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§0. Introduction

Recently, H. Fujita and N. Sauer ({5}, [6]) have studied the Navier-Stokes
initial-boundary value problem in region (¢} which varies as time £ goes on, and
have proved the existence of weak solutions of Hopf's class by the so-called
penalty method. In this paper, we shall show that, if (f), the external force and
the boundary value all depend periodically on ¢ with period T, then there exist
similar weak periodic solutions with the same period. In this connection, we note
that for the case 2(t)==92, the existence of weak periodic solutions has been proved
by several authors (see, for instance, Prodi [11], Lions [9]), and the existence of
strong periodic solution for 2-dimensional case, for instance, by Takeshita [12].

In §1, we fix the notations and present the results. Some smoothness assump-
tions on the lateral boundary of Mﬂg@tx.@(t) are found in 1.1, and the definition
of several function spaces in 1.2, In 1.3, we formulate the problem and introduce
our approximation based on the penalty method. The main result is stated in 1.4
(Theorem 1.7).

In 2.1, we recall some properties of the Stokes operator. A few investigations
on solenoidal function spaces are found in 2.2, and bagic inequalities in 2.3. In
2.4, we try to extend the boundary value to the whole domain with a certain nice
property, by means of a refined form of Hopf's technigue [7] (Lemma 2.7). 2.5 is
devoted to a modification of Aubin’s theorem concerning the compactness (Lemma
2.11).

In §8, we prove the existence of weak periodic solutions of the penalized equa-
tion (AP), by Galerkin’s method.

Our main theorem is proved in §4.

The author wishes to express her hearty thanks to Professor H. Fujita for
his unceasing encouragement, valuable advices and, in particular, for his sugges-
tion of using Hopf’s technique to prove Lemma 2.7.
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§1. Notations and resulis

1.1. Assumptions on the domain

The domain 2(t) occupied by the fluid at time ¢ is assumed to be a bounded
domain in RE™, m being eqgual to two or three, although all our arguments go
through with a slight modification for larger m. When ¢ goes on, 2(f) generates a
{t, z)-domain “ U tx£(¢), and the boundary I'(t) of {(t) generates a (¢, x)-

voa < L

hypersurface /' == ‘L{( t»20'(t). Let T be a positive number. We assume that
the lateral boundar;;s‘pmeriodic and smooth in the following sense.

ASSUMPTION 1.1.

1) LAt T)==L(t) and ['(t+T)=1"(t) for all te K.

ii) At cvery ¢, I'(t) consists of a finite fixed number of simple closed surfaces
1" (t) of class C°.

iii) There exists a positive number ¢, such that dist. (I".(t), I".'(¢)), m-dimensional
distance between I',(t) and I',(t) («-£a’), is never smaller than 4,.

iv) As t varies, each [I'.(¢) changes smoothly in the sense that the hypersurface
]A'a"“"u(&';,?,tx I',(t) is covered by a finite number of open patches and the portion
of f’;l:v"ing in each patch can be represented by xl=¢(z, ---, @h, t) in terms of a
C3-function ¢ of m variables under a suitable choice of coordinates in R™.

When we restrict ourselves to the closed time interval [0, T'] for one period,
we use the symbol 2 and [ for ug&)ﬂtxﬂ(t) and Og%lﬂtxl’(t), respectively.

We fix an auxiliary bounded domain B in R™ such that 2(¢t)c B at every ¢, the
boundary 4B of B is smooth and dist. (3B, I'(t)) =4, for every t. We put B={0, T]
X B, B, =R« B.

Later we need the symbols for boundary strips. Let ¢ be any small positive
number. For each ¢, w;(¢; §) means the interior boundary strip of 2(t) with width

J, l.e.,
w(t; O)={x € X¢); dist. (zx, I"(t)) <},

or simply ;(d) when ¢ is understood. Similarly w,(¢; 6) is the exterior boundary
strip of 2(¢) with width §. Moreover we put

®i(0)={(t, z); te[0, T], x€wilt; o)}
(Sc(ﬁ)::{(t; x), t€ [0, T], 2 € w,{t; o)} .

1.2. Some function spaces
In this subsection, £ stands for an arbitrary bounded domain in B™ with
boundary of class C®. The functions considered in this paper are all real. L(2)
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and the Sobolev space Wi(2) of order I are defined as usual. (See, for instance,
Yosida [13].) Whether the elements of these spaces are scalar or vector functions
is understood from the contexts, unless stated explicitly.

When p=:2, we write sometimes lulo or simply {lu] instead of Juf, m. Similar
abbreviation is used for the inner product in L(92).

Now we define the solenoidal function spaces. D,(22) consists of all veetor
functions ¢ in C3(2) with dive=0 in £. H,(?) is the completion of D,(¥) under
Ly(2)-norm. H(2) is the completion of D,{2) under WiD)-norm.

Next we consider periodic functions. A (vector) function defined on R! is call-
ed a T-periodic function if it is a periodic function of period T>0. @ (resp. G)
stands for @m or B’m (resp. 2 or B). Then ﬁo(ém; 7) is the set of all T-periodic
functions ¢ in C”(@m) such that the support of «pcém and div¢=0 in é Thus,
any ¢ in f)(,(@w; 7) vanishes identically near the lateral boundary of ém. The
completion of 150((?,»; )} under the Lg((})—norm, or equivalently under the L.-norm
over any portion of Gﬂ which corresponds to one period is denoted by ﬁa(@w; o).
As is easily seen, any function in ﬁg(é“; 7) belongs to LL""(G), and f(t+T, 2)=

f(t, z) for almost every (f,x)€ (... By definition, we have

2 T . a+?
1, = Iae= " U0
[

a

1 = | 10050 de= {7 17O dt

Let us define v(u) for the function u defined in G:

v(u)=0,
y(y)? = Sgﬁwulzdx dt=||vuli .

Then »(u) is a norm in ﬁg(éw; z). The completion of ﬁ,((j’&,; 7) under the norm
y(u) is denoted by HL(G.; x).

We proceed to vector valued functions. Let X be a Banach space, and let
1<p=co. Ly(X; ) denotes the Ly-space of X-valued functions which are periodic
in t. Namely, L,(X;n) consists of f&€ Ly°(R'; X) such that f(t-+7T)=f(t) for
almost every ¢ in R!. It is a Banach space with norm

[ nsanzae .
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1.3. Formulation of the problem and the approximation by the penalty
method

We are concerned with the Navier-Stokes equations in £(t) with periodically
moving boundaries. The classical formulation of this problem is as follows:

~~~~~~ =du-Tp—(w-Vutf, in 2,

(1.1) div u=0 in 2,

[PRSNINI W—

w==5 on I’

Here u=wult, ) denotes the velocity field, p=p(¢, x) is the pressure. When the
external force fy:= fylt, x) and the boundary value 5==5(¢, ) are of pericd 7, the
problem to find a T-periodie solution w and p satisfying (1.1) is called (Pr. 7).

YFor f, and 5, we make

ASSUMPTION 1.2, f, belongs to Lu(2_; 7)=={f € Lo(Ly(B); 7); fl3.=0}. 5 can be
extended to a vector function b==b(t, z) of the form b=rote¢, where ¢(¢, ), the
function defined in I?, is of class C® and T-periodic.

We approximate the equation (1.1) by the following (1.2), n being an arbitrary
positive integer.

( wl e Ay —vpt— (- O —nxut b+ f, in B,
1.2) ) div a0 in B,
w” =0 on (—oco,c0)xdB.

Here y-=z(t, ¥) 18 the characteristic function of I':‘EM(:), fg is the extension
of fy to I;’ which is zero outside of .(5‘},. The problem to find a 7T-periodic solu-
tion of (1.2) is denoted by (AP),. The term ni(w"—~b) is called the penalizing
term. Remark that the first equation in (1.2) coincides with that of (1.1) when
rostricted to 2.
Now let us define some function classes in which we seek the solution.
DEFINITION 1.3.

20 s m)y=lue HYQ ;=) ess. sup [u(t) o < +oo}
2 (B m=fue HY(B.; 2); ess. sup fult)lls< +oo} .
A8t s?
DEFINITION 1.4. wu=ult, ) defined in f’m is called a weak solution of (Pr.x)
if 1) and i) hold‘

1) u—be (2. ;x).
i) For all ¢ in .Z)O(LN; 7), u satisfies the following equality
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(1.3) Flu, o)= Srau, 0+, do) 4w, (- D))t = — X’kfo, o)t ,
Q o

where the domain of integration in the inner product is understood.
DEFINITION 1.5. #"=u"(¢, z) defined in I§ is called a weak solution of (AP),
if i) and i) hold:
i) u'e "Z/(f}x;z).
ity For all Qef),,(fﬁ.; 7y, u" satisfies

(1.4) Fau, ¢>~—-n§ (L —b), ¢) z«g (for 0)dt .

[

REMARK 1.6. If  (resp.u") is a weak solution of (Pr.=) (resp.(AP),), then
p=u—b (resp. v"=u"—b) satisfies the following equality (1.5) (resp. (1.6)).

(1.5) Fo, ¢) g (0 D)b, ©)— (v, (b-F)e)—(f, &)}

(1.6) Flo*, )= S"{((v“~v>b, ) =", (b-V)e)—(F, ) +nixv®, )dt |

where f=fy+4b—(b-V)b—b, and f=fo+b—(b-V)b—b,.

1.4. Results

THEOREM 1.7. Under Assumptions 1.1 and 1.2, there exists a weak solution
of (Pr.=) such that u(t)=u(t, -) is defined for every t in R', and (u(t), ¢{t))ow
is a continuous T-periodic function for every ¢ in ﬁo(fﬁm; T

REMARK 1.8. We have the energy inequality for the weak solution u of
(Pr.=). Namely, there exist constants R and C, such that

@7 () —bie) 12+ S Vauls)—Vb(s) P ds < B2+ C, 3 I£(s)l3ds
[1] ¢

holds for every ¢ in [0, t], where f=f,+db—(b-V)b—b,.
Furthermore, we can show that

(1.8) (wld), 2(E))a=(w(0), #(0))
S @)+ (t, 29)+ (i, (u-V)p)ds + S (fo 9)ds

holds for all ¢ in D,(2,;7) and ¢ in [0, T).
§2. Preliminaries

2.1. The Stokes operator

In this section, 2 is a fixed bounded domain in R™ and the boundary 92 of £
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is smooth. Let P:=P{2) be the orthogonal projection from L.(¥) of vector func-
tions onto H,(2). Then the operator — P4 with the domain of definition D,(2) is a
positive symmetric operator in H,(#). The Friedrichs extension of —P4 is called
the Stokes operator and is denoted A(?), which we may write 4 when £ is under-
stood. A is a self-adjoint positive operator in H,(#), A™! is a bounded operator
on H, () (in fact, completely continuous), and we have

(2.1) (Au, v)o=(Vu, Ve)g

for any w € D(A) and v€ HX2) (see, e.g., Ladyzhenskaya [8]). It is known (Cat-
tabriga (3], Ladyzhenskaya [8], Agmon-Douglis-Nirenberg [1]) that D(A), the domain
of definition of A4, is W¥Q2)NH(2), D(AY?)=HX2) and [|AY?u|={Vull (uw€ D(AY2)),
Let {¢;} be the complete orthonormal system of eigenfunctions of 4, {%;} cor-
responding eigenvalues (>0), 7, the smallest eigenvalue. It is easy to verify the
following

(2.2) Nl o= } [Vulim for Yue H)XO).
0

Furthermore, for « in D(A), we have
LEMMA 2.1. There exists a constant C depending only on 2 such that

Nvullrm = ClAull . w

holds for we€ D(A) and 25 p=6.
PrOOF. Since D{(A)=WY2)N HX2), Sobolev’s imbedding theorem yields the
conclusion. Q.E.D.
Next lemma is necessary for the successful application of Galerkin’s method
for (AP),. In the lemma, C7(R'; =) stands for the set of smooth periodic scalar
functions:

CH(RY; m)={y € C"(RY); 5(t+T)=x5t) for Vi€ R} .

LEMMA 2.2. Let W be the set of all finite linear combinations of ¢; with
coefficients in CT(RY; z). Then W is dense in L,(D(4); n).

Proor. D(A) is considered as a Hilbert space with the inner product ((u, v))=
(Awu, Av)y. The conclusion follows from the completeness of the eigenfunctions.

Q.E.D.

REMARK 2.3. Let us apply Lemma 2.2 for the operator A=A(B). Then we
see that any funection in [A)G(LAL,; 7) can be approximated by the element of W under
the norm of L.(D(A4); 7).
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2.2. Remarks on D,, H!

ﬁg(!f)m; 7) is separable in the following sense:

LEMMA 2.4. There exists o countable subset sz of f)u(@x; =) such that every
7 in D,(2.; 7) can be untformly approximated in @ together with Nty Yzp Yagey,
(3, 5=1, -+, m), by elements of M,.

The proof is similar to that of Lemma 4.2 of Fujita-Sauer [6] and is omitted.

REMARK 2.5. We fix £,€(—oo, ). Then {5{t,, -)l7€ M.} is dense in HX(t,)
as well as in H,(2(t,)). In fact, if he€ D,(2(t)), we can find a scalar function
7(t)€ C7(RY; ), such that 7(to)=1 and 5(t)he DO ; =).

LeMMa 2.6, Let v be in ﬁ;(éw; 7y with 7(v)=vl;=0. Then u, the restric-
tion of v to .(:’m, belongs to }?J(.@w; 7).

The proof is omitted, because it is similar to that of Lemma 4.5 of Fujita-
Sauer [6].

2.3. Some inequalities

For any functions u in Wi{#), we can define its boundary value ju=ul;q.
The trace operator y is continuous (in fact completely continuous) from Wi2) to
L,(82). (See, for instance, Lions-Magenes {10] Chap. 1). Moreover, the following
estimates hold for any small positive number 4. Let ¢ be an arbitrary element of
HXB). Since H}(B)c Wi B), we have,

(2.3) llolls s = Collielt i Hlele s IVella o)
(2.4) dlielte = Clilells o +ollelle e - IVellw )

Here and in what follows, the symbol C stands for various constants independent
of ¢, t and 6. o(d) is either w;({;5) or w.t;d). From these inequalities, after

simple calculation, we have

(2.5) lells o) = Clalielie, +3*1Vell% o)
@.6) Il S C-5 lolban + 19l

Under our assumptions on /., the restriction map f.t fu=ulp, can be defined
for any u in H;(ém, 7}, and by the above estimates, we have
2.7 Slulr= Cllluls ) +ollully o 1Vall; )
(2.8 il < Clollullz+ a2 vul .} -

Let p be the distance from the point z€ 2(f) to the boundary I'(¢). Put
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wlt; ¢, 0)={x € At); « <dist. (z, I'(£))< 6} .
Then the cstimate
| 12 ” 12 )
(2.9) iif; . éC{—M’S‘“ ~E—E£V¢H%}

holds for any ¢ in H)(B). The proof of these inequalities will be found in Ap-
pendix 1.

2.4. Extension of the boundary value

LEMMA 2.7, For any given ¢>0, there exists a function b=b, subject to
Assumption 1.2 and a constant C==C. independent of t such that

eV, blE, -Nal Sellvelli+Clxlt, e, @)

holds for any ¢ in HYB).

Proor. We construet the required b, following the argument of Hopf [7] (see
also Fujita [4]). Let b* be any function subject to Assumption 1.2. Then b*(¢, x)=
rot ¢(¢, z) for some function ¢. Put b(E, z)=rot {h(o(t, x))c(t, )}, where p=p(t, z) is
the distance in B™ between € B and I'(t), and h(s) is a function involving positive
parameters £ (0<«<1/4) and ;y as follows. Let j(s) be a function in C[0, c) such
that 05j(s)ss7! for 8>0, j(s)=20 for s€[0, 1] and s€[(1—x)y, ), jls)=s' for
s€ 2y, (1--2r)y]. Putting

h(s)=1— S'j(a)da/gmjw)da ;
1] 1]

we try to determine the parameters « and 7 appropriately

and b,==Vh ¢ separately. We notice that the support of b, is contained in @i (r)uU
w.(7), that of b, is contained in @{sy, ) Ud.(v7, 1), and pb. tends to zero as « tends
to zero. Let ¢ be any element in H(B). Then we have

(e Ve, b))l = SE!P 1bi(e, )1 i]g‘/‘)”w"(T) Jw(n”\??”w‘(nuw(;«) .

Using (2.5), the right hand side is estimated by Csup |b,|(J¢lte, +7IV0l%). The
application of (2.6) with e{/)=w.(;) yields

2.10) (- ¥)p, bl <C sup [by] {%(zso, ¢)+7'ilwil?g} .

On the other hand,
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Ew.i(t:}’.})\ well ¥ 1)

e e
= sup |pbo|- IT¢ aiu‘ii ol
b Pawstor. ). walsy. v} »

Appling (2.9) and making use of (2.6) with w(s7)=w.(«7), we have
.10 (¢ T)¢, bo)l < C sup lobs) {%)9 fmsm;} :

The assertion of the lemma is obtained from (2.10) and (2.11) sinee C{;sup |b|+-
sup |pb;]) can be made smaller than any ¢ if » and 7 are sufficiently small.

Q.E.D.
REMARK 2.8. The inequality

(o V)g, blol eliVell for any ¢€ H, (D)

is used in the case of the inhomogeneous boundary value problem for stationary
solution in a fixed domain. Our preceding lemma is an extension of this inequality.

From now on, we fix the function b for e=1/4. Let n, be the smallest integer
which is greater than C=C,;,. Then we have

(2.12) (- Ve, b)el £1/4]Vell5 nolze, ©)s .

The next two lemmas are elementary but are used frequently in §3. The proof
is omitted since it is obvious.

LeMMA 2.9. Let g{(t), h(t) be nonnegative continuons functions on the in-
terval [0, T1. If g{t) is differentiable and if %g(t)+cg(t)§h(t) on [0, T} for
nonzero constant ¢, then we have

i
gt)= {g<0)+ S eﬂk(s)ds}e—“ for tel0, T].
0

LEMMA 2.10. Let u, v and w be in WiRD), at least one of which vanishes

on 02, and divu=0 in 2. Then
(u- Vv, wo=—((u-VIw, v)g .
In particular,

{(u-V)v, v)o=0 .

2.5. A modification of Aubin’s compactness theorem

Ag in Fujita-Sauer [6], we later need a modified version of Aubin’s compact-
ness theorem.
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Let M; (=0, 1, 2) be three Hilbert spaces. We consider the operators P: M,— M,
and S: M,— M, with the following properties:
i} P and S are compact linear.
i1) Sv=-0 implies Py=0 for ve M,.

By the standard argument we can show that for any ¢>0 there exists a constant
C. such that

(2.13) 1 Pvllsr, S cllolly, +C. 1Svlla,

holds for all » in M,.

Now we introduce some classes of M;-valued functions. Xi=L,((e, B); M;)
(2=0,1, 2) are the set of M;-valued functions defined on the finite interval (a, B,
and form the Hilbert space under the inner product

(u, D)y, = S”(u(t), AE)wdt .

Define operators P: Xo—~> X, and S: Xo-> X, as follows:
(Po)ty=Pu(t), (Sv))=Swu(t) .

Then we have the following lemma concerning the compactness, which has been
obtained by Fujita-Saver [6] as a modification of Aubin’s theorem [2] (See also
Lions [9].).

LEMMA 2.11. Under the motations and assumptions above, suppose that
1, € X, n==1,2, -+ be such that
i) {v.) 15 @ bounded set in X,,

i) {d Sv,,l (derivative in the semse of distribution) is a bounded set in Xo.

dt J
Then we can choose a subsequence of {Pv,}, which converges strongly in X,.

The proof is in Appendix 2.

§3. Approximating equations

3.1. A priori estimates

In this subsection, we seek a periodic solution of the following equation (8.1)
in the finite dimensional vector space. Note that =» is fixed throughout this
gection.

Let {¢,} be the family of eigenfunctions of the Stokes operator A=A(B). We
consider the following initial value problem which is denoted by (IVP)2.
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(3-1) Ed; (wm(t)) w1)+(vwm(t)a V?;)“((wm(t)'w?:, u"m(t))

=(f(t): 59,7) » jzly Tty Mm.

Wn(t) € On==vector space generated by ¢, ---, ¢,,.
Wn(0)=wn, given in @,.
Here (,) denotes the inner product in L:x(B), b is chosen as in (2.12) and
nZn, The solution of (IVP)% should be represented as

wm(t) = 3%1 gjm(t)g)f

with g,,(t), the scalar functions in ¢. Multiplying (3.1) by g;»(t) and summing up
with respeet to 7, we have

3.2) % —di— 10N+ [T () 12+ (20 (8), wn(t))

=((Walt) Wwat), bE)+(F(E), walt)) ,

where we have used Lemma 2.10. By (2.2) and (2.12) the right hand side of 3.2
is dominated by

L 9w E-F rorom(®), wale)+ L 1O ,
2 10
where 2,=14(B). Thus we have
3.3) —ddt— lwm@ 2+ [Vwa )12+ 20— ne)(xwalt), walt)) s % £ @2 .
0
Using again (2.2),
(3.4 “3%- w2+ 2l wnE 2+ 2(n—n0) (wa(t), walt)) < “;2* £ .
0
Since n=m,, we get, applying Lemma 2.9,
(3.5) oa®l { a2+ 2 S‘eiofnﬂz-)nﬁdr} et
0 JO
for any te{0, T1.

3.2. Periodic solutions of (3.1)

If we substitute ig,-,,.(t)go,- for wn(t) in (3.1), the problem (IVP): is trans-
formed into the initialj;;lue problem for a system of nonlinear ordinary differential
equations and we have the local existence of the solution, that is, the existence of
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a continuous solution in an interval [0, {;] for some positive t,, However, thanks
to the estimate (3.5), we can take t,==T. Moreover, the solution is unique and
depends continuously on the initial data. Let w.(t) be the solution of (IVP)Z ob-
tained as above. By r,, we denote the mapping which carries wms t0 wn{T), that
is,

o H(B)-» H,(B),

TmWmy ™™ wrr(T)

If we choose a constant R so that

2 2 Totl) F{£)112
(3.6) Rz ot e frae

holds, then 7, maps the closed ball &%, of radius R in the m-dimensional vector
space 9, into itself:

?'m I( - 9 e(llvn) H(‘/]‘<R V) gﬂ
Since ©,, is continuous, we can apply Brouwer’s fixed point theorem, and we see
that there exist fixed points w.e of 7. in <#,. Hence the existence of a periodie

golution wn(t) of period T follows. We sometimes write w,(t) instead of wn(¢),
if » is understood. Furthermore, |wh(0)|= K. Integrating (3.3), we have

8.7 fwn @)+ S Vw,(s)i*ds+ 2(n~ 'ﬂo)g (Twan(s), wa(s))ds
= lwanlO)F+ -7 S Wfs)iPds, for 0sVisT.

Thus we have proved

ProPosITION 3.1, There exists a continuous periodic solution ww(t) of the
equation (3.1), the period being T. Moreover, there exists a constant R in-
dependent of m and n, such that

ol ()P = R+ 2 S 1 f(s)ieds ,
P
S Ivwi(9)ltds< R*+ \ 1 fis)lds

Smum(s),w,,,cs» <1 {R° g;f(s)nzdsl
4] bt 74

for any tel0, T and n> n,.
In the following we shall show that for every fixed n the set {(?t w}‘,}

m=}
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forms a bounded set in a certain space. Let D(A) be the domain of the Stokes
operator A=A(B), D(AY its dual space. The norms of these spaces are defined
as follows:

”uHDM): EIA(B)'“E;L;:(B) y

ifllo= sup SLwl

bily ”utzl)u) )

PRroOPOSITION 3.2, Let wh(t) be the periodic solutions of (3.1) obtained in
Proposition 3.1. Then for every fixed n, {-é%-w!;(t) }:1 Jorms a bounded set
of L(D(AY; =).

Proor. Let P, be the orthogonal projection from H,(B) onto the vector space

®,. Consider the restriction of P, to D(A). P, is a bounded operator from D(A)
into D(A), and

Parlleimw. pan=1,

because {¢;} are eigenfunctions of 4 and, in particular, 4 commutes with P,. By
the transposition, we have for the dual operator P, of P,: D(A)— D(A),

”P “.:’([)(A) DAy )< 1.

Let J be a canonical injection from L.(B) into D(A)’. Then, from (8.1), we obtain

3.8) th—wm:mP:nJAw,,,—P:nJmm-vmm

— PoJ{n1wn 40 V)Wt (wn - VIb—f} .

Here we have used the relation (8.1) and Lemma 2.10. Take an arbitrary element
h in D(A). We have

KT Awn(t), W)= (Awn(t), B)ym S 1Vt g IV 1,0
sclwa®lint wl ARllLm

K wn(t)  Vwn(t), A== |(wm(t)- VIwna(t), b)sl
Slwn®ll L lwnlOlLem VR L 0
scllwa) Ly lwnElut ml Akl ,m

where we have used Lemma 2.1. Therefore the following estimates hold:
“PQJA'EUm“Lz({;(.-u’m)§C”wmﬂ21},(z‘fw::) '
”anef(wm'V)wmnt,zww’;,—,)§C(S}1I) ”’wm(t)”z,zuz))‘ ”wm”f{{,(ﬁm;z) .

The other terms in (3.8) can be estimated similarly and the conclusion of the prop-
osition follows from Proposition 3.1. Q.E.D.
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3.3. Solutions of (ADP),

We shall prove, with the aid of Propositions 8.1, 3.2 and Lemma 2.11, that a
subsequence of the periodic solutions w.,.=—w? of the equation (3.1) converges to a
function v»"€ ‘ZZ(Z},/; 7) satisfying (1.6) as m — oo,

ProrositioN 3.8. There exists a weak periodic solution w” of (AP), for
every nEne, with the following properties:
iy for every h in H,(B), the inner product (u"(t), h) is a continuous and T-
periodic function in t.
ity For every ¢ in f)‘,(l},); z) and for any t in [0, T,

(3.9 (w™(t), ¢(£))==(u"(0), ¢(0))
+ St {(w™(8), ¢l8))+(w™(s), Jg(s))+(u™(s), (w™-Vig(s)lds

0
4

4 Sl(f«,(s), 9:(s))ds"—*ng (x(w"--b), p)ds .

0

i) The following energy inequality for v"()==u"{t)—b(t) holds for Vtel0, T],

(8.10) o)+ S;ile"(s)i[zds‘!”Z(n*‘no) g:uw, Mds= R+ i So 1 f(s))ds .

Proor. First of all, we shall prove the existence of the subsequence {w,} of
{wn,} such that, for every h in H,(B), (w.(t), h) converges uniformly on [0, T] to
(w(t), h)p where w(t)€ H,(B). For a moment we fix the suffix j, and integrate
(3.1) with respect to ¢. Then, considering the estimates obtained in Proposition
3.1, we see that {(wa(t), 9;)}n-1 are uniformly bounded and equicontinuous on {0, T'].
By the Ascoli-Arzela theorem, we can select a subsequence of {(w.(t), ©;)}n converg-
ing in C[0, T']. By means of the diagonal argument, we get a subsequence {w,}
for which (w,(¢), ¢;) converges in C[0, T] for every j=1,2,---. Since {p,} are
dense in H,(B) and {jw.(®)|} are bounded on [0, 7], it holds that (w,(t), h) con-
verges in C[0, T'], for every h in H,(B). We write its limit as J,(¢). Since
IJa@®)l = 0m Jw, &) - IRl <CJR|, Riesz’ theorem asserts that there exists w(t) € H,(B)
such thag Ju(t)==(w(t), h), and hence for every he€ H,(B),

(3.11) (w,(t), k) — (w(t), k) uniformly in t€[0, T].

Now, let us apply Lemma 2.11 with M,=H.(B), M,=H,B), M,=(D(4)Y,
P==injection from H.(B) into H,(B), S=injection from HL(B) into (D(4)Y. It is
eagy to verify that the hypothesis in Lemma 2.11 is satisfied, and there exists a
subsequence {w.'} of {w,} such that {w,'} converges strongly in L.(H,(B); ).
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Choosing a subsequence of {/} if necessary, we establish the following con-
vergence as u tends to infinity along a suitable subsequence of N=1{1,2, ---}:

(3.12) wu—>w strongly in LJ{H,(B); =),

(3.19) B>y weakly in Lu(D(AY; ),
dt dt

(3.14) we — w weakly in Ly(HY(B); x),

and

(8.15) wye —w weakly® in L (H,(B); =) .

Tt follows from (3.14) and (3.15) that w belongs to @ (B_; ).

Consequently, if we can show that w satisfies the eguation (1.6), then w--b is
a weak periodic solution of (AP),. To this end, take an arbitrary scalar function
7(t) in C™(R'; =). Multiplying (3.1) by 7 and integrating with respect to ¢, we have

r
G“‘,ﬂ(sr))z S {<w?‘9 (4‘”>+(vw!h V‘J))“‘((w" 'V)g,’y ’ll);:)
]

+n(wa, ) =5V, we)+(we )b, ¢)—(F, ¢de=0,

where we have put ¢=d(, z)=5{t)v;{z). The convergence of {w.} established

above yields that for any ¢ in W, we have

816 Gue=—| w, godt+ | (ww, 7@, w)
~((b- V)¢, w)+((w- V), )+ nlzw, $)—(f, )dt=0 .
On the other hand, it follows from Lemma 2.1, Propositions 3.1 and 3.2 that there
exists a constant ¢ independent of ¢ such that
3.17) 1Go (DN el Lawiarn

holds for any ¢ in w. Hence, we see that G,(¢)=0 for any ¢ in L,(D(4); n),
and in particular, for any ¢ in [A),,(fﬁm; 7) (Remark 2.3). Therefore w satisfies (1.6),
and hence, w-+b satisfies (1.4). Thus w-+b is a weak solution of (AP),. At this
stage, we put v"=w and w"=w-b, making the dependence on # explicit. The
conclusion i) follows from (3.11), ii) has been already proved, and iii) is obtained
from Proposition 3.1 in consideration of the manner of convergence (3.11), (3.12),
(8.14) of wa. Q.E.D.

§4. Proof of Theorem 1.7

In this section, we shall prove our main theorem. With the aid of the results
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so far obtained, the argument goes parallel to that of Fujita-Sauer [6].
Since (z(u™—b), ¢)==0 for any ¢ in D,(2_; =), it follows from (3.9) that for any
¢ in DD i 7), u" satisfies

(A1) W), ) w0), ¢0)
| 100, 0.0+ (0), delo) (@ Vg, whds-+ |, o p1ds
[¢] [i]

n=Ng, Mo tl, net2, e

We also need the following identity for v”=u"—b:
(4.2) (v™(2), o(t))=(+"(0), ¢(0))
+- g‘ V", @)+ (", dep)+-((v"- Vg, v™)ds
(1]

4 S (6~ D)o, v")ds— S‘«v“-vm, ¢)ds-F §'<f, ¢)ds ,
& 0 o

where f=:fi-+4b—(b-V)b-—b,.

LemMA 4.1. We can select a subsequence {v*; v=v(m), m=1,2, -} of {v™}iu
such that (v*(t), ¢(t)owy converges to V.(t) uniformly on [0, T] for each ¢ in
f)o(QAm; %) as v— oo, V() 18 a continuous periodic function in t, which is re-
presented as

(4.3) Volt)=(0(2), ¢t Now

with a v(t)€ H (£(t)) subject to

(4.4) ot o= B2+ £

‘0

S’ 1 f@)l3ds

0
Jor all t in [0, T).

Proor. For a2 moment we fix (,oeﬁu(!:{m; 7). Then the integral representation
(4.2) shows with the aid of the energy inequality (3.10) that {(v™(f), @(t))ow} are
uniformly bounded and equicontinuous on [0, T]. Therefore {(v™(t), ¢(£))ow} form a
compact subset of C[0, T]. Now we range ¢ over the countable subset Ha of
f)(,(.@w; z). By the diagonal argument we can select a subseguence {#*} for which
(v*(8), ©(t))ownr converges uniformly on [0, T for any ¢ in M,. According to Lemma
2.4, any element of Iiu(!:)w; z) can be uniformly approximated in £ by an element
of M,. Hence, in consideration of the estimate (3.10), we see that for each ¢ in
f)o(!:)w; 7), (v*(t), ¢(t)) converges uniformly to a continuous periodie function V(t).
Moreover

i/2

|Ve(®1< Tim llo* @) lel < e o (R2+ Z § Ilf(r)n"‘dr)
» 3] ]
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As was noted in Remark 2.5, {c(t, -)[gef)a(.@w; =)} is dense in H((¢)). Therefore,
by Riesz’ theorem, we see that there exists a unique u(f) in H,(2(t)) satisfving
{4.3) and (4.4). Q.E.D.

LeMMA 4.2. From the subsequence {v'} in the preceding lemma, we can
select a new subsequence, which we denote again by v*, such that

v > v* weakly in HAB; ),
and
v = v* weakly* in L (H,/(B); =)

for some v* in Z (IA{»; 7). Moreover, [|v¥|L,iv=0. If v** stands for the restric-
tion of v* to .@m, then v** belongs to ﬁ;(.@m; =y and VR, )=t ) for almost
every t.

PRrooOF. By the energy inequality (3.10), we see that the set {v*} is bounded
not only in ﬁ;(ﬁm; z) but also in L_{(H,(B);x). Hence, after choosing a sub-
sequence of {v*} if necessary, we see that

v —>v* weakly in Ly(L.(B); 7),

v* —> v* weakly in HXB_; z),

and
v* - v* weakly* in L_(H,(B); 7).

Consequently v* belongs to & (3&; 7). Moreover,

. . 1
¥, < lim o li,6 S lim ——
v v 2(v—mny)

2 (7, = ..
R+ 2\ 1 fwpat =0 .
{ HE SO Fledef =0

If we use the estimate (2.7) with &(d)=d,(d), then we see that 7 (v*)=0 since
lv*ll=0. Hence, according to Lemma 2.6, v**=y*|;_ belongs to f[}(!}w; 7). Now
we take an arbitrary funetion ¢ in f)g(.@m; 7}, and consider the integral

[, o7t oiete, mpdt s oo, stonde
B [}

The weak convergence of v* to v* in Ly(L,(B); 7) and the uniform convergence of
(v (t), e(t)) to (v(f), ¢{t)) yield the equality

g"w**(t), o(t))dt = Srou(t), e(t)dt .
4]

0

By the arbitrariness of ¢, we have

ST ) ¥ () —u(t), o(t))dt =0
]
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for any 7€ C7(R; =). Consequently (v**(t)—u(t), ¢(t))owy is zero for almost every
t. Since {o(t, -)lo€ M.} is dense in H,(2(t)) (Remark 2.5), and since v**(t, ) belongs
to H.,(2(t)) for almost every ¢, we see that v*™*(t)=uv(t) for almost every ¢.

Q.E.D.
REMARK 4.3. For such ¢ that v**(¢)=u(t) holds, »(t) belongs to H)(2(t)) and
henece v belongs to 19',,‘(!31,,; %), Therefore, if we redefine v*=0 on E, and v*=v

on .@w, then v* belongs to ﬁ,‘(l},ﬁ; z), and the convergence in Lemma 4.2 occurs.

We shall finally prove that v—v*{;, satisfies the weak equation (1.5). Once
this is established, u==v-+b will satisfy (1.3) and the proof of Theorem 1.7 will be
completed. Let us examine the proof of Proposition 3.3. Then we find that v
satisfies (1.5) if {v*} contains a subsequence which converges strongly in Lz(ﬁw; 7).
The remaining part of this section is devoted to establish this fact.

Let us apply Lemma 2.11 in the following manner. 2 is a bounded fixed domain
in R™ with smooth boundary 62, Let M; (:=0,1,2) be three Hilbert spaces as
follows:

My=={u € W§2)| div u=0},
M=H, (%),
and
M,==(D(A))’, A being the Stokes operator A{£2).
The norms are defined as
ol arg = (el o0+ V1T @)V
Haellary = lullyo

[<u, 21
U = BUp - T
“ an yEUBU “ASQ”L;,(.O)

The operator P: M,— M, is defined as
Pu=P(2)u for uelM,,

where P(f2) is the orthogonal projection from Li(2) onto H,(2). The operator
S: My,-> M, is defined as

Sulg)=={Su, ©>=(u, Q)0  (¢€ D(A))

for any % in M,. It is easy to see that these operators satisfy the hypothesis of
Lemma 2.11.

Let (o, 3) be an arbitrary finite real interval. We put X;=LILy((a, §); M))
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(1=0,1,2). P:X,> X, and SA':XO~>X2 are defined in terms of P and S as those
in Lemma 2.11. Now we choose «, 3 and £ so that (a, 5) X2 is contained in Q.
We return to the consideration of the weak solutions %" of (AP),.
Let us deal with the restriction of v*=u"—b to the domain (a, 8)xX £, which
we denote also by "

LeEMMA 4.4, {Pv™) is compact 1n X., and hence, {P(2W"} is ¢ compact sub-
set of Li({a, B)x2),
Proor. According to Proposition 3.3, {v"} forms a bounded set in X,. Put

wh= gd{SA’v". Then it is easy to verify, using the expression (3.9), that

{4.5) <w™E), >=—(Vo"(t), Vo)o+(v"(), (v"()- Vip)a

+ "), (b-V)g)o—((v™(t)- V)b, @)o+(f(t), )
for almost every ¢ in (a, 3) and for all ¢ in D(A4). Let us estimate Jw"|ly,. Below
¢ denotes various constants independent of ¢ and ¢.

[(Vo"(8), Ve)ol S IV D) laliVelleS el Vo) Isl Aglla

(@), (") Vplol S 10" )] Ly IV B Lo I Vel 1 00
cllv"® Vo™ )lisll Aello

(™), (b V)0)al S bl Lot 19" )] L@ Ve N Ly S o™ @) sl Ao

where we have used Lemma 2.1 and Sobolev’s inequality. The other terms in (4.5)
can be estimated similarly and we have, in view of (3.10},

Kw™ @), 2| c
lAplle

Using (8.10) again, we see that {w"} forms a bounded set of X;. Thus we can
apply Lemma 2.11 and see that {Pv"} is a compact set of X. Q.E.D.

Let {t;} be a countable dense subset of [0, ). For any integer 7, k, I, we
put Gj,k,gi(tj, tk)XQ!(tj) where

UVe )l s+ 17N .

lw"@)ly,= sup
€ D4}

QUt )=t ) — o (t P %«) - {a; € 2t dist. (@, I'(t) > %—} .

DEFINITION 4.5.
®&={G;.1.1 | Gj.x.. i3 an open non-void subset of 9.
An element G of & is called a slab of type &.

LEMMA 4.6. We can choose a subsequence v* of v such that P(2)v* con-
verges strongly in L.{(G) for any slab G=(a, BYx 2 of type ©.
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PROOF. Since & is a countable set, this Lemma follows directly from the
preceding lemma. Q.E.D.

The following two lemmas can be obtained in the same way as Lemmas 5.8 and
5.10 of Fujita-Sauer [6].

LEMMA 4.7. Let G=:(a, 5)<2 be a slab of type © and let w belong to
E[i,(l?,,,; 7). Then there exists a positive constant c¢ independent of G and w
such that

S'ﬂ lolt)— Pw)izdt <c Sﬁ holibadt .

p
LuMMA 4.8. Let G=(a, 5)xQ be a slab of type &, and let ¢ be a small posi-
tive number. Suppose that the lateral boundary (a, 3)x 02 lies in the interior
boundary strip @;,(3). Then for any weﬁ;(ﬁm; %), we have
8 8 8
SaHw%l%adtéc{SaiiwilimdtﬁS"EIVwil%dt} :
where ¢ i3 a constant independent of G, ¢ and w.
We now return to the consideration of the weak solution u" of (AP),. We
put v"=u"—b.
LEMMA 4.9. There exists a constant ¢ indepvendent of n such that

[v*lpsen™/*,

Jor all n=2n, .
Proor. Using (2.7) with &(d)=a.(6), we have

o % Sela o™ 1% + ™ 1Vol5)
By (3.10), we have

10715 Se m—ngt+n—mgy A ot 2 {1 e}
l '20 0

for any n>n,. This yields the assertion of the lemma. Q.E.D.

LeEMMA 4.10. Let v* be the subsequence chosen in Lemma 4.6. Then v* con-
verges strongly in Lu(2).

Using the results so far obtained, the lemma can be proved in the same way
as Lemma 5.13 of Fujita-Sauer [6] and the proof is omitted.

Lemmas 4.4~4.10 show that there exists a subsequence of {v"}, converging
strongly in Lz(-C)N; 7). Its limit coincides with v*|;.=v, and hence, as was men-
tioned in Remark 4.3, v satisfies (1.5) and wuw=v-+b is a weak solution of (Pr.=).
Thus we have proved Theorem 1.7. Q.E.D.
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Appendix 1. Proof of the inequalities in Subsection 2.3

We prove the inequalities (2.3) and (2.9) only, since the proof of (2.4) is similar
to that of (2.3), (2.5) (resp. (2.6)) follows from (2.3) (resp. (2.4)) by the inequality

(A1) oabssat+ b (:>0),

and, since (2.7) (resp. (2.8)) is obtained from (2.4) (resp. (2.5)) by integration with
respect to f.

We begin with some geometric preparation. As is assumed in Assumption 1.1,
[, is covered by a finite number of patches % (j=1, -+, j(@)) and [N 7% is
represented as z{=¢{xs, -+, x4, t) by some function ¢ of C®-class under a suitable
choice of the coordinate {z]---z4) in R™. Let (xz,¥,2 t) be any point in &%,
(%o, Yo, 20, ) the point on I',(¢t) such that the normal at (xzg, ¥, 20) to the m-dimen-
sional hypersurface [',(¢) passes through (2, ¥, z). We define p as follows:

= (m—xe)? Yy —yo) +(z—2)? ,
p>0 if (x,y,2)€R0),
020 if (x,y,2)€ B—02().

If we restrict ourselves to the domain &(8)N %% sufficiently close to the boundary
F.n 2%, then we can apply the implicit function theorem and we see that there
exist functions F, G, H of C* class such that

2;()LTF"(:‘I:! ?/; z, t) ’

y():G(xl Y,z t) '

ph= [1+ (_Zz{_)z + (—"ﬂy] (z—¢(@0, Yo, t)*=H(z, y, 2, 1) .
X «7y (zg ¥ )

Moreover, there exists a constant ¢ independent of ¢ such that ¢> %I;{" > %~ holds

in the neighborhood &()N¢7% of I'.N¢?%. Let ¢ be the coordinate trans-
formation from (z,,2,t) to (z,¥,0,t). Then @ is of class C? in a(O)N 274, ¢!

is also of class C?, and /", is mapped by @ into the plane p=0.

Let {ai{z, ¥, 7, 1)}; be a partition of unity subordinate to the eovering {Zi};.
From now on we omit the suffix «.

PRrOOF OF (2.3). Let ¢(x, ¥, z) be a smooth function defined in B. We consider
a;(x, ¥, 2, ele, ¥, 2)8=dx, ¥, 0, t)P(x, y, p)°. Differentiating with respect to p, we
have
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uan I A AN WQ” s NG2L94.8 ._?“. G .
2 (@,;¢%- (a‘o a,)p -2d;¢ 2 @
Integrating the both sides with respect to o,

(A'Z) dj(z; yv o, t)(fz(x; Y, .D)‘L:dj(xy ?l, 01 t)a(x) ?l: 0)2

ol e o 8 g f f—a;ﬁ"-)""zd !
f2g(}(la:9’ o0’ ¢do’+ S(,<0p’a’ vrap .

Consequently we have

(A.3) Sgda; dy g"d,(x, ¥, 0, 0z, y, pVdp
i)

a /

by

F] ] P 2 1/2
2(3"S§da:dyg d;¢de’ - Sgda:dyg d,-( - &) dp':l ,
L. 0 0 &p

and the third term by
d S S dxdy So
0

In consideration of the boundedness of

”
g
7 @i

dp

2

-@tdp’ .

~

oH
, we have
dz

c"‘SSS a0 dxdydzs “dmdygdd,»@"-dpécggg aitdxdydz .
o () J [

@ (8}

Summing up (A.3) with respect to j, we have

S“ . ot da dy dz=cd|loldo, +2¢% ol @ s IVOllo s 0
REFIL
-¢% Slllrp :f_: Vet o)l el s .

If we choose ¢ sufficiently small, say, so small that the coefficient of [ol%..; is
less than 1/2, then we see that (2.3) holds.
Proor OF (2.9). If we differentiate @;#%*p with respect to o, then we have

O (a,0%/0)+a,0% ot =2, 22 .4 93 &
do do o 9 p
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Integrating the both sides with respect to p from ¢ to §, we have

§

.z, y, 8, )Pz, ¥, 6716+ S a,0%0°dp

13

3 A= 85, &2
=d (@, ¥, <, &, ¥ s)%'eJrZS ;2 = do+ S = dp
e L 0p p c 00 p

Sgda: dy Yd,- e gos L S S as(@, ¥, <, 2w, 3, Fdw dy

waffasanf (Yo [

By means of the inequality (A.1), we have
8 {b 2 2 ‘ N -
(A .4) Sgdx dyg d; (;) do= ““a,-(x, Y, &, 1)@, y, €)*dx dy

4Sgdxdy8' (ap) dp+2§§dxdy§ pla"" (—)adp‘.

On the other hand, if we put p=:¢ in (A.2) and integrate the both sides with
respect to ¢ and y, then we have

SS a;{x, ¥, 6 )@z, ¢, )Pdr dy = SS dilx,y, 0, )¢(x, ¥, 0 dx dy

+%“dmdyg~¢d Sgdmdyg (a>dpF§Sda;dySe

Substituting this estimate into (A.4) and taking the summation with respect to 7,

~~~~~ ’ {O’Bdﬂ :

we have

(A5) 1 “ff”—— ¢
[

£ leie: s

= - ”?’”1 0y + C”‘Duwu I

4@_ 2

w(s,d}

+4ee, Vel a>+ ”‘/’“mu & +~2’50021

where the boundedness of

%ii, has been used. The constants ¢, and ¢; do not

depend on ¢, t, € nor on . By (2.5), the right hand side of (A.5) is dominated by

L Vel +eslloll v s tesd
€ b el

with the constants ¢; independent of ¢, ¢, ¢ or 4. In this way we see that, if we
choose ¢ sufficiently small, then we obtain the estimate (2.9).
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Appendix 2. Proof of Lemma 2.11

Although an indication of the proof is found in Fujita-Sauer [6], we give here
a self-contained proof of Lemma 2.11 for the sake of completeness (Cf. Lions [9]).

We begin with the proof of (2.13). Suppose that this does not hold. Then
for some 7>>0 there exists a sequence {v, € M} such that | Pv,lly, Z0llv.lly, +nlSvally,
holds. We put w,=v,/{lv.lly,. Then

(A.6) ”Pwva§|311§ﬁ+ni§310n{i513 .

Since {Pw,} is a bounded set in M, (A.6) yields that [Sw,ly,—>0 as n—>co. By
the compactness of P and S, we can find a subsequence {w,} of {w,}, which con-
verges in the following manner:

wy —>w weakly in M, ,

Pw,— Pw strongly in M,,

and
Sw, — Sw strongly in M, .

Therefore Sw==0, and hence, according to the assumption, Pw=0 holds, that is,

Pw,' converges to zero strongly in M,. This contradicts (A.6) and hence, (2.13)
must hold.

Now we are going to prove the lemma. Under the assumptions, we can find
a subsequence {v.’} of {v,} such that

v, >0 weakly in X,
Py, - Py weakly in X, ,
and

d_ & d
e S =

= it Sv weakly in X, .

Taking v,—v instead of v,, the lemma is reduced to the following form:

“If {v,} (resp. {—g?gv,,}) converges weakly to zero in X, (resp. X:), then
{Pv,} has a subsequence which converges strongly to zero in X,”.

It follows from {2.13) that for any »>>0 there exists a constant d,>0 for which

ilpv,‘ﬂ‘\-l§=jr;il'v,;llwyo+dq|l§v,;!lxg holds for all n. Let ¢ be an arbitrary positive num-
ber. Then we can find 7 subject to

?f[vul!xo<-:;— for all =,
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since {v,} is bounded in X,. Consequently, if we establish that i{§zrnnx:~~>0 as
n — oo, then we can conclude that ‘!Pu x>0 as n— oo,

It is obvious that {S-v,,} and Sr“l are bounded in X.. Therefore {Sv,g} forms

Udt
a bounded set in C%la, £] : My)= the set of M.-valued continuous functions on [e, 8]

(See e.g. Lions [9]). Since Lebesgue’s bounded convergence theorem is applicable
in order to show Hgvn lix,—0, it suffices to prove that [|Sva(t)]l 5, converges to zero
as n tends to infinity for each ¢ in [a, 5]. It is enough to prove this for ¢=—a.

Put w,(t)=v,(it+a) for t=0, where 4 is a positive number to be determined later.
Then we have

w(0)=2,(a) ,
“Swn!!l 2{0, f~a Moy ™ "“‘ i!gl nH\ 9 ?

and

|

——l IIMSU,,

Lo(0. ~a: M)

We take an arbitrary ¢ in CY0, f—a) with ¢(0)=—1 and ¢(f—a)==0. Note

Sw,.(O)zy (e(t)Sw, (@)Y dt =B, +7, ,

where

b= pttnswaat
and

Fa= Sjﬂp’(t)Swn(t)dt
Then

|ISwn<0)uM2§c~/7N—&%—Sv,, } 07l
l 2

where ¢ stands for a constant depending only on ¢. If we take 2 sufficiently small,

-
then ¢v' 71 I~—- Sv, is less than -% for all ». On the other hand, S o w,dt

2 1]
converges weakly to zero in M,, since w, converges weakly to zero in L0, f—

My). Thanks to the compactness of S, zﬂ::SS ¢’'w,dt converges, for each fixed

1]
i, strongly to zero in M, as n— 0. Thus we can make [|Sw.(0}l={Sv.(=)] less
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than . This completes the proof. Q.E.D.

[1]

[5]
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