On the second cohomology groups (Schur-multipliers)
of finite reflection groups

By Shin-ichiro Inars and Takeo Yokonuma

£0. Introduction.

The theory of projective representations of finite groups was founded by
I. Schur [3], [4]. Schur has associated to every finite group G a finite abelian
group M, called the multiplier of G, consisting of all the equivalence classes
of factor sets of projective representations of G (ef. §1). In the terminology
of eohomology theory of groups, the multiplier M of G is nothing but the second
cohomology group H¥G, C*) for the coefficient group C*(= the multiplicative
group of the complex number field C) under the trivial action of G on C*
Schur has shown the existence of a representation-group G of a given finite
group G and thus reduced the problem of the determination of all projective
representations of G to the determination of the ordinary representations of G.
Namely, there exists a central extension

1-M—-GC—G-1  (M=HXG, C*)

of G with the following property: for any projective representation ¢: G—»
PGL(n, C)=GL{(n, C)/C*-1,, there exists an ordinary representation ¢: G-
GL(n, C) such that g(M)c C*-I, and ze@g=¢ where =n: GL(n, C)>PGL{n, C) is
the natural projection. (We refer to Schur {3], [4] or Curtis-Reiner [2] or
K. Yamazaki [7] for the details.)

In [5] Schur has determined the group H¥G, C*) for G=5, (the symmetric
group of degree n) or G=%U, (the alternating group of degree n) and has de-
termined the projective representations of the groups &,, ¥,.

The purpose of this note is to determine the cohomology group HYG, C*)
for the case where G is a finite reflection group on a Euclidean space. Our
main result is the following.

TueoreM. Let G be a finite reflection group on a Fuclidean space E. Then
H¥G, C*) is given as follows:

HYG, CH2ZyX -+ X Z,
S st
K

where Z, means the eyclic group of order 2 and = is a non-negative integer.
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i) The case where G 1s irreducible on E.

Table 1
type of G , Diagram &
A 122 7, 7, [ 7 Y
i e - e :
A 123 M R 1
B 1
> r, 1
B, U“*‘T*{/j‘ RV e D & i
B, 124 P33
Dy : C:‘-—'**“‘(x :;‘ - - 3
D 15 2
¥, [ Foy [ fra 7y
: o0 OO 70 :
El I 6, 7, 8 : N 3[ i 1
Oon
| " s ry 7 :
Fy O—5—0—3 3 © : 2
GV o odd 7 7, -0
, 1 OO |
GI™ m: even ' |1
) L&) ry Tyl 1y ] l
Ho 1=3,4 Omg=Or s 22 OO0 1
i

i) LetG=G,x -+ xXG, be a decomposition of G into the irreducible components.
Then
HG, C*)= TI H¥G:, C*)x 1(‘[ P(G;, G)),
$ <y
where P(G:, G;) 18 the group of all pairings of G; and G; in C*, i.e. the set of
all mappings ¢: GiXG;—C* which satisfy the conditions

olaby, ex)=0(a,, 62)97(61, €s)
olas, baes)=ola,, bo)pla,, ¢;)

Jor all a, by, ¢, €Gy, and a,, by, ¢, €Gj.
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CoroLLarY. Let K be an algebraically closed field of characteristic p. Then

H¥{G, K*)= 1 tf p=2
LA SRS A otherwise
[ —
A K

Our method is similar to that of Schur |5] for the case of symmetric groups.
Also if G is a dihedral group, HYG, C*) was given in Schur [3]. We shall review
in §1, for the convenience of the reader, the concepts of projective represen-
tations, associated factor sets and cohomology classes ete. In §2, we also
review the classification of finite reflection groups due to Coxeter {1] and Witt
{6]. In §3 we shall show that for a finite reflection group G, H{G, C*) is iso-
morphie to the direect product of several copies of Z,. Thus H¥G, C*) will be
determined by its order. We shall also give an upper bound 2% for the order
of H¥G,C* by constructing an injective homomorphism: HXG, C*)->0N=
Zyx -+ X2y (ky times), where M is a group consisting of “normalized” factor
sets on G. In §4, we shall show that above injective homomorphism H¥G, C#)-—
R is also surjective by constructing actually the projeetive representations of
G with the corresponding factor sets for each element of . This will lead to
the main theorem.

Finally we should like to thank Prof. N. Iwahori for many suggestions.
Among other things, at first our result was only concerning to Weyl groups of
complex simple Lie algebras and he pointed out that the method in this paper
is available to the finite reflection groups.

§1. Projective representations, factor sets and the second cohomology groups
with the coefficient group C*.

Let G be a finite group. A projective representation of G over Cis a homo-
morphism ¢: G—PGL(n,C), n being called the degree of ¢. A mapping
T: G-»GL{n, C) is called a section of ¢ if p=noT, where n: GL(n, C)>PGL(n, C)
is the natural projection. If T is a section of ¢, we have

T(a)T(b)=ola, b)T(ab)

for all a,be @G, where a is a function: GxG-»C*. The function a is called
the factor set associated to the section T of the representation ¢. Two pro-
jective representations ¢ : G-»PGL(n, C) and ¢: G-H>PGL{(m, C) are called to
be equivalent if n=m and there exists a linear isomorphism feGL(n, C) such
that fop=¢, where f is the isomorphism PGL(n, C)—PGL(n, C) which is induced
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by the isomorphism GL(n, Cy-»GL(n, C): h~fhf-(he GL(n, C)).
From the associativity of the product in GL(n, C) one obtains the relations

(1) ala, beyalb, ¢)=d{a, bialab, ¢)

for all a,b,¢ceG.
A function «: G G-»C* which satisfies (1) is called a factor set or a C*-

valued 2-cocycle on G (under the trivial action of G on C*). Let a, £ be factor
sets. One defines the factor sets af, ! by

(afi)a, by=ala, b)Ha, b)
aa, by={ala, b)) a,be@s

Then the set Z¥G, C*) of all factor sets forms an abelian group with respect
to this operation.

Two factor sets « and 8 are called equivalent (or cohomologous) if there
exists a function p: G—C* such that

Fla, b)=a(a, bp(ablp(a) p(b)

for all a,beG. This is an equivalence relation, and the equivalence class con-
taining a factor set « will be denoted by [a}. One can define a product of
equivalence classes by {a}-{8}={«3}, then the set M of all equivalence classes
forms an abelian group. The identity element of M is {1} where 1 is the factor
set 1{a,d)=1 for all ¢,be @, and for any {0)€ M one has {a})~'={a"'}. This
group M is called the multiplier of G or the second cohomology group HYG, C*)
for the cocfficient group C*.

Lemma 1. Let «a, 3 be equivalent factor sets of G. Then ola,balb, a)-!
== (e, DYBb, ayt for any a,be @G such that ab=ba.

Proor. Since « and 8 are equivalent, there exists a function p: G->C* such
that

Bla, by=(a, bplab)p{a)*p(b)
Bb, a)=a(b, a)p(ba)p(b) ' pla)*.

Hence we have fa, b, a) '=ala, bad, a)-!, Q.E.D.

It is clear that, if 7" and S are two sections of a projective representation
¢, and « (resp. 8) the factor set of ¢ associated to T'(resp. S), they are equiva-
lent. Also, equivalent projective representations have equivalent factor sets.
Thus we have a mapping

PG->M
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where T(G) is the set of all equivalent classes of projective representations of
G over C. 1t is known that this mapping is surjective (Schur [3]). We note
here that, if {a} (resp. {3}) is the class of factor sets corresponding to a projective
representation ¢ (resp. ¢), {afS} (resp. {o}~!) corresponds to the projective repre-
sentation ¢X¢(resp. ‘o), where ¢X¢' is the tensor product of ¢ and ¢ and ‘¢!
is the contragredient representation of ¢. (Note that ¢&¢ or ¢! is defined

up to the equivalence.)

§2. Finite reflection groups.

For a hyperplane P in an [-dimensional Euclidean space E'¥ there corre-
sponds a linear isometric transformation R called reflection. Let p be the
normal unit vector of P and (x, %) the inner product of x,ye¢ E". Then R is
expressed as R-z=x—2(z, p)p (xe E®).

Let P, P, -+, P; be | different hyperplanes in E%, and R,, R, ---, R, the
corresponding reflections respectively. Assume that the angle between P; and

Pii=g) is equal to n/m:; where m;=2,3, -+, oo, and put m;=1. Then it can
be easily seen that R.R; has the order m,; for ¢, 7=1,2,---,1;
(2) (B:R;"is=1 (1, §=1,2, -+, D).

Under this assumption the group I" of linear transformations generated by
R,, Ry, -+, R: will be called a (discrete) refrection group (see e.g. [6]). Reflection
groups were studied and classified for the first by Coxeter [1], and later by Witt
[6] more systematically. We shall resume here their results only for the case
where /" is finite according to [6].

Let D be the closure of a fixed connected component of BV U P;. Take
the normal unit vectors p; of P; for all 1=1,2,---,1 as p,p,-'”tu— /m,,, put @
= —c0s (x/mi;)=(pi, p;), and define a quadratic form f by

14

(3) f= 3 ai;88;

i =1

Since f=(3 &:ipi, X &;p5), [ is positive definite or positive semi-definite according
as Pi, P2+, i are linearly independent or not. If f is positive definite, the
domain D is an angular domain in E, for we may assume that D is the set
of x€ E such that (z, p)<0 (¢=1,2,---, D).

If p; and p; are mutually orthogonal, so mi;=2, R; and R; are commuftative
by (2). Therefore, if any one of the hyperplanes P,, -, P, is orthogonal to
any of the hyperplanes P,.y, ---, P;, the reflection group /” is the direct product
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of the two subgroups /', and I'; generated by (R, ---, R.} and by {R,.,, -+, R}
respectively. /', is considered as a reflection group in a v-dimensional subspace
E'™ containing py, -+, p.. Also I, may be regarded as a reflection group in
the same way. In this case the quadratic form f is decomposed as f,+f, where
Si= > ayéé; and fo= 3 la{jfigj, and f; is associated to I';. Conversely,

19,6 juv vilgt jg

if fe= X auféih 3 aigdy, then ai=(p;, p;)=0for 1gi<vand v +15 7551,

154,50y vilai jal

and hence P, ---, P, are orthogonal to P..,, ---, P,.

If {P,, -, P} can not be decomposed into two subsets such that any element
in one of them is orthogonal to that of another, or that is to say, if {B,, ---, R}
e¢an not be a union of two subsets A and B such that R;R;=R;R; forany R;€ A
and any I;¢ B, then the reflection group 77, the set of generators (R, -+, K}
of 1" and the quadratic form f will be called 1rreducible. Thus one can restrict
the consideration to the irreducible case.

Now, let the quadratic form f be irreducible and of rank . If f is positive
definite, r=-[ and D is an angular domain in E*. For the case where f is
positive semi-definite, we shall show that r=I{—1, and D is a direct product of
a simplex in a ({-—1)-dimensional subspace of £ and a 1-dimensional subspace

of K. Let V be the subspace of £ spanned by PR Z which are linearly

dependent in F. Let &pi+---+&p:=0, and put :clwA IEtlpg Since (p:, p;)=0

(¢£7), it is easy to show that (z,, 1,)s(} &ipi, 3 mp) 0 and so z,=0 whieh is

another relation between p,, --+, pi. If for instance &----- £,#0 and £,.,=

=& =0(v<l), then (m,,jzélpj): 1.5;5\4 | €1 (p:i, ;)=0 and so (p:, p;)=a:==0 for all
viigss!

1=<15vand v-+1=5 751, but this contradiets to the assumption that f is irreducible.
Hence [&;]’s are altogether positive, or equal to zero simultaneously, and so,

if {& |=¢,, one can conclude that |&;|=¢; for all i=1,..-,1. If \“‘ ;pt_O and
2_, 7:0:==0, it can also be seen that & =1y, for all =1 , 1 takmg A as & =2in,.
Hence there is essentially one and only one linear relatxon between 2, -+, m

with all positive coefficients. Therefore V is an (I—1)-dimensional subspace
Ei#-Y and so r==1—1, and D is a simplex in E%" as we claimed.

The following Proposition 1 and Proposition 2 are proved in [6] as Satz 2
and Satz 3 respectively.

Provosition 1. 1) The relations {2) give the fundamental relations between
the generators R,, ---, Ry of I.

ii) D gives a fundamental set of I', t.e. E@=1"-D and S-D=D (Sel') if
and only if S is the identity of I'.

i) If f is positive definite, I" is finrte, otherwise I' is infinite.
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Proposition 2. Let I be a subset of 1,2, ---,1} and H a subgroup generated
by \Ri;1el} in I, Then the fundamental relations between (Riiel} in H are
given by (R:R;yir=1(1, e I,

Now let G be an abstract group generated by 7, ---, 7 with the defining
relations

(4) (rivymii=1 mu=1, miy=m;u=2,3, -+, c0 for 1, j=1, -+, L, i+7.

To such a group G, a diagram /(G) is associated as follows: I/{G) contains [
points corresponding to the generators »i(i=1,2, ---,1) in one-to-one way, and
if m.;=201#7), two points corresponding to 7; and »; respectively are connected
by a segment together with the number m.. I(G) is called sometimes the
Coxeter diagram of G.

Exampre. If Gisthe abstract groupgenerated by (', 7, 7y, 74} with the relations
ri=1(1=1,2,8,4), (=00 =0rf =) =1, (rayP=1 and (r7)*=1, then

n(G) is given as follows:

o S S (Ma3==38, mas=4).

Assume that JI(G) is a union of two subdiagrams /7, and II, consisting of
the points corresponding for instance to {r,, - - -, 7.} and to {r,.,, - - -, 7} respectively,
and assume that any point of 7, is not connected to that of I7,. Then G=G, =G,
(direct product) where G, is generated by {r, ---,7.} and G, is generated by
{r.ey, - -+, 1}, since mi;=2 (I1sisv,v+1s7<l). If G is finite, we shall say that
IIG) is of finite type.

Put ai;=—cos(z/m:;) and define a quadratic form f by (3). Then we have
the following Propesition which is proved in [6] as Satz 6.

Prorosition 8. The abstract group G is finite if and only if the quadratic
form [ is positive definite.

In the following we consider only the case where G is finite and so f is
positive definite. Let {v,, ---, v} be a basis of a real I-dimensional vector space
V. For any two vectors 3 &w; and ¥ 7, of V, define an inner product formally
by (X &wi, X nv5)=1X ai;€,;, which is positive, symmetric since f is positive
definite. Then, if ¢#J, the angle between v; and v; is equal to z—=/m;;. Now
we can define a linear representation ¢ of G on V by

Ri=®(r)), Ri-z=x-—2x, v:v; (i=1,---,1).

R: is a reflection defined by the hyperplane Pi={x ¢ V;(x, v:)=0}. Thus we have
a finite reflection group I” generated by R,, ---, R, and I'=%(G). On the other



162 Shin-ichiro IHARA and Takeo YOKONUMA

hand we have (R.E;"is=1(i, j=1, -+, 1) by (4), but these equations are funda-
mental relations between the generators Ry, ---, R; of I' (Proposition 1, i)).
Therefore ® is an isomorphism. So, in the following of this paper, we shall
say that & is a finite reflection group if it is an abstract group generated by
7y, -+, . with the defining relations (4) and if G is finite. It is easy to show that
G is irreducible, i.e. I'=®(G) is irreducible, if and only if the diagram I7 = JI{(G)
of G is connected. Thus the classification of the irreducible finite reflection
groups G is equivalent to the classification of the connected diagrams IT of finite
types, which is given by the following Lemma (see Satz 8 in [6]).

Lemma 2. There ts no other connected diagram of finite type than the
following types (the numbers under the segments give m:;’s 1n (4)):

oo v, T i (the Weyl group o
Allz1) v OO 050 e SL?HJ; (0)}
. oo ne o ton (the Weyl group of
Bi(1z2) 3y O——C 3 ) SO@2l+1, €), Sp, €Y

) 2 li T (tke Weyl grou Of
Dilz4) I SPO(ZZ, (55)}
. o ’, - s oo N (the Weyl group of
Ey(1=6,7,8); O-q—O-- --O—3 3 3 complex Lie group of
type (Ep)
. . . . (the Weyl group of
F. S e G OO complex Lie group of
type (FV)
. . . (the dihedral grou
GMPmz=b) 3 o ) ofgorde?i' 2ny
" 7, 7 (the finite group
: OO 7
Ha ’ 3 3 > S\){s X lg)‘
H, : 8’7“‘;}—3’6‘—5“8 (the group of order 120%)

If a diagram is of finite type, it is a disjoint union of some finite numbers
of those in Lemma 2.

Now, let us refer to the structure of the group P(G,, G C*) of pairings
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(see §0) of two finite reflection groups G, and G:, that will be tacitly used in
the following sections. Let G be a finite reflection group generated by »,, -+, 7
with the relations (4), |G, G] be the commutator subgroup of G, and @ be the
image of a€G by the canonical homomorphism from G onto the abelian group
G=G/|G,G). G is generated by 7, ---, 7i; 7i=1, hence

(5) Hom (G, C*)=G=2Z, < -+ x 2y (A times)

for a certain integer 2=<!, where Z; is the group of order 2. For the determi-
nation of 4, it is sufficient to examine the case where G is irreducible. For,
if G=G, %G, the direct product of two finite reflection groups, then {G,G]=
{G., Gi]%[G,, G5}, hence G=G,xG:. Since [G,G] is generated by (rir,)}=
rarT it (3, §=1,2, -+, 1), we have #:#;=1 and so #i=7;'=F; if m;; is odd, on
the other hand 7i#;=7;# for all 4,j=1,---,l. Thus we obtain the following
values of 1 for the irreducible finite reflection groups:

1=1 for A, D, E), Gi"(n: odd), H,.
2 for B, F., G™(n: even).

LemMa 3. Let G, and G, be finite reflection groups. Then
P(G), Gz; C*)zZzX e ¥ Zg ()\122 times)

where A, i; are the numbers of Z, in (5) for G,, G, respectively.
Proor. Sinece P(Gy, Gy C*)=Hom (G,, G)=Hom (G,, G,), it is clear, Q.E.D.

§3. Normalization of factor set,

In this paper, we are going to determine the structure of the multiplier
H%(G, C*) in the case where G is the finite reflection group described in §2.

In the following we may assume that G is irreducible on the Euclidean space
E. For, in the case where G=G,% ---xG,, G; being irreducible components,

HYG, C*)= I;I HYG;, C*)x il;lj PG, Gy)

by theorem 2.1 in Yamazaki [7]. This shows the second part of the theorem.

In order to determine the group HXG, C*), in this section we shall construct
an injective homomorphism ¢ from H¥G, C*) into N=:(Z,)%, where N is a group
consisting of “normalized” factor sets on G (in the sense specified below) and
(Z,)% a direct product of x, copies of the cyeclic group Z,. The number «; is
determined respectively for each type of a reflection group.

Let la} be an element of HXG, C*). There exist (see {3]) projective repre-
sentations whose factor sets belong te {a}. Denote one of them by ¢ and let
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T be a section of ¢. Denote T(r;) by Ti.. Then the following relations are
valid according to (4):

(6) Tiz=eid i=1,---,1
(7Y (7. 7T,)ys iﬁ—'itg,‘( TjT,‘)”U if m;; is even: M =2n;;
(8) (T:T;T; =i TjTi)“UTj if mi; is odd: M =2n¢+1,

where [ denote the identity matrix and e, «;; and 5;; belong to C*.

Now, let us normalize the numbers ¢, a;;, 5:;;. Replacing 7: by & 7T; where
£ =¢", i.e. changing the section T of ¢, we may assume ¢ =1 without impro-
priety. If we multiply 7% to the left and 7' (=T,) to the right of both sides
of (7), we have easily aj=«jj =a;;=-+1. As for the coefficients B, squaring
both sides of (8), we have 55;=1 and consequently B;;=8;=8:;==+1. Moreover
we may assume that all of them are equal to 1. For, if

. 7. Tina %,
GO v el
is a connected chain in which all m.;’s are odd in the diagram of G, we can
replace as
)Tll’ Tto “ .,Tz,r T13 ‘1‘2'7"2 3T1 y "%y
T;

Tps

‘1

‘p /3%2'5‘2.5 ’ lp i'p
keeping the other equations (6) and (7) invariant. All Bisi,., are then equal to
1. When in the diagram of G there exists a point which is connected directly
to three other points, i.e. when a connected diagram of type

.

E - ¥ oo
i
b

in which all m,;’s are odd is contained in the diagram of G, we may assume
Bijipy, =1 as before, and replacing T; by $;;T; we may assume 8i,i=1. Thus,
normalizing all the f;;=1, we can associate to each ¢ the system of numbers
{eish

We have then by definitions and (7)

alr, 8)

( 9 ) Q= a(s’ ?') ’

where r==r;, s=(r)%i"r;, mi;;=2n;;, and « is the factor set of 7.
By Lemma 1 and (9), the system {a;;} is independent of the choice of the
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section T of ¢ and determined only by {a}. Thus we have defined a map
0: H{G, C*>C*x---xC*

by {a}—{a;;}. By (9) this map ¢ is a homomorphism.

Now let us show that the homomorphism ¢ is injective. In fact, let ¢ and
¢ be projective representations of G and T and S sections of ¢ and ¢ respectively.
Assume the systems {a;;} coincide for ¢ and ¢. To cach element of G, we fix
once for all an expression by the generators and construet mappings 7% : G-
GL(n, C) and S,: G»GL(m, C) (n=the degree of ¢, m=the degree of ¢) as
follows: If Gaa=w;---7;, is thus fixed expression and T(r;)==T;, S(r;)=S;,
Tya)=T;---T:, and Si(a)=S,---S;,. Let a (resp. 8) be the factor set of ¢
(resp. ¢) determined by the section T, (resp. S,). It is clear that «(a, b)=pg(a, b)
for all a,beG, and {a}={B}.

Many of the a;; may be equal. We shall now consider more explicitly the
“degree of freedom ” of the «;;, i.e. the situations where we have a;;=a;. To
begin with, let »;, r;, 7. and r; be generators of G such that m;;=mu=2. Assume
that there is an element r of G such that r,=rro-!, ry=rr! at the same time.
Then au=a,;. Infact we have 7,=2T,T;T;" and T=pT,T;T;", where 2, peC*
and To=T(r). Therefore, TWT,=2T,T.T; T =a;;T'T: and we have ay;=a;;. On
the other hand, we have the following lemma.

Lemma 4. 1) Let v, 7r; and 7, be generators of G such that they are arranged
in the diagram as

75 Ty

]
e} O mjk::2njk+1.

mjk
There exists an element r in G such that rro~i=r;, rrp-t=r,. Therefore we have
a;;=ay in this case.

2) Let ri, 75,7 and 7, be generators of G such that they are arranged in
the diagram as

O OO0 Mmu=2Nu+1, mu=2n;+1.

We can find an element r in G such that rro—'=r, rrap'=r. Therefore we
have a;j=ay in this case.

Proor. It is sufficient only to take r as (r;r.)ix for 1) and as (r;7,) (r 7 )25
for 2), Q.E.D.

Using LemmaY4 we easily see that, if »; and r; runs throughout a certain
connected chain in the diagram of G, keeping the condition that m:;=2 all the
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«;; attached to (7) are mutually equal.

Consequently we can conclude without difficulties that when G is of type
Afl=3), B,, .\, Gy (n: even) and H,, all «;; are equal. We shall henceforth
denote this common value of a;; by a,. When G is of type B;, Di(I=5) and F,
all «;; are divided into at most two distinct values a,, @, equal to --1. In the
case of Bi(lz4) and Ds, there are three sorts of «;; that may be independently

equal to 1:1. We denote them by a, a;, as.

Table I1.
type of G normahzed relatxons (6)~(8) Ko
A =T, 0
As TEe=] (z~1 2), T1T2T1—T°T1T2 0
A (128) =1 (?-- l), T4T£+1Tz TiHTzTux (2- < 1=1), 1
Ysz--ijYz lf mu—
B: 1' = [ \1,»“1 2), (T:Tz)z—-m(Tle)Z 1
Bs T wI (1=1, 2, 3), TszTl—-T')Tsz, 2

T 1T3-—-L¥1Tafx, (To T =axTsTs)?.

Tz‘“I (?, 1, O, TilenTe=TiaxTiTeer =1, -+, 1-2),
B (24) fﬁT;—mle‘z (1éi<j§l~“l. miy=2), 2
T Ti=aTTy A2151-2),
(Tc ng)z"aa(Tsz 1)2

D ~‘I (l«~-l 2, 3 4), TLT]T[‘—TJT&T} lf muw3 L g
lx]aw(nTaTl, f;i’aua»T.;T;, T3T4—¢13T4T3 }
=] (l,‘— D, TﬁTjT£~—TjTiTj lf mu—-»3
Dy (125) 'lz[';“m]’jT; (1<’1<]§l, myy=2, ixl-1), 2
T.. 1['1~~Lr2Tﬂz 1. :
Ei (1=6,7,8) S1 =1, e, TT=Ty0T, if my=3, L

TgTj« mTjTg lf 'm:j~)2

; T-“‘I (’0— 4), TéTHdTé Tia1TiTivr (i=1,3),
Py T;T;-—mTJT (1gi<j=4, my=2), 2
' (T T3)° (rz(T&T")2 ;
G eveng% Ti=1 (i==1,2), (Tx'.l’n)V:'}:m(Tsz)?' 1
n: odd 7 '-»1 (=1,2), (T ® Ti=(TeTy) * T 0
H (=3, 4) ' =1 (=1, -, ), TilenTi=TeaTiTen =1, -, 1-2), a1

(Tz 1Tc)2Tz v o= (LT 2Ty, TiTi=en T T if mis= 2.
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Accordingly, the numbers &, of a; which may be independently equal to
+1 are given in the Table II.

The correspondence 6: {a}—{a;;} then can be considered as a homomorphism
from H¥G, C*) into Z.X---XZ, (x, times). We denote this group by N in the
following. We have thus the following lemma.

Lemma 5. H¥G, C*) is isomorphic to a direct product of several copies of
the cyclic group Z,, or otherwise to {1}. )

§4. Construction of projective representations

We can now prove the theorem, by showing that the homomorphism
6 : H¥G, C*)-N given in §3 is surjective.

For this purpose it is enough to construct projective representations whose
factor sets correspond to «, generators of N; namely we have only to find the
system of matrices which satisfy the normalized relations in the table I1 for
the generating system of numbers -1 given to «;.

Let A, B be two matrices of degree n. We denote AB+BA by {A, B}.
{ , }is a bilinear mapping: MxM--»>IP where M is the complex vector space
of all matrices of degree n.

Lemma 6. (Schur [5]) Let m be a positive integer. Then there exist 2m+1

matrices My, -+, Mo+ 17 GL(2™, C) which satisfy the following relations.
M22k:—-[y Mgkﬂ“l:I (k::oy 11 ttty m)

(10) {M,, M}=0 (1gk+1=2m-+1)
M2'm,+l' N 'Ml:I

Put Ny=1M., where t*=—1 and Nuys1=M+. Then from (10) Z2m+1

matrices Ny, ---, Nons: satisfy the following relations.
,NIEZI (k:11 "'n2m+1)

(11) {Ni, Ny=0 (Ask=+ls2m+1)

sz_+1 ‘ 'N,':(i)"’f

In the following a system of matrices {N,, - -+, Nons;} which satisfy (11) will
be denoted by X(m).

Using Lemma 6, Schur proved that for type A, (l=3) there exists a system
of matrices satisfying the relations in the table II with a,=—1.

Lemma 7. (Schur [5]) Let | be a positive integer and 9

Namely,
¢ l]:m. Then there
exist | matrices Ay, ---, Ay in GL(2", C) which satisfy the fol

owing relations.
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Ab=] J=1,--+,1
(12) {A;, Ajoy= 1 g=1,--+,1-1
(A;, A)=0 1=j<ksl, ij—kiz2.

Proor. Let us take X(m)={N,, -+, Nyari}, and put 4,=—N|, Ay=a; \Nj

+0;N; (=2, -+, 1) where

Loy = — 1/ k bop sy e 1/ k +1
273 V/ZI{} ;71 2541 1/2]6+1
s o V241 b V23
cak b ZV/]C1‘1 2h+2 21/15'”1

Then these numbers satisfy the relations
(l§'~«1+b§:1 2(.ij,-:—-1
and the relations (12) are easily verified by straight forward calculations,
Q.E.D.
In the following a system of matrices {4,, ---, A} satisfying (12) will be

denoted by A(D).
Let us observe the following elementary facts which will facilitate our

computations.

Let A, B be two matrices of the same degree.

1) If A*=B?=I and {A, B}=-1, then (ABp®=1.

2) If A*==B3*=] and {A, B}=0, then CAC=-B, C*=1], and (AC }*=—1I where

1

Jz= e A B).
¢ V) B)

In general we shall show the follwing lemma.

Lemma 8. Let 1 be a given positive integer and A, B two matrices of degree
n such that A*—=B*=1I and A and B or AB and I are linearly independent in
M. Then there exist complex numbers « such that A, B satisfy the following
relation (13) if {A, B}=«al.
(13) (AB) = (~—1yI

Proor. 1If A?:=B%=] and {4, B}=al, we can write

(AB¥=pAB+q.l
(BA);": p';.-AB‘;‘ Q’);-I

where pi, @i, 2't, @', are complex numbers determined®by « and-k. Then

(ABY+'=(pra+q)AB—~p.I
(BAY* 1 =—q" AB+(p/r+aq')I
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Assume o®+4. We put

| {( N 4)”"_( a—1 at— 4)""}
Va4 2 2

Then fi. is a polynomial of « and p,==fi, ge== = Fomrs @05 Frony 9Tk = Fre

Suppose that ! is even and put I- 2m. ¥or (AB)Y:—1I it is necessary and
sufficient (AB)"=—(BA)". This is equivalent to fuw:*-fn... This isan algebraic
equation for «. +2 are not its solutions.

Suppose that ! is odd and put I-2m+1. For (ABY -1 it is equivalent to
(AB)"A=(BA)"B. This is equivalent to fu.s+fn=0. This is also an algebraic
equation for a and has not =2 as its solutions, Q.E.D.

Now let us construct a system of matrices which satisfy the normalized
relations in the table II for the pre-assigned value for ;. We shall only write
down how to take T.'s. It will be easily verified that they satisfy the desired
relations.

I-1 B, (=4

1) (&, ay a)={~1,1,1)

Let us take A(l-1)={A,, -+, 4;-,}, and put Ti=A4,; i=1, ---,1-1, T\ I

ity (e, @, a)==(1, —1,1)

Let us take 3(1)={N,, N;, Ny}, and put T,=---=T_,=N,, Ti=N,.

iil) (ay, o a)=(—1, -1, —1)

; ] Letustake S(m)={N,,- -+, Nuns,} and put Ty= 1/12 (N;—Njpp)
3=1, -+, 1—1, T\=N,.
I-2 B; {(a,a)=(—1,1),(~1, -1)
T; is the same as I-1 ii) and iii) respectively.
I-3 B, a=-1
T; is the same as I-1 iii).
I1-1 b, l=5

) (a, a)=(~1,1)

Let us take A(l—1)={4,, ---, A;=) and put Ti=4,; 1==1, -+, [—1, Ty=A;...

i) (e, ap)=(—1, ~1)

] é ] Letustake Y(m)={N,, -+, Nuns,} and put Tj:'31/12 (N;—Njw)

§=1, e, 11, T,-x]/lz (Nii+ NY.

In the following this system of matrices {T,, ---, T}} will be denoted by
A)={D,, ---, D}, i.e. T;=D,.
1I-2 D,

1) (ay, g, ag)=(—1, -1, 1), (~1, ~1, -1}

Suppose m=

Suppose m =
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We take 7 as the case II-1 1) and ii) respectively.

i (e, a, @)1, =1, -1

Let us take A(8): {A,, A;, 43}, and put T, =Ti=A,, Ty~ 4., Ti—As.
-1 E, a=-1

We take a A(b) associated to 3(3) by the same way as II-1 ii): 3(8)
ANy, o, NiJ, AB)y—{D,, -+, Dy}, Put T,=D;1=1,2,3,4,5, To= }_'aﬂ’\, where a,

1 V'3

o/ 2" " 2y e
2 E, o--—1

We take a A(6) associated to a X(8). Put T;=D; 1-=1,---,6, Ty= é‘,ajN

1 !

21/ 2
m-3 E, a-—1

We take a A(7) associated to a Y4). Put T;=D;i=1,---,7, Ts= ‘Si’,laij,

Sy —

where a;= — i1, o0, B, @y ;

where ;= —
v F,

1) (o, a)=(-1,1)

Let us take 3(2)=={N,, N;, N5, N, N3} and put T\=N,, Ta=— éNl 1/?’N:»:,

1
i=1, -+, 8.
o0 71

TSIL:N:Jy T4:““ 1 .&Vg"*""\/ 3>N4

11) (a“ Cl'g) """ ( 1 “‘1)

Let us take 3(2) and put T\=
14
..... ) %1 N,.
V G npeeven, a1
By Lemma 8 there exists a complex number a; such that (T\T)*=—1 if
{T\, To}- e, T}~ Ti—1. Let us take 3(1) and put T,=N,, To=k,N,+k.N,, where
ki=-3a, and k. is determined by the condition ki+k3=1.
Yi-1 H;,, a-—-1
We remark that the equation in the proof of Lemma 8 is f;+ f:=0, i.e. a®+
a—1=0 when l—5.
Let us take ¥(1) and put T,= =N, To= L No+V 3 Ny, To=iNo t BN, where
5 =
VI-2 H,, «a=-1
Let us take 3(2) and put T,=—N,, Tgm- V Nn,

N; Nz) T2~ (Nz"—‘Ng), T3?:N3, T(::

1/ 1/2
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1 .. s e 13151 3+1'5
Ty=— )y N VsNo, To— kN + kN where Joy-o iv’z e 41}”2

Thus we have proved the theorem completely. The corollary is immediately
deduced from the theorem and proposition 8.2 in Yamazaki’s {7].

Remark 1. The projective representations which are constructed by the
systems of matrices given above are all irreducible. This is proved by the
same reasoning as that of Schur ([5]) in the case of A4;. Especially for the
Weyl group of any complex simple Lie algebra of rank [, there exists an
irreducible projective representation over C of degree 21/

Remark 2. By above considerations, we have obtained a system of gener-
ators and defining relations for a representation-group of an irreducible finite
reflection group. We denote by G the group generated by I+ symbols
(T, -+, Ty, &, -+, &) which has as defining relations o =e, o, T;~ Tiar; for i-

-1, 5=1, ---, ¥ and the normalized relations in table II. ¢ denotes the unit
element. Then G is a central extension of G with kernel N, the subgroup
generated by all a;, and for any projective representation of G there exists an
ordinary representation of G which has the property stated in §0. We easily
see the order of N equal to the order of H¥G, C*). G is a representation-group
of G.

ReMarK 3. An upper bound for the number p of representation-groups (up
to isomorphisms) of a finite group is given by Schur (See [4. p. 95]). If we
take 2 and « as G/[G, Gl=(Z,)* (cf. §2) and H¥G, C*)=(Z,)*, we have the esti-
mation p<2i«,
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