H_{2^e} \int S_k) \times S_2 \subsetneq S_{2^e k} \times S_2$ and $(H_{2^e} \int S_k) \times S_4 \subsetneq S_{2^e k} \times S_4$ if $2 \neq 2^e k \neq 4$, $H_4 \times S_4 \subsetneq H_4 \int S_2$, $(H_{3^e} \int S_k) \times S_3 \subsetneq S_{3^e k} \times S_3$ if $3^e k \neq 3$, and $H_3 \times S_3 \subsetneq H_3 \int S_2$.

As an illustration we list the maximal 2-local subgroups of S_n for $5 \le n \le 9$.

Table 1

$$S_{5} = H_{2} \times S_{3}, \ H_{4} \times S_{1}$$

$$S_{6} = H_{2} \int S_{3}, \ H_{2} \times S_{4} = H_{4} \times S_{2}$$

$$S_{7} = H_{2} \times S_{5}, \ H_{4} \times S_{3}, \ (H_{2} \int S_{3}) \times S_{1}$$

$$S_{8} = H_{2} \int S_{4}, \ H_{4} \int S_{2}, \ H_{8}, \ H_{2} \times S_{6}$$

$$S_{9} = H_{2} \times S_{7}, \ H_{4} \times S_{5}, \ (H_{2} \int S_{3}) \times S_{3}, \ (H_{2} \int S_{4}) \times S_{1}, \ (H_{4} \int S_{2}) \times S_{1}, \ H_{8} \times S_{1}$$

COROLLARY 1. If $n \ge 5$, $6 \ne n \ne 8$, $2^a \parallel n$, $2^b \parallel n-2$, and $2^c \parallel n-4$, then $l_2(S_n) = a-b-c-1+\sum_{i=1}^{\infty} \lfloor (n-1)/2^i \rfloor$. If $n \ge 4$, $3^a \parallel n$ and $3^b \parallel n-3$, then $l_3(S_n) = a-b+\sum_{i=1}^{\infty} \lfloor (n-1)/3^i \rfloor$. If p > 3 and $p^a \parallel n$, then $l_p(S_n) = a + \sum_{i=1}^{\infty} \lfloor (n-1)/p^i \rfloor$.

COROLLARY 2. Maximal subgroups of S_n with nonidentity solvable normal subgroups are isomorphic to one of the following groups.

- (i) $H_{p^{n}}$, $n=p^{n}$, $p\neq 2$.
- (ii) $S_i \int S_k$, n=ik, i=2,3,4.
- (iii) $S_i \times S_{n-i}$, i=2,3,4.

(The author does not know whether H_{p^0} , $p \neq 2$, is actually maximal in S_{p^0} or not. It is easy to see that H_{2^0} is contained in A_{2^0} if $e \geq 3$.)

The proof of Theorem 1 is divided into several steps. In the rest of this section, let Ω denote a finite set. We note that if a maximal p-local subgroup L of a finite group G normalizes a non-identity p-subgroup P of G, then $L=N_G(P)$.

(3.1) Suppose $|\Omega| = p^e \ge p$. Then, up to conjugacy, S^o has a unique regular elementary abelian subgroup. The normalizer of a regular elementary abelian subgroup of S^o is isomorphic to H_{p^e} as a permutation group.

PROOF. Let E be a regular elementary abelian subgroup of $S^{\mathcal{Q}}$. Let $\alpha \in \Omega$ and define a bijection $\varphi \colon E \to \Omega$ by $x\varphi = \alpha x$ for each $x \in E$. Introduce group structure in Ω so that φ is an isomorphism, and denote this group by $\overline{\Omega}$. Taking the regular representation of $\overline{\Omega}$, we consider $\overline{\Omega}$ as a permutation group on $\overline{\Omega}$. Then clearly $(E,\Omega) \cong (\overline{\Omega},\overline{\Omega})$. Therefore if F is another regular elementary abelian subgroup of $S^{\mathcal{Q}}$, we have $(E,\Omega) \cong (F,\Omega)$, or equivalently E, F are conjugate in $S^{\mathcal{Q}}$.

Since E_{p^e} is a regular elementary abelian subgroup of H_{p^e} , there exists a permutation group H on Ω which is isomorphic to H_{p^e} as a permutation group and so has a regular elementary abelian normal subgroup E'. By the first paragraph, we may assume that E=E'. Since C(E)=E, N(E)/E is embedded in $\operatorname{Aut}(E)$. In particular, $|N(E)| \leq |H|$. Since $H \subseteq N(E)$, we conclude that N(E)=H, q.e.d.

(3.2) Primitive maximal p-local subgroups of S^{g} are the normalizers of regular elementary abelian p-subgroups of S^{g} , and conversely. Therefore, the primitive maximal p-local subgroups of S^{g} constitute one conjugate class.

PROOF. Let L be a primitive maximal p-local subgroup of S^g , and let E be a nonidentity normal elementary abelian p-subgroup of L. Since L is primitive, E is regular, and the first part of the assertion follows. Let H be the normlizer of a regular elementary abelian p-subgroup of S^g . By (3.1), H is primitive. Hence if L is a maximal p-local subgroup of S^g containing H, L is also primitive, whence L=H by the first part and (3.1). The conjugacy part is a consequence of (3.1).

(3.3) Suppose L is an imprimitive maximal p-local subgroup of S^p . Then we have $|\Omega| = p^k k$ for some $e \ge 1$ and k > 1, and $L \cong H_{p^p} \cap S_k$ as permutation groups.

PROOF. Let E be maximal among elementary abelian p-subgroups of S^g normalized by L. If E is transitive, then E is regular and L is primitive by (3.1), contrary to our hypothesis. Hence E is intransitive. Let $\Delta = \Delta_1, \Delta_2, \ldots, \Delta_k$ be the orbits of E. Since L normalizes E and is transitive on Ω , L permutes $\Delta_1, \Delta_2, \ldots, \Delta_k$ transitively. In particular, $|\Delta| = |\Delta_i|$ for $1 \le i \le k$. Suppose $|\Delta| = p^s$. Define N to be the subgroup of L that fixes all L0. Then $L \ge N \ge E$ 0, and L1, is a permutation group on L1, L2, ..., L3. In particular, L1. L2 L3. Each element

of N is represented as the product of its J_i -constituents (see § 2). We will show that L permutes E^{J_1} , E^{J_2} , ..., E^{J_k} . Suppose $x \in L$ and $J_i x = J_{i'}$ for $1 \le i$, $i' \le k$. If we denote the J_i -constituent of $a \in E$ by a_i , then $E \ni a^x = a_1{}^x a_2{}^x \cdots a_k{}^x$, $(J_{i'})a_i{}^x = J_i a_i x = J_{i'}$, and for any $\delta \in J_{j'}$, $i \ne j$, $\delta a_i{}^x = (\delta x^{-1})a_i x = (\delta x^{-1})x = \delta$. Thus $a_i{}^x$ is the $J_{i'}$ -constituent of a^x . This implies that $(E^{J_i})^x = E^{J_i{}^x}$. Since L permutes E^{J_1} , E^{J_2} , ..., E^{J_k} , L normalizes the elementary abelian p-group $B = E^{J_1}E^{J_2} \cdots E^{J_k}$. By the maximality of E, $E = E^{J_1}E^{J_2} \cdots E^{J_k}$. By the definition of N, each E^{J_i} is normalized by N, whence by N^{J_i} , for each N^{J_i} , $j \ne i$, centralizes E^{J_i} . Thus $N^{J_i} = N_{S^{J_i}}(E^{J_i})$. Set $N_i = N_{S^{J_i}}(E^{J_i})$. Since N_i normalizes each E^{J_i} , $1 \le j \le k$, $N_i = N_i$ and $N = N_1 N_2 \cdots N_k$.

Since E^{A_i} is a regular permutation group on A_i , (N_i, A_i) is isomorphic to a primitive maximal p-local subgroup (H, A) of S^J . Let $\lambda_i : (H, A) \rightarrow (N_i, A_i)$ be an isomorphism. Set $\Sigma = \{1, 2, \ldots, k\}$ and define a bijection $\mu : A \times \Sigma \rightarrow \Omega$ by $(\alpha, i)\mu = \alpha \lambda_i$. Define a mapping $\lambda : G = H \int S_k \rightarrow S^0$ by:

$$\{(\alpha, i)\mu\}(g\lambda) = (\alpha h_i)\lambda_{is} \text{ for } g = (h_i)_i s \in G \text{ and } (\alpha, i) \in A \times \Sigma.$$

Certainly $g\lambda$ is a permutation on Ω , and λ is a monomorphism. Furthermore, λ , μ induce an isomorphism $(G, \Delta \times \Sigma) \cong (G\lambda, \Omega)$. Let F be the regular elementary abelian normal subgroup of H, and set $C = \{(h_j)_j \in G; h_j \in F\}$. We will show that $C\lambda = E$. Let $c = (h_j)_j \in C$. Then $\{(\alpha, i)\mu\}(c\lambda) = (\alpha h_i)\lambda_i = (\alpha \lambda_i)(h_i\lambda_i) = \{(\alpha, i)\mu\}(h_i\lambda_i)$, for λ_i is a permutation isomorphism. This implies that $c\lambda = (h_1\lambda_1)(h_2\lambda_2)\cdots(h_k\lambda_k)$. Since $F = O_{\nu}(H)$ and $E^{J_i} = O_{\nu}(N_i)$, we have $F\lambda_i = E^{J_i}$, thus $C\lambda = E^{J_1}E^{J_2}\cdots E^{J_k} = E$. Since C = G, $E = C\lambda$ $G\lambda$, whence $G\lambda \subseteq N(E) = L$. Since $|L| = |L:N| \cdot |N| = |L:N| \cdot |H|^k \le |S_k| \cdot |H|^k = |G|$, $G\lambda = L$. Therefore $(G, \Delta \times \Sigma) \cong (L, \Omega)$. The proof is complete.

(3.4) Suppose H is a primitive maximal p-local subgroup of S^{4} , and $\Sigma = \{1, 2, ..., k\}, k > 1$. Then $G = H \int S^{\Sigma}$ is a maximal p-local subgroup of $S^{4 \times \Sigma}$ unless p = |J| = k = 2.

PROOF. Set $\Omega = J \times \Sigma$. Let L be a maximal p-local subgroup containing G. Since G is transitive, so is L. Assume first that L is imprimitive. By (2.1), G has a unique nontrivial system of imprimitivity. By (3.3), |G| = |L|. Thus G = L. Assume that L is primitive. Let E be the regular elementary abelian normal p-subgroup of L, and $\alpha \in J^{(2)}$ (see § 2 for the definition of $J^{(2)}$). As noted in § 2, if we regard L_{α} as a permutation group on E, then $(L_{\alpha}, \Omega) \cong (L_{\alpha}, E)$. Therefore we may assume that Ω is an elementary abelian p-group (with an identity element α) and L_{α} acts on Ω as a group of automorphisms of Ω . Since $H^{(1)} \subseteq L_{\alpha}$

and $H^{(1)}$ is primitive on $J^{(1)}$, and fixes the points of $\Omega - J^{(1)}$, we can apply Proposition (2.2) with $H^{(1)}$, Ω and $\Omega - J^{(1)}$ in place of A, G and C, respectively. Since Ω is an elementary abelian p-group and $|\Omega - J^{(1)}| \neq 1$, (ii) of (2.2) must holds. We conclude that p = |J| = k = 2.

(3.5) An imprimitive maximal p-local subgroup of S^{ϱ} has a unique nontrivial system of imprimitivity. Two imprimitive maximal p-local subgroups of S^{ϱ} are conjugate in S^{ϱ} if and only if their nontrivial blocks contain the same number of points.

PROOF. Trivial.

(3.6) Suppose L is an intransitive maximal p-local subgroup of S^{g} . Then $L=M\times S^{g-1}$ for a transitive maximal p-local subgroup M of S^{J} , $A\subseteq \Omega$.

PROOF. Let A_1, \ldots, A_k be the orbits of L, and let P be a nonidentity normal p-subgroup of L. As in the proof of (3.3), it is easily proved that L normalizes each P^{j_i} . Since $P \neq 1$, $P^{j_i} \neq 1$ for some i, say for i=1. Set $M = N_S \cup (P^j)$, where $A = A_1$, Then $A = A_2$. In particular M is transitive on A. Since $A = A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_4 \cup A_4 \cup A_5 \cup A_4 \cup A_5 \cup$

- (3.7) Suppose M is a transitive maximal p-local subgroup of S^4 , $A \subseteq \Omega$, and $G = M \times S^{g-4}$. Then G is not a maximal p-local subgroup of S^g if and only if one of the following conditions holds.
 - (i) p=2, $|\Omega-J|=2$, $|J|\neq 4$
 - (ii) p=2, $|\Omega-\Delta|=4$, $|\Delta|\neq 2$
 - (iii) p=3, $|\Omega-\Delta|=3$.

PROOF. If Ψ is a nontrivial block of G on Ω , then either $\Psi = \Lambda$ or $\Psi = \Omega - \Lambda$. Let L be a maximal p-local subgroup of S^0 containing G. Assume that L is intransitive. Then by (3.6), we have $L = N \times S^{n-2}$ for some transitive maximal p-local subgroup N of S^2 , $\Sigma \subseteq \Omega$. Since Σ is a fixed block of G, either $\Sigma = \Lambda$ or $\Sigma = \Omega - \Lambda$. If $\Sigma = \Lambda$, then M = N by the maximality of M, whence G = L. If $\Sigma = \Omega - \Lambda$, then $S^2 = N$. Therefore the following condition holds.

(*)
$$p=2$$
, $|\Omega-\Delta|=2$ or $p=2$, $|\Omega-\Delta|=4$ or $p=3$, $|\Omega-\Delta|=3$.

Assume that L is imprimitive. Then L has a unique nontrivial system of imprimitivity $\Delta_1, \Delta_2, \ldots, \Delta_k$. We may assume that $\Delta = \Delta_2 \cup \cdots \cup \Delta_k$ and $\Omega - \Delta = \Delta_1$. Let L_i be the subgroup of L which fixes the points of $\Omega - \Delta_i$. Then by (3.3), L_i is a primitive maximal p-local subgroup of S^{d_i} . Since $S^{d_i} = S^{g-d} \subset L_1$, (*) holds. Assume that L is primitive. Since p divides both $|\Omega|$ and $|\Delta|$, $|\Omega - \Delta| \ge p \ge 2$. Hence L contains a transposition. By (2.3), $L = S^g$. Again (*) holds. Finally

assume that (*) holds. Suppose p=2 and $2\neq |A|\neq 4$ or p=3 and $|A|\neq 3$. Then G is a proper subgroup of $S^J\times S^{g-J}$ which is p-local. The $S_2\times S_4$ is a maximal 2-local subgroup of S_6 . For the candidates for the maximal 2-local subgrougs of S_6 are $S_2\times S_4$ and $S_2 \cap S_3$, and $|S_2\times S_4|=|S_2 \cap S_3|$. Since $H_n\times S_n=S_n\times S_n\subseteq H_n\cap S_2$, for n=2, 3 and 4, $H_n\times S_n$ is not maximal for n=2, 3 and 4.

- (3.8) Suppose $\Delta, \Sigma \subseteq \Omega$. Let M and N be transitive maximal p-local subgroups of S^{Δ} and S^{Σ} , respectively. Then $M \times S^{\Omega-\Delta}$ is conjugate to $N \times S^{\Omega-\Sigma}$ in S^{Ω} if and only if one of the following conditions holds.
 - (i) $(M, \Delta) \cong (N, \Sigma)$
 - (ii) $\langle |A|, |\Omega A| \rangle = \langle |\Omega \Sigma|, |\Sigma| \rangle = \langle 2, 4 \rangle$ or $\langle 4, 2 \rangle$, p = 2.

PROOF. Suppose $M \times S^{g-1}$ is conjugate to $N \times S^{g-2}$. We may assume $M \times S^{g-1} = N \times S^{g-2}$. Then either $\Sigma = \Delta$ or $\Sigma = \Omega - \Delta$. If $\Sigma = \Delta$, then M = N, whence $(M, \Delta) \cong (N, \Sigma)$. If $\Sigma = \Omega - \Delta$, then $S^{g-1} = N$ and $S^{g-2} = M$. Therefore (i) or (ii) holds, q.e.d.

Proposition (3.8) concludes the proof of Theorem 1. We now prove Corollary 1. Suppose $p \neq 2$. Then there exists a one to one correspondence between the conjugate classes of transitive maximal p-local subgroups of S_n and the p-powers dividing n. If p>3, then there exists a one to one correspondence between the conjugate classes of intransitive maximal p-local subgroups of S_n and the pairs (e,k) of positive integers such that $p^*k < n$. Thus, if $p^*\|n$,

$$l_p(S_n) = a + \sum_i \left\{ \left\lceil \frac{n-1}{p^i} \right\rceil - \left\lceil \frac{n-1}{p^{i+1}} \right\rceil \right\} i = a + \sum_i \left\lceil \frac{n-1}{p^i} \right\rceil.$$

In case p=2 or 3, modify this formula according to (3.4) and (3.7). Corollary 2 is an immediate consequence of Theorem 1.

§ 4. Maximal 2-local subgroups of A_n .

THEOREM 2. Maximal 2-local subgroups of A_n , $n \ge 5$, are $L \cap A_n$ where L is a subgroup of S_n which satisfies the following condition.

(*) L is a maximal 2-local subgroup of S_n and $L \not\equiv S_2 \times S_{n-2}$, or $L = M \times S_2$ where M is a transitive maximal 2-local subgroup of S_{n-2} .

Exceptions are $(H_2 \cap S_4) \cap A_8$, $((H_2 \cap S_4) \times S_1) \cap A_9$ and $((H_2 \cap S_{k-1}) \times S_2) \cap A_{2k}$, $k \ge 4$.

Let L_1 and L_2 satisfy (*). If $L_1 \cap A_n$ is conjugate to $L_2 \cap A_n$ in A_n , then L_1 is conjugate to L_2 in A_n . If L satisfies (*), then $N(L \cap A_n) = N(L) = L$.

REMARK. $(H_2 \int S_4) \cap A_8 \subsetneq H_8 \subsetneq A_8$, $((H_2 \int S_4) \times S_1) \cap A_9 \subsetneq H_8 \times S_1 \subsetneq A_9$, $(H_2 \int S_{k-1}) \times S_2 \subsetneq H_2 \int S_k$.

Theorem 2, together with Theorem 1 and Proposition (3.8), provides enough information about maximal 2-local subgroups of A_n . Let L satisfy (*), and let C be the conjugate class of L in S_n . If $L \subseteq A_n$, then, C decomposes into two conjugate classes in A_n . If $L \subseteq A_n$, $C' = \{K \cap A_n; K \in C\}$ is a conjugate class in A_n . We will see that $L \subseteq A_n$ if and only if L is one of the following groups.

$$H_{2^e} \int S_k, \ n=2^e k, \ e \ge 3, \ k \ge 1$$

 $(H_{2^e} \int S_k) \times S_1, \ n=2^e k+1, \ e \ge 3, \ k \ge 1.$

As an illustration we list the maximal 2-local subgroups of A_n for $5 \le n \le 9$.

Table 2

A_5	$(H_4 \times S_1) \cap A_5 = A_4 \times S_1$
A_6	$(H_2 \int S_3) \cap A_6, \ (H_4 { imes} S_2) \cap A_6$
A_7	$(H_4 imes S_3)\cap A_7,\; (H_2\int S_3 imes S_1)\cap A_7$
A_8	$(H_4 \int S_2) \cap A_8$, H_8 (two classes)
A_9	$(H_4 \times S_5) \cap A_9$, $((H_2 \int S_3) \times S_3) \cap A_9$, $((H_4 \int S_2) \times S_1) \cap A_9$, $(H_8 \times S_1) \cap A_9$ (two classes)

COROLLARY 3. If $n \ge 5$, $6 \ne n \ne 9$, $2^a || n$, $2^d || n-1$ and $2^c || n-4$, then

$$l_2(A_n) = \begin{cases} 2a - 2 & (a \ge 3) \\ a & (a \le 2) \end{cases} + \begin{cases} d - 2 & (d \ge 3) \\ 0 & (d \le 2) \end{cases} + \begin{cases} -c - 3 & (c \ge 1) \\ -2 & (c = 0) \end{cases} + \sum_{i} \left[\frac{n - 1}{2^i} \right].$$

The proof is divided into five steps.

- (4.1) Suppose G is a maximal 2-local subgroup of A^{ϱ} ($|\Omega|=n\geq 5$). Then $G=L\cap A^{\varrho}$ where L satisfies the following condition.
- (*) L is a maximal 2-local subgroup of S^o and $L \not\equiv S_2 \times S_{n-2}$, or $L = M \times S^{o-d}$ where M is a transitive maximal 2-local subgroup of S^d , $\Delta \subseteq Q$, $|Q \Delta| = 2$.

PROOF. Let L be a maximal 2-local subgroup of S^{ϱ} containing G, and set $P=O_2(L)$. Since $L\cap A^{\varrho} \supseteq P\cap A^{\varrho}$ and $L\cap A^{\varrho} \supseteq G$, $G=L\cap A^{\varrho}$ unless $P\cap A^{\varrho}=1$. If $P\cap A^{\varrho}=1$, then clearly |P|=2. Therefore, by a result of § 3, $L=S^{\varrho}\times S^{\varrho-d}$, $A\subseteq Q$ and |Q-A|=2. Since G is a maximal 2-local subgroup of $L\cap A^{\varrho}$, and the mapping $L\cap A^{\varrho}\ni x\mapsto x^{\varrho}\in L^{\varrho}$ is an isomorphism, $M=G^{\varrho}$ is a maximal 2-local subgroup of $L^{\varrho}=S^{\varrho}$. In particular, $|O_2(M\times S^{\varrho-d})|>2$. Since $G\subseteq (M\times S^{\varrho-d})\cap A^{\varrho}$, we have $G=(M\times S^{\varrho-d})\cap A^{\varrho}$. Assume that M is intransitive on A. Then by (3.6), we have $M=K\times S^{\varrho-1}$ for a transitive maximal 2-local subgroup K of S^{Σ} , $\Sigma\subseteq A$. Thus $G\subseteq X=K\times S^{\varrho-1}$ for a transitive maximal 2-local subgroup K of S^{Σ} , $\Sigma\subseteq A$. Thus $G\subseteq X=K\times S^{\varrho-1}\times S^{\varrho-1}$. If $|\Sigma|=2$, $X\subseteq S^{(\varrho-1)\cup\Sigma}\times S^{\varrho-1}=Y$ and $|O_2(Y)|>2$. Thus $G=X\cap A^{\varrho}\subseteq Y\cap A^{\varrho}$ and $Y\cap A^{\varrho}$ is 2-local, contrary to the maximality of G. If $|\Sigma|>2$, then $X\subseteq K\times S^{\varrho-1}=Z$ and $|O_2(Z)|>2$, again a contradiction. Therefore M

is transitive on *J*, q.e.d.

- (4.2) Let K be a transitive maximal 2-local subgroup of S^2 , $|\Omega| = n \ge 5$, and let L satisfy (*) in (4.1). Suppose $K \cap A^2 \subseteq L$. Then one of the following statements holds.
 - (i) K=L
 - (ii) $|\Omega|=8$, $K\cong H_2 \int S_4$ and $L\cong H_8$.

PROOF. Assume first that K is primitive. Then $|\Omega|=2^e$ for some integer e. The stabilizer K_a of $\alpha\in\Omega$ is isomorphic to GL(e,2) and is simple as $e\geq 3$. Therefore $K\cap A^g$, and (i) holds. Assume that K is imprimitive. We may assume that $K=H\int S^\Sigma$ where H is a primitive maximal 2-local subgroup of S^A and $\Omega=A\times\Sigma$. The S^Σ is contained in A^g . For if the cycle decomposition of $\sigma\in S^\Sigma$ is $\sigma=(i,j,\cdots,k)(i',j',\cdots,k')\cdots$, the cycle decomposition of σ in S^g is

$$\sigma = \prod_{\alpha \in A} ((\alpha, i), (\alpha, j), \cdots, (\alpha, k))((\alpha, i'), (\alpha, j'), \cdots, (\alpha, k')) \cdots$$

Since |A| is even, $\sigma \in A^g$. We have $|A|=2^e$ and $|\Sigma|=k$ for some e and k. Assume $e \ge 3$. Then $H^{(i)} \subseteq A^{A^{(i)}}$ for each i, whence $K \subseteq A^g$ and (i) holds. Suppose $e \le 2$. Then $H=S^4$. Since $K \cap A^g$ is transitive, L is a transitive maximal 2-local subgroup of S^g . Suppose e=2. Then $A^A \cap S^g \subseteq K \cap A^g$, whence $A^{(i)}, A^{(2)}, \ldots, A^{(k)}$ is a unique nontrivial system of imprimitivity for $K \cap A^g$. Therefore if L is imprimitive, we have $L=S^A \cap S^g = K$ by (2.1) and the maximality of L. Assume that L is primitive. Then $L=A^g$ or S^g by (2.3), since $A^A \cap S^g$ contains a 3-cycle. But this is not the case since we are assuming $n \ge 5$. Assume e=1. Then $k \ge 3$ by our hypothesis. We can prove in exactly the same way as in the proof of (2.1) that $A^{(i)}, A^{(2)}, \ldots, A^{(k)}$ is the unique nontrivial system of imprimitivity for $K \cap A^g$. Therefore if L is imprimitive, we have K=L.

Assume that L is primitive. Then $k \ge 4$ by our hypothesis. We will show that (ii) holds. Let $\alpha \in A^{(1)}$. Identifying Ω with the regular elementary abelian normal subgroup of L, we may consider that L_a acts on Ω as a group of automorphisms. Let us adopt the additive notation, and rewrite α by 0. Let $0 \ne \eta \in A^{(1)}$ and let $A^{(2)} = \{\alpha, x\}$. Clearly $\alpha + \eta \ne 0$, η or α . Suppose $\alpha + \eta \ne x$. Since $k \ge 4$, there exists an $f \in (K \cap A^0)_0$ such that $\alpha f = x$ and $(\alpha + \eta)f = (\alpha + \eta)$. It follows that $\eta f = (\alpha + (\alpha + \eta))f = x + \alpha + \eta \ne \eta$. This is a contradiction since $A^{(1)}$ is a block of K. Therefore we may assume $A^{(2)} = \{\alpha, \alpha + \eta\}$ and $A^{(3)} = \{\beta, \beta + \eta\}$. Since $\alpha + \beta \in A^{(1)} \cup A^{(2)} \cup A^{(3)}$, we may assume $A^{(4)} = \{\alpha + \beta, \alpha + \beta + \eta\}$. If $k \ge 5$, then there exists an $f \in (K \cap A^0)_0$ such that $\alpha f = \alpha$, $\beta f = \beta$, $(\alpha + \beta) f = \alpha + \beta + \eta$. This yields a contradiction. Thus (ii) holds.

REMARK. $(H_2 \int S_4) \cap A_8$ is actually contained in H_8 . Let Ω be an elementary abelian (additive) group of order 8, $\Delta = \{0, \eta\}$ a subgroup of Ω of order 2, and $\Sigma = \{0, \alpha, \beta, \alpha + \beta\}$ a subgroup of Ω of order 4 not containing η . Define a bijection $\lambda \colon A \times \Sigma \to \Omega$ by $(x, y)\lambda = x + y$ and extend it to an embedding $\lambda \colon S^J \int S^{\Sigma} \to S^{\Omega}$. We will show that $G = (S^J \int S^{\Sigma})\lambda \cap A^{\Omega}$ is contained in the holomorph H^{Ω} of Ω . Suppose $f = (0, \alpha)(\eta, \alpha + \eta)$ and $g = (0, \eta)(\alpha, \alpha + \eta)$. Both f and g are typical generators of G. Let a, b be elements of Aut Ω such that $\eta a = \eta$, $\alpha a = \alpha$, $\beta a = \alpha + \beta$, and $\eta b = \eta$, $\alpha b = \alpha$, $\beta b = \beta + \eta$. Then $f = a\alpha \in H^{\Omega}$ and $g = b\eta \in H^{\Omega}$.

- (4.3) Suppose $K=N\times S^{g-4}$ where N is a transitive maximal 2-local subgroup of S^4 , $A\subseteq \Omega$ and $4\leq |A|<|\Omega|$. Then,
- (i) $N \cap A^A$ is transitive on A, and has at most one nontrivial system of imprimitivity on A which coincides with that of N.
- (ii) Suppose Ψ is a nontrivial block of $K \cap A^{\mathcal{Q}}$ on Ω . Then one of the following possibilities occurs.
 - (1) \PSA.
 - (2) $\Psi = \Omega \Lambda$
 - (3) $\Lambda \subseteq \Psi \subseteq \Omega$, $|\Omega \Lambda| = 2$.

PROOF. (i) We may assume that $N=H\int S^{\Sigma}$ where H is a primitive maximal 2-local subgroup of S^{Γ} , $A=\Gamma\times\Sigma$, $|\Gamma|=2^{e}$ and $|\Sigma|=m$. If $e\geq 3$, then $N\in A^{A}$ and the assertion follows from (2.1). If e=2, then $A^{\Gamma}\int S^{\Sigma}\subseteq N\cap A^{A}$ and we can apply (2.1). If e=1, we have $m\geq 3$ since $|A|\geq 4$ and N is a maximal 2-local subgroup of S^{A} . Thus the proof of (2.1) can apply.

- (ii) We first note that $(N \cap A^A) \times A^{g-A} \subseteq K \cap A^g$. Assume $\Psi \cap A \neq \phi \neq \Psi \cap (Q-A)$. Then by (i), $A \subseteq \Psi$. Therefore if $|Q-A| \leq 2$, (1) or (3) holds. Suppose $|Q-A| \geq 3$. Then $\Psi = A$ since A^{g-A} is transitive on Q-A. If $\Psi \subseteq Q-A$, then $|Q-A| \geq 3$. But this is a contradiction since A^{g-A} is primitive on Q-A.
- (4.4) Let K be an intransitive maximal 2-local subgroup of S^o , $|\Omega| = n \ge 5$, such that $K \not\equiv S_2 \times S_{n-2}$. Assume $K = N \times S^{n-1}$ where N is a transitive maximal 2-local subgroup of S^A , $A \subseteq \Omega$. If L satisfies (*) in (4.1) and $K \cap A^n \subseteq L$, then one of the following statements holds.
 - (i) K=L.
 - (ii) |A|=8, $|\Omega|=9$, $N\cong H_2 \int S_4$, $L\cong H_8 \times S_1$.

PROOF. By our hypothesis $|\Lambda| \ge 4$, and so (4.3) can apply. Furthermore it follows from (3.7) that $2 \ne |\Omega - \Lambda| \ne 4$.

Suppose $L=M\times S^{g-1}$ where M is a transitive maximal 2-local subgroup of S^{1} ,

 $\Delta \subseteq \Omega$, $|\Omega - \Delta| = 2$. Since both Δ and $\Omega - \Delta$ are fixed nontrivial blocks of $K \cap A^2$, we have $\Delta = A$. Thus $|\Omega - \Delta| = 2$, a contradiction.

Suppose L is an imprimitive maximal 2-local subgroup of $S^{\mathcal{Q}}$. Let $\Sigma_1, \Sigma_2, \ldots, \Sigma_m$ be the canonical system of imprimitivity of L. By (4.3), we may assume that $\Omega - A = \Sigma_1$ and $A = \Sigma_2 \cup \cdots \cup \Sigma_m$. Let L_1 be the set of elements of L that fix the points of Λ . Then L_1 is a primitive maximal 2-local subgroup of $S^{\mathcal{Q}-A}$. Since $L \supseteq (N \cap A^A) \times A^{\mathcal{Q}-A}$ $L_1 \supseteq A^{\mathcal{Q}-A}$. But this is not the case since $|\Omega - A| \ge 8$.

Suppose L is a primitive maximal 2-local subgroup of S^{ϱ} . Since both $|\Omega|$ and $|\Lambda|$ are even, and $L \supseteq (N \cap A^{\Lambda}) \times A^{\varrho - \Lambda}$, L contains a 3-cycle. By (2.3), this yields a contradiction.

- (4.5) Let $K=N\times S^{\varrho-1}$ where N is a transitive maximal 2-local subgroup of S^{1} , $A\subseteq \Omega$, $|\Omega-A|=2$ and $|\Omega|=n\geq 5$. If L satisfies (*) in (4.1) and $K\cap A^{\varrho}\subseteq L$, then one of the following statements holds.
 - (i) K=L.
 - (ii) $N \cong H_2 \cap S_{m-1}$. $L \cong H_2 \cap S_m$, n=2m.
 - (iii) $|\Omega|=8$, $N\cong H_2 \int S_3$, $L\cong H_8$.

PROOF. Since |A| is even, $|A| \ge 4$, whence (4.3) can apply. Suppose $L = M \times S^{Q-d}$ where M is a transitive maximal 2-local subgroup of S^{J} , $\Delta \subseteq \Omega$ and $|\Omega - \Delta| = 2$. Since both Δ and $\Omega - \Delta$ are fixed nontrivial blocks of $K \cap A^{Q}$, we have $\Delta = A$. Hence $M \supseteq N \cap A^{A}$. By (4.2), either N = M or |A| = 8, $N \cong H_2 \int S_4$ and $M \cong H_8$. In the latter case, $L \cap A^Q = M \times A^{Q-A} \supseteq (N \times S^{Q-A}) \cap A^Q$. This is a contradiction since $|\Omega - A| = 2$ and $N \subseteq A^A$.

Suppose L is an intransitive maximal 2-local subgroup of S^{ϱ} such that $L \not\equiv S_2 \times S_{n-2}$. Assume $L = M \times S^{\varrho-1}$ where M is a transitive maximal 2-local subgroup of S^{ϱ} , $A \subseteq \Omega$. Then $|A| \ge 4$ and $2 \ne |\Omega - A| \ne 4$. Therefore by (4.3), $A \subseteq A \subseteq \Omega$. But this is not the case since both |A| and |A| are even.

Suppose L is an imprimitive maximal 2-local subgroup of S^{ϱ} . Let $\Sigma_1, \Sigma_2, \ldots, \Sigma_m$ be the canonical system of imprimitivity of L. By (4.3), we may assume that $A = \Sigma_1 \cup \cdots \cup \Sigma_{m-1}$ and $\Omega - A = \Sigma_m$. In particular $|\Sigma_i| = 2$ for each i. Whence $m \ge 3$. Therefore by (4.3), N is imprimitive with the canonical system of imprimitivity $\Sigma_1, \ldots, \Sigma_{m-1}$. Thus (ii) holds.

Suppose L is a primitive maximal 2-local subgroup of S^{g} . As before, we identify Ω with the regular elementary abelian normal subgroup of L. We will assume that $0 \in \Omega - \Lambda$ (0 is the identity element of Ω). We may assume that $N=H \int S^{\Sigma}$ where H is a primitive maximal 2-local subgroup of S^{Γ} , $\Lambda = \Gamma \times \Sigma$, $|\Gamma| = 1$ $2^{e} \ge 2$ and $|\Sigma| = k \ge 1$. If $e \ge 3$, then $N \subseteq A^{A}$, and therefore $H^{(i)} \subseteq N \cap A^{A} \subseteq L$ (see § 2 for the definition of $H^{(i)}$). Since $H^{(i)}$ is primitive on $I^{(i)}$ and fixes the points of $\Omega - \Gamma^{(i)}$, we have $|\Omega| = 4$ by (2.2), contrary to our hypothesis. Hence $e \le 2$. If e=2, then $A^{r} \int S^{z} \subseteq N \cap A^{A} \subseteq L$. Again this is a contradiction. Thus e=1, and therefore $k \ge 3$ since $|\Omega| = 2(k+1)$ is a power of 2. Since $k \ge 3$, we can prove as in the last paragraph of (4.2) that k=3. Thus (iii) holds. This completes the proof of (4.5).

Finally we show that N(L)=L if L satisfies (*). If L is transitive, the assertion is clear by (2.1) and the uniqueness of the nontrivial system of imprimitivity of L. Suppose L is intransitive and Δ , $\Omega - \Delta$ are its fixed blocks. If $|\Delta| =$ $|\Omega-\Delta|$, then $L^{\beta} \not\cong L^{\beta-\beta}$ by the maximality of L. In any case N(L) fixes Δ and $\Omega - \Delta$. Therefore N(L) = L.

§ 5. Maximal p-local subgroups of A_n , $p \neq 2$.

Throughout this section let p be an odd prime.

THEOREM 3. Maximal p-local subgroups of A_n are $L \cap A_n$ where L are maximal p-local subgroups of S_n . Let L_1, L_2 be maximal p-local subgroups of S_n . Then $L_1 \cap A_n$ is conjugate to $L_2 \cap A_n$ in A_n if and only if L_1 is conjugate to L_2 in S_n .

The proof is divided into three steps. Let Ω be a finite set.

(5.1) Suppose G is a maximal p-local subgroup of A^{o} . Then there exists a maximal p-local subgroup L of S^{ϱ} such that $G=L\cap A^{\varrho}$.

PROOF. Trivial.

- (5.2) Suppose L is a maximal p-local subgroup of S^{ϱ} .
- (i) $L \nsubseteq A^{\varrho}$.
- (ii) If L is primitive, so is $L \cap A^{\Omega}$.
- (iii) If L is imprimitive, $L \cap A^{o}$ is transitive and has a unique nontrivial

system of imprimitivity.

- (iv) Suppose L is intransitive and $L=M\times S^{\varrho-d}$ where M is a transitive maximal p-local subgroup of S^d , $A\subseteq \Omega$. If ϕ is a nontrivial block of $L\cap A^\varrho$ on Ω , then either $\phi\subseteq A$ or $\phi=\Omega-A$.
- PROOF. (i) By Th. 1, we may assume that L is primitive. Identifying Ω with the regular elementary abelian normal subgroup E of L, we choose a basis $\omega_1, \omega_2, \ldots, \omega_r$ of Ω . We regarded Ω as a vector space over GF(p). Let a be a generator of the multiplicative group of GF(p) and let g be an element of L_0 such that $\omega_i g = \omega_i$ for i < r and $\omega_r g = a\omega_r$. Then g is the product of p^{r-1} (p-1)-cycles, and so is an odd permutation in L.
- (ii) Let E be the regular elementary abelian normal subgroup of L. Since $E \subseteq L \cap A^{\varrho}$, $L \cap A^{\varrho}$ is transitive. Suppose $|\Omega| > p$. Let $\alpha \in \Omega$. If we identify Ω with E and L_{α} with $GL(\Omega)$, respectively, then $(L \cap A^{\varrho})_{\alpha} \supseteq SL(\Omega)$. Since $SL(\Omega)$ is transitive on $\Omega \{0\}$, $L \cap A^{\varrho}$ is doubly transitive.
- (iii) Let $\Delta_1, \ldots, \Delta_m$ be the canonical system of imprimitivity of L. To prove that $L \cap A^g$ is transitive, it is sufficient to show that $L \cap A^g$ permutes $\Delta_1, \ldots, \Delta_m$ transitively. But it is clear by (i). The second assertion is an immediate consequence of (2.1) and (ii).
 - (iv) is an immediate consequence of (i) (ii) and (iii).
- (5.3) Let K, L be maximal p-local subgroups of S^{o} . If $K \cap A^{o} \subseteq L$, then K=L.

PROOF. Suppose K is primitive. By (5.2), L is primitive. Let E, F be regular elementary abelian normal subgroups of K, L, respectively. Since $K \cap A^{\varrho} = L \cap A^{\varrho}$, E, F are minimal normal subgroups of $K \cap A^{\varrho}$. If $E \neq F$, then $[E, F] \equiv E \cap F = 1$, contrary to the fact that C(E) = E. Thus E = F and K = L.

Suppose K is imprimitive. By (5.2), L is transitive. We may assume that $K=H\int S^{\Sigma}$ where H is a primitive maximal p-local subgroup of S^{J} , $J\times \Sigma=Q$. Assume that L is primitive. Since $p\neq 2$ and $H^{(i)}\cap A^{J^{(i)}}$ is primitive on $J^{(i)}$ by (5.2), (2.2) yields a contradiction. Thus L is imprimitive. Let $L^{(i)}$ be the set of elements of L that fix the points of $Q-J^{(i)}$. Since $H^{(i)}\cap A^{J^{(i)}}\subseteq L^{(i)}$, we have, by the first paragraph, $H^{(i)}=L^{(i)}$. Since $O_p(H^{(1)})\cdots O_p(H^{(m)}) \subseteq K$ and $O_p(L^{(1)})\cdots O_p(L^{(m)}) \subseteq L$, we have K=L.

Suppose K is intransitive and $K=N\times S^{g-A}$ where N is a transitive maximal p-local subgroup of S^A , $A\subseteq Q$. Then $(p,|Q-A|)\neq (3,3)$. If L is primitive, then, by (2.3), $L=A^g$ or S^g since $L\supseteq (N\cap A^A)\times A^{g-A}$ and p divides |Q-A|. But this

is not the case. If L is imprimitive, then, by (5.2), $\Omega-A$ is a nontrivial block of L. Since $L\supseteq (N\times A^A)\times A^{Q-A}$, A^{Q-A} is contained in a primitive maximal p-local subgroup of S^{Q-A} , a contradiction. Thus L is intransitive. Then we have $L=M\times S^{Q-A}$ where M is a transitive maximal p-local subgroup of S^A , $A\subseteq Q$. Then A=A or A=Q-A. Assume A=A. Then $A\subseteq N\cap A^A$. Therefore A=N by the preceding paragraph, whence K=L. If A=Q-A, then $A\subseteq A^{Q-A}$, a contradiction. The proof is complete.

(Received January 14, 1972)

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan