WEKO3
アイテム
Logarithmic abelian varieties, Part I : Complex analytic theory
http://hdl.handle.net/2261/23893
http://hdl.handle.net/2261/23893c2986be7-969d-4b37-bfc3-cd23cb32a571
名前 / ファイル | ライセンス | アクション |
---|---|---|
jms150104.pdf (744.7 kB)
|
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2009-03-24 | |||||
タイトル | ||||||
タイトル | Logarithmic abelian varieties, Part I : Complex analytic theory | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | departmental bulletin paper | |||||
著者 |
Kajiwara, Takeshi
× Kajiwara, Takeshi× Kato, Kazuya× Nakayama, Chikara |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | 2We introduce the notions log complex torus and log abelian variety over $\bC$, which are new formulations of degenerations of complex torus and abelian variety over $\bC$, and which have group structures. We compare them with the theory of log Hodge structures. A main result is that the category of the log complex tori (resp.\ log abelian varieties) is equivalent to that of the log Hodge structures (resp.\ fiberwise-polarizable log Hodge structures) of type $(-1,0)+(0,-1)$. The toroidal compactifications of the Siegel spaces are the fine moduli of polarized log abelian varieties with level structure and with the fixed type of local monodromy with respect to the corresponding cone decomposition. In virtue of the fact that log abelian varieties have group structures, we can also show this with a fixed coefficient (rigidified) ring of endomorphisms. The Satake-Baily-Borel compactifications are, in a sense, the coarse moduli. Classical theories of semi-stable degenerations of abelian varieties over $\bC$ can be regarded in our theory as theories of proper models of log abelian varieties.007-11-09 | |||||
書誌情報 |
Journal of mathematical sciences, the University of Tokyo 巻 15, 号 1, p. 69-193, 発行日 2008-03-21 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 13405705 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA11021653 | |||||
フォーマット | ||||||
内容記述タイプ | Other | |||||
内容記述 | application/pdf | |||||
日本十進分類法 | ||||||
主題Scheme | NDC | |||||
主題 | 415 | |||||
Mathmatical Subject Classification | ||||||
値 | 14K20 (MSC2000) | |||||
Mathmatical Subject Classification | ||||||
値 | 32G20(MSC2000) | |||||
Mathmatical Subject Classification | ||||||
値 | 14M25(MSC2000) | |||||
出版者 | ||||||
出版者 | Graduate School of Mathematical Sciences, The University of Tokyo | |||||
原稿受領日 | ||||||
値 | 2007-11-09 |