On maximal p-local subgroups of S, and A,

By Kensaku GOMI

{Communicated by Y. Kawada)

§1. Intreduction.

The object of this paper is to determine the structure and the conjugate
classes of the maximal p-local subgroups of S, and 4, Here we understand by
S. and A,, the symmetric and the alternating groups of degree m, respectively.
If a subgroup H of a finite group G is of the shape Ng(P) where P is a non-
identity p-subgroup of G, we eustomarily say that H is a p-local subgroup of G.
But in this paper we will adopt a little wider definition. Namely, H is a p-local
subgroup of G if and only if H has a nonidentity normal p-subgroup. It is obvious
that a maximal p-local subgroup in the narrow sense is also maximal in the wider
sense, and conversely. We discuss the maximal p-local subgroups of S, in §38. As
for the A,, we must discuss the case p=2 separately, mainly because of the fact
that 1S, : A,.{=2. We discuss the case p=2 in §4, and the case p+2 in §5.

§2. Notation and necessary lemmas.

Let E,. denote an elementary abelian group of order p¢=p, and let H,. be the
holomorph of E,, i.e. the semidirect product of E, by the full automorphism
group A of E,.. We regard H, as a permutation group on p° letters. Namely,
we let axc Hye (@C A, x¢ By} act on ye Epe by y'?=y"x. Then E, is regular on
itself. Since A is the stabilizer of the identity clement of E,, and is transitive
on remaining points, H, is a doubly transitive group. Note that =8, for
n=2,3 and 4. Since E, is irreducible as an A-module, K, is the largest normal
p-subgroup of H,.

Some further notations are required. For any finite group X, let I,(X) denote
the number of conjugate classes of maximal p-local subgroups of X. Let O0,(X)
denote the largest normal p-subgroup of X. For any positive number %, let [n]
denote the largest integer not greater than n. If p° is the largest power of p
that divides n, we write p*fn.

Almost all of the notation concerning permutation groups are standard and



216 Kensaku Gowt

may be found in Wielandi’s hook: Finite Permutation Groups, Academic Press,
New York-London, 1964 (henceforth abbreviated by (Wj;. Particularly, we let
S? and AY denote the symmetric and the alternating groups on a set 2, and if ¢
is a permutation group on 2, G. will denote the stabilizer of a point @ in G. A
block is a set of imprimitivity. It should be noted that if f is a mapping of a set
X into a set ¥, we denote by zf or 2/ the image of = under f. If G is a per-
mutation group on £, we often say that (G, €} is a permuiation group. Let
((;, 2 be a permutation group. We will denote by N(G) and C(G), respectively,
the normalizer and the centralizer of G in S?. If (G, Q) and (H, 4) are isomor-
phic permutation groups, i.c. if there exists a group isomorphism 1:G-> H, and
a bijection gt : 2> 4 such that (eg)p={(ap){gi) for all ac 2 and gc G, we will
write (G, @)= (1, 4). 1f there is no fear of confusion, we will use the same
letter for z and g, and say that 2: (G, @)—(II, 4) is an isomorphism. Suppose
(7 is a permutation group on £==0,U§,U--- UL, (disjoint union) such that 2,=0;
for 7-=1,2,...,n. Then each g¢ G is uniquely expressed as the product g=g,g.
-«.g. where g; are permutations on 2 such that £2,0,=2; and that g; fixes the
points of Q- We call g; the £.-constituent of g and denote it by g%. If
4020, we denote by S* the set of permutations on @ which fix the points of 24,
since it is canonieally isomorphic to the symmetric group on 4.

Let (G, 4) and {(FI, X¥) be permutation groups. Let G denote the Cartesian
product of G with the index set Y. The Wreath product G| H of G by H is the
semidirect product G+ H where I acts on G by:

(gi)5cs=(gp-1icy for (g)jexc G and he H.
We let G H act on Q=4xY by:
(e, 1) 1{g;) ) =gy, th) for (a, 1)c and (g);hcG | H.

Then, G [ H is transitive on £ if and only if both (G, 4) and (H, ) are transi-

tive. For each 1¢ X we set

Ji = {a, 1); ac d} and
G ={{g))s; (g:);¢ G, g;=1 for each j#1}

Then, G is a permutation group on 4%, (G®, 49)=(G, 4) and {4¥}, is a
system of imprimitivity of G [ H.

(2.1) Suppose (G, 3) and (H, Y) arc permutation groups and 2=4XZI.
Then,
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(i1 If K=8? and {4+}; is a system of imprimitivity of K, then K8 [ §*.

tiy IF (G, 3y and {(H, 3) are primitive, then {47} is the unique nontrivial
system of imprimiticvity of {G{ H, ).

ProOF. (i) Let g< K. Then g induces a permutation y on X by f¥g=1%",
Define a bijection ¢; : J-» 4% by a¢;=i{a, 1}. For each {¢ ¥ set g,=¢,g¢5'. Then
clearly g,¢ 89 and ¢g=1{g;),;5¢ S* (S~

(it} Let ¥ be a nontrivial block of (G [ H, 2}. Suppose ¥FNIH 0+ 4040
for k1. Since (G9, 4¥) is transitive, ¥ 2+ P, Therefore ¥ is a union of
more then one, but not all of 49°s, say F=LF UF0 U+ UL, Since SV h= g0
for each he H, ik, 1,...,m} is a nontrivial block of (H, Y}, contrary to our hy-
pothesis. Thus ¥=4® for some 7. Since (G, 1) is primitive, ¥=47, q.e.d.

Let (G, Q) be a permutation group, a< 2, and N be a regular abelian normal
subgroup of G, Since C{N)}=N by (W} Prop. 4.4., G, can be regarded as a per-
mutation group on N acting by conjugation. It is easily seen that (G, 2)= (G, N).

(2.2) Let A be a group of automorphisms of a finite group G, and C be the
set of fired points of A on G. Suppose A is primitive on G—C, regarded as a
permutation group on G—C. Then one of the following possibilities occurs.

(i) G is an elementary abelian 2-group, [Cl=1.

(ii} G is a dikedral group of order 2p where p is a (not necessarily odd)
prime, |Cl=p.

(i) G s a cyclic group of order 4, |C|=2.

(iv) G s a cyelic group of order 3, |Ci=1.

PROOF. For each subgroup D of C, a coset of D not contained in C is a block
of A on G—C. Hence either (1) C=1 or (2) |G : C|=2 and |Cl=p is a prime.
For each gc G—C, {g, ¢!} is a bloek of A on G—C. Hence either (3) all the
elements of G—C are of order 2 or (4) G—-C=lg, g '} with g#g~. If (1) and
(3) hold, then G is an elementary abelian 2-group. Suppose (2) and (3) hold.
Then for any g, he G~C, (g#h), ghc C and gh is of order p. Thus (ii) holds.
If (1) and (4) hold, then G is cyclic of order 3. 1f (2) and (4) hold, then p==2
and (iii) holds, g.e.d.

(2.3) ((W) Th. 13.3) A primitive group which contains a transposition 18
o symmetric group. A primitive group which contains a 3-cycle is either alter-
nating or symmetric.
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§3. Maximal p-local subgroups of S,.

Throughout this section let p denote a prime.

THEOREM 1. Maximal p-local subgroups of S, are (H, [S,}xS,, with n=
pk+r, ex1, k=1, n>r>0.

Ezceptions are (H,[S,)xS,, (He[S,) xS, with 2°%k+#4, (Hx[S,)xS, with

2%+2 and (Hy [ S,) % Ss.

Twe mazimal p-local subgroups (H, [ S} XS, and (H,s [ S;) xS, are conjugate

m S, if and only if one of the following conditions holds:

(1) e k,r)=(f,1,3)

(i) (pk,ri=(s,p/l)=1(4,2) or (2,4).

REMARK. (H,¥S,)x8S,5 (H,[8:) %S, 58:xS,, (Ha[8,)XS; S8 xS, and
(oo [ 84) X8, Spep xSy if 224, HXSiGH[S,, (Heo [ Sp) X SiESae xS, if
3k#38, and HyxS;% Hy [ S..

Asg an illustration we list the maximal 2-local subgroups of S, for 55n<9.

Table 1

Sy | Hx S, mxs1
S| sz.‘::;, H,yswu,yb.,
S | HoxSe HixSs, (Hofés xé, x

5| 1 (b, mjsz, I, mxss !

Sy l H\Sq, HyXSs, Ilofs.; XS, Hfstxsl, f,H,fSNSl Hex S,

COROLLARY 1. If m=B, 6#n=8, 2%n, 2tjn—2, and 2in—4, then L{(S,) =
a-b—ec—~1+ Z [{n-1)/2). If nz4, 3%n and 3|n-3, then LI{S,)=e—b+
XY gzl o0
S {(n=1)/3" If p>8 and plin, then 1(S,)=a+ Z}[(-nml)/p"].
i1 =

COROLLARY 2. Maximal subgroups of S, with nonidentity solvable normal
subgroups are isomorphic to one of the following groups.

(i) Hp, n=p°, p#2

(i) S:[S, n=tk, 1=2,8,4.

(i) S§;%8S,-ir 1=2,3,4.
{The author does not know whether H,, p+2, is actually maximal in S,» or not.
It is easy to see that H. is contained in A, if ¢=3.)

The proof of Theorem 1 is divided into several steps. In the rest of this
section, let 2 denote a finite set. We note that if a maximal p-local subgroup L
of a finite group G normalizes a non-identity p-subgroup P of G, then L=Ng(P).
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{3.1) Suppose (2|=p*=p. Then, up to conjugacy, S? has a wnique regular
elementary abelian subgroup. The normalizer of a regular elementary cbelian
subgroup of S% is isomorphic to H, as a permutation group.

PROOF. Let E be a regular elementary abelian subgroup of S?. Let a¢ @
and define a bijection ¢: E—Q by z¢=ax for each z¢ E. Introduce group structure
in £ so that ¢ is an isomorphism, and denote this group by . Taking the
regular representation of 0, we consider @ as a permutation group on {. Then
clearly (E, 0)=(0, 2). Therefore if F' is another regular elementary abelian
subgroup of S% we have (E, 2)=(F, 2), or equivalently E, F are conjugate in
S9,

Since E,s is a regular elementary abelian subgroup of H,, there exists a
permutation group H on £ which is isomorphic to H, as a permutation group
and so has a regular elementary abelian normal subgroup E’. By the first para-
graph, we may assume that E=E’. Since C(E)=E, N(E)/E is embedded in
Aut{E). In particular, |[N(E)|<[H|. Since HZN{E), we conclude that N{E)=H,
q.e.d.

(3.2)  Primitive maximal p-local subgroups of S? are the normalizers of
regular elementary abelian p-subgroups of S°, and conversely. Therefore, the
primitive maximal p-local subgroups of S9 constitute one conjugate class.

PROOF. Let L be a primitive maximal p-local subgroup of S?, and let E be
4 nonidentity normal elementary abelian p-subgroup of L. Since L is primitive,
E is regular, and the first part of the assertion follows. Let H be the normlizer
of a regular elementary abelian p-subgroup of S%. By (3.1), H is primitive.
Hence if L is a maximal p-local subgroup of S containing H, L is also primitive,
whence L=H by the first part and (3.1). The conjugacy part is a consequence
of (3.1).

(3.3) Suppose L i3 an imprimitive maximal p-local subgroup of S Then
we have |Q1=pk for some ex=1 and k>1, and L=H, [ S, as permutation groups.

Proor. Let E be maximal among elementary abelian p-subgroups of S§¥
normalized by L. If E is transitive, then E is regular and L is primitive by
(8.1), contrary to our hypothesis. Hence E is intransitive. Let 4=4,,4;,...,4;
be the orbits of E. Since L normalizes £ and is transitive on 2, L permutes
4y 4oy ..., 4, transitively. In particular, |d|=]4] for 1Z¢=<k. Suppose [di=p°.
Define N to be the subgroup of L that fixes all 4,. Then L=N2E, and L/N, is
a permutation group on 4, 4o, ..., 4. In particular, |L: Ni=|S.]. Each element
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of N is represented as the produet of its J-constituents ‘sce §21. We will show
that L permutes E9i, B2, EY¥: Suppose 22 L and 4r=d, for 1<i, i’ <k. If
we denote the Ji-constituent of ac E hy a, then E e =aj a7 -a,°, (d)a =
datpe=Sa=4, and for any 6¢ 4p, 444, oa = Vjex={dx ir=4. Thus a7 is
the do-constituent of ¢°. This implies that (E4i)7=E"", Since L permutes
W4, B9, KYE, L onormalizes the elementary abelian p-group B E4i M. .. B,
By the maximality of K, E=[K4E%. .. % By the definition of N, each E“i is
normalized by N, whence hy N<, for each N9, j=#i, centralizes E“i. Thus
N'i CNga, (B9, Set N;==Nga(E4). Since N, normalizes each E9i, 1Zj<k,
N, NiB)=L. Sinece N, fixes each 4;,, N;"'N whence N,". N4i. We conclade that
Nti=N, and N=NN, - N,.

Since i is a regular permutation group on dJ,, (N, 4,) is isomorphic to a
primitive maximal p-local subgroup (H, 4) of S4. Let 4;: (H, 4)—{N, 4,) be an
isomorphism. Set Y={1,2,...,k} and define a bijection p: 4X X0 by {a, 1} 1t=ai,.
Define a mapping 4: G=H [ §,~8% by:

He, tid gy =(ah )4, for g=(h;);5¢G and (o, ijc Ix X

Certainly g4 is a permutation on £, and 7 is a monomorphism. Furthermore, 4, o
induce an isomorphism (G, 4X3)=(Gi, 2). Let F be the regular elementary
abelian normal subgroup of H, and set C={{h,);¢ G; h;c F}. We will show that
Ca=E. Let c=(h);cC. Then {{a, i)r}{cd)=/(ah)i;=(ad)hi)={la, Oplthii,), for
A; is a permutation isomorphism. This implies that ei={h,2,)(hats)- - - (hity). Since
F=0,(H} and E9=0,(N,), we have Fi,=E", thus Ci=E"E%...E4%=EFE. Since
C G, K=Ci (i, whenee G27 N(E)=L. Since |Li=|L: N|-|N|=!L: N|-1H'<
[S =16, Gi=L. Therefore (G, 4x S)=(L, ©). The proof is complete.

(3.4} Suppose H is a primitive maximal p-loeal subgroup of S4, and
AL 20 Lk B> Then G=H{S* is a maximal p-local subgroup of S§4<%
wiless pe=|dj=k=2,

Proor. Set Q=4xY. Let L be a maximal p-local subgroup containing G.
Since ¢ is transitive, so is L. Assume first that L is imprimitive. By (2.1), G
has a unique nontrivial system of imprimitivity. By (3.3), 1G|=|L|. Thus G=L.
Assumie that L is primitive. Let E be the regular elementary abelian normal
p-subgroup of L, and a¢ 4® (see §2 for the definition of 42). As noted in §2,
if we regard L. as a permutation group on E, then (L., Q)=(L., E). Therefore
we may assume that 2 is an elementary abelian p-group (with an identity ele-
ment «) and L. acts on 2 as a group of automorphisms of Q. Since HV %L,
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and H™ is primitive on 47, and fixes the points of 2—JY, we can apply Prop-
osition (2.21 with H®, Q and Q-4 in place of 4, G and C, respectively., Since
2 is an elementary abelian p-group and 1@—471=1, (i) of (2.2) must holds.
We conclude that p=|Ji=k=2.

(3.5)  An imprimitive maximal p-local subgroup of S° has a wnique nontrivial
system of tmprimitivity. Two tmprimitive maximal p-local subgroups of SY are
congugate in 82 if and only if their nontrivial blocks contain the same number
of points.

PrOOF. Trivial,

(3.67 Suppose L is an intransitive maximal p-local subgroup of S. Then
L=MxS8%"4 for a transitive maximal p-local subgroup M of S, 4 £.

PrROOF. Let d,,...,d. be the orbits of L, and let P be a nonidentity normal
p-subgroup of L. As in the proof of (3.3}, it is easily proved that L normalizes
each P4i. Since P=1, PJi=+1 for some %, say for i=1. Set M=Nzi:([), where
d=1,, Then L7 =M. In particular M is transitive on 4. Since L~ L1LA2. .- L4
MS2-4 and MS?¢ is p-local, we have L=MS%"¢, q.e.d.

(3.77) Suppose M is a transitive mazimal p-local subgroup of S¢, 4<Q, and
G=MxS8%4. Then G is not ¢ maximal p-local subgroup of S if and only if
one of the fellowing conditions holds.

(1) p=2, |0—-4i1=2, |4i=4

(i) p=2, (O—J!::’, {42

{iti} p=3, |@—di=

Proor. If ¥ is a nontrivial block of G on £, then either ¥ "d or ¥=02-d.
Let L be a maximal p-local subgroup of S¢ containing . Assume that L is

intransitive. Then by (3.6}, we have L=NxS%"* for some iransitive maximal
p-local subgroup N of S*, Y& 92. Since X is a fixed block of G, either Z=4 or
Y=0-4. 1f S=4, then M=N by the maximality of M, whence G=L. If
Y=0—4, then S*=N. Therefore the following condition holds.

(*) p=2, |2~4=2 or p=2, |2—di=4 or p=3, [£2-d=3.

Assume that L is imprimitive. Then L has a unique nontrivial system of
imprimitivity 4,, 4o, ..., 4. We may assume that d=4,U---Ud and Q- 4d=4,.
Let L, be the subgroup of L which fixes the points of €—~4;. Then by (3.3}, L;
is a primitive maximal p-local subgroup of S4:. Since S4:=S8?"47 L,, (*) holds.
Assume that L is primitive. Since p divides both |2} and [4], {2~4dlzpx2.
Hence L contains a transposition. By (2.3), L=S58% Again (*) holds. Finally
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assume that (*} holds. Suppose p=2 and 2%#|4{+4 or p=3 and {4|%3. Then G
is a proper subgroup of S?x89-¢ which is p-local. The S.xS, is a maximal
2-local subgroup of S,. For the candidates for the maximal 2-local subgrougs of
S; are S;xS, and S,[S,, and |S;xS8,|=1S,[Ssl. Since H,xS,=S,xS.=H,[S.,
for n=2, 3 and 4, H,x S, is not maximal for n=2, 3 and 4.

(3.8) Suppose 4,3%2. Let M and N be transitive maximal p-local sub-
groups of S? and S¥, respectively. Then MxS% 4 is conjugate to NXS* %
S? if and only if one of the following conditions holds.

(i) (M, H=(N,2)

(i) (4,12-d)=(2-2,1¥)={Z4) or 42), p=2.

ProOF. Suppose M <S? 4 ig conjugate to NxS?7%. We may assume M1 SY 4=
NS¢ ¥ Then either Y==J or Y=80-4. If S=4, then M=N, whence (M, dj=
(N, ). If Y=0-4, then S? 9=N and S *=M. Therefore (i} or (ii) holds,
i.e.d.

Proposition (3.8) concludes the proof of Theorem 1. We now prove Corollary 1.
Suppose p+2. Then there exists a one to one correspondence between the con-
jugate classes of transitive maximal p-local subgroups of S, and the p-powers
dividing »n. If p>3, then there exists a one to one correspondence between the
conjugate classes of intransitive maximal p-local subgroups of S, and the pairs (¢, k)
of positive integers such that p°k<n. Thus, if p*|n,

usimae 3 5L e 552

In case p=2 or 3, modify this formula according to (3.4) and (3.7). Corollary 2

ig an immediate consequence of Theorem 1.

§4. Maximal 2-local subgroups of A,.

THEOREM 2. Maximal 2-local subgroups of A,, n=5, are LNA, where L is
a subgroup of S, which satisfies the following condition.

(*) L 15 o maximal 2-local subgroup of S, and L#ES;XS,.s, or L=MxS,
where M 1s a transitive maximal 2-local subgroup of S,-s.

Exceptions are (Hy [ S,) NAs, (H: [ S)xS)NAsand (He [ Si- ) XS} N Ay, k24,

Let Ly and L, satisfy (*). If LiNA, is conjugate to L,NA, in A,, then L,
18 conjugate to L. in A,. If L satisfies (*), then N(LNA,)=N(L)=L.

REMARK. (H,[SONAsGEH G As, (H:[S)XS)NAGH XS, S Ay, (Ha[S,1)%
S Hy [ S,.



Maximal p-local subgroups 223

Theorem 2, together with Theorem 1 and Proposition (3.8), provides enough
information about maximal 2-local subgroups of A,. Let L satisfy (*), and let ¢
be the conjugate class of L in S,. If L= A,, then, C decomposes into two conju-
gate classes in A,. If LY A4,, C'={KnA,; KcC} is a conjugate class in A, We
will see that L= A, if and only if L is one of the following groups.

Hp [ Si, n=2%, ¢=3, k=1

(Hoe [ S;)% 8y, n=2%+1, e=3, k1.

As an illustration we list the maximal 2-local subgroups of A4, for 5xn<9.

Table 2

A5 fmxs,,nA A4<£>1

A H,jsmAs, (Hy% )1 A

A (H: X SN Ar, (Hzfssxsmm
As | \HifSyr 43 Hs (t\xo classes)

As , _H4XS§)QA9, IszSg >\Sa ﬂAq, ’T{AijﬂXb]rﬂA), (HgXS)ﬁAq t\\O CIJSSBS\ :

COROLLARY 3. If n25, 6%n+9, 2°[n, 2¢n—1 and 29|n—4, then

i (I ) (8 ) )

The proof is divided into five steps.

(4.1) Suppose G is a maximal 2-local subgroup of A® (12|=n=5). Then
G=LNA? where L satisfies the following condition.

(*} L is a maximal 2-local subgroup of 89 and L#S8:% 8, 4, or L=Mx {84
where M s a transitive maximal 2-local subgroup of 8¢, 4720, |0~ 4|=2.

ProOF. Let L be a maximal 2-local subgroup of S? containing G, and set
P=0,(L). Since LNA=PNA? and LNADG, G=LNA? unless PNA%=1. If
PNA?=1, then clearly [P|=2. Therefore, by a result of §8, L=8S4x89-4 400
and |2—4{=2. Since G is a maximal 2-local subgroup of LN A¥, and the mapping
LNA%>z—a4e L4 is an isomorphism, M=G4 is a maximal 2-local subgroup of
L4=S4, 1In particular, |0,(MxS?-4)|>2. Since G&(MxS89-4)N A4, we have
G=(MxS%4)NnA° Assume that M is intransitive on 4. Then by (3.6), we have
M=KxS8%*% for a transitive maximal 2-local subgroup K of S*, ¥ 4. Thus
GEX=KxS84"¥x80~4, If |¥|=2, XG8W-H0Ix84-¥=Y and |0,(Y)|>2. Thus
G=XNA%%YNA? and YNA? is 2local, contrary to the maximality of G. If
13]>2, then X& KX 89 =7 and |0.(Z)}{>2, again a contradiction. Therefore M
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is transitive on J, (.e.d.

142y Let K be a transitive mazimal 2-local subgroup of S9, |2i=nz=b, and
let L satisfy (*) in (4.1). Suppose KNA?ZL. Then one of the following state-
menls holds.

(1) K=L

(i) (2)=8, K=H, {8, and L= H,.

Proor. Assume first that K is primitive. Then {2]=2¢ for some integer e.
The stabilizer K. of «c £ is isomorphic to GL{e,2) and is simple as ¢=3. There-
fore K A%, and (i} holds. Assume that K is imprimitive. We may assume that
K=IT[S* where H is a primitive maximal 2-local subgroup of S? and 2=14x 2.
The 5% is contained in AY.  For if the cycle decomposition of s¢ S7 is o=
(4,7, - k@', 4, -+, k', the eycle decomposition of ¢ in S9 is

o= ”'1{{“’ iyl g, o Lo ke, 73, la, 300, ool BTy e

Since | 4] is even, oo AY. We have }1]==2¢ and | Y=k for some ¢ and k. Assume
e>3. Then [ A" for each 7, whence K-A? and (i) holds. Suppose e=2.
Then H=S87. Since KNA? is transitive, I. is a transitive maximal 2-local sub-
group of S7. Suppose e=2. Then A1{ S KnAY, whence A", 4™, .., 4% isa
unique nontrivial system of imprimitivity for KN A?. Therefore if L is imprimi-
tive, we have L=8'[S*=K by (2.1) and the maximality of L. Assume that L
is primitive. Then L=A9 or 8¢ by (2.3}, since A*[S* contains a 3-cycle. But
this is nol the case since we are assuming n=b. Assume e=1. Then k23 by
our hypothesis. We can prove in exactly the same way as in the proof of (2.1)
that A4®, 4® . A® is the unique nontrivial system of imprimitivity for KNA%
Therefore if L is imprimitive, we have K=L.

Assume that L is primitive. Then k=4 by our hypothesis. We will show
that (ii) holds. Let ac¢ 4™, Identifying Q with the regular elementary abelian
normal subgroup of L, we may consider that L, acts on £ as a group of automor-
phisms. Let us adopt the additive notation, and rewrite ¢ by 0. Let O#pc AV
and let 4 ={a,2}. Clearly a+2+0, 5 or a. Suppose a+p=x. Since kx4, there
exists an f¢ (KNAY), such that af=gz and (a+7)f=(e+7. It follows that
pf=la+4(a+ ) f=r+a+p#n This is a contradiction since A® is a block of K.
Therefore we may assume A® ={a,a+y} and A ={3, 8+7. Since a+fe¢AY
ABUAY, we may assume AP ={a+8,a+8+7). If k=5, then there exists an
Fe (KN A9, such that af=a, 8f=5, (a+8)f=a+8+7%. This yields a contradiction.
Thus (ii) holds.
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REMARK. (H,[S,n A, is actually contained in H,. Let £ be an elementary
abelian {additive) group of order 8, J=1{0,7} a subgroup of 2 of order 2, and
S={0,a, 3, a+5 a subgroup of @ of order 4 not containing 7. Define a bijection
I AXY=Q by (z,yli=2-+y and extend it to an embedding i: S°[S7--8% We
will show that G={S7[S8*}2NA? is contained in the holomorph H* of ©. Suppose
F=10,aii7,a+7) and g=10,7){@,a+7). Both f and g are typical generators of G.
Let a, b be elements of Aut 2 such that ra=7», aa=«, fa=a-+3, and 3b=7, ab=a,
Bb=3+%. Then f=aac H? and g=br¢ H°.

(4837 Suppose K=NxS8%"4 where N is a transitive maximal 2-local subgroup
of S, A0 and 4=<4]<1Q). Then,

(i} NNA? is transitive on A, and has at most one montrivial system of
imprimitivity on A which coincides with that of N.

(ii) Suppose ¥ is a nontrivial block of KNAY on Q. Then one of the
Sollowing possibilities occurs.

(1) ¥ .1

{(2) ¥=0-4

(3) A=W=0,10-A=2.

Proor. (i) We may assume that N=H[S® where H ig a primitive maximal
2.local subgroup of ST, A=Ix3, |I'l=2¢ and |Z|=m. If =3, then N A7 and
the assertion follows from (2.1). If e=2, then A" [S¥* NN A+ and we can apply
(2.1). If e=1, we have m=3 since |4]=4 and N is a maximal Z-local subgroup
of S?. Thus the proof of {2.1) can apply.

{ii) We first note that (NNA!N) XA 1CKNA®Y Assume ¥nAd+d4¥N
{Q—A). Then by (i), A-%. Therefore if |2—A4]<2, (1) or (3) holds. Suppose
10— 4123, Then ¥=/ since A9 4 is transitive on £-A. If ¥ Q- 4, then
|92 —1j=3. But this is a contradiction since A7~ is primitive on 2~ A1,

(4.4) Let K be an intransitive maxvmal 2-local subgroup of SY, [2]=nh,
such that K#S;x8,... Assume K=NxS"1 where N is a transitive maximal
2-local subgroup of S*, A=Q. If L satisfies (*) in (4.1) and KnNA“. L, then
one of the following statements holds.

(i) K=L.

(ii) |4|=8, |2|=9, N=H,[S,, L=H;xS,.

PROOF. By our hypothesis |4]=4, and so {4.3) can apply. Furthermore it
follows from (3.7) that 2+|0Q—A|#4.

Suppose L=MxS%"4 where M is a transitive maximal 2-local subgroup of S7,
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479,10 ~41=2. Since hoth 4 and £ —4 are fixed nontrivial blocks of KN A?, we
have 4=4. Thus {2—4]=2, a contradiction.

Suppose I, is an intransitive maximal 2-local subgroup of S? such that
L#8,%8, . Let L=MxS8°-4 where M is a transitive maximal 2-local subgroup
of S4, 4270, Sinee both 4 and 2 —4 are fixed nontrivial blocks of KN A9, either
A=A or 4=0—A4. Assume d=/A. Since L=MxS2212KNA2(NN A% A9,
M N A If [Al=4, then M=S'=N and (i) holds. If {4]=5, it follows from
(4.2) that either N=M or |A|=8, N=H,[S, and M=H, In the latter case,
LNAP=Mx A% 4 a5 M A4, Since LNA?=2(NxS?4)NA? and NZ 4", we have
|92—Al=1. Thus (ii) holds. Assume 4=Q—A. Since L=S'XM=(NNAY)x A",
Mo A9+, But this is not the case since |Q2-—A]=]4]>4.

Suppose L is an imprimitive maximal 2-local subgroup of 8% Let X}, %;,...,3a
be the canonical system of imprimitivity of L. By (4.3), we may assume that
Q—A=Y and A=3U---US,. Let L, be the set of elements of L that fix the
points of 4. Then L, is a primitive maximal 2-local subgroup of S2-4, Since
L (NNAY) A4 Ly A9-41, But this is not the case since |2~ A]=8.

Suppose L ig a primitive maximal 2-local subgroup of S?. Since both |2| and
|A| are even, and L2 (NNA1)x A%, L contains a 3-cyele. By (2.3), this yields
a contradiction.

(4.5) Let K=NxS82-1 where N 1s a transitive mazimal 2-local subgroup of
S, A=Q, |Q—A{=2 and |R|=n=5. If L satisfies (*) in (4.1) and KNASL,
then one of the following statements holds.

(i) K=L.

(ii) N=H,[{Sp.. Lz=H.[S,, n=2m.

(iii) |Q|=8, N=H,[S,, L=H,.

Proow. Since |A|is even, |4]|=4, whence (4.3) can apply. Suppose L=Mx 8§94
where M is a transitive maximal 2-local subgroup of S4, 4= and |2—-4|=2.
Since hoth 4 and @ —4 are fixed nontrivial blocks of KN A9, we have 4=41. Hence
M2>NNA1 By (4.2), either N=M or |4{=8, N=H,[S, and M=H;. In the
latter case, LNAY=Mx A9 12(NxS2-4nNA2 This is a contradiction since
19—~ A]=2 and NZ AL

Suppose L is an intransitive maximal 2-local subgroup of S? such that Lz
S.xS,_.. Assume L=MxS8%4 where M is a transitive maximal 2-local subgroup
of S4, 4:0. Then |44 and 2#|2 —4|#4. Therefore by (4.3), 4&4%2. But
this is not the case since both 4| and |4] are even.



Mazimal p-local subgroups 227

Suppoze L is an imprimitive maximal 2-local subgroup of S°. Let X, X, ..., X,
be the canonical system of imprimitivity of L. By (4.3), we may assume that
A=3XU---US,_, and Q—A4=2Y,. In particular | 5;|=2 for each i. Whence m=3.
Therefore by (4.3), N is imprimitive with the canonical system of imprimitivity
3 ..., 3.-1. Thus (ii) holds.

Suppose L is a primitive maximal 2-local subgroup of S?. As before, we
identify ©Q with the regular elementary abelian normal subgroup of L. We will
assume that 0c Q—4 (0 is the identity element of 2). We may assume that
N=H [ 8% where H is a primitive maximal 2-local subgroup of S*, 4=I'xX2, |I'|=
2¢>92 and |Y=k=1. If e=3, then N A", and therefore HY “NNA' L L (see §2
for the definition of H). Since H® is primitive on I"® and fixes the points of
Q—TI%, we have |2]=4 by (2.2), contrary to our hypothesis. Hence ex2. If

therefore k=3 sinece |R1=2(k+1) is a power of 2. Since k=3, we can prove as
in the last paragraph of {4.2) that k=3. Thus (iii) holds. This completes the
proof of (4.5).

Finally we show that N(L)=L if L satisfies (*). If L is transitive, the as-
sertion is clear by (2.1) and the uniqueness of the nontrivial system of imprimitiv-
ity of L. Suppose L is intransitive and 4,2—4 are its fixed blocks. If |4|=
|Q—4|, then L4zL% 4 by the maximality of L. In any case N{L) fixes 4 and
2—4. Therefore N(L)=L.

§5. Maximal p-local subgroups of A, p#2.

Throughout this section let p be an odd prime.

THEOREM 3. Maximal p-local subgroups of A, are LN A, where L are maximal
p-local subgroups of S,. Let L,, L, be maximal p-local subgroups of S,. Then
LN A, is conjugate to LN 4, in A, if and only if L, is conjugate to L, in S,.

The proof is divided into three steps. Let 2 be a finite set.

(5.1) Suppose G is @ maximal p-local subgroup of A°. Then there exists a
mazximal p-local subgroup L of 82 such that G=LNA°.

ProOOF. Trivial.

(5.2) Suppose L is a mazimal p-local subgroup of S°. Then

(i) LgA“

(it) If L is primitive, so is LN A%,

(iii) If L is imprimitive, LN A9 i3 transitive and has a unique nontriviel
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system of imprimitivity.

(iv) Suppose L is intransitive and L=MxS?4 where M is a transitive
maximal p-local subgroup of S4, 478, If ¢ is a nonirivial block of L1 A9 on
2, then either ¢4 or ¢=0—4.

Proor. (i) By Th. 1, we may assume that L is primitive. Identifying £
with the regular elementary abelian normal subgroup E of L, we choose a basis
@y, wy, ... ,m, of 2. We regarded 2 as a vector space over GF(p). Let a be a
generator of the multiplicative group of GF(p) and let g be an element of L,
such that w,g=w,; for i<r and w,g=aw,. Then g is the product of p**' (p—1)-
eyeles, and so is an odd permutation in L.

(it) Let I be the regular elementary abelian normal subgroup of L. Since
ELNAY LN A? is transitive. Suppose |2{>p. Let ¢ 2. If we identify 2 with
E and L. with GL(£2), respectively, then (LN A?).SL(2). Since SL(2) is
transitive on 2—{0}, LN AY is doubly transitive.

(iii) Let 4,,...,4, be the canonical system of imprimitivity of L. To prove
that LN A is transitive, it is sufficient to show that LN A% permutes 4,,...,4,
transitively. But it is clear by (i). The second assertion is an immediate con-
sequence of (2.1) and (ii).

(iv) is an immediate consequence of (i) (ii) and (iii).

{(6.3) Let K,L be maximal p-local subgroups of S If KNA®<L, then
K=—=L.

Proor. Suppose K is primitive. By (5.2), L is primitive. Let E, F be regular
elementary abelian normal subgroups of K, L, respectively. Since KN A®=LnN A°,
E, F are minimal normal subgroups of KnA4¢. 1If E+F, then [E, F] _ EnF=1,
contrary to the fact that C(E)=E. Thus E=F and K=1L.

Suppose K is imprimitive. By (5.2), L is transitive. We may assume that
K=H[S* where H is a primitive maximal p-local subgroup of S4, Ax Y=0. As-
sume that L is primitive. Since p#2 and HY N 44" is primitive on 4% by (5.2),
(2.2) yields a contradiction. Thus L is imprimitive. Let L® be the set of ele-
ments of L that fix the points of @—4%. Since HYNA'"WZL®, we have, by
the first paragraph, H9=L®. Since O,(H")---0,(H™)< K and O (L.
O,(L™)<!L, we have K=L.

Suppose K is intransitive and K=NxS89"* where N is a transitive maximal
p-local subgroup of S4, A<:f2. Then (p,|2~4])#(3,38). If L is primitive, then,
by (2.3), L=A% or S9 since L2(NNA1)xA%4 and p divides |2—4]. But this
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is not the case. If L is imprimitive, then, by (5.2}, 00— .1 is a nontrivial block
of L. Since L2 {Nx A1) x A?-4 491 ig contained in a primitive maximal p-local
subgroup of S, a contradiction. Thus L is intransitive. Then we have L=
M>xS% 4 where M is a transitive maximal p-local subgroup of S§9, 4. 0. Then
d=4 or 4=0-4. Assume 4=4. Then M NN A' Therefore M=N by the
preceding paragraph, whence K=L. If 4=0—.1, then M A2, a contradiction.
The proof is complete.
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