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Continuous Dependence for Nonlinear Schrödinger

Equation in Hs

By Harunori Uchizono and Takeshi Wada

Abstract. This paper is concerned with the well-posedness, espe-
cially with the continuity of the solution map of the nonlinear
Schrödinger equation

i∂tu + ∆u = f(u), u(x, 0) = φ(x)

on Rn+1. Here, f(u) = c0|u|σu, c0 ∈ C and σ > 0. If 1 < s <
min(n/2, 2) and 0 < σ < 4/(n − 2s), the solution map φ �→ u is
continuous as a map from Hs to C([0, T ], Hs) for some T > 0. The
proof is based on the estimates in the fractional order Besov spaces
both for time and space variables.

1. Introduction

This paper is concerned with the well-posedness of the nonlinear

Schrödinger equation:

i∂tu + ∆u = f(u),(1.1)

u(x, 0) = φ(x),(1.2)

especially with the continuity of the solution map φ �→ u. Here, u : Rn+1 →
C, f(u) = c0|u|σu, c0 ∈ C and σ > 0. The corresponding integral equation

is as follows:

u(t) = eit∆φ + (Gf(u)) (t),(1.3)

where

(Gg) (t) := −i

∫ t

0
ei(t−t′)∆g(t′)dt′.(1.4)
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The Cauchy problem (1.1)-(1.2) is said to be well-posed in Hs if the following

are satisfied: (i) for any φ ∈ Hs, there exists a solution u ∈ C([0, T ], Hs)

to (1.3) for some T > 0; (ii) the solution is unique; (iii) the solution map

φ �→ u is continuous as a map from Hs to C([0, T ], Hs).

There are a lot of works concerning the well-posedness of (1.1)-(1.2),

for example [4, 6, 7, 8, 11, 13], and comprehensive lists of literature can be

found in [2, 9]. Let 0 ≤ s < n/2 and σ0(s) < σ < 4/(n− 2s), where

σ0(s) =




0, 0 ≤ s < 2,

s− 2, 2 ≤ s < 4,

s− 3, s ≥ 4.

Then, according to the previous results, (1.1)-(1.2) has a unique time local

solution in Hs (precisely, in some cases, we need Strichartz type auxiliary

spaces to show uniqueness). The condition for σ above is taken from [11].

Moreover, if we assume σ ≥ [s] + 1, the solution map is locally Lipschitz

continuous [4]. It is also known that if s = 0, 1, 2 and 0 < σ < 4/(n − 2s),

the solution map is continuous at any φ ∈ Hs ([13] for s = 0, [6, 7] for s = 1

and [8] for s = 2). However in other cases, continuity of the solution map

had been proved only in weaker sense, namely from Hs to C([0, T ], L2) ∩
Lγ([0, T ], Lρ), where (γ, ρ) is a suitable admissible pair. This is because we

need f ∈ C [s]+2(C,C) to show the Lipschitz continuity of f(u) in Sobolev

or Besov spaces of order s.

The aim of this paper is to prove the continuity of the solution map in

full-strength in the case where σ < [s] + 1. Recently, Cazenave-Fang-Han

[3] affirmatively solved this problem when 0 < s < 1. Therefore, we treat

the case 1 < s < 2 in the present paper. Our main theorem in this paper is

the following:

Theorem 1.1. Let n ≥ 3, 1 < s < min{n/2, 2} and 0 < σ < 4/(n −
2s). Then the solution map for (1.1)-(1.2) is continuous as a map from Hs

to C([0, T ], Hs).

The complete statement will be shown in Propositions 3.1-3.2. The

difficulty of the proof for s > 1 comes from the fact that f might be differ-

entiable only once, and we cannot estimate the difference of the nonlinear

term in Sobolev/Besov spaces of order s. Instead, we use the estimate in
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Besov spaces for time variable of order s/2, which are compared with s-th

order spaces for spatial variables (Propositions 2.1-2.3).

In this paper We denote by Bs
p,q = Bs

p,q(R
n) the usual Besov spaces

of order s on Rn. Let I ⊂ R be an interval and X a Banach space. For

0 < θ < 1 and 1 < p, q < ∞, X-valued Besov space on I is defined by

Bθ
p,q(I,X) = (Lp(I,X), H1

p (I,X))θ,q,

where the right-hand side is the real interpolation. It is known that

‖u‖Bθ
p,q(I,X) � ‖u‖Lp(I,X) +

{∫ ∞

−∞
‖u(· + τ) − u‖qLp(Iτ ,X)τ

−θq−1dτ

}1/q

.

Here Iτ = {t ∈ I; t + τ ∈ I}. For further detail, see [10] (see also [1, 12]).

We denote by p′ conjugate of the exponent p, that is, 1/p + 1/p′ = 1.

2. Linear Estimates

Definition 2.1. A pair (γ, ρ) is called admissible if

2 ≤ ρ <
2n

n− 2
and

2

γ
=

n

2
− n

ρ
.(2.1)

Proposition 2.1. Let (γ, ρ) be admissible. If n ≥ 3, 0 ≤ s < 2, the

following estimates hold:

‖eit∆φ‖Lγ(R,Bs
ρ,2) ≤ c‖φ‖Hs ,(2.2)

‖eit∆φ‖
B

s/2
γ,2 (R,Lρ)

≤ c‖φ‖Hs .(2.3)

Proof. [4] Theorems 2.1 and 2.2, [11] Proposition 2.5. �

Proposition 2.2. Let I ⊂ R be an interval. If (γ, ρ) is an admissi-

ble pair and (γ, ρ) �= (∞, 2), 0 < θ < 1, ε > 0 arbitrarily small, then the

following estimate holds with c independent of I:

(2.4) ‖Gg‖Lγ(I,B2θ
ρ,2) + ‖Gg‖Bθ+ε

γ,2 (I,Lρ)

≤ c

(
‖g‖Bθ+ε

γ′,2(I,Lρ′ ) + ‖g‖Lγ̃(θ+2ε)(I,Lρ̃(θ)∩Lρ̃(θ+4ε))

+ ‖g‖Lγ̃(θ)(I,Lρ̃(θ−ε)∩Lρ̃(θ+ε))

)
,
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where
1

γ̃(θ)
=

θ

γ
+

1 − θ

γ′ ,
1

ρ̃(θ)
=

θ

ρ
+

1 − θ

ρ′
.

Proof. [11] Proposition 2.6. �

Proposition 2.3. Let I ⊂ R be an interval. If (γ, ρ) �= (∞, 2) is an

admissible pair, 0 < θ < 1, ε > 0 arbitrarily small, then we have with c

independent of I:

(2.5) ‖Gg‖L∞(I,H2θ)

≤ c

(
‖g‖Bθ

γ′,2(I,Lρ′ ) + ‖g‖Lγ̄(θ+ε)(I,Lρ̄(θ+ε)) + ‖g‖Lγ̄(θ−ε)(I,Lρ̄(θ−ε))

)
,

where
1

γ̄(θ)
=

1 − θ

γ′ ,
1

ρ̄(θ)
=

1 − θ

ρ′
+

θ

2
.

Moreover, u ∈ C(I,H2θ) if the right-hand side of (2.5) is finite.

Proof. For any t0 ∈ I, we define St0g ≡ (Gg)(t0) and interpolate

between the following mappings:

St0 : Lγ′
(I, Lρ′) → L2,

St0 : H1
γ′(I, Lρ′) ∩ L∞

0 (I, L2) → H2.

Here, L∞
0 (I, L2) denotes the completion in the sup-norm of all functions

v(t) =
∑

j χEj (t)vj , vj ∈ L2, where the sum is finite and χEj are the char-

acteristic functions of disjoint measurable sets Ej with finite measure. One

has (L2, H2)θ,2 = H2θ. With the notation

A0 = Lγ′
(I, Lρ′), A

(1)
1 = H1

γ′(I, Lρ′), A
(2)
1 = L∞

0 (I, L2)

and [11] Lemma 2.2 it holds (A0, A
(1)
1 ∩A

(2)
1 )θ,2 = (A0, A

(1)
1 )θ,2∩(A0, A

(2)
1 )θ,2.

We have by [11] Lemma 2.1:

(A0, A
(1)
1 )θ,2 = Bθ

γ′,2(I, L
ρ′).

From [1] Theorem 3.4.1 (c), Theorem 4.7.1 and Theorem 5.1.2 it follows

that

(A0, A
(2)
1 )θ,2 ⊃ (A0, A

(2)
1 )θ−ε,∞ ∩ (A0, A

(2)
1 )θ+ε,∞

⊃ (A0, A
(2)
1 )[θ−ε] ∩ (A0, A

(2)
1 )[θ+ε]

= Lγ̄(θ−ε)(I, Lρ̄(θ−ε)) ∩ Lγ̄(θ+ε)(I, Lρ̄(θ+ε)).
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Therefore we obtain that

‖(Gg)(t0)‖H2θ = ‖St0g‖H2θ

≤ c

(
‖g‖Bθ

γ′,2(I,Lρ′ ) + ‖g‖Lγ̄(θ+ε)(I,Lρ̄(θ+ε))

+ ‖g‖Lγ̄(θ−ε)(I,Lρ̄(θ−ε))

)
,

which yields the desired estimate. The continuity of u follows from density

argument. �

3. The Nonlinear Problem

We consider the integral equation:

u(t) = eit∆φ + (Gf (u)) (t),(3.1)

where

f(u) = c0|u|σu, c0 ∈ C,(3.2)

φ ∈ Hs.(3.3)

Lemma 3.1. If s1, s2 ≥ 0, 0 < k ≤ 2, 0 < η < 1, ρ, γ ≥ 1, then the

following estimate holds for sufficiently small ε > 0:

‖u‖
B

k(η−ε)
γ,2 (I,B

ηs1+(1−η)s2
ρ,2 )

≤ c‖u‖η
Bk

γ,2(I,B
s1
ρ,2)

‖u‖1−η

Lγ(I,B
s2
ρ,2)

.(3.4)

Proof. [11] Lemma 4.1. �

Lemma 3.2. The function f defined in (3.2) satisfies the following es-

timate:

|f ′(z1) − f ′(z2)| ≤
{
c
(
|z1|σ−1 ∨ |z2|σ−1

)
|z1 − z2| if σ ≥ 1,

c|z1 − z2|σ if 0 < σ < 1.
(3.5)

Proof. [3] Remark 2.3. �
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Proposition 3.1. Let n ≥ 3, 1 < s < min{n/2, 2} and 0 < σ <

4/(n− 2s). Let (γ, ρ) be an arbitrary admissible pair with

max{σ + 2, 4(σ + 2)/nσ} < γ < 4(σ + 2)/σ(n− 2s).(3.6)

Then there exists T = T (‖φ‖Hs) > 0 such that (1.3) has a unique solution

in X = C(I,Hs)∩B
s/2
γ,2 (I, Lρ)∩Lγ(I,Bs−2ε

ρ,2 ), where I = [0, T ] and ε > 0 is

sufficiently small. Moreover, let φm ∈ Hs,m = 1, 2, . . . and φm → φ in Hs

as m → ∞. Then, for sufficiently large m, (1.3) with φ replaced by φm has

a unique solution um in X and

‖um − u‖Lγ(I,Lρ) ≤ c‖φm − φ‖L2 → 0 (m → ∞).(3.7)

Remark. (i) Proposition 3.1 shows the continuity of the solution map

only in weaker sense. Actually, Pecher [11] did not state the continuity of

the solution map explicitly as above, but it clearly follows from the proof

of uniqueness. (ii) Precisely, Pecher [11] proved the case where γ = 4(σ +

2)/σ(n − 2s) and (γ, ρ) is the corresponding admissible pair. However, we

can easily modify the proof and restate the theorem as above.

Proposition 3.2. Let u and um be solutions stated in Proposition 3.1.

Then ‖um − u‖X → 0 as m → ∞.

Proof. Using Propositions 2.1-2.3, we get the following estimates:

‖eit∆(φm − φ)‖X ≤ c‖φm − φ‖Hs ,(3.8)

‖G(f(um) − f(u))‖
B

s/2
γ,2 (I,Lρ)

+ ‖G (f(um) − f(u)) ‖Lγ(I,Bs−2ε
ρ,2 )(3.9)

≤ c
(
‖f(um) − f(u)‖

B
s/2

γ′,2(I,Lρ′ )

+ ‖f(um) − f(u)‖Lγ̃(s/2+ε)(I,Lρ̃(s/2−ε)∩Lρ̃(s/2+3ε))

+ ‖f(um) − f(u)‖Lγ̃(s/2−ε)(I,Lρ̃(s/2−2ε)∩Lρ̃(s/2))

)
,

‖G(f(um) − f(u))‖C(I,Hs) ≤ c
(
‖f(um) − f(u)‖

B
s/2

γ′,2(I,Lρ′ )
(3.10)

+ ‖f(um) − f(u)‖Lγ̄(s/2+ε)(I,Lρ̄(s/2+ε))

+ ‖f(um) − f(u)‖Lγ̄(s/2−ε)(I,Lρ̄(s/2−ε))

)
,
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where

1

γ̃(s/2)
=

s

2γ
+

1

γ′

(
1 − s

2

)
≡ 1

γ̃
,

1

ρ̃(s/2)
=

s

2ρ
+

1

ρ′

(
1 − s

2

)
≡ 1

ρ̃
,

(3.11)

1

γ̄(s/2)
=

1

γ′

(
1 − s

2

)
≡ 1

γ̄
,

1

ρ̄(s/2)
=

1

ρ′

(
1 − s

2

)
+

s

4
≡ 1

ρ̄
.(3.12)

In the estimates of the last two terms in (3.9) and (3.10), we omit the small

parameter ε and show

‖f(um) − f(u)‖Lγ̃(I,Lρ̃) ≤ cT λ (‖um‖σX ∨ ‖u‖σX) ‖um − u‖X ,(3.13)

‖f(um) − f(u)‖Lγ̄(I,Lρ̄) ≤ cT λ (‖um‖σX ∨ ‖u‖σX) ‖um − u‖X .(3.14)

which make the proof much simpler. These are sufficient for our proof

because all the conditions for the exponents to be fulfilled are given by

strict inequalities.

If we have the inequalities

1

ρ
>

1

(σ + 1)ρ̃
>

1

ρ
− s(1 − η)

n
,(3.15)

1

(σ + 1)γ̃
>

1

γ
− s

2
η(3.16)

for some 0 < η < 1, we get the embedding

B
sη/2
γ,2 (I,B

(1−η)s
ρ,2 ) ⊂ L(σ+1)γ̃(I, L(σ+1)ρ̃).(3.17)

Since (γ, ρ) is admissible, calculations using (3.11) show that (3.15) is equiv-

alent to

1 − η >
2

s(σ + 1)

(
nσ

4
− σ + 2 − s

γ

)
≡ α > 0.(3.18)

On the other hand, (3.16) is equivalent to

1 − η < 1 − 2

s(σ + 1)

(
σ + 2 − s

γ
− 2 − s

2

)
≡ β.(3.19)
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There exists 0 < η < 1 satisfying (3.18) and (3.19) provided that 0 < α < β

and α < 1. The first condition 0 < α < β is fulfilled if γ > 4(σ + 2 − s)/nσ

and σ < 4/(n− 2s). The second condition α < 1 is equivalent to

(n− 2s)σ

4
<

σ + 2

γ
+ s

(
1

2
− 1

γ

)
,

which is verified by (3.6) and γ > 2. Therefore we can obtain the embedding

(3.17). Using Hölder’s inequality, (3.17) and (3.4) we deduce

‖f(um) − f(u)‖Lγ̃(I,Lρ̃)(3.20)

≤ c
(
‖um‖σ

L(σ+1)γ̃(I,L(σ+1)ρ̃)
∨ ‖u‖σ

L(σ+1)γ̃(I,L(σ+1)ρ̃)

)
× ‖um − u‖L(σ+1)γ̃(I,L(σ+1)ρ̃)

≤ cT λ

(
‖um‖σ

B
sη/2
γ,2 (I,B

(1−η)(s−2ε)
ρ,2 )

∨ ‖u‖σ
B

sη/2
γ,2 (I,B

(1−η)(s−2ε)
ρ,2 )

)
× ‖um − u‖

B
sη/2
γ,2 (I,B

(1−η)(s−2ε)
ρ,2 )

≤ cT λ (‖um‖σX ∨ ‖u‖σX) ‖um − u‖X ,

where λ > 0. In the second inequality we have used Hölder’s inequality

for time variable to gain some positive power of T , which is possible since

(3.16) is still valid if we replace (σ + 1)γ̃ by a slightly greater number.

Similarly we can get the following embedding:

B
sη/2
γ,2 (I,B

s(1−η)
ρ,2 ) ⊂ L(σ+1)γ̄(I, L(σ+1)ρ̄)(3.21)

so that we deduce (3.14) by using (3.4). Thus (3.13), (3.14) has been proved.

Therefore combining (3.9) with (3.10) we have

‖G(f(um) − f(u))‖X ≤ c‖f(um) − f(u)‖
B

s/2

γ′,2(I,Lρ′ )
(3.22)

+ cT λ (‖um‖σX ∨ ‖u‖σX) ‖um − u‖X .

Next we estimate f(um) − f(u) in B
s/2
γ′,2(I, L

ρ′). From one of the equiv-

alent norms in Besov spaces ([10], p. 327 or [12], Theorem 4.2.2), we have

‖f(um) − f(u)‖
B

s/2

γ′,2(I,Lρ′ )
(3.23)

= ‖f(um) − f(u)‖Lγ′ (I,Lρ′ )

+

(∫ ∞

−∞

dτ

|τ |1+s
‖δ{f(um) − f(u)}‖2

Lγ′ (Iτ ,Lρ′ )

)1/2
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with Iτ := {t : t, t+ τ ∈ I} and δu(t) := u(t+ τ)− u(t). Hölder’s inequality

gives

‖f(um) − f(u)‖Lρ′ ≤ c
(
‖um‖σLl ∨ ‖u‖σLl

)
‖um − u‖Lρ ,(3.24)

where 1/ρ′ = σ/l + 1/ρ. (3.6) implies 1/ρ > 1/l > 1/ρ − s/n. Indeed,

the first inequality is verified by γ > 4(σ + 2)/nσ, the second inequality is

satisfied if γ < 4(σ + 2)/(n− 2s)σ. Therefore we get the embedding

Bs
ρ,2 ⊂ Ll.(3.25)

From Hölder’s inequality and (3.25) we obtain for sufficiently small ε > 0

‖f(um) − f(u)‖Lγ′ (I,Lρ′ )(3.26)

≤ cT κ

(
‖um‖σ

Lγ(I,Bs−2ε
ρ,2 )

∨ ‖u‖σ
Lγ(I,Bs−2ε

ρ,2 )

)
‖um − u‖Lγ(I,Lρ),

where κ = 1 − (σ + 2)/γ > 0. For 0 ≤ θ ≤ 1 we define

vm(θ) := θum(t + τ) + (1 − θ)um(t),

v(θ) := θu(t + τ) + (1 − θ)u(t).
(3.27)

By the mean value theorem, we have

‖δ{f(um) − f(u)}‖Lρ′ ≤ sup
θ∈[0,1]

‖f ′ (vm(θ)) δum − f ′ (v(θ)) δu‖Lρ′(3.28)

≤ c‖um‖σLl‖δ(um − u)‖Lρ

+ sup
θ∈[0,1]

‖f ′ (vm(θ)) − f ′ (v(θ)) ‖Ll/σ‖δu‖Lρ

≡ p(t) + q(t).

Hölder’s inequality and (3.25) yield

‖p‖Lγ′ (Iτ ) ≤ cT κ‖um‖σ
Lγ(I,Bs−2ε

ρ,2 )
‖δ(um − u)‖Lγ(Iτ ,Lρ).(3.29)

In the estimate of ‖q‖Lγ′ (Iτ ), we distinguish the case σ < 1 from σ ≥ 1. In

the case σ ≥ 1, from (3.5) we observe

q(t) ≤ c
(
‖um‖σ−1

Ll ∨ ‖u‖σ−1
Ll

)
‖um − u‖Ll‖δu‖Lρ .(3.30)
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Taking Lγ′
- norm in (3.30) we conclude

‖q‖Lγ′ (Iτ ) ≤ cT κ

(
‖um‖σ−1

Lγ(I,Bs−2ε
ρ,2 )

∨ ‖u‖σ−1

Lγ(I,Bs−2ε
ρ,2 )

)
(3.31)

× ‖um − u‖Lγ(I,Bs−2ε
ρ,2 )‖δu‖Lγ(Iτ ,Lρ).

Here we have used the embedding (3.25). Going back to the representation

(3.23) and using the estimates (3.29), (3.31) together with (3.26), we see

‖f(um) − f(u)‖
B

s/2

γ′,2(I,Lρ)
(3.32)

≤ cT κ (‖um‖σX ∨ ‖u‖σX) ‖um − u‖
B

s/2
γ,2 (I,Lρ)

+ cT κ
(
‖um‖σ−1

X ∨ ‖u‖σ−1
X

)
‖um − u‖X‖u‖

B
s/2
γ,2 (I,Lρ)

≤ cT κ (‖um‖σX ∨ ‖u‖σX) ‖um − u‖X .

It follows from (3.1), (3.8), (3.22), (3.32) that

‖um − u‖X ≤ c‖φm − φ‖Hs(3.33)

+ c
(
T κ + T λ

)
(‖um‖σX ∨ ‖u‖σX) ‖um − u‖X .

If we choose T > 0 such that

sup
m

c
(
T κ + T λ

)
(‖um‖σX ∨ ‖u‖σX) < 1,(3.34)

wee see

‖um − u‖X ≤ c‖φm − φ‖Hs ,(3.35)

which yields the result for the case σ ≥ 1.

In the case 0 < σ < 1, using (3.5) and the Gagliardo-Nirenberg inequal-

ity

q(t) ≤ c‖um − u‖σLl‖δu‖Lρ ≤ c‖um − u‖σµBs
ρ,2
‖um − u‖σ(1−µ)

Lρ ‖δu‖Lρ(3.36)

for some 0 < µ < 1. (3.7) gives

‖q‖Lγ′ (Iτ ) ≤ cT κ‖um − u‖σµ
Lγ(I,Bs−2ε

ρ,2 )
‖um − u‖σ(1−µ)

Lγ(I,Lρ)‖δu‖Lγ(Iτ ,Lρ)(3.37)

≤ cT κ‖um − u‖σµX ‖φm − φ‖σ(1−µ)
L2 ‖δu‖Lγ(Iτ ,Lρ).
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(3.23) and (3.26), (3.29), (3.37) imply

‖f(um) − f(u)‖
B

s/2

γ′,2(I,Lρ′ )
(3.38)

≤ cT κ (‖um‖σX ∨ ‖u‖σX) ‖um − u‖
B

s/2
γ,2 (I,Lρ)

+ cT κ‖um − u‖σµX ‖φm − φ‖σ(1−µ)
L2 ‖u‖

B
s/2
γ,2 (I,Lρ)

≤ cT κ (‖um‖σX ∨ ‖u‖σX) ‖um − u‖X
+ cT κ‖um − u‖σµX ‖u‖X‖φm − φ‖σ(1−µ)

Hs .

It follows from (3.1), (3.8), (3.22), (3.38) that

‖um − u‖X ≤ c‖φm − φ‖Hs(3.39)

+ c
(
T κ + T λ

)
(‖um‖σX ∨ ‖u‖σX) ‖um − u‖X

+ cT κ‖um − u‖σµX ‖u‖X‖φm − φ‖νHs ,

where ν = σ(1 − µ), 0 < ν < 1. Taking T > 0 such that (3.34) holds we

have

‖um − u‖X ≤ c‖φm − φ‖νHs(3.40)

for m large enough, which completes the proof. �
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