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Abstract. We are studying representations obtained from ac-
tions of Galois groups on torsors of paths on a projective line minus
a finite number of points. Using these actions on torsors of paths,
we construct geometrically representations of Galois groups which re-
alize �-adically the associated graded Lie algebra of the fundamental
group of the tannakian category of mixed Tate motives over Spec Z,
Spec Z[i], Spec Z[ 1q ], SpecOQ(

√−q) for any prime number q (q �= 2

in the last case) and over SpecOQ(
√−q)[

1
q ] for any prime number q

congruent to 3 modulo 4 and also for q = 2.

0. Introduction

0.1. In this paper we are studying actions of Galois groups on torsors of

paths. Let V be an algebraic variety defined over a number field K. Let

us fix two points or tangential points v and z of V defined over K. Let
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� be a fixed prime. We denote by π1(VK̄ ; v) the �-completion of the étale

fundamental group of VK̄ base at v and by π(VK̄ ; z, v) the π1(VK̄ ; v)-torsor

of �-adic paths from v to z. The Galois group GK acts on π1(VK̄ ; v) and on

π(VK̄ ; z, v). Therefore we have two representations

ϕv : GK → Aut (π1(VK̄ ; v))

and

ψz,v : GK → Autset(π(VK̄ ; z, v)) .

We mention some examples.

Let V := P1
Q\{0, 1,∞}. Then the action of GQ on π1(VQ̄;

→
01) and on

π1(VQ̄;
→
01)-torsor π(VQ̄;

→
10,

→
01) is “the same”, i.e.,

ker(GQ→ Aut (π1(VQ̄;
→
01))) and ker(GQ→ Autset(π(VQ̄;

→
10,

→
01)))

are equal. One also shows that the actions of GQ on π1

(
P1

Q̄\{0, 1,−1,∞};
→
01
)

and on π(VQ̄;−1,
→
01) have equal kernels after passing to associated

graded Lie algebras (see [22]). On the other side the action of GQ on

π1(VQ̄;
→
01) is unramified outside � and the action of GQ on π(VQ̄; 2,

→
01) is

ramified at � and at 2.

0.2. Let a1, . . . , an+1 be K-points of the projective line P1
K and let

V := P1
K\{a1, . . . , an, an+1} .

For simplicity we assume that an+1 = ∞. Let v be a K-point of V or a

tangential point of V defined over K.

Let f(T ) ∈ K[T ] be an irreducible polynomial and let z1, . . . , zr be all

roots of f(T ) in K̄. Let L := K(z1, . . . , zr) be an extension of K generated

by all roots of f(T ). The Galois group GL acts on the disjoint union of

torsors t :=
r∐
i=1

π(VK̄ ; zi, v), hence we get a representation

ψt : GL → Autset

(
r∐
i=1

π(VK̄ ; zi, v)

)
.
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Our aim is to construct from the representation ψt a representation of

GK which is prounipotent and pro-� on GK(µ�∞ ).

Let x1, . . . , xn be geometric generators of π1(VK̄ ; v) (see [18] section 2).

In [18] we defined a continuous embedding

π(VK̄ ; zi, v)→ Q�{{X}} ,

where X := {X1, . . . , Xn} and Q�{{X}} is a Q�-algebra of non-commutative

formal power series on non-commuting variables X1, . . . , Xn. The action of

GL on the disjoint union of torsors
r∐
i=1

π(VK̄ ; zi, v) induces a representation

(0.2.1) ψt : GL → GL

(
r⊕
i=1

Q�{{X}}
)
.

In [18] section 3 we defined a filtration {Hk(VL; zi, v)}k∈N of GL associated

with the action of GL on the π1(VK̄ ; v)-torsor π(VK̄ ; zi, v).

Let us set

Hk :=

r⋂
i=1

Hk(VL; zi, v) for k ∈ N.

Passing with the representation ψt to Lie algebras and then to associated

graded Lie algebras we get a morphism of associated graded Lie algebras

gr Lieψt :

∞⊕
k=1

(Hk/Hk+1)⊗Q →
(

r⊕
i=1

Lie (X)

)
×̃Der∗Lie (X) ,

where Lie (X) is a free Lie algebra over Q� on X, Der∗Lie (X) is a Lie sub-

algebra of the Lie algebra of derivations defined in [18] and

(
r⊕
i=1

Lie (X)

)
×̃

Der∗Lie (X) is a semi-direct product of Lie algebras.

Let G := Gal (L/K). Then the group G acts on the associated graded

Lie algebra
∞⊕
k=1

(Hk/Hk+1)⊗Q. We shall study the restriction of the mor-

phism of associated graded Lie algebras gr Lieψt to the fixed part of the

action of G, i.e., the morphism of Lie algebras

(gr Lieψt)
G :

∞⊕
k=1

(Hk/Hk+1)⊗QG →
(

r⊕
i=1

Lie (X)

)
×̃Der∗Lie (X) .
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We give a sample indicating that something interesting is going on. In

most interesting applications we shall study Galois actions on torsors of

paths on VQ̄, where V := P1 \ {0, 1,∞}. Then traditionally we denote by

Lie(X,Y ) a free Lie algebra on two generators X and Y.

Theorem A. Let q be a prime number different from �. Let V :=

P1\{0, 1,∞} and let t :=
∐

0<α<q π(VQ̄; ξαq ,
→
01) be a disjoint union of torsors

of paths, where ξq is a primitive q-th root of 1. Then the Galois group GQ(µq)

acts on t and in the image of the morphism of Lie algebras

(grLieψt)
(Z/q)∗ :

∞⊕
k=1

(Hk/Hk+1 ⊗Q)(Z/q)
∗ →

(
⊕

0<α<q

Lie(X,Y ))×̃Der∗Lie(X,Y )

there are elements D1, D3, D5, . . . , D2n+1, . . . homogenous of degree 1, 3,

5, . . . , 2n + 1, . . . respectively and these elements generate freely a free Lie

subalgebra of the image of (grLieψt)
(Z/q)∗ .

Now let us observe the followings facts:

i) the representation of GQ(µq) on t is unramified outside prime ideals of

OQ(µq) lying over prime ideals (q) or (�) of Z;

ii) the conjectural Lie algebra of the fundamental group of the tannakian

category of mixed Tate motives over Spec Z[1q ] is free, freely generated

by generators d1, d3, d5, . . . , d2n+1, . . . of degree 1, 3, 5, . . . , 2n+1, . . .

respectively;

iii) the elements D1, D3, D5, . . . , D2n+1, . . . are dual to 1
q−1�(q),

1−q2
(q−1)q2

�3(1), 1−q4
(q−1)q4

�5(1), . . . , 1−q2n
(q−1)q2n

�2n+1(1), . . . respectively, i.e.,

to �-adic polylogarithms evaluated at elements of Z[1q ]
∗ (the point

iii) we shall see in the proof of the theorem).

Now we can pose the following question. Can we construct from the

representation ψt a new representation θ
Q(µq)/Q
t of GQ which is unrami-

fied outside prime ideals (q) and (l) of Z and such that the image of the
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Lie algebra morphism grLieθ
Q(µq)/Q
t is free, freely generated by elements

D1, D3, D5, . . . , D2n+1, . . .?

The representation ψt is an �-adic realization of the mixed Tate motive

associated with the geometrical object t. We can hope that the representa-

tion θ
Q(µq)/Q
t will be also motivic.

Let

ψt : GL → GL

(
r⊕
i=1

Q�{{X}}
)

be the representation (0.2.1). Below we describe the main idea how to

construct the representation θ
L/K
t of GK from the representation ψt of GL.

0.3. Let K be a number field and let T be a finite set of prime ideals of

OK . Let OK,T be the ring of T -integers in K. Let us denote by MMOK,T

the conjectural tannakian category of mixed Tate motives over SpecOK,T .

The tannakian categoryMMOK,T
is equivalent to the category of represen-

tations of an affine proalgebraic group Π(K,T ) over Q in finite dimensional

Q-vector spaces. The group Π(K,T ) is an extension of the multiplicative

group Gm over Q by an affine proalgebraic prounipotent group U(K,T ) over

Q.

Let L be a finite Galois extension of K and let G := Gal(L/K). Let S

be a set of these prime ideals of OL which lie over some element of T. The

inclusion functor

MMOK,T
↪→MMOL,S

induces surjective morphisms of affine proalgebraic groups over Q

Π(L, S)→ Π(K,T ) and U(L, S)→ U(K,T ).

The group U(K,T ) is free in the category of affine proalgebraic prounipotent

groups over Q, freely generated by r2(K) elements in each even positive

degree, by r1(K) + r2(K) elements in each odd and greater than 1 degree

and by dim(O∗
K,T ⊗Q) elements in degree 1.

Therefore the surjective morphism

U(L, S)→ U(K,T )

has a section

sL,S/K,T : U(K,T )→ U(L, S).
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Hence we have also a section

sL,S/K,T : Π(K,T )→ Π(L, S).

We assume that the representation ψt : GL → GL(⊕r
i=1Q�{{X}}) is un-

ramified outside S. The representation ψt being motivic factors through the

universal map

aL,S,� : GL → Π(L, S)(Q�)

with a Zariski dense image. Hence we have a commutative diagram

GL
ψt−→ GL(⊕r

i=1Q�{{X}})

=
� ψ̄t

�
GL

aL,S,�−→ Π(L, S)(Q�)

where ψ̄t is uniquely determined by ψt. We define the representation θ
L/K
t

to be the composition

GK
aK,T,�−→ Π(K,T )(Q�)

sL,S/K,T−→ Π(L, S)(Q�)
ψ̄t−→ GL(⊕r

i=1Q�{{X}}).

The category MMOK,T
being conjectural, we need to find substitutes

for the groups Π(K,T ) and U(K,T ).

First however we introduce the following notation. For a number field

K, we denote by V(K) the set of prime ideals of OK .

Hain and Matsumoto in [7] and [8] considered a category of continous

weighted Tate representations of GK unramified outside T and prime ideals

of OK lying over �, in finite dimensional Q�-vector spaces. This category is

tannakian over Q�. Its fundamental group, which we denote by G(K,T, �),

is a proalgebraic group over Q�, an extension of the multiplicative group

Gm by a proalgebraic prounipotent group U(K,T, �). They showed that the

associated graded (with respect to weight filtration) Lie algebra of U(K,T, �)

is free, freely generated by r2(K) elements in each even positive degree, by

r1(K) + r2(K) elements in each odd and greater than 1 degree and by

dim(O∗
K,T ′ ⊗ Q) elements in degree 1, where T ′ := T ∪ {λ ∈ V(K) |

λ divides �}.
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It follows from the result of Hain and Matsumoto that for any M ∈
MMOK,T

, the representation ϕM�
: GK → AutM� factors through the

homomorphism

GK → G(K,T, �)

and the restriction of ϕM�
to GK(µ�∞ ) factors through the homomorphism

GK(µ�∞ ) → U(K,T, �).

The inclusion GL ⊂ GK induces surjective morphisms of affine proalge-

braic groups over Q�

G(L, S, �)→ G(K,T, �) and U(L, S, �)→ U(K,T, �).

We shall construct a section

sL,S,�/K,T,� : U(L, S, �)→ U(K,T, �)

and using this section we shall define a representation θ
L/K
t to be the com-

position

GK(µ�∞ ) −→ U(K,T, �)
sL,S,�/K,T,�−→ U(L, S, �)

[ψt]−→GL

(
r⊕
i=1

Q�{{X}}
)
,

where the first arrow is the canonical morphism and the last arrow is induced

by ψt.

Then we can prove the following result.

Theorem B. Let K be a number field and let V = P1
K\{a1, a2, . . . ,

an,∞}. Let a field L, a torsor t and a representation ψt be as in 0.2.

Let G = Gal(L/K). Let us assume that the representation ψt is unramified

outside a finite set S of finite places of L and that S is G-invariant. Let

us assume that L ∩K(µ�∞) = K and that � does not divide the order of G.

Then

i) the representation θ
L/K
t is unramified outside the set T = {q ∈ V(K) |

∃ p ∈ S, q = p ∩ OK} of finite places of K,

ii) the filtration {⊕r
j=1I(X)n}n∈N of

⊕r
j=1 Q�{{X}} by the powers of the

augmentation ideal I(X) of Q�{{X}} is a filtration by GK(µ�∞ )-

modules,
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iii) any σ ∈ GK(µ�∞ ) acts as the identity on ⊕r
j=1(I(X)n/I(X)n+1) for any

n ∈ N.

With the representation θ
L/K
t there is associated in a standard way

a filtration {Fn(θL/Kt )}n∈N of GK(µ�∞ ). Passing to associated graded Lie

algebras we get a morphism

gr Lie θ
L/K
t :

∞⊕
k=1

(Fk(θ
L/K
t )/Fk+1(θ

L/K
t ))⊗Q −→


 r⊕

j=1

LLie(X)


 ×̃Der∗ Lie(X).

Choosing suitably V and a disjoint union of torsors t we get examples

where the image of gr Lie θ
L/K
t is as big as possible, i.e., it is a free Lie

algebra on the maximal possible number of generators depending on K and

on the set of ramification places.

For example in the simplest case considered in Theorem A we have the

following result.

Theorem C. Let q be a prime number different from �. Let V := P1 \
{0, 1,∞} and let t :=

∐
0<α<q π(VQ̄; ξαq ,

→
01) be a disjoint union of torsors of

paths, where ξq is a primitive q-th root of 1. Then the image of the morphism

of associated graded Lie algebras

gr Lie θ
Q(µq)/Q
t :

∞⊕
k=1

(Fk(θ
Q(µq)/Q
t )/Fk+1(θ

Q(µq)/Q
t ))⊗Q −→


 ⊕

0<α<q

LLie(X)


 ×̃Der∗ Lie(X).

is a free Lie algebra, freely generated by elements D1, D3, D5, . . . , D2n+1, . . .

from Theorem A.

Remark 0.3.1. The main problem is to show that the obtained rep-

resentation θ
L/K
t is motivic. To show this one needs to show that sec-

tion sL,S,�/K,T,� : U(L, S, �) → U(K,T, �) is induced by a section sL,S/K,T :
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U(L, S)→ U(K,T ). Unfortunately we are not able to show this as we have

no U(L, S).

In order to show that θ
K/L
t is motivic one can also try to show that all

coefficients of θ
K/L
t are motivic. Polylogarithmic coefficients are best under-

stood, but in [5] we can only prove that in some special cases dilogarithm

coefficients are motivic.

0.4. We indicate briefly why it is important to construct such motivic

representations. Let K be a number field and let T be a finite set of prime

ideals of OK . Let OK,T be the ring of T -integers in K.

Let us denote by MMOK,T
the category of mixed Tate motives over

SpecOK,T . Then the conjectural associated graded Lie algebra of the unipo-

tent part of the motivic fundamental group of the tannakian category

MMOK,T
is free, freely generated by r2(K) elements in each even posi-

tive degree, by r1(K) + r2(K) elements in each odd and greater than 1

degree and by dim(O∗
K,T ⊗Q) elements in degree 1.

If M ∈ MMOK,T
then we denote by M� the �-adic realization of M. It

is a vector space over Q� equipped with a continous representation ϕM�
:

GK → Aut (M�) unramified outside T and prime ideals of K lying over �.

Let RepQ�
(GK) be the category of continous representations of GK in

finite dimensional vector spaces over Q�. The following conjecture seems to

be universally accepted.

Conjecture 0.4.1. The functor of �-adic realization

real� :MMOK,T
→ RepQ�

(GK)

is faithful.

Let M ∈ ProMMOK,T
. We denote by M(M) a tannakian subcategory

of MMOK,T
generated by M.

Definition 0.4.2. Let M ∈ ProMMOK,T
. We say that M realizes

the fundamental group of MMOK,T
if the inclusion functor M(M) →

MMOK,T
induces an isomorphism of fundamental groups of the tannakian

categories.

Definition 0.4.3. Let M ∈ ProMMOK,T
. We say that M realizes

�-adically the fundamental group of MMOK,T
if the associated graded Lie
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algebra of the Q�-Zariski closure of the image of the Galois action homo-

morphism

ϕM�
: GK(µ�∞ ) → Aut (M�)

is a free Lie algebra over Q�, freely generated by r2(K) elements in each

even positive degree, by r1(K) + r2(K) elements in each odd and greater

than 1 degree and by dim(O∗
K,T ⊗Q) elements in degree 1.

Notice that the results of Hain and Matsumoto mentioned above do

not imply that there is a mixed Tate motive M (in Pro MMOK,T
) over

SpecOK,T which realizes the fundamental group of MMOK,T
. They do not

imply that there is a mixed Tate motive M in MMOK,T
such that GK(µ�∞ )

acts non-trivially on M�.

To study the categoryMMOK,T
as well as arithmetic properties ofGK it

is important to find objects M in ProMMOK,T
such that the representation

ϕM�
realizes �-adically the fundamental group of MMOK,T

or even that it

has a non-trivial image.

Here there is a sample why it is very important.

Proposition 0.4.4. Let us assume that Conjecture 0.4.1 holds. If

M ∈ ProMMOK,T
realizes �-adically the fundamental group of MMOK,T

,

then M realizes the fundamental group of the tannakian category MMOK,T
.

In a case of the category MMZ - mixed Tate motives over SpecZ one

hopes that the fundamental group of a projective line minus three points

0, 1,∞ and based at
→
01 realizes the fundamental group of the tannakian

category MMZ.

Looking only at �-adic side one hopes that the associated graded Lie

algebra of the Q�-Zariski closure of the image of

GQ(µ�∞ ) → Aut (π1(P
1
Q̄ \ {0, 1,∞};

→
01))

is free, freely generated by one element in each odd degree greater than 1.

In a case of the category MMZ[ 1
2
], the fundamental group π1(P

1
Q̄
\

{0, 1,−1,∞};
→
01) as well as the torsor of paths from

→
01 to −1 on P1

Q̄
\

{0, 1,∞} realize �-adically the fundamental group of MMZ[ 1
2
]. This follows

from a result of P.Deligne presented on the conference on Polylogarithms
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in Schloss Ringberg in a case of π1 (see also [20] where �-adic version is

discussed). The torsor case is considered in [22].

The fundamental group π1(P
1
Q̄
\ ({0,∞} ∪ µ4);

→
01) as well as the torsor

of paths π(P1
Q̄
\ {0, 1,∞}; i ,

→
01) (resp. π1(P

1
Q̄
\ ({0,∞}∪ µ3);

→
01) as well as

the torsor of paths π(P1
Q̄
\ {0, 1,∞}; exp(2πi

3 ) ,
→
01), resp. π1(P

1
Q̄
\ ({0,∞} ∪

µ8);
→
01)) realize the fundamental group of the tannakian categoryMMZ[i][ 1

2
]

(resp. MMZ[exp( 2πi
3

)][ 1
3
], resp. MMZ[exp( 2πi

8
)][ 1

2
]) (see [20] and [23]).

On the other side π1(P
1
Q̄
\ ({0,∞} ∪ µ7);

→
01) definitely does not realize

the fundamental group of MMZ[exp( 2πi
7

)] or MMZ[exp( 2πi
7

)][ 1
7
] (see [4]).

In this note we shall construct “geometrical objects” which realize the

fundamental group of the tannakian categories MMZ, MMZ[ 1
p
] for any

prime number p, MMOQ(
√−p)

for any prime number p, MMZ[i] and

MMOQ(
√−p)[

1
p
] for any prime number p congruent to 3 modulo 4 and also

for p = 2. Observe that for all considered rings we have r1 + r2 = 1 and

dimO∗
K,T ⊗Q ≤ 1.

We are working with torsors on P1 \{0, 1,∞} and in the free Lie algebra

on two generators there is no sufficient place to deal with examples when

r1+r2 > 1 or dimO∗
K,T ⊗Q > 1. In the future work we hope to study Galois

actions on torsors of paths on P1 \ {0, µn,∞} and on configuration spaces.

In our study we use the idea of Deligne to work modulo a prime number

presented in his lecture in Schloss Ringberg (see [3]).

Now we indicate some motivic motivations of our construction of such

geometrical objects.

Let �n(
→
10) : GQ→ Q� be the �-adic polylogarithm evaluated at

→
10 and

calculated along the canonical path from
→
01 to

→
10. Then �n(

→
10) is a cocycle

with values in Q�(n) and we have a Galois representation

GQ � σ → U(σ) ∈ Aut (Q2
� ),

where U(σ) is the following matrice

(
1 0

�n(
→
10) χn(σ)

)
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The corresponding Hodge-De Rham realization, which we denote by En, is

an extension of Q(0) by Q(n). The rational lattice is generated by

( 1 , Lin(1) ) and ( 0 , (2πi)n ).

Let p be a prime number. We denote by Fn an extension of Q(0) by

Q(n), whose rational lattice is generated by

( 1 ,

p−1∑
k=1

Lin(exp(
2πik

p
) ) and ( 0 , (2πi)n ).

Observe that Fn is over Spec Q though exp(2πik
p ) /∈ Q for k = 1, . . . , p− 1.

We have also an equality

(1− pn−1)En = pn−1Fn.

In fact it was observed by Zagier (see [26]) that some Galois invariant

linear combinations of polylogarithms evaluated at elements of K̄ behave

like linear combinations of polylogarithms evaluated at elements of K. For

example in [26] we found a relation

D3(
1 +

√
5

2
) +D3(

1−
√

5

2
) =

1

5
ζ(3),

where D3 is a univalent version of Li3. Let us denote by G3 an extension

of Q(0) by Q(3) in the category of mixed Hodge-De Rham structures over

Spec Z, whose rational lattice is generated by

(
1 , Li3(

1 +
√

5

2
) + Li3(

1−
√

5

2
)
)

and
(
0 , (2πi)3

)
.

One would like to construct representations of GQ corresponding to mixed

Hodge-De Rham structures Fn and G3. Equivalently one would like to con-

sider
∑p−1

k=1 �n(exp2πi
p ) and �3(

1+
√

5
2 )+ �3(

1−
√

5
2 ) as (�-adic period) functions

on GQ. Notice that a priori they are defined on GQ(µp) and on GQ(
√

5) re-

spectively (see [19], where �-adic polylogarithms �n(z) are defined).

In both cases considered here it is easy to find a corresponding function

on GQ. One can take (1−pn−1)
pn−1 �n(

→
10) in the first case and 1

5�3(
→
10) in the

second case. It is however far from being obvious how to do this for other

examples considered in [26].
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The problem is studied in [5]. Unprecisely we can formulate the main

results from [5] in the following way.

Let L be a finite Galois extension of K. Assume that a formal linear

combination of elements of L,
∑N

i=1mi[zi] is G-invariant. Assume that

cn :=
∑N

i=1mi�n(zi)γi is a cocycle on GL. Then there is a cocycle sn on GK

such that cn = sn|GL
in H1(GL; Q�(n)).

However it is far from being obvious if sn is motivic even if cn is motivic.

In fact we can show this only for n = 2 (see [5] Theorem 5.4).

More generally one can hope that some Galois invariant linear combi-

nations of normalized iterated integrals (see [18] and [24]) evaluated at ele-

ments of K̄ behave like linear combinations of normalized iterated integrals

evaluated at elements of K.

Coefficients of a Lie algebra representation of gr LieU(OK,T ) deduced

from torsors of paths are given by symbols {z, v}e, where z, v ∈ K (see

[18] and [24], where symbols {z, v}e are defined). The observation of Zagier

and the hope expressed above suggest that some Galois invariant linear

combinations with Q-coefficients of symbols {a, b}e with a, b ∈ K̄ behave

like linear combinations of symbols {α, β}e with α, β ∈ K. Hence coefficients

of a Lie algebra representation of gr LieU(OK,T ) should be Galois invariant

linear combinations with Q-coefficients of symbols {a, b}e with a, b ∈ K̄.

In this note we use this philosophy to construct representations of GK

starting from representations of GL, where L is a finite Galois extension of

K.

These informal motivic considerations we hope to make more precise in

the second part of this paper.

During the conference in Acquafredda di Maratea I have given a talk

entitle “Galois actions on torsors of paths”. Before my lecture P.Deligne

told me that he has studied the product of torsors of paths on P1 \{0, 1,∞}
(from

→
01 ) to ξ1

6 and ξ5
6 and that the Lie algebra (associated to the represen-

tation of GQ or the mixed Hodge structure) is free on generators in degrees

3, 5, ..., 2n+1, . . . . This paper is an attempt to generalize an example stud-

ied by Deligne.

Some results of this paper were presented on the conferences in Irvine

2002, in Sestri Levante 2004, in Banff 2005 (Regulators II) and on seminar

talks in IHES, in MPI für Mathematik, Bonn and in Okayama University

in 2004.
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This paper was written during our visits to IHES and MPI für Mathe-

matik, Bonn and we would like to thank very much both these instituts for

support.

1. Torsors of Paths

1.0. We recall here methods and results concerning actions of Galois

groups on fundamental groups and on torsors of paths from [18].

Let K be a number field. Let a1, . . . , an+1 be K-points of a projective

line P1. Let

V := P1
K\{a1, . . . , an+1} .

We assume for simplicity that an+1 = ∞. We denote by V̂ (K) the set of

K-points of V and of tangential points defined over K.

Let � be a fixed prime and let v ∈ V̂ (K). Let π1(VK̄ ; v) be the pro-� com-

pletion of the étale fundamental group of VK̄ based at v. Let x1, . . . , xn ∈
π1(VK̄ ; v) be a sequence of geometric generators of the fundamental group

associated with the family Γ = {γi}n+1
i=1 of paths from v to tangential base

points defined over K at ai for i = 1, . . . , n+ 1.

Let X := {X1, . . . , Xn} and let

k : π1(VK̄ ; v)→ Q�{{X}}

be a continuous multiplicative embedding of the fundamental group into

non-commutative power series on n non-commuting variables X1, . . . , Xn

sending xi into the power series eXi .

Let Lie (X) be a free Lie algebra over Q� on the set X and let L(X) :=

lim←−
i

Lie (X)/ Γi Lie (X) be a completed free Lie algebra over Q� on the set

X. We identify Lie (X) (resp. L(X)) with Lie elements of finite length in

Q�{{X}} (resp. Lie elements possibly of infinite length in Q�{{X}}).
The action of GK on the fundamental group π1(VK̄ ; v) induces an action

of GK on the Q�-algebra Q�{{X}}, i.e., we get a representation

ϕv := ϕVK ,v : GK → Aut (Q�{{X}}) .

The representation ϕv factors through

ϕv : GK → Aut∗ (Q�{{X}}) ,
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where

Aut∗ (Q�{{X}}) =

{f ∈ Aut (Q�{{X}}) | ∃α(f) ∈ Q∗
� ∀Xi ∈ X ∃ li ∈ L(X),

f(Xi) = e−li · α(f)Xi · eli} .

We also set

Aut∗1 (Q�{{X}}) =

{f ∈ Aut (Q�{{X}}) | ∀Xi ∈ X ∃ li ∈ L(X), f(Xi) = e−li ·Xi · eli} .

With the action of GK on π1(VK̄ ; v) there is associated a filtration

{Gi(VK , v)}i∈N of GK (see [18] section 3).

Passing to Lie algebras we get a morphism of Lie algebras

Lieϕv : Lie (G1(VK , v)/G∞(VK , v))→ Der (Q�{{X}}) ,

where G∞(VK , v) :=
∞⋂
i=1

Gi(VK , v).

The morphism Lie ϕv factors through

Lieϕv : Lie (G1(VK , v)/G∞(VK , v))→ Der∗ L(X) ,

where

Der∗ L(X) := {D ∈ DerL(X) | ∀ 1 ≤ i ≤ n ∃Ai ∈ L(X), D(Xi) = [Xi, Ai]}.

Let z ∈ V̂ (K) and let p be a path from v to z. For any σ ∈ GK we set

fp(σ) := p−1 · σ(p) and Λp(σ) := k(fp(σ)) .

Let π(VK̄ ; z, v) be a π1(VK̄ ; v)-torsor of �-adic paths from v to z. The Galois

group GK acts on π(VK̄ ; z, v), hence we have a representation

ψz,v : GK → Autset(π(VK̄ ; z, v)) .

We identify π(VK̄ ; z, v) with π1(VK̄ ; v) sending a path q onto a loop p−1 · q.
After the identification of π(VK̄ ; z, v) with π1(VK̄ ; v) and the embedding k,

the Galois group GK acts also on Q�{{X}}. Therefore we get a representa-

tion

ψp : GK → GL(Q�{{X}})
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given by

ψp(σ) = LΛp(σ) ◦ ϕv(σ) .

The representation ψp factors through

ψp : GK → LexpL(X)×̃Aut∗(Q�{{X}}) ,

where LexpL(X) is the subgroup of GL(Q�{{X}}) of left multiplications

by elements of expL(X) and LexpL(X)×̃Aut∗(Q�{{X}}) is a subgroup of

GL(Q�{{X}}) generated by LexpL(X) and Aut∗(Q�{{X}}). This subgroup is

a semi-direct product of these two subgroups.

It follows immediately from [18] Proposition 2.2.1 that

ϕv(σ)(eXi) = Λγi(σ)−1 · eχ(σ)Xi · Λγi(σ)

for any σ ∈ GK . Hence we get

(1.0.0) ϕv(σ)(Xi) = Λγi(σ)−1 · (χ(σ)Xi) · Λγi(σ)

and

(1.0.1) ψp(σ)(Xi) = Λp(σ) · ϕv(σ)(Xi)

for any σ ∈ GK .

For simplicity we shall also denote ψp(σ) by σp and ϕv(σ) by σ, hence

σp = LΛp(σ) ◦ σ.

With the action of GK on the π1(VK̄ ; v)-torsor π(VK̄ ; z, v) there is asso-

ciated a filtration {Hi(VK ; z, v)}i∈N of GK (see [18] section 3).

The representation ψp induces a morphism of Lie algebras

Lieψp : Lie (H1(VK ; z, v)/H∞(VK ; z, v))→ End (Q�{{X}}) ,

where H∞(VK ; z, v) :=
∞⋂
i=1

Hi(VK ; z, v). The morphism Lie ψp factors

through

Lieψp : Lie (H1(VK ; z, v)/H∞(VK ; z, v))→ LL(X)×̃Der∗L(X) ,

where LL(X) is the Lie algebra of left multiplications in Q�{{X}} by elements

of L(X). The Lie algebra Der∗L(X) acts on LL(X) via its action on L(X)

and LL(X)×̃Der∗L(X) is a semi-direct product.
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One shows that for any σ ∈ H1(VK ; z, v) = GK(µ�∞ ) we have

log σp = L(log σp)(1) + log σ

and

(log σ)(Xi) = [Xi, (log σγi)(1)]

for i = 1, 2, . . . , n (see [18]).

Passing to associated graded Lie algebras with the morphisms Lie ϕv
and Lie ψp we get morphisms of associated graded Lie algebras

Φv := gr Lieϕv : gr Lie (G1(VK , v)/G∞(VK , v))⊗Q ≈
∞⊕
i=1

Gi(VK , v)/Gi+1(VK , v)⊗Q → Der∗Lie (X)

and

Ψz,v := gr Lieψp : gr Lie (H1(VK ; z, v)/H∞(VK ; z, v))⊗Q ≈
∞⊕
i=1

Hi(VK ; z, v)/Hi+1(VK ; z, v)⊗Q → LLie(X)×̃Der∗Lie(X) .

The derivation D ∈ Der∗Lie(X) such that D(Xi) = [Xi, Ai] for i = 1, . . . , n

we shall denote by D(Ai)ni=1
.

The vector space
n⊕
i=1

Lie (X)/〈Xi〉 we equip with a Lie bracket { , } given

by

{(ai)ni=1, (bi)
n
i=1} := ([ai, bi] +D(aj)nj=1

(bi)−D(bj)nj=1
(ai))

n
i=1 .

(See [11] , where this bracket is introduced in the case of π1(P
1
Q̄
\ {0, 1, ∞},

→
01).)

The obtained Lie algebra we denote by

(
n⊕
i=1

Lie (X)/〈Xi〉; { , }
)

. The

Lie algebras Der∗Lie(X) and

(
n⊕
i=1

Lie (X)/〈Xi〉; { , }
)

are isomorphic and

an isomorphism is given by sending D(Ai)ni=1
to (Ai)

n
i=1.
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Hence the representation Ψz,v can be regarded as a morphism of Lie

algebras

Ψz,v :
∞⊕
k=1

Hk(VK ; z, v)/Hk+1(VK ; z, v)⊗Q →

Lie (X)×̃
(

n⊕
i=1

Lie (X)/〈Xi〉; { , }
)
.

If σ ∈ Hk(VK ; z, v) then the coordinates of Ψz,v(σ) are(
log Λp(σ) mod Γk+1L(X), (log Λγi(σ) mod 〈Xi〉+ Γk+1L(X))ni=1

)
.

We finish this section by showing that the representations ϕv : GK →
Aut(Q�{{X}}) and ψp : GK → GL(Q�{{X}}) are �-adic mixed Tate modules

(see [8] section 6, where �-adic mixed Tate modules are defined).

Let

I(X) := ker(ε : Q�{{X}} → Q�)

be the augmentation ideal. Observe that the powers of the augmenta-

tion ideal {I(X)n}n∈N∪{0} (we set {I(X)0 := Q�{{X}}) define a filtration

of Q�{{X}}. It follows immediately from the formulas (1.0.0) and (1.0.1)

that

i) ϕv(σ)(I(X)n) ⊂ I(X)n and ψp(σ)(I(X)n) ⊂ I(X)n,

ii) ϕv and ψp act on I(X)n/I(X)n+1 by the n-th power χn of the cyclo-

tomic character χ : GK → Z∗
� .

Definition 1.0.2. (see also [24]) We define a weight filtration of

Q�{{X}} setting

W−2k+1(Q�{{X}}) = W−2k(Q�{{X}}) := I(X)k

for k ∈ N ∪ {0}.

Proposition 1.0.3. We have

i)
⋂∞
i=0W−i(Q�{{X}}) = 0 and

⋃∞
i=0W−i(Q�{{X}}) = Q�{{X}},
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ii) ϕv(σ)(W−i(Q�{{X}})) ⊂W−i(Q�{{X}}) and

ψp(σ)(W−i(Q�{{X}})) ⊂W−i(Q�{{X}}) for any σ ∈ GK ,

iii) ϕv and ψp act on W−2i(Q�{{X}})/W−2i−2(Q�{{X}}) by the i-th power

χi of the cyclotomic character χ.

Proof. The proposition follows immediately from the properties of

the filtration {I(X)n}n∈N∪{0} of Q�{{X}}. �

Let us equip I(X) with the induced weight filtration by setting

W−2i+1I(X) = W−2iI(X) := I(X)i

for i ∈ N. Obviously the representations

ϕv : GK → GL(I(X)) and ψp : GK → GL(I(X))

(obtained from restriction of ϕv and ψp to I(X)) respect the filtration of

I(X). We define two filtrations of GK associated with ϕv and ψp by setting

Gi−1(f) := {σ ∈ GK | f(σ) ≡ IdI(X) mod I(X)i}

for i ∈ N and where f = ϕv or f = ψp.

We set also

G∞(f) :=

∞⋂
i=0

Gi−1(f)

.

One sees easily that

Gi(ϕv) = Gi(VK , v) and Gi(ψp) = Hi(VK ; z, v).

1.1. Let z1, . . . , zr be K-points of V or tangential points defined over K.

We shall study the action of GK on the disjoint union
r∐

j=1
π(VK̄ ; zj , v) and

on the product
r∏

j=1
π(VK̄ ; zj , v) of π1(VK̄ ; v)-torsors.

We start with some linear algebra. Let f1, . . . , fr ∈ L(X). Then Lexp f1⊕
. . . ⊕ Lexp fr is an automorphism of the vector space

r⊕
j=1

Q�{{X}}. The set
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of linear automorphisms of
r⊕

j=1
Q�{{X}} of the form Lexp f1 ⊕ . . . ⊕ Lexp fr ,

where f1, . . . , fr ∈ L(X) is a group which we denote by
r⊕

j=1
LexpL(X).

Similarly Lexp f1 ⊗ . . .⊗ Lexp fr is an automorphism of the vector space
r⊗

j=1
Q�{{X}}. The set of linear automorphisms of

r⊗
j=1

Q�{{X}} of the form

Lexp f1 ⊗ . . .⊗ Lexp fr , where f1, . . . , fr ∈ L(X) is a group which we denote

by
r⊗

j=1
LexpL(X).

The group Aut∗ Q�{{X}} acts on
r⊕

j=1
Q�{{X}} and on

r⊗
j=1

Q�{{X}} di-

agonally. The subgroup of GL

(
r⊕

j=1
Q�{{X}}

)
(resp. GL

(
r⊗

j=1
Q�{{X}}

)
)

generated by
r⊕

j=1
LexpL(X) (resp.

r⊗
j=1

LexpL(X)) and Aut∗ Q�{{X}} is a semi-

direct product of these two subgroups and we denote it by


 r⊕

j=1

LexpL(X)


 ×̃Aut∗Q�{{X}}

(resp.


 r⊗

j=1

LexpL(X)


 ×̃Aut∗ Q�{{X}}).

The Lie algebra of


 r⊕

j=1

LexpL(X)


 ×̃Aut∗1 Q�{{X}}

(resp.


 r⊗

j=1

LexpL(X)


 ×̃Aut∗1 Q�{{X}})

is 
 r⊕

j=1

LL(X)


 ×̃Der∗L(X)
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(resp.

(
r⊕

j=1
(Id⊗ . . .⊗ LL(X) ⊗ . . .⊗ Id)

)
×̃Der∗L(X)). The above facts

are proved in [18] section 5 for r = 1. Proofs for r > 1 are similar and we

omit them.

We return to study Galois representations on the disjoint union t :=
r∐

j=1
π(VK̄ ; zj , v) and on the product T :=

r∏
j=1

π(VK̄ ; zj , v) of π1(VK̄ ; v)-

torsors.

We fix paths pj from v to zj for j = 1, . . . , r. We recall that k :

π1(VK̄ ; v)→ Q�{{X}} is a fixed continuous multiplicative embedding. Each

π1(VK̄ ; v)-torsor π(VK̄ ; zj , v) we embed into Q�{{X}} sending the path q

onto k(p−1
j · q).

It follows from the formalism presented in section 1.0 that the action of

GK on
r∐

j=1
π(VK̄ ; zj , v) (resp.

r∏
j=1

π(VK̄ ; zj , v)) yields a Galois representation

ψt : GK →


 r⊕

j=1

LexpL(X)


 ×̃Aut∗Q�{{X}}

(resp. ψT : GK →
(

r⊗
j=1

LexpL(X)

)
×̃Aut∗Q�{{X}}).

Let S := {z1, . . . , zr}. We define a filtration

{Hi(VK ;S, v)}i∈N

of the group GK setting

Hi(VK ;S, v) :=
r⋂

j=1

Hi(VK ; zj , v)

for i ∈ N. Observe that the subgroup

H∞(VK ;S, v) :=

∞⋂
i=1

Hi(VK ;S, v)

is the kernel of representations ψt and ψT . Passing with the representations

ψt and ψT to associated graded Lie algebras we get morphisms of associated
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graded Lie algebras

gr Lieψt :
∞⊕
i=1

Hi(VK ;S, v)/Hi+1(VK ;S, v)⊗Q →

 r⊕

j=1

Lie(X)


 ×̃Der∗Lie(X)

and

gr LieψT :

∞⊕
i=1

Hi(VK ;S, v)/Hi+1(VK ;S, v)⊗Q →

 r⊕

j=1

Id⊗ . . .⊗ Id⊗ LLie(X) ⊗ Id⊗ . . .⊗ Id


 ×̃Der∗Lie(X) .

Lemma 1.1.0. Let σ ∈ Hk(VK ;S, v). The coordinates of gr Lieψt(σ)

are(
(log Λpj (σ) mod Γk+1L(X))rj=1; (log Λγi(σ) mod 〈Xi〉+ Γk+1L(X))ni=1

)
.

We introduce the following notation. If A and B are elements of a Lie

algebra then we set

[A,B0] := A and [A,Bn] := [[A,Bn−1], B] for n > 0.

2. Ramification

In this section we shall study ramification properties of Galois represen-

tations on fundamental groups and on torsors of paths. (See also [23] where

more detailed results are presented.) We recall that V = P1
K\{a1, . . . , an,

an+1} and v is a K-point or a tangential point defined overK. For simplicity

we assume that an+1 =∞.

We denote by V(K) the set of finite places of the field K. Let p ∈ V(K).

We denote by vp : K∗ → Z the valuation associated with p.

Definition 2.0. Let p be a finite place of K. We say that a pair (V, v)

has good reduction at p if
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i) vp(ai) ≥ 0 for all i ∈ {1, . . . , n};

ii) if v is a K-point of V then vp(v) ≥ 0, if v =
−→
ai0y is a tangential point

defined over K then vp(y) ≥ 0;

iii) vp(ai − aj) = 0 for all pair i �= j;

iv) if v is a K-point of V then vp(ai − v) = 0 for all i ∈ {1, . . . , n}, if

v =
−→
ai0y then vp(ai0 − y) = 0.

If any of these conditions is not satisfied then we say that a pair (V, v) has

potentially bad reduction at p.

The next result generalizes Theorem from [9].

Theorem 2.1. Let S′ be a set of finite places of K where a pair (V, v)

has potentially bad reduction. Let S = S′ ∪ {λ ∈ V(K) | λ divides �}. The

representation

ϕv : GK → Aut (π1(VK̄ ; v))

is unramified outside S.

Proof. We shall imitate the proof of Theorem in [9]. Let us take

p /∈ S. Let Kp be the p-completion of K, let OKp be the ring of integers of

Kp and let kp be the residue field. Let K̄p and k̄p be algebraic closures of

Kp and kp respectively. Let Kur
p be the maximal unramified extension of

Kp contained in K̄p and let Our
Kp

be the ring of integers of Kur
p .

We define a smooth projective scheme X over OKp by a system of equa-

tions

T �m

i − T �m

j = aj − ai

for all pairs (i, j) with i �= j. The morphism pm : X → P1
OKp

given

by z → T �m
i + ai is an étale, abelian (Z/�m)n-covering outside the set

{a1, . . . , an, an+1} and with ramification indices �m at each point ai.

The K-point v is defined over OKp and its reduction modulo p we denote

by v̄. Let us consider morphisms of pointed schemes

(Xk̄p
:= X ⊗OKp

k̄p, v̄)→ (X ⊗OKp
Our
Kp
, v)← (XK̄p

:= X ⊗OKp
K̄p, v) .

By the Grothendieck comparison theorem the categories of finite �-coverings

of Xk̄p
and XK̄p

are equivalent. Moreover the fiber functors defined by v̄ and
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v are isomorphic. Finite étale �-coverings of Xk̄p
and their morphisms are

obtained from finite étale �-coverings of X ⊗OKp
Our
Kp

and their morphisms.

After tensoring with K̄p one gets finite étale �-coverings of XK̄p
and mor-

phisms of these coverings over XK̄p
. Any finite étale �-covering of VK̄ is

dominated by the composition of a finite étale �-covering of XK̄p
for some

m and the projection pm : XK̄p
→ VK̄p

. Hence the action of Gal(K̄p/Kp)

on π1(VK̄ ; v) factors through the action of Gal(Kur
p /Kp) = Gal(k̄p/kp). �

Let z be also a K-point of V or a tangential point defined over K.

Definition 2.2. Let p be a finite place of K. We say that a triple

(V, z, v) has good reduction at p if both pairs (V, z) and (V, v) have good

reduction at p.

If this condition is not satisfied then we say that a triple (V, z, v) has

potentially bad reduction at p.

Proposition 2.3. Let T ′ be a set of finite places of K where a triple

(V, z, v) has potentially bad reduction. Let T = T ′∪{λ ∈ V(K) | λ divides �}.
The representation

ψz,v : GK → Autset(π(VK̄ ; z, v))

is unramified outside T .

Proof. We repeat the proof of Proposition 2.1. �

If R is a set of finite places of K then we define

OK,R := {x ∈ K | ∀ p /∈ R , vp(x) ≥ 0} .

Corollary 2.4. The representation

ϕv : GK → Aut(π1(VK̄ ; v)) (resp. ψz,v : GK → Autset(π(VK̄ ; z, v)))

factors through the epimorphism

GK → π1(SpecOK,S ; Spec K̄) (resp. GK → π1(SpecOK,T ; Spec K̄))
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induced by the inclusion OK,S ↪→ K (resp. OK,T ↪→ K).

Proof. The étale fundamental group of SpecOK,R is the Galois group

Gal(F/K), where F is a maximal Galois extension of K unramified outside

R. �

In [20] we have studied representations of Galois groups on π1(VQ̄;
→
01),

where V := P1
Q(µn)\({0,∞} ∪ µn). We have constructed a family of deriva-

tions in the image of the homomorphism

gr Lieϕ→
01

: gr Lie(G1(VQ(µn),
→
01)/G∞(VQ(µn),

→
01))→ Der∗Lie(X).

We raised a question if these derivations generate the image of gr Lieϕ→
01
.

The next result is the first step to give an affirmative answer to this question

(see also [23]).

Corollary 2.5. Let V = P1
Q(µn)\({0,∞} ∪ µn). Let S be a set of

finite places of Q(µn) which divide n or �. Then the representation

ϕ→
01

: GQ(µn) → Aut(π1(VQ(µn)
;
→
01))

is unramified outside S. The representation ϕ→
01

factors through the epimor-

phism

GQ(µn) → π1(SpecOQ(µn),S ; SpecQ(µn)).

3. �-adic Polylogarithms

3.0. �-adic polylogarithms are very important in this paper hence we recall

here their definition (see [19], [13] and [21]). In fact we shall give three

slightly different definitions.

Let V := P1
K\{0, 1,∞}. We denote by x and y standard generators of

π1(VK̄ ;
→
01). Let k : π1(VK̄ ;

→
01) → Q�{{X,Y }} be the standard continuous

multiplicative embedding given by k(x) = eX and k(y) = eY . Let z be a

K-point of VK or a tangential point defined over K. Let p be a path from
→
01 to z.

We recall that Lie (X,Y ) is a free Lie algebra over Q� on X and Y and

L(X,Y ) := lim←−
n

Lie (X,Y )/Γn Lie (X,Y ) is a completed free Lie algebra over

Q� on X and Y .
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Let Ir be a closed Lie ideal of L(X,Y ) generated by Lie brackets which

contain r or more Y ’s.

Definition 3.0.1. (see [19]) We define functions �(z)p and �n(z)p from

GK to Q� by the congruence

log Λp(σ) ≡ �(z)p (σ)X +
∞∑
n=1

�n(z)p (σ) [Y,Xn−1] mod I2 .

The function �(z)p we call �-adic logarithm and �n(z)p we call �-adic poly-

logarithm of degree n.

This definition is very useful to study Galois representations on funda-

mental groups of P1
Q(µn)

\({0,∞} ∪ µn) (see [20]).

The next version of �-adic polylogarithms is more close to the definition

given in [1].

Definition 3.0.2. We define functions �in(z)p from GK to Q� by the

congruence

log(k(fp(σ) · x−�(z)p(σ))) ≡
∞∑
n=1

�in(z)p (σ) [Y,Xn−1] mod I2 .

Now we shall give the third definition. Observe that the path p de-

fines a compatible family {z1/�n}n∈N of �n-th roots of z by the analytic

continuation of the constant family {1}n∈N of �n-th roots of 1. Using the

development of (1 − ξi�n z
1/�n)1/�

n
into a power series of ξi�n z

1/�n for small

z and analytic continuation in general case we get also a compatible family

{(1− ξi�n z
1/�n)1/�

n}n∈N of �n-th roots of 1− ξi�n z
1/�n .

Definition 3.0.3. We define functions �k(z)p (k ∈ N) from GK to Z�

by the identity

ξ
�k(z)p(σ)
�n =

σ

(
�n−1∏
i=0

(1− ξi�n z
1/�n)

ik−1

�n

)
�n−1∏
i=0

(1− ξ
χ(σ)i+κ(z)(σ)
�n · z1/�n)

ik−1

�n

,
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where κ(z) : GK → Z� is the Kummer character associated with the family

{z1/�n}n∈N.

Proposition 3.0.4. We have

i) �n(z)p(σ) = �in(z)p(σ) for σ ∈ H2(VK ; z,
→
01);

ii) �in(z)p(σ) = (−1)n−1

(n−1)! �n(z)p(σ) for σ ∈ GK .

Proof. If σ ∈ H2(VK ; z,
→
01) then �(z)p(σ) = 0. This implies the first

part of the proposition. The second part is proved in [13]. �

3.1. In the next section we shall use coinvariant group functor. We recall

here its definition and its elementary properties.

We start with the following general situation. Let a group G act on

a group N by automorphisms. Let I(N , G) be a normal subgroup of N
generated by elements g(n) · n−1, where n ∈ N and g ∈ G. Then the

coinvariant group NG is defined by setting

NG := N/I(N , G).

The coinvariant group functor is right exact.

Let us denote by

πN : N → NG

the quotient map.

Proposition 3.1.1. Let

1 → C i→ B pr→ A→ 1

be an exact sequence of groups. We assume that a group G acts on A, B
and C by automorphisms and that i and pr are G-maps. Then

i) the sequence of coinvariants

CG
iG→ BG

prG→ AG → 1

is exact;
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ii) ker(prG) = pr−1(ker πA)/ker πB;

iii) the natural map CG → ker(prG) is surjective and its kernel is the

group (C ∩ ker πB)/ker πC .

Proof. The point i) is well known. The point ii) is clear. We shall

show the point iii). Let a ∈ pr−1(ker πA). We recall that ker πA is a normal

subgroup of A generated by elements of the form g(α) · α−1 for g ∈ G and

α ∈ A. Hence the assumption that the map pr : B → A is surjective implies

that we can find b ∈ ker πB such that pr(b) = pr(a). Then pr(a · b−1) = 1.

Hence a · b−1 ∈ C and a · b−1 ≡ a mod ker πB. Hence we have shown that

the natural map from CG to ker(prG) is surjective. Obviously its kernel is

the group (C ∩ ker πB)/ker πC . �

We give an example when the sequence of coinvariants is also exact.

Corollary 3.1.2. Let

1 → C i→ B pr→ A→ 1

be an exact sequence of groups. We assume that a group G acts on A, B and

C by automorphisms and that i and pr are G-maps. We assume also that

the group G acts trivially on A and that the set H1(G, C) has one element.

Then the sequence of coinvariants

1 → CG
iG→ BG

prG→ A→ 1

is also exact.

Proof. We have ker πB ⊂ C because G acts trivially on A. The sub-

group ker πB is a normal subgroup of B generated by elements g(b) · b−1 for

g ∈ G and b ∈ B. Hence ker πB is a subgroup of B generated by elements

b1 · g(b) · b−1 · b−1
1 for g ∈ G and b, b1 ∈ B. Observe that b1 · g(b) · b−1 · b−1

1 =

g(b′) · g(b) · b−1 · g(b′)−1 = g(b′ · b) · (b′ · b)−1 · b′ · g(b′)−1 for some b′ ∈ B.
Therefore ker πB is a subgroup of B generated by elements g(b) · b−1 for

g ∈ G and b ∈ B.
Let b ∈ B. Observe that a function f : G→ C given by f(g) := g(b) · b−1

is a cocycle. Hence there is c ∈ C such that f(g) := g(c) · c−1 for any g ∈ G.
This implies that ker πB = ker πC . Now Proposition 3.1.1 implies that the

sequence of coinvariants is exact. �
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4. Descent

4.0. Let us fix a number field K and let a1, . . . , an+1 be K-points of P1
K .

We set

VK := P1
K\{a1, . . . , an+1} .

We assume for simplicity that an+1 =∞. Let f(T ) ∈ K[T ] be a polynomial

and let z1, . . . , zr be all roots of f(T ) in the algebraic closure K̄ of K.

We define L to be a field obtained from K by adjoining all roots of the

polynomial f(T ), i.e.,

L := K(z1, . . . , zr) .

Then L is a Galois extension of K and we set

G := Gal (L/K) .

The Galois group G permutes roots of the polynomial f(T ). If g ∈ G then

g(zi) = zg(i) for some g(i) ∈ {1, . . . , r}.
Let v be a fixed K-point of VK or a tangential point of VK defined over

K. We consider a disjoint union (resp. a product) of torsors of paths

t :=
r∐

j=1

π(VK̄ ; zj , v) (resp. T :=
r∏

j=1

π(VK̄ ; zj , v)) .

We shall study actions of Galois groups GL and GK on the disjoint union

and the product of torsors of paths.

Let S := {z1, . . . , zr}. With the action of GL on the disjoint union

of torsors t or on the product of torsors T there is associated a filtration

{Hk}k∈N of GL defined by

Hk := Hk(VL;S, v) :=
r⋂

j=1

Hk(VL; zj , v)

(see section 1). We recall that each subgroup Hk of GL is a normal sub-

group of GL, H1 = GL(µl∞ ), the group Γ := Gal (L(µl∞)/L) ⊂ Z∗
l acts

on Hk/Hk+1 by conjugation and we have an isomorphism of Γ-modules

Hk/Hk+1 ≈ Z�(k)
mk (see [18] section 3).
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Now we shall try to explore the action of G = Gal (L/K) on the tower of

groups {Hk}k∈N. We shall assume that L∩K(µl∞) = K. Then Gal (L(µl∞)/

K(µl∞)) = G. Observe that we have the following tower of groups

H∞ ⊂ . . . ⊂ Hj+1 ⊂ Hj ⊂ . . . ⊂ H3 ⊂ H2 ⊂ H1

= GL(µl∞ ) ⊂ GK(µl∞ ) � G .

We shall lift an element τ ∈ G to τ̃ ∈ GK(µl∞ ). We shall study the action

of τ̃ by conjugation on the tower {Hk}k∈N.

Lemma 4.0.1. Let us assume that L∩K(µl∞) = K. Let τ ∈ G and let

τ̃ be a lifting of τ to GK(µl∞ ).

i) If σ ∈ Hj then τ̃ · σ · τ̃−1 ∈ Hj.

ii) The class of τ̃ · σ · τ̃−1 modulo Hj+1 does not depend on a choice of

lifting τ̃ of τ .

iii) The group G acts on Hj/Hj+1 by conjugation, i.e., the formula τ(σ ·
Hj+1) := τ̃ · σ · τ̃−1 ·Hj+1 defines an action of G on Hj/Hj+1.

Proof. The element σ belongs to Hj if and only if σ ∈ Gj(VL, v) and

for any path γ from x to any zi we have fγ(σ) ≡ 1 mod Γjπ1(VK̄ ; v).

The lower central series filtration is preserved by any automorphism,

hence τ̃ · σ · τ̃−1 ∈ Gj(VL, v) if σ ∈ Gj(VL, v). Let γ be a path from v

to zi. Then fγ(τ̃ · σ · τ̃−1) = τ̃(fτ̃−1(γ)(σ)) Observe that τ̃−1(γ) is a path

from v to zτ−1(i), hence fτ̃−1(γ)(σ) ≡ 1 mod Γjπ1(VK̄ ; v). This implies that

fγ(τ̃ · σ · τ̃−1) = τ̃(fτ̃−1(γ)(σ)) ≡ 1 mod Γjπ1 (VK̄ ; v). Hence τ̃ · σ · τ̃−1 ∈ Hj .

Let τ ′ = τ̃ · η, where η ∈ H1, be another lifting of τ . Then τ ′ · σ · τ ′−1 =

τ̃ · η · σ · η−1 · τ̃−1 = τ̃ · σ · σj+1 · τ̃−1 ≡ τ̃ · σ · τ̃−1 modHj+1, because

η · σ · η−1 = σmodHj+1 and τ̃ · σj+1 · τ̃−1 ∈ Hj+1 if σj+1 ∈ Hj+1.

Therefore the points i) and ii) are proved. The point iii) follows imme-

diately from i) and ii). �

We recall that
∞⊕
k=1

Hk/Hk+1 ⊗ Q is a Lie algebra over Q�, whose Lie

bracket is induced by the commutator, i.e., if ā ∈ Hk/Hk+1 and b̄ ∈
Hj/Hj+1 then [ā, b̄] := a · b · a−1 · b−1 ∈ Hk+j/Hk+j+1. It follows from

Lemma 4.0.1 that the group G acts on each Q�-vector space Hk/Hk+1⊗Q.
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Hence we can decompose the G-module Hk/Hk+1 ⊗Q into a direct sum of

irreducible representations of G. We get

Hk/Hk+1 ⊗Q ≈ (Hk/Hk+1 ⊗Q)G ⊕
⊕
χi

(Hk/Hk+1 ⊗Q)χi ,

where (Hk/Hk+1 ⊗ Q)G is a fixed part and the sum is over all non-trivial

irreducible representations of G.

Lemma 4.0.2. The fixed part of the action of G,
∞⊕
k=1

(Hk/Hk+1 ⊗Q)G

is a Lie subalgebra of a Lie algebra
∞⊕
k=1

(Hk/Hk+1 ⊗Q).

Proof. Let ā ∈ Hk/Hk+1 and b̄ ∈ Hj/Hj+1 be fixed by the action of

G. Then g(a) = a·c and g(b) = b·d, where c ∈ Hk+1 and d ∈ Hj+1. It follows

immediately from the Witt-Hall identities that g(a) · g(b) · g(a)−1 · g(b)−1 =

a · b · a−1 · b−1. �

4.1. We shall study subfields of an algebraic closure L̄ of the field L asso-

ciated with the filtration {Hk}k∈N of GL. We define subfields of L̄ fixed by

Hk setting

Lk := L̄Hk for k ∈ N

and

L∞ :=

∞⋃
k=1

Lk .

Observe that L∞ = L̄H∞ . We have got a tower of fields

L ⊂ L1 = L(µ�∞) ⊂ L2 ⊂ . . . ⊂ Ln ⊂ Ln+1 ⊂ . . . ⊂ L∞ ⊂ L̄

∪ ∪
K ⊂ K1 = K(µ�∞)

such that

Gal (L̄/Lk) = Hk and Gal (Lk/Lj) = Hj/Hk

for k, j ∈ N ∪ {∞} and k ≥ j.



208 Zdzis2law Wojtkowiak

For any k ∈ N ∪ {∞} we have an exact sequence of Galois groups

1 −→ Gal (Lk/L1) −→ Gal (Lk/K1)
prk−→ Gal (L1/K1) −→ 1 .

‖ ‖
(∗′k) GL(µ�∞ )/Hk G

We assume that � does not divide the order of G. The group Gal (Lk/L1)

is a pro-� group. Therefore the exact sequence (∗′∞) splits, i.e., there is a

homomorphism θ′∞ : G → Gal (L∞/K1) such that pr∞ ◦ θ′∞ = idG. The

composition of θ′∞ with the inclusion Gal (L∞/K1) → Gal (L∞/K) defines

a splitting θ∞ : G→ Gal (L∞/K) of the exact sequence (∗∞), where

1 −→ Gal (Lk/L) −→ Gal (Lk/K)
prk−→ Gal (L/K) −→ 1 .

‖ ‖
(∗k) GL/Hk G

for k ∈ N∪{∞}. Then we define a splitting θk of the sequence (∗k) for k ∈ N

to be a composition of θ∞ with the projection Gal (L∞/K)→ Gal (Lk/K).

Therefore the group G acts on Gal (Lk/L) by g(σ) := θk(g) · σ · θk(g)−1 for

k ∈ N∪{∞}. These actions are compatible in the sense that the projection

Gal (Lk/L)→ Gal (Lj/L) is a G-map for k > j. The group Gal (Lk/K) is a

semi-direct product of Gal (Lk/L) by G, i.e., Gal (Lk/K) = Gal (Lk/L)×̃G
for k ∈ N ∪ {∞}.

We recall that Gal (Lk/L)G is the maximal quotient of Gal (Lk/L) on

which G acts by the identity. Let πk : Gal (Lk/L) → Gal (Lk/L)G be the

natural projection. Then we also have a projection

π′k : Gal (Lk/K) = Gal (Lk/L)×̃G→ Gal (Lk/L)G ×G .

Observe that we have kerπk = kerπ′k. We define subfields L′
k of L̄ by setting

L′
k := Lkerπk

k .

Then the field L′
k is a Galois extension of L and also of K because kerπk

(resp. kerπ′k) is a normal subgroup of Gal (Lk/L) (resp. Gal(Lk/K)).

Therefore we have isomorphisms

(4.1.0) Gal (L′
k/L) = Gal (Lk/L)G and Gal (L′

k/K) = Gal (Lk/L)G ×G .



On the Galois Actions on Torsors of Paths 209

Lemma 4.1.1. Let us assume that � does not divide the order of G. We

have

Gal (L′
k/L1) = Gal (Lk/L1)G.

Proof. The sequence of coinvariants of Galois groups of a tower of

fields

L ⊂ L1 ⊂ Lk

is exact by Corollary 3.1.2. This exact sequence maps into exact sequence

of Galois groups of a tower of fields

L ⊂ L1 ⊂ L′
k

(see Diagram 1).

1 −→ Gal(Lk/L1)G −→ Gal(Lk/L)G −→ Gal(L1/L)G −→ 1

α
� =

� =
�

1 −→ Gal(L′
k/L1) −→ Gal(L′

k/L) −→ Gal(L1/L) −→ 1 .

Diagram 1

Hence it follows that the natural map Gal(Lk/L1)G → Gal(L′
k/L) is an

isomorphism. �

Lemma 4.1.2. Let j < k. The field L′
k is a Galois extension of L′

j and

Gal (L′
k/L

′
j) = pr−1

k,j(ker πj)/ker πk,

where prk,j : Gal (Lk/L)→ Gal (Lj/L) is the natural projection.

Proof. Observe that L′
j ⊂ L′

k because any element of Gal (Lk/L)

which fixes L′
k, fixes also L′

j . The fields L′
k and L′

j are Galois extensions

of L. Hence L′
k is a Galois extension of L′

j . We have an exact sequence of

Galois groups

1 −→ Gal (L′
k/L

′
j) −→ Gal (L′

k/L) −→ Gal (L′
j/L) −→ 1

‖ ‖
Gal (Lk/L)G

(prk,j)G−→ Gal (Lj/L)G .
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It follows from Proposition 3.1.1 that

ker
(
(prk,j)G

)
= pr−1

k,j( ker πj)/ker πk.

Hence we get

Gal (L′
k/L

′
j) ≈ pr−1

k,j( ker πj)/ker πk. �

Let k ∈ N ∪ {∞}. Let Kk be a subfield of L′
k fixed by G, i.e.,

Kk := L′G
k .

Then it follows from (4.1.0) that

(4.1.3) Gal (Kk/K) = Gal (L′
k/L) = Gal (Lk/L)G and Gal (L′

k/Kk) = G .

Definition 4.1.4. We define a filtration {Fk(VL/K ;S, v)}k∈N of GK

by setting

Fk(VL/K ;S, v) := Gal (K̄/Kk) .

To simplify the notation we denote Fk(VL/K ;S, v) by Fk. We set

F∞ := F∞(VL/K ;S, v) :=

∞⋂
k=1

Fk .

Observe that F∞ = Gal (K̄/K∞). Observe that each Fk is a normal sub-

group of GK and that for any j < k, Fj is a normal subgroup of Fk.

We indicate ramification properties of the fields L∞ and K∞.

Proposition 4.1.5. Let S′
j be the set of finite places of L, where the

triple (VL, zj , v) has potentially bad reduction. Let S =
r⋃

j=1
S′
j ∪ {λ ∈ V(L) |

λ divides �}. Then the representation

ψt : Gal(L̄/L)→ Autset


 r∐
j=1

π(VL̄; zj , v)



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is unramified outside S.

Proof. The proposition follows immediately from Proposition 2.3. �

Corollary 4.1.6. The field extension L∞ of L is unramified outside

S.

Corollary 4.1.7. The representation

ψt : Gal(L̄/L)→ Autset


 r∐
j=1

π(VL̄; zj , v)




factors through the epimorphism

Gal(L̄/L)→ π1(SpecOL,S ; Spec L̄)

induced by the inclusion OL,S ⊂ L.

We recall that V(K) is the set of finite places of the field K. Let us set

T := {q ∈ V(K) | ∃ p ∈ S , q = p ∩ OK}.

Proposition 4.1.8. The field extension K∞ of K is unramified out-

side T .

Proof. The extension L′
∞ of L is unramified outside S because L′

∞ ⊂
L∞. In the diagram of fields

L′
∞ ←−−− L� �

K∞ ←−−− K

we have L′
∞ = K∞ L (the composition of fields K∞ and L), K = K∞ ∩ L

and Gal(L/K) = Gal(L′
∞/K∞). Hence if a finite place q of K not belonging

to T ramifies in L, then it ramifies when passing from K∞ to L′
∞ with the

same ramification index. Therefore q does not ramify when passing from K

to K∞. �
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Corollary 4.1.9. There is an epimorphism

π1(SpecOK,T ; Spec K̄)→ Gal(K∞/K) .

Let K(µ�∞)
(�)
T be the maximal pro-� extension of K(µ�∞) unramified

outside places of K(µ�∞) lying over T.

Corollary 4.1.10. The field K∞ is contained in K(µ�∞)
(�)
T , i.e., we

have an epimorphism of Galois groups

Gal(K(µ�∞)
(�)
T /K)→ Gal(K∞/K).

4.2. We shall review briefly some results from [8] and [7] and from [25]

about weighted Tate completion of Galois groups.

Definition 4.2.0. Let F be a number field and let R be a finite set

of finite places of F containing all finite places lying over �. We denote by

M(F )R a maximal pro-� extension of F (µ�∞) unramified outside R, i.e.,

unramified outside finite places of F (µ�∞) lying over any place of R.

In [8] and [7] Hain and Matsumoto defined weighted Tate completion

of Galois groups. We shall study weighted Tate completion of the group

Gal(M(F )R/F ).

Let G(F,R, �) be the weighted Tate completion of the group

Gal(M(F )R/F ). The group G(F,R, �) is an affine proalgebraic group over

Q�, an extension of the multiplicative group over Q� by an affine proalge-

braic prounipotent group U(F,R, �). There is a map

iF,R,� : Gal(M(F )R/F )→ G(F,R, �)

of the group Gal(M(F )R/F ) into G(F,R, �) with a Zariski dense image
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making the following diagram commutative

Gal(M(F )R/F (µ�∞))
iF,R,�−→ U(F,R, �)

� �
Gal(M(F )R/F )

iF,R,�−→ G(F,R, �)

� �
ΓF := Gal(F (µ�∞)/F ) −→ Gm(Q�).

The group G(F,R, �) is equipped with the weight filtration

{W−iG(F,R, �)}i∈N∪{0} such that W−2i+1G(F,R, �) = W−2iG(F,R, �) and

W−2G(F,R, �) = U(F,R, �). The group Gm(Q�) acts by conjugation on

W−2iG(F,R, �)/W−2i−2G(F,R, �) and g ∈ Q∗
� acts as a multiplication by

gi.

Let ϕ : GF → AutM be an �-adic mixed Tate module unramified outside

R. Then it follows from the definition of the field M(F )R that ϕ factors

through Gal(M(F )R/F ), i.e., we have a commutative diagram

GF
ϕ−→ AutM� id

�
Gal(M(F )R/F )

ϕ−→ AutM,

where the map from Gal(M(F )R/F ) to AutM induced by ϕ we denote also

by ϕ. It follows from the universal property of weighted Tate completion

that ϕ : Gal(M(F )R/F ) → AutM factors through G(F,R, �), i.e., we have

a commutative diagram

Gal(M(F )R/F )
ϕ−→ AutM

iF,R,�

� id
�

G(F,R, �)
[ϕ]−→ AutM,

where [ϕ] is the unique morphism making the diagram commutative.
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If t is a coefficient of the representation ϕ then we denote by [t] the

corresponding coefficient of the representation [ϕ].

Now we shall review the results from [25]. There we are studying rela-

tions between weighted Tate completions of Galois groups of two different

fields.

4.2.1. Let L be a finite Galois extension of K and let G := Gal(L/K).

Let T be a finite set of finite places of K containing all places over �. Let

us define a set S of finite places of L by

S := { p ∈ V(L) | ∃ q ∈ T, p ∩ OK = q }.

Observe that the set S is G-invariant.

Let us assume also that

i) � does not divide the order of G;

ii) K(µ�∞) ∩ L = K.

Lemma 4.2.2. (see [25] section 2). Let us assume 4.2.1. Then the

group G acts on Gal(M(L)S/L) by conjugations.

Proof. The assumptions i) and ii) imply that the exact sequence of

Galois groups

1 → Gal(M(L)S/L(µ�∞))→ Gal(M(L)S/K(µ�∞))→ G→ 1

has a section s′ : G → Gal(M(L)S/K(µ�∞)). Composing s′ with the in-

clusion Gal(M(L)S/K(µ�∞)) → Gal(M(L)S/K) we get a section s : G →
Gal(M(L)S/K) of the exact sequence of Galois groups

1→ Gal(M(L)S/L)→ Gal(M(L)S/K)→ G→ 1.

Hence we get an action of G by conjugations (σ → s(g) · σ · s(g)−1) on

Gal(M(L)S/L). �

The construction of weighted Tate completion is functorial hence the

action of G on Gal(M(L)S/L) implies that G acts on G(L, S, �) preserving
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weight filtration. This implies that G acts by Lie algebra automorphisms

on the associated graded Lie algebra

grLieU(L, S, �) :=

∞⊕
i=1

W−2iU(L, S, �)/W−2i−2U(L, S, �).

Let us set

grLieU(L, S, �)i := W−2iU(L, S, �)/W−2i−2U(L, S, �).

Definition 4.2.3. We denote by Di the image of the Lie bracket

[ , ] :
2∧( i−1⊕

k=1

grLieU(L, S, �)k
)
→ grLieU(L, S, �)i

and we call Di the space of decomposable elements in degree i of

grLieU(L, S, �).

Observe that the subspace Di of grLieU(L, S, �)i is G-invariant.

Definition 4.2.4. We denote by Ii the G-invariant complement of Di

in grLieU(L, S, �)i and we call Ii the space of indecomposable elements in

degree i of grLieU(L, S, �). We denote by Wi the fixed part of Ii and by Vi
the G-invariant complement of Wi in Ii, i.e., we have

Wi := IGi and Ii = Wi ⊕ Vi

as G-modules.

If it will be necessary to indicate dependence on the field L then we shall

write Di(L), Ii(L), Wi(L) and Vi(L).

Now we shall define two Lie algebras associated with the action of G on

grLieU(L, S, �).

Definition 4.2.5. We denote by grLieU(L, S, �)[G] a Lie subalgebra

of grLieU(L, S, �) generated by ⊕∞
i=1Wi.

Proposition 4.2.6. The Lie subalgebra grLieU(L, S, �)[G] of

grLieU(L, S, �) is free, freely generated by a base of ⊕∞
i=1Wi.



216 Zdzis2law Wojtkowiak

Proof. The associated graded Lie algebra grLieU(L, S, �) is free,

freely generated by a base of ⊕∞
i=1Ii. Hence it follows from the Sirsov-Witt

theorem (see [10] p. 331) that grLieU(L, S, �)[G] is free, freely generated by

a base of ⊕∞
i=1Wi. �

Definition 4.2.7. Let I(⊕∞
i=1Vi) be a Lie ideal of the Lie algebra

grLieU(L, S, �) generated by ⊕∞
i=1Vi. Let us set

grLieU(L, S, �)[G] := grLieU(L, S, �)/I(⊕∞
i=1Vi).

We denote by

α : grLieU(L, S, �)[G] → grLieU(L, S, �)

the inclusion of the Lie algebra grLieU(L, S, �)[G] into grLieU(L, S, �). Let

pr : grLieU(L, S, �)→ grLieU(L, S, �)[G]

be the projection and let

β := pr ◦ α : grLieU(L, S, �)[G] → grLieU(L, S, �)[G]

be the composition of the inclusion α with the projection pr.

Observe that G acts trivially on grLieU(K,T, �). Hence the natural mor-

phism of associated graded Lie algebras

pG : grLieU(L, S, �)→ grLieU(K,T, �)

induced by the inclusion GL ⊂ GK induces a morphism of Lie algebras

p̄G : grLieU(L, S, �)[G] → grLieU(K,T, �)

which we denote also by pL,SK,T .

Proposition 4.2.8. We have

i) the Lie algebra grLieU(L, S, �)[G] is free, freely generated by a base of

⊕∞
i=1Ii/Vi;

ii) the morphism of Lie algebras

β : grLieU(L, S, �)[G] → grLieU(L, S, �)[G]

is an isomorphism;
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iii) the morphism of Lie algebras

p̄G : grLieU(L, S, �)[G] → grLieU(K,T, �)

is an isomorphism.

Proof. Let us choose a base of ⊕∞
i=1Wi and a base of ⊕∞

i=1Vi. Let us

write a Hall base of a vector space grLieU(L, S, �) in terms of these two

chosen bases. Then it is clear that we have a direct sum decomposition

grLieU(L, S, �) = grLieU(L, S, �)[G] ⊕ I(⊕∞
i=1Vi).

This implies immediately points i) and ii).

The inclusion of Galois groups GL ⊂ GK induces a map of cohomology

groups

H1(GK ; Q�(i))→ H1(GL; Q�(i))

for i > 1. It follows from the Lyndon spectral sequence of the exact sequence

of Galois groups 1→ GL → GK → G→ 1 that

H1(GK ; Q�(i)) + H1(GL; Q�(i))
G

for i > 1. Hence we get that

I(K)i + (I(L)i)G = I(L)i/V (L)i

for i > 1.

For i = 1 we use the Lyndon spectral sequence of the exact sequence of

Galois groups

1→ π1(SpecOL,S ; SpecL̄)→ π1(SpecOK,T ; SpecL̄)→ G→ 1.

We can also observe that the isomorphism I(K)1 + (I(L)1)G follows from

the equality

O∗
K,T ⊗Q + (O∗

L,S ⊗Q)G.

This finishes the proof of the proposition. �

Definition 4.2.9. Let L =
⊕∞

i=1 Li be a graded Lie algebra. We

define a completion c(L) of L setting

c(L) := lim←−m(L/⊕∞
i=m Li).
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The completed Lie algebra c(L) equipped with a group law given by the

Baker-Campbell-Hausdorff formula we denote by g(L).

Proposition 4.2.10. We have

i) c(grLieU(L, S, �)) = LieU(L, S, �);

ii) the isomorphism β induces an isomorphism of Lie algebras

c(β) : c(grLieU(L, S, �)[G])→ c(grLieU(L, S, �)[G]) ;

iii) the isomorphism p̄G induces an isomorphism of Lie algebras

c(p̄G) : c(grLieU(L, S, �)[G])→ c(grLieU(K,T, �)) = LieU(K,T, �).

Proof. The point i) follows from the fact that the Lie algebra

grLieU(L, S, �) is free. The points ii) and iii) are obvious. �

Definition 4.2.11. Let us set

U(L, S, �)[G] := g(grLieU(L, S, �)[G])

and

U(L, S, �)[G] := g(grLieU(L, S, �)[G]).

Proposition 4.2.12. Let us assume 4.2.1. Then we have:

i) there is a natural isomorphism of affine proalgebraic prounipotent

groups

aL,S : g(grLieU(L, S, �)) + U(L, S, �);

ii) there is a natural isomorphism of affine proalgebraic prounipotent

groups

U(L, S, �)[G] + (g(grLieU(L, S, �)))G;

iii) the isomorphism p̄G : grLieU(L, S, �)[G] → grLieU(K,T, �) induces

an isomorphism of affine proalgebraic prounipotent groups

g(p̄G) : U(L, S, �)[G] + g(grLieU(K,T, �)) ;
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iv) the isomorphism β : grLieU(L, S, �)[G] → grLieU(L, S, �)[G] induces

an isomorphism of affine proalgebraic prounipotent groups

g(β) : U(L, S, �)[G] → U(L, S, �)[G].

Proof. We shall identify the Lie algebras c(grLieU(L, S, �)) and

LieU(L, S, �). Hence we have the identity isomorphism between the group

g(grLieU(L, S, �)) and LieU(L, S, �) equipped with a group law given by the

Baker-Campbell-Hausdorff formula. On the other side there is a canonical

isomorphism between the Lie algebra LieU(L, S, �) equipped with a group

law given by Baker-Campbell-Hausdorff formula and the affine proalgebraic

prounipotent group U(L, S, �). The isomorphism aL,S is the composition of

these two isomorphisms.

Closed ideals of the Lie algebra c(grLieU(L, S, �)) are exactly closed

normal subgroups of the Lie group g(grLieU(L, S, �)). Observe that the

closed Lie ideal of c(grLieU(L, S, �)) generated by elements gv−v is exactly

the closed normal subgroup of g(grLieU(L, S, �)) generated by elements

(gv) · v−1. This implies the point ii) of the proposition.

The points iii) and iv) are obvious. �

Definition 4.2.13. We set

sL,SK,T := g(α) ◦ g(β)−1 ◦ g(p̄G)−1.

Lemma 4.2.14. The morphism

sL,SK,T : g(grLieU(K,T, �))→ g(grLieU(L, S, �))

is a section of the natural projection

g(pG) : g(grLieU(L, S, �))→ g(grLieU(K,T, �)).

Proof. Observe that g(pG) ◦ sL,SK,T = g(pG) ◦ g(α) ◦ g(β)−1 ◦ g(p̄G)−1 =

g(p̄G) ◦ g(pr) ◦ g(α) ◦ g(β)−1 ◦ g(p̄G)−1 = g(p̄G) ◦ g(β) ◦ g(β)−1 ◦ g(p̄G)−1 =

Idg(grLieU(K,T,�)). �
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Definition 4.2.15. Let us set

SL,SK,T := aL,S ◦ sL,SK,T ◦ a−1
K,T .

We need to understand the morphism induced by SL,SK,T on associated

graded Lie algebras.

Lemma 4.2.16. We have

i) grLie(aL,S) = IdgrLieU(L,S,�);

ii) grLie(g(f)) = f .

Definition 4.2.17. Let ρ : GL → AutM be an �-adic mixed Tate

module unramified outside S. We define a representation θ(ρ) of GK(µ�∞ )

by setting

θ(ρ) := [ρ] ◦ SL,SK,T ◦ iK,T,�
(see Diagram 2).

ρ : GL(µ�∞ )

iL,S,�−→ U(L, S, �)
[ρ]−→ AutM

aL,S

�
g(grLieU(L, S, �))

sL,SK,T

�
g(grLieU(K,T, �))

a−1
K,T

�
GK(µ�∞ )

iK,T,�−→ U(K,T, �)

Diagram 2.

We would like to express coefficients of the representation θ(ρ) by the

coefficients of ρ.
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Proposition 4.2.18. Let ρ : GL → AutM be an �-adic mixed Tate

module unramified outside S which is an extension of Q�(0) by Q�(n), i.e.,

ρ(σ) =




1 t(σ)

0 χn(σ)




for some t : GL → Q�. Then

[θ(ρ)](τ) =




1 1
|G|
∑

g∈G([t] ◦ g)(τ̃)

0 1




where τ̃ ∈ U(L, S, �) is a lifting of τ ∈ U(K,T, �).

Proof. We recall that [t] is a homomorphism from U(L, S, �) to Q�

iduced by t : GL → Q�. Observe that [t] and 1
|G|
∑

g∈G([t] ◦ g) restricted to

U(L, S, �)[G] coincide. The homomorphism 1
|G|
∑

g∈G([t] ◦ g) : U(L, S, �) →
Q� is G-invariant and, when viewed as a homomorphism from

grLieU(L, S, �), it vanishes on decomposable elements. Hence it induces a

homomorphism from U(L, S, �)[G] to Q�, i.e., a homomorphism from

U(K,T, �) to Q�. �

In [25] we have shown that Gal(M(L)S/L)G + Gal(M(K)T /K). Hence

we get the following corollary.

Corollary 4.2.19. Let ρ : GL → AutM be an �-adic mixed Tate

module unramified outside S, which is an extension of Q�(0) by Q�(n), i.e.,

ρ(σ) =




1 t(σ)

0 χn(σ)




for some t : GL → Q�. Then

θ(ρ)(τ) =




1 1
|G|
∑

g∈G(t ◦ g)(τ̃)

0 1



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where τ ∈ GK(µ�∞ ) and τ̃ ∈ Gal(M(L)S/L(µ�∞)) is a lifting to

Gal(M(L)S/L(µ�∞)) of the image of τ in Gal(M(K)T /K(µ�∞)).

Proof. The corollary follows immediately from [25] Corollary 2.5. �

Proposition 4.2.20. Let ρ : GL → AutM be an �-adic mixed Tate

module unramified outside S. Let α ∈ (End(M))∗ be such that α ◦ grLie[ρ]
vanishes on decomposable elements of grLieU(L, S, �). Then α ◦
grLie[θ(ρ)](τ) = 1

|G|
∑

g∈G(α ◦ grLie[ρ] ◦ g)(τ̃), where τ̃ ∈ grLieU(L, S, �)

is a lifting of τ ∈ grLieU(K,T, �) to grLieU(L, S, �).

Proof. The linear forms α ◦ grLie[ρ] and 1
|G|
∑

g∈G(α ◦ grLie[ρ] ◦ g)
coincide when restricted to grLieU(L, S, �)[G]. The homomorphism
1
|G|
∑

g∈G(α ◦ grLie[ρ] ◦ g) : grLieU(L, S, �)→ Q� is G-invariant and it van-

ishes on decomposable elements. Hence it induces a homomorphism from

grLieU(L, S, �)[G], i.e., from grLieU(K,T, �) to Q�. This homomorphism is

of course α ◦ grLie[θ(ρ)]. �

4.3. Let us choose a sequence of geometric generators x1, . . . , xn, xn+1

of π1(VK̄ ; v) associated with a family Γ = {γi}n+1
i=1 of paths from v to (a

tangent vector defined over K at) each ai. Let V = {X1, . . . , Xn}. As usual

we define a continuous multiplicative embedding

k : π1(VK̄ ; v)→ Q�{{V}}

setting k(xi) = eXi for i = 1, . . . , n.

We fix paths pj from v to zj for j = 1, . . . , r. The action of GL on the

disjoint union of torsors t =
r∐

j=1
π(VK̄ ; zj , v) induces a representation

ψt : GL →


 r⊕

j=1

LexpL(V)


 ×̃Aut∗ Q�{{V}} .

We assume that the representation ψt is unramified outside the finite

set S of finite places of L. We assume that S contains all finite places lying

over (�) and that S is G-invariant.

We assume also that
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i) � does not divide the order of G;

ii) K(µ�∞) ∩ L = K.

Let us set

T := {q ∈ V(K) | ∃ p ∈ S, q = p ∩ OK}.

We recall from section 4.2 that the representation

θ(ψt) : GK(µ�∞ ) → ⊕r
j=1GL(Q�{{V}})

is defined by the formula

θ(ψt) := [ψt] ◦ SL,SK,T ◦ iK,T,�

(see Definition 4.2.17). Further we shall also denote the representation θ(ψt)

by θ
L/K
t .

The representation θ
L/K
t respects the filtration {⊕r

j=1I(V)m}m∈N∪{0}

of ⊕r
j=1Q{{V}}. We define a filtration {Fm(θ

L/K
t )}m∈N∪{0} of GK(µ�∞ ) by

setting

Fm(θ
L/K
t ) := {σ ∈ GK(µ�∞ ) | θL/Kt (σ)

induces the identity of ⊕r
j=1 (I(V)/I(V)m+1)}.

We state below elementary properties of the representation θ
L/K
t .

Proposition 4.3.0. The representation θ
L/K
t has the following prop-

erties:

i) it is compatible with the filtration {Fm(θ
L/K
t )}m∈N∪{0} of GK(µ�∞ ) and

the filtration induced by the powers of the augmentation ideal I(V) on

⊕r
j=1GL(Q�{{V}});

ii) it is unramified outside the set T of finite places of K;

iii) any σ ∈ GK(µ�∞ ) acts on ⊕r
j=1(I(V)m/I(V)m+1) by the identity.
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The main object of our study is the representation induced by θ
L/K
t on

the associated graded Lie algebras, i.e., the representation

grLieθ
L/K
t : ⊕∞

i=1Fi(θ
L/K
t )/Fi+1(θ

L/K
t )⊗Q →

(
⊕r
j=1 LLie(V)

)
×̃Der∗Lie(V).

Let us set

Θ
Gal(L/K)
t := grLieθ

L/K
t

To calculate the image of the Lie algebra representation Θ
Gal(L/K)
t first

we need to calculate coordinates of the Lie algebra homomorphism Ψt. We

recall that

Ψt := grLieψt : ⊕∞
k=1(Hk/Hk+1)⊗Q →

(
⊕r
j=1 LLie(V)

)
×̃Der∗Lie(V).

and ΨG
t is the restriction of Ψt to ⊕∞

k=1(Hk/Hk+1)⊗QG.

We recall that the representation ψt induces

[ψt] : U(L, S, �)→
(
⊕r
j=1 LexpL(V)

)
×̃Aut∗(Q�{{V}}).

We set

[Ψt] := grLie[ψt]

and we denote by [Ψt]
[G] the morphism [Ψt] restricted to grLieU(L, S, �)[G].

Let σ ∈ Hk/Hk+1. We recall that the coordinates of Ψt(σ) are

((log Λpj (σ) mod Γk+1 L(V))j=1,... ,r;

(log Λγi(σ) mod 〈Xi〉+ Γk+1 L(V))i=1,... ,n) .

Definition 4.3.1. We denote by J a closed Lie ideal of L(V) gener-

ated by Lie bracket which contain at least three different Xi’s and by Lie

brackets containing two different Xi’s at least twice.

In the next proposition we shall calculate coefficients of log Λpj (σ) mod-

ulo the Lie ideal J .

Proposition 4.3.2. Let σ ∈ Hk. If k > 2 then

log Λpj (σ) ≡
∑
α �=β

(
�k

(
zj − aα
aβ − aα

)
(σ)− �k

(
v − aα
aβ − aα

)
(σ)

)

[. . . [Xβ, Xα], Xk−2
α ] mod J + Γk+1L(V) .
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If k = 2 then

log Λpj (σ) ≡
∑
α<β

(
�k

(
zj − aα
aβ − aα

)
(σ)− �k

(
v − aα
aβ − aα

)
(σ)

)

[Xβ, Xα] mod Γ3L(V) .

If k = 1 then

log Λpj (σ) ≡
n∑

α=1

�

(
zj − aα
v − aα

)
(σ)Xα mod Γ2L(V) .

Proof. Let f : V → P1
K\{0, 1,∞} be given by f(z) = z−aα

aβ−aα . It

follows from [19] Proposition 11.0.15 that

log Λf(pj)(σ) ≡
(
�k

(
zj − aα
aβ − aα

)
(σ)− �k

(
v − aα
aβ − aα

)
(σ)

)
[Y,Xk−1]

modJ + Γk+1L(X,Y ) .

Observe that f(aα) = 0, f(aβ) = 1 and f(∞) = ∞. This implies that

f∗(Xα) = X, f∗(Xβ) = Y and f∗(Xi) = 0 for i �= α, β. Now the proposition

follows from the equality f∗ log Λpj (σ) = log Λf(pj)(σ). �

Let B be a Hall base of a free Lie algebra Lie(V) and let Bk be elements

of degree k in B. Let p be a path from v to a K-point z of V . Let σ ∈
Hk(VK ; z, v). We recall that in [18] section 5 we defined functions Le(z, v)
from Hk(VK ; z, v) to Q� by the following congruence

log Λp(σ) ≡
∑
e∈Bk

Le(z, v) (σ) · e mod Γk+1L(V) .

Proposition 4.3.3. Let σ ∈ Hk and let τ̃ ∈ GK(µ�∞ ) be a lifting of

τ ∈ G = Gal(L(µ�∞)/K(µ�∞)). Then for any e ∈ Bk we have

Le(zj , v) (τ̃ · σ · τ̃−1) = Le(zτ−1(j), v) (σ) .
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Proof. After calculations we get

fpj (τ̃ · σ · τ̃−1) = τ̃(fτ̃−1(pj)(σ)) ,

where τ̃−1(pj) is a path from v to zτ̃−1(j). Hence

log Λpj (τ̃ · σ · τ̃−1) = τ̃(log Λτ̃−1(pj)(σ)) .

The assumption σ ∈ Hk implies that

τ̃(log Λτ̃−1(pj)(σ)) ≡ log Λτ̃−1(pj)(σ) mod Γk+1L(V) .

Therefore we get the congruence

log Λpj (τ̃ · σ · τ̃−1) ≡ log Λτ̃−1(pj)(σ) mod Γk+1L(V)

which implies the lemma. �

Corollary 4.3.4. Let σ ∈ Hk and let τ̃ ∈ GK(µ�∞ ) be a lifting of

τ ∈ G. Then

�k

(
zj − aα
aβ − aα

)
(τ̃ · σ · τ̃−1) = �k

(
zτ−1(j) − aα

aβ − aα

)
(σ)

for k > 1 and

�

(
zj − aα
v − aα

)
(τ̃ · σ · τ̃−1) = �

(
zτ−1(j) − aα

v − aα

)
(σ)

for k = 1.

4.4. It is well known that

dimQ�
H1(SpecOK,T ; Q�(i)) = r1 + r2 for i > 1 and odd;

dimQ�
H1(SpecOK,T ; Q�(i)) = r2 for i > 0 and even;

and

dimQ�
H1(SpecOK,T ; Q�(1)) = dimQ(O∗

K,T ⊗Q) .

Generators of H1(SpecOK,T ; Q�(1)) are given by Kummer classes of gen-

erators of the group O∗
K,T . Generators of H1(SpecOK,T ; Q�(i)) for i > 1

are given by Soulé classes (see [15]). For K = Q(µn) Soulé classes can be
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expressed by �-adic polylogarithms (see [21]). In general case one can hope

that Soulé classes can be expressed by linear combinations of �-adic polylog-

arithms (surjectivity in Zagier conjecture for polylogarithms) or by linear

combination of �-adic iterated integrals or at least by Galois invariant linear

combination of �-adic polylogarithms or �-adic iterated integrals.

In most applications L = Q(µn) and S is the set of finite places of Q(µn)

which divide the product n · �. Then we have

dimQ�
H1(SpecOQ(µn),S ; Q�(i)) =

1

2
ϕ(n)

(ϕ(n) is the order of Z/n∗) for i > 1 and

dimQ�
H1(SpecOQ(µn),S ; Q�(1)) = dimQ (O∗

Q(µn),S ⊗Q).

Conjecture 4.4.1. Let i be greater than 1. The �-adic polylogarithms

�i(ξ
k
n) for 0 < k < n

2 and (k, n) = 1 are linearly independent over Q� and

generate H1(GQ(µn); Q�(i)) = H1(SpecOQ(µn),S ; Q�(i)).

5. Torsors of Paths on P1
Q̄
\{0, 1,∞}

5.0. In this section we shall study torsors of paths on

V := P1
Q\{0, 1,∞} .

First we fix a notation. We denote by Q�{{X,Y }} a Q�-algebra of non-

commutative formal power series on non-commuting variables X and Y .

The Lie algebra Lie (X,Y ) is a free Lie algebra over Q� on X and Y and

L(X,Y ) is a completion of Lie (X,Y ) with respect to lower central series.

If R is a commutative ring we denote by Lie (X,Y ;R) a free Lie algebra

over R on X and Y .

We assume that Q̄ ⊂ C. Let ξq = e
2πi
q be a primitive q-th root of

1. We shall study Galois actions on a disjoint union and on a product of

π1(VQ̄;
→
01)-torsors

t :=
∐

(α,q)=1
0<α<q

π(VQ̄; ξαq ,
→
01) and T :=

∏
(α,q)=1
0<α<q

π(VQ̄; ξαq ,
→
01)) .
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Let us set

Hi :=
⋂

(α,q)=1
0<α<q

Hi(VQ(µq); ξ
α
q ,

→
01) .

The action of GQ(µq) on t and T yields Lie algebra representations of asso-

ciated graded Lie algebras

Ψt :
∞⊕
k=1

(Hk/Hk+1)⊗Q → (
⊕

(α,q)=1
0<α<q

Lie(X,Y ))×̃Der∗ Lie(X,Y )

and

ΨT :

∞⊕
k=1

(Hk/Hk+1)⊗Q →

(
⊕

(α,q)=1
0<α<q

Id⊗ . . .⊗ Id⊗ LLie(X,Y ) ⊗ . . .⊗ Id)×̃Der∗ Lie(X,Y ) ,

where

Der∗ Lie(X,Y ) := {D ∈ Der Lie(X,Y ) | ∃A(X,Y ) ∈ Lie(X,Y ), D(X) = 0

and D(Y ) = [Y,A(X,Y )]} .
A derivation D ∈ Der∗ Lie(X,Y ) such that D(Y ) = [Y,A] we denote by DA.

The vector space Lie(X,Y )/〈Y 〉 we equip with a Lie bracket { } given by

{A,B} = [A,B] +DA(B)−DB(A).

The obtained Lie algebra we denote by (Lie(X,Y )/〈Y 〉, { }). The map

Der∗ Lie(X,Y ) −→ (Lie(X,Y )/〈Y 〉, { })

sending DA to A is an isomorphism of Lie algebras.

Hence we get a Lie algebra representation

Ψt :
∞⊕
k=1

(Hk/Hk+1)⊗Q → (
⊕

(α,q)=1
0<α<q

Lie(X,Y ))×̃(Lie(X,Y )/〈Y 〉, { }) .

We denote by Ir the vector subspace of Lie(X,Y ) generated by Lie brackets

in X and Y which contain at least r Y ’s.
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Let us set

Ir := (
⊕

(α,q)=1
0<α<q

Ir)⊕ Ir .

Ir is a vector subspace of (
⊕

(α,q)=1
0<α<q

Lie(X,Y ))×̃(Lie(X,Y )/〈Y 〉, { }) and one

can easily verify that Ir is a Lie ideal of the Lie algebra (
⊕

(α,q)=1
0<α<q

Lie(X,Y ))×̃

(Lie(X,Y )/〈Y 〉, { }).
To simplify the notation we denote the Lie algebra (

⊕
(α,q)=1
0<α<q

Lie(X,Y ))×̃

(Lie(X,Y )/〈Y 〉, { }) by L.

Let S be a set of finite places of Q(µq) which divide q or �.

Lemma 5.0.1. We have:

i) Let σ ∈ Hk. The coordinates of Ψt(σ) calculated modulo I2 +

Γk+1L(X,Y ) on each component are

(
(�k(ξ

α
q )(σ) [Y,Xk−1]) (α,q)=1

0<α<q

; �k(1)(σ) [Y,Xk−1]
)

for k > 1 and (
(�1(ξ

α
q )(σ)Y ) (α,q)=1

0<α<q

; 0
)

for k = 1.

ii) Let σ ∈ grLieU(L, S, �)k. The coordinates of grLie[ψt](σ) calculated

modulo I2 + Γk+1L(X,Y ) on each component are

(
([�k(ξ

α
q )](σ) [Y,Xk−1]) (α,q)=1

0<α<q

; [�k(1)](σ) [Y,Xk−1]
)

for k > 1 and (
([�1(ξ

α
q )](σ)Y ) (α,q)=1

0<α<q

; 0
)

for k = 1.

Proof. The first part of the lemma follows from Lemma 1.1.0 and

from Definition 3.0.1 of �-adic polylogarithms.
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The universal property of the weighted Tate completion and the fact

that all morphisms are strict imply that we have a surjective morphism of

Lie algebras

grLieU(L, S, �)→
∞⊕
k=1

(Hk/Hk+1)⊗Q.

Hence it follows immediately the second part of the lemma. �

Further we shall apply formalism developed in section 4 in order to

get representations of Galois groups of Q and other fields K intermediary

between Q and Q(µq) with prescribed ramifications. In some cases we shall

be able to show that the image of the morphism Θ
Gal(Q(µq)/K)
t is a free Lie

algebra on a maximal possible, depending on K and ramifications, number

of generators.

We finish this section with some technical definitions and results. First

we recall that

Gal(Q(µq)/Q) = Z/q∗.

The group Z/q∗ = Gal(Q(µq)/Q) acts by conjugation on the abelianization

of the Galois group GQ(µq)(µ�∞ ). Hence it acts also on

HomZ�

(
(GQ(µq)(µ�∞ ))

ab; Q�(m)
)
.

Lemma 5.0.2. Let τ ∈ Z/q∗ and let τ̃ be a lifting of τ to GQ(µ�∞ ). Then

for any σ ∈ GQ(µq)(µ�∞ ) we have

�m(ξαq )(τ̃ · σ · τ̃−1) = �m(ξτ
−1·α

q )(σ).

Proof. Let γ be a path from
→
01 to ξαq and let σ′ := τ̃ · σ · τ̃−1. Then

σ′ · γ · σ′−1 transforms

f(z) =
�n−1∏
i=0

(1− ξi�n z
1/�n)

im−1

�n

into ξ
�m(ξαq )(σ′)
�n · f(z).

On the other side applying terms of the product τ̃ ·σ · τ̃−1 ·γ · τ̃ ·σ−1 · τ̃−1

one after another to f(z), we get that the product transforms f(z) into
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ξ
�m(ξτ

−1·α
q )(σ)

�n · f(z). Hence we get that

�m(ξαq )(τ̃ · σ · τ̃−1) = �m(ξτ
−1·α

q )(σ).

Observe that �(ξαq )(σ) = 0 for σ ∈ GQ(µq)(µ�∞ ). Hence the lemma follows

from Proposition 3.0.4. �

For each m we define a Z/q∗-module Vm(q) in the following way. Let

m > 1. In the group ring Q�[Z/q] we consider a Q�-vector subspace Rm(q)

generated by elements

[α] + (−1)m[−α] for [α] ∈ Z/q

and

rm−1

(
r−1∑
i=0

[ip]

)
− [0] , pm−1


p−1∑

j=0

[k + jr]


− [pk] if q = p · r.

(The class of α in Z/q we denote by [α].)

If m = 1 we denote by R1(q) a Q�-vector subspace of Q�[Z/q] generated

by elements

[0] and [α]− [−α] for [α] ∈ Z/q

and (
r−1∑
i=0

[j + ip]

)
− [rj] with j �≡ 0 mod p if q = p · r.

We set

Vm(q) := Q�[Z/q]/Rm(q) .

The group Z/q∗ acts on Q�[Z/q] permuting elements of Z/q. Observe that

the vector subspace Rm(q) of Q�[Z/q] is preserved by the action of Z/q∗,
hence the quotient space Vm(q) is also a Z/q∗-module.

Lemma 5.0.3. There is a Z/q∗-equivariant map

sqm : Vm(q)→ H1(GQ(µq); Q�(m))

for m > 1 and

sq1 : V1(q)→ H1(SpecOQ(µq),S ; Q�(1))
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for m = 1 such that sqm([α]) = �m(ξαq ).

Proof. It is clear that the formula s̄qm([α]) := �m(ξαq ) defines a Q�-

linear map s̄qm from Vm(q) to HomZ�

(
(GQ(µq)(µ�∞ ))

ab; Q�(m)
)

for m > 1

and from V1(q) to HomZ�

(
π1(SpecOQ(µq)(µ�∞ ),S ; SpecQ̄)ab; Q�(1)

)
for m = 1

because generators of Rm(q) correspond to the distribution and inversion

relations of �-adic polylogarithms.

Observe that we have Z/q∗-isomorphisms

tm : HomZ�

(
(GQ(µq)(µ�∞ ))

ab; Q�(m)
)
−→ H1(GQ(µq); Q�(m))

for m > 1 and

t1 : HomZ�

(
π1(SpecOQ(µq)(µ�∞ ),S ; SpecQ̄)ab; Q�(1)

)
→ H1(SpecOQ(µq),S ; Q(1))

for m = 1.

We set sqm := tm ◦ s̄qm. It follows from Lemma 5.0.2 that the map s̄qm is

Z/q∗-equivariant hence sqm is also Z/q∗-equivariant. �

Lemma 5.0.4. Let us assume that Conjecture 4.4.1 holds. Then we

have

i) the Z/q∗-equivariant map

sqm : Vm(q)→ H1(GQ(µq); Q�(m))

is an isomorphism for m > 1;

ii) the Z/q∗-equivariant map

sq1 : V1(q)→ H1(SpecOQ(µq),S ; Q�(1))

is injective.

Proof. The result of Soulé implies that dimH1(GQ(µq); Q�(m)) =
1
2ϕ(q) for m > 1 (see [15]). It follows from [12] that dimVm(q) = 1

2ϕ(q)

for m > 1. We have assumed that Conjecture 4.4.1 holds. This implies that

the map sqm is an isomorphism for m > 1.
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Now we assume that m = 1. Let us denote by CQ(µq) a subgroup of

Q(µq)
∗ generated by elements of the form 1− ξαq and by µ2q. It follows from

the Bass theorem (see [17] Theorem 8.9) that the only relations between

these elements are

−ξ−αq (1− ξαq ) = 1− ξ−αq

and
r−1∏
i=0

(1− ξj+ipq ) = 1− ξrjq if q = rp.

These relations correspond of course to generators of R1(q).

On the other side the homomorphism

O∗
Q(µq),S

/µ2q −→ H1(SpecOQ(µq),S ; Q�(1))

which to a unite u associates a corresponding Kummer character is injective.

This implies that the map sq1 is injective. �

Lemma 5.0.5. Let us assume that Conjecture 4.4.1 holds. Let G be a

subgroup of Gal(Q(µq)/Q) = Z/q∗. Then the map sqm induces

i) an isomorphism

(sqm)G : Vm(q)G → H1(GQ(µq); Q�(m))G

for m > 1;

ii) an injective map

(sq1)
G : V1(q)

G → H1(SpecOQ(µq),S ; Q�(1))G

for m = 1.

Proof. The lemma follows immediately from Lemma 5.0.4. �

5.1. Let q be a prime number. In this section we shall construct geomet-

rically �-adic realization of the associated graded Lie algebra of the fun-

damental group of the tannakien category of the mixed Tate motives over

Spec Z
[

1
q

]
. We recall that conjecturally this Lie algebra is free, freely gen-

erated by elements in degree 1, 3, 5, . . . , 2n + 1, . . . . Generator in degree 1
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corresponds to log q and generator in degree 2n+1 corresponds to ζ(2n+1)

for n > 0.

We assume that q is a prime number different from �. We assume also

that � does not divide q − 1. Then

Q(µq) ∩Q(µ�∞) = Q

and � does not divide the order of the group

Z/q∗ = Gal(Q(µq)/Q) .

We consider actions of Galois groups on

t :=
∐

0<α<q

π(VQ̄; ξαq ,
→
01) and T :=

∏
0<α<q

π(VQ̄; ξαq ,
→
01) .

We shall apply formalism from section 4 for

K = Q and L = Q(µq).

We recall that the Galois group Z/q∗ = Gal(Q(µq)/Q) acts on (Hk/Hk+1)⊗
Q and that ((Hk/Hk+1)⊗Q)Z/q

∗
is a fixed point subspace.

Observe that the triple (V, ξαq ,
→
01) has good reduction at every finite

place of Q(µq) not dividing q. Let

S := {p ∈ V(Q(µq)) | p divides q or �}.

Then it follows from Proposition 2.3 that the representation ψt is unramified

outside S.

Lemma 5.1.1. We have:

i) Let σ ∈ ((Hk/Hk+1)⊗Q)Z/q
∗
. The coordinates of Ψ

Z/q∗

t (σ) calculated

modulo I2 + Γk+1L(X,Y ) on each component are((
1− qk−1

(q − 1)qk−1
�k(1)(σ) [Y,Xk−1]

)
0<α<q

; �k(1)(σ) [Y,Xk−1]

)

for k > 1 and odd;

( ( 0 )0<α<q ; 0 )
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for k > 1 and even;((
1

q − 1
�(q)(σ)Y

)
0<α<q

; 0

)

for k = 1.

ii) Let σ ∈ (grLieU(L, S, �)[Z/q
∗])k. The coordinates of [Ψt]

[Z/q∗](σ) cal-

culated modulo I2 + Γk+1L(X,Y ) on each component are given by the

same formulas as in the point i) if we replace �k(1) and �(q) by [�k(1)]

and [�(q)] respectively.

Proof. Let σ ∈ ((Hk/Hk+1) ⊗ Q)Z/q
∗

and let 0 < α < q. It follows

from Lemma 5.0.1 that the α coordinate of Ψ
Z/q∗

t (σ) is �k(ξ
α
q )(σ)[Y,Xk−1]

modulo I2 + Γk+1L(X,Y ). It follows from Corollary 4.3.4 or Lemma 5.0.2

that �k(ξ
α
q )(τ̃ · σ · τ̃−1) = �k(ξ

τ−1·α
q )(σ), where τ̃ is a lifting of τ ∈ Z/q∗ to

GQ(µ�∞ ). Hence we get that �k(ξ
α
q )(σ) = �k(ξq)(σ). The distribution relation

for �-adic polylogarithms (see [19] Corollaries 11.2.3 or [21] Theorems 2.1)

and the vanishing of �2n(1) (see [19] Corollary 11.2.11) imply that for any

σ ∈ ((Hk/Hk+1)⊗Q)Z/q
∗

and any 0 < α < q we have

�k(ξ
α
q )(σ) =

1− qk−1

(q − 1)qk−1
�k(1)(σ) for k > 1 and odd,

�k(ξ
α
q )(σ) = 0 for k > 1 and even,

�(1− ξαq )(σ) =
1

q − 1
�(q)(σ) for k = 1.

This implies the first part of the lemma.

The functions [�k(ξ
α
q )] ( for k > 1 and 0 � α < q) and [�1(ξ

α
q )] ( for 0 <

α < q) from grLieU(L, S, �) to Q� vanish on the subspace of decomposable

elements Dk of grLieU(L, S, �)k. The restriction of [�k(ξ
α
q )] ( for 0 < α < q)

to Wk := I
Z/q∗

k is equal 1
q−1

∑
i∈Z/q∗ [�k(ξ

iα
q )] = 1

q−1

∑q−1
i=1 [�k(ξ

i
q)]. It follows

from the inversion relation for �-adic polylogarithms that the last expresion

vanishes for k even.

For k > 1 and odd it follows from the distribution relations that
1

q−1

∑q−1
i=1 [�k(ξ

i
q)] = 1−qk−1

(1−q)qk−1 [�k(1)].
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Finally it follows from the equality
∏q−1

i=1 (1 − ξiq) = q that
1

q−1

∑q−1
i=1 [�1(ξ

i
q)] = 1

q−1 [�1(q)].

The universal property of the weighted Tate completion implies that the

morphism grLie[ψt] factors through a surjective morphism of Lie algebras

grLieU(L, S, �)→ ⊕∞
k=1(Hk/Hk+1)⊗Q.

Hence the morphism [Ψt]
[Z/q∗] factors through

grLieU(L, S, �)[Z/q
∗] → ⊕∞

k=1

(
(Hk/Hk+1)⊗Q

)Z/q∗
.

This implies the second part of the lemma. �

Proposition 5.1.2. In the image of the morphism of Lie algebras

[Ψt]
[Z/q∗] : grLieU(L, S, �)[Z/q

∗]

→


 ⊕

0<α<q

Lie(X,Y )


 ×̃ (Lie(X,Y )/〈Y 〉, { })

there are elements D1, D3, D5, . . . , D2n+1, . . . homogeneous of degree 1, 3,

5, . . . , 2n + 1, . . . respectively whose coordinates calculated modulo I2 on

each component are

(
((1− q2n) [Y,X2n])0<α<q; (q − 1) q2n[Y,X2n]

)
for k = 2n+ 1 and greater than 1 and

(
(Y )0<α<q; 0

)
for k = 1.

Proof. The �-adic polylogarithm �2n+1(1) = �2n+1(
→
10) is a rational

non-zero multiple of the Soulé class – the generator of H1(GQ; Q�(2n+ 1)).

Hence �2n+1(1) restricted to H1(GL; Q�(2n+1)) is also non-zero. Therefore

[�2n+1(1)] is a non-zero homomorphism from grLieU(Q, {�, q}, �)2n+1 to Q�

and hence also from grLieU(L, S, �)2n+1 to Q�. It follows from Proposition

4.2.8 ii) and iii) that [�2n+1(1)] restricted to (grLieU(L, S, �)[Z/q
∗])2n+1 is
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non-zero. Therefore there is σ2n+1 ∈ (grLieU(L, S, �)[Z/q
∗])2n+1 such that

[�2n+1(1)](σ2n+1) = 1. We set

D2n+1 := (q − 1) q2n [Ψt]
[Z/q∗] (σ2n+1)

for 2n+ 1 > 1.

Now we consider the case m = 1. The cohomology class of the cocycle

�(q) is one of generators of H1(SpecZ[1q ,
1
� ]; Q�(1)). Therefore the homomor-

phism [�(q)] : grLieU(Q, {�, q}, �)1 → Q� is non-zero. It follows from Propo-

sition 4.2.8 ii) and iii) that the homomorphism [�(q)] : grLieU(L, S, �)1 →
Q� restricted to (grLieU(L, S, �)[Z/q

∗])1 is non-zero. Hence we can find

σ1 ∈ (grLieU(L, S, �)[Z/q
∗])1 such that [�(q)](σ1) = 1. Then we set

D1 := (q − 1) [Ψt]
[Z/q∗] (σ1) .

It is clear from the construction and from Lemma 5.1.1 that the elements

D1, D3, D5, . . . , D2n+1, . . . have the required coordinates. �

Proposition 5.1.3. The Lie algebra Im ([Ψt]
[Z/q∗]) is free, freely gen-

erated by elements D1, D3, D5, . . . , D2n+1, . . . .

Proof. First we shall show that elements D1, D3, D5, . . . generate

freely a free Lie subalgebra of the image of the morphism [Ψt]
[Z/q∗]. To show

this it is sufficient to show that the basic Lie elements in D1, D3, D5, . . . are

linearly independent over Q�.

We recall that a Lie bracket in the Lie algebra (
⊕

0<α<q
Lie(X,Y ))×̃

(Lie(X,Y )/〈Y 〉, { }), which further we denote by L, is given by the for-

mula

[((fα)0<α<q;ϕ), ((gα)0<α<q;ψ)]

= (([fα, gα] +Dϕ(gα)−Dψ(fα))0<α<q; [ϕ,ψ] +Dϕ(ψ)−Dψ(ϕ)) .

Let us set

z2n+1 := (((1− q2n) [Y,X2n])0<α<q; (q − 1) q2n[Y,X2n])

for n > 0 and let

z1 := ((Y )0<α<q; 0) .



238 Zdzis2law Wojtkowiak

We recall that Ir := (
⊕

0<α<q
Ir)⊕ Ir is a Lie ideal of the Lie algebra L. For

any Lie bracket of length r in elements D1, D3, D5, . . . in the Lie algebra L
we have

(5.1.4) [. . . [Di1 , Di2 ], . . . Dir ] ≡ [. . . [zi1 , zi2 ], . . . zir ] mod Ir .

We recall that Lie (X,Y ; Z) denote a free Lie algebra over Z freely

generated by X and Y . The elements zi have integer coefficients hence

they belong to the semi-direct product (
⊕

0<α<q
Lie (X,Y ; Z))×̃

(Lie (X,Y ; Z)/〈Y 〉, { }) of Lie algebras over Z, which we denote by L(Z).

Observe that qL(Z) is a Lie ideal of the Lie algebra L(Z). The quotient Lie

algebra L(Z)/qL(Z) is (
⊕

0<α<q
Lie (X,Y ; Z/q))×̃ (Lie (X,Y ; Z/q)/〈Y 〉, { }).

The classes modulo q, z̄1 = ((Y )0<α<q; 0) and z̄2n+1 = (([Y,X2n])0<α<q; 0)

for n > 0, generate freely a free Lie subalgebra of the Lie algebra

(
⊕

0<α<q
Lie (X,Y ; Z/q))×̃(Lie (X,Y ; Z/q)/〈Y 〉, { }). This follows from

Shirshow-Witt Theorem applied to a free Lie algebra Lie (X,Y ; Z/q) over a

field Z/q (see [10] page 331).

Hence basic Lie elements of length r in z̄1, z̄3, z̄5, . . . are linearly in-

dependent over Z/q. This implies that basic Lie elements of length r in

z1, z3, z5, . . . are linearly independent over Z, hence also over Q and Q�. It

follows from the congruence (5.1.4) that basic Lie elements of length r in

D1, D3, D5, . . . are linearly independent.

Assume that a non-zero linear combination of basic Lie elements of

length r in D1, D3, D5, . . . is equal to a linear combination of basic Lie

elements of length greater than r. Working modulo the Lie ideal Ir one

sees immediately that this is impossible. Therefore basic Lie elements in

D1, D3, D5, . . . are linearly independent, hence the elements D1, D3, D5, . . .

generate freely a free Lie subalgebra of Im ([Ψt]
[Z/q∗]).

It follows from results of section 4 (Proposition 4.2.6) that the Lie alge-

bra grLieU(Q(µq), S, �)
[Z/q∗] is free, freely generated by elements σ3, σ5, . . . ,

σ2n+1, . . . constructed in the proof of Proposition 5.1.2 and by two elements

in degree 1. One of these elements is σ1 and the other is mapped to zero by

[Ψt]
[Z/q∗]. This implies that the elements D1, D3, D5, . . . , D2n+1, . . . gener-

ate Im ([Ψt]
[Z/q∗]). �

Theorem 5.1.5. Let q be a prime number different from �. Let V :=
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P1 \ {0, 1,∞} and let

t :=
∐

0<α<q

π(VQ̄; ξαq ,
→
01).

The representation

θ
Q(µq)/Q
t : Gal(Q̄/Q(µ�∞)) −→

⊕
0<α<q

GL(Q�{{X,Y }})

has the following properties:

i) it is unramified outside finite places of Q(µ�∞) lying over � or q;

ii) it respects the filtration {
⊕

0<α<q I(Q�{{X,Y }})i}i∈N of⊕
0<α<q Q�{{X,Y }};

iii) any σ ∈Gal(Q̄/Q(µ�∞)) acts on
⊕

0<α<q

(
I(Q�{{X,Y }})i/

I(Q�{{X,Y }})i+1
)

as the identity;

iv) the image of the associated graded Lie algebra representation

Θ
Gal(Q(µq)/Q)
t :

∞⊕
i=1

(
Fi(θ

Q(µq)/Q
t )/Fi+1(θ

Q(µq)/Q
t )

)
⊗Q

−→
⊕

0<α<q

End(Q�{{X,Y }})

is a free Lie algebra, freely generated by D1, D3, D5, . . . , D2n+1, . . . .

Proof. The representation ψt is unramified outside S, where S =

{p ∈ V(Q(µq)) | p divides q or p divides � }. Let us set T := {q, �}. Hence

the representation θ
Q(µq)/Q
t , which is equal by definition [ψt] ◦ SL,SK,T ◦ iK,T,� ,

is unramified outside finite places of Q(µ�∞) lying over � or q.

The points ii) and iii) follow immediately from Proposition 4.3.0.

By Proposition 5.1.3 the image of [Ψt]
[Z/q∗] is a free Lie algebra, freely

generated by D1, D3, D5, . . . , D2n+1, . . . . This implies that the image of

the composition [Ψt]
[Z/q∗] ◦ β−1 ◦ (p̄Z/q∗)

−1, and hence also the image of
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grLie[θ
Q(µq)/Q
t ], is a free Lie algebra, freely generated by D1, D3, D5, . . . ,

D2n+1, . . . . The morphism

grLie[θ
Q(µq)/Q
t ] : grLieU(K,T, �) −→

⊕
0<α<q

GL(Q�{{X,Y }})

factors through a surjective morphism

grLieU(K,T, �) −→
∞⊕
i=1

(Fi(θ
Q(µq)/Q
t )/Fi+1(θ

Q(µq)/Q
t ))⊗Q.

Hence the image of Θ
Z/q∗

t = grLieθ
Q(µq)/Q
t is a free Lie algebra, freely

generated by D1, D3, D5, .. ., D2n+1, . . . . �

5.2. We assume as in section 5.1 that q is a prime number different from

� and that � does not divide q − 1.

We assume also that q ≡ 3 mod 4. Then the field Q(i
√
q) is a subfield

of Q(µq). The field Q(i
√
q) is fixed by the kernel of the homomorphism

hq : Z/q∗ → {1,−1}

given by hq(x) = x
q−1
2 . Let us set

G(q) := kerhq .

As in section 5.1 we are studying actions of Galois groups on

t :=
∐

0<α<q

π(VQ̄; ξαq ,
→
01) and T :=

∏
0<α<q

π(VQ̄; ξαq ,
→
01)) .

We shall apply formalism from section 4 for

K = Q(i
√
q), L = Q(µq)

and the Galois group G(q) = Gal(Q(µq)/Q(i
√
q)).

We recall that S = { p ∈ V(Q(µq)) | p divides q or � } and therefore in

the case considered now

T := { p ∈ V(Q(i
√
q)) | p divides q or � }.
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We shall construct geometrically �-adic realization of the associated

graded Lie algebra of the fundamental group of the tannakien category

of the mixed Tate motives over SpecOQ(i
√
q)[ 1

q
] .

Lemma 5.2.1. We have:

i) Let σ ∈ ((Hk/Hk+1)⊗Q)G(q). The coordinates of Ψ
G(q)
t (σ) calculated

modulo I2 + Γk+1 L(X,Y ) on each component are((
1− qk−1

(q − 1)qk−1
�k(1)(σ)[Y,Xk−1]

)
0<α<q

; �k(1)(σ)[Y,Xk−1]

)

for k > 1 and odd;(((
2

q − 1

∑
j∈G(q)

�k(ξ
j
q)(σ)

)
[Y,Xk−1]

)
α∈G(q)

,

((
− 2

q − 1

∑
j∈G(q)

�k(ξ
j
q)(σ)

)
[Y,Xk−1]

)
α/∈G(q)

; 0

)

for k > 1 and even;




 1

q − 1

∑
0<j<q

�(1− ξjq)(σ)


Y




0<α<q

; 0




for k = 1.

ii) Let σ ∈ (grLieU(L, S, �))
[G(q)]
k . The coordinates of [Ψt]

[G(q)](σ) calcu-

lated modulo I2 + Γk+1L(X,Y ) on each component are given by the

same formula as in point i) if we replace �k(1), �k(ξ
j
q) and �(1 − ξjq)

by [�k(1)], [�k(ξ
j
q)] and [�(1− ξjq)] respectively.

Proof. The lemma is proved in the same way as Lemma 5.1.1. �

Proposition 5.2.2. Let us assume that Conjecture 4.3.1 holds. Let q

be a prime number satisfying q ≡ 3 mod 4. In the image of the morphism
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of Lie algebras

[Ψt]
[G(q)] : grLieU(L, S, �)[G(q)]

→


 ⊕

0<α<q

Lie(X,Y )


 ×̃(Lie(X,Y )/〈Y 〉, { })

there are elements D1, D2, D3, . . . , Dm, . . . homogeneous of degree 1, 2,

3, . . . ,m, . . . . respectively whose coordinates calculated modulo I2 are(
((1− qm−1)[Y,Xm−1])0<α<q; (q − 1) qm−1 [Y,Xm−1]

)
for m > 1 and odd;(

(([Y,Xm−1])α∈G(q), (−[Y,Xm−1])α/∈G(q)); 0
)

for m > 1 and even;

((Y )0<α<q; 0)

for m = 1.

Proof. Observe that for all m ∈ N we have dim Q�
Vm(q)G(q) = 1. The

space Vm(q)G(q) is generated by [0] if m > 1 and odd, by
∑

α∈G(q)

[α] if m > 1

and even and by
∑

α∈Z/q∗
[α] if m = 1.

Let us assume that k is even. It follows from Lemma 5.0.5 that∑
j∈G(q) �k(ξ

j
q) is a non-zero element of H1(GQ(µq); Q�(k))

G(q). Hence there

is a unique, non-zero element tk of H1(GQ(i
√
q); Q�(k)) such that tk re-

stricted to H1(GQ(µq); Q�(k)) is equal
∑

j∈G(q) �k(ξ
j
q). The homomorphism

[tk] from grLieU(Q(i
√
q), T, �)k to Q� is non-zero because tk is non-zero.

Therefore it follows from Proposition 4.2.8 ii) and iii) that [tk] restricted to

(grLieU(L, S, �)[G(q)])k is non-zero. Hence the restriction of
∑

j∈G(q)[�k(ξ
j
q)]

to (grLieU(L, S, �)[G(q)])k is non-zero. Hence there is σk ∈
grLieU(L, S, �)

[G(q)]
k such that

∑
j∈G(q)[�k(ξ

j
q)](σk) = 1. We set

Dk :=
q − 1

2
[Ψt]

[G(q)](σk)

for k > 0 and even.
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Let us assume that k = 1. It follows from Lemma 5.0.5 that the element∑
0<j<q �(1− ξ

j
q) is a non-zero element of H1(SpecOQ(µq),S ; Q�(1))G(q). Ob-

serve that
∑

0<j<q �(1−ξ
j
q) and 2�(i

√
q) define the same cohomology class in

H1(GQ(µq); Q�(1)). The element 2�(i
√
q) is non-zero in H1(GQ(i

√
q); Q�(1)).

In the same way as before, it follows from Proposition 4.2.8 that∑
0<j<q[�(1 − ξjq)] restricted to (grLieU(L, S, �)[G(q)])1 is non-zero. Hence

there is σ1 ∈ (grLieU(L, S, �)[G(q)])1 such that
∑

0<j<q[�(1 − ξjq)](σ1) = 1.

We set

D1 := (q − 1)[Ψt]
[G(q)](σ1).

If k > 1 and odd we can find σk ∈ grLieU(L, S, �)
[G(q)]
k such that

[�k(1)](σk) = 1. Then we set

Dk :=
(q − 1)qk

1− qk−1
[Ψt]

[G(q)](σk).

One verifies easily that the constructed elements have required properties. �

Proposition 5.2.3. The Lie algebra Im ([Ψt]
[G(q)]) is free, freely gen-

erated by elements D1, D2, D3, . . . , Dm, . . . .

Proof. The proof of the proposition repeats arguments of the proof

of Proposition 5.1.3 and we omit it. �

Theorem 5.2.4. Let us assume that Conjecture 4.3.1 holds. Let q be

a prime number different from � and congruent to 3 modulo 4. We assume

also that � does not divide q − 1. Let V := P1 \ {0, 1,∞} and let

t :=
∐

0<α<q

π(VQ̄; ξαq ,
→
01).

The representation

θ
Q(µq)/Q(i

√
q)

t : Gal (Q(i
√
q)/Q(i

√
q)(µ�∞)) →

⊕
0<α<q

GL (Q�{{X,Y }})

has the following properties:

i) it is unramified outside finite places of Q(i
√
q)(µ�∞) dividing � or q,
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ii) the representation θ
Q(µq)/Q(i

√
q)

t respects the filtration

{
⊕

0<α<q I(Q�{{X,Y }})i}i∈N of
⊕

0<α<q Q�{{X,Y }};

iii) any σ ∈Gal(Q̄/Q(i
√
q)(µ�∞)) acts on

⊕
0<α<q

(
I(Q�{{X,Y }})i/

I(Q�{{X,Y }})i+1
)

as the identity;

iv) the image of the associated graded Lie algebra representation

Θ
Gal(Q(µq)/Q)
t :

∞⊕
i=1

(
Fi(θ

Q(µq)/Q(i
√
q)

t )/Fi+1(θ
Q(µq)/Q(i

√
q)

t )
)

−→
⊕

0<α<q

End (Q�{{X,Y }})

is a free Lie algebra, freely generated by elements D1, D2, D3, . . . ,

Dm, . . . .

Proof. The proof of the theorem is the same as the proof of Theorem

5.1.5. �

The �-adic representation from Theorem 5.2.4 represents geometrically

the �-adic realization (for � �= q) of the associated graded Lie algebra of the

fundamental group of the tannakien category of the mixed Tate motives

over SpecOQ(i
√
q)[

1
q ].

Now we shall construct geometrically an �-adic realization of the funda-

mental group of the tannakien category of mixed Tate motives over

SpecOQ(i
√
q).

Let us set

τ :=
∐

0<j<q

π(VQ̄;−ξjq ,
→
01) and T :=

∏
0<j<q

π(VQ̄;−ξjq ,
→
01) .

Observe that the triple (VQ(i
√
q);−ξjq ,

→
01) has good reduction at every finite

place of Q(µq). Therefore we set

S := {p ∈ V(Q(µq)) | p divides �} and

T := {p ∈ V(Q(i
√
q)) | p divides �}.

We shall apply formalism from section 4 to

K = Q(i
√
q), L = Q(µq) and G(q) = Gal (Q(µq)/Q(i

√
q)).
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Lemma 5.2.7. We have

i) Let σ ∈ ((Hk/Hk+1)⊗Q)G(q). The coordinates of Ψ
G(q)
τ (σ) calculated

modulo I2 + Γk+1 L(X,Y ) on each component are

((1− qk−1 − 2k−1 + 2k−1 · qk−1

(q − 1) · 2k−1 · qk−1
�k(1)(σ)[Y,Xk−1]

)
0<α<q

;

�k(1)(σ)[Y,Xk−1]

)

for k > 1 and odd;(( 2

q − 1

( ∑
j∈G(q)

�k(−ξjq)(σ)
)
[Y,Xk−1]

)
α∈G(q)

,

(
− 2

q − 1

( ∑
j∈G(q)

�k(−ξjq)(σ)
)
[Y,Xk−1]

)
α/∈G(q)

; 0

)

for k > 1 and even;

( ( 0 )0<α<q; 0 )

for k = 1.

ii) Let σ ∈ (grLieU(L, S, �))
[G(q)]
k . The coordinates of [Ψt]

[G(q)](σ) calcu-

lated modulo I2 + Γk+1L(X,Y ) on each component are given by the

same formula as in point i) if we replace �k(1) and �k(−ξjq) by [�k(1)]

and [�k(−ξjq)] respectively.

Proof. First we show the point i) of the lemma. Observe that the

set {−ξjq}0<j<q is the set of primitive 2q-th roots of 1. Hence we can apply

formalism from section 5.0. In particular we can apply Lemma 5.0.1 to

calculate coordinates of Ψτ (σ).

First we suppose that k is odd. We have the following relations between

�-adic polylogarithms

2k−1(�k(−ξjq) + �k(ξ
j
q)) = �k(ξ

2j
q );

qk−1(

q−1∑
j=1

�k(ξ
j
q)) = (1− qk−1)�k(1);
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�k(ξ
j
q) = �k(ξ

−j
q ) and �k(−ξjq) = �k(−ξ−jq ).

Observe that (Z/2q)∗ = Z/q∗, hence G(q) acts on Vk(2q).

The symbol 1
q−1

∑q−1
j=1[q + 2j] ∈ Vk(2q) is invariant under the action of

G(q). Observe that s2qk

(
1

q−1

∑q−1
j=1[q + 2j]

)
= 1

q−1

∑q−1
j=1 �k(−ξ

j
q). Using the

relations between �-adic polylogarithms we get that

1

q − 1

q−1∑
j=1

�k(−ξjq) =
1− qk−1 − 2k−1 + 2k−1 · qk−1

(q − 1) · 2k−1 · qk−1
�k(1).

Then the formula for k odd follows from Corollary 4.3.4 or Lemma 5.0.2.

Now we suppose that k is even. We recall that for k even

�k(−ξjq) = −�k(−ξ−jq ) and �k(1) = 0.

We have also that

Z/q∗ = G(q) ∪ (−1)G(q).

The symbols 2
q−1

∑
j∈G(q) j([1]) and 2

q−1

∑
j∈G(q) j([−1]) are non-trivial in

Vk(2q) and invariant under the action of G(q). Moreover we have

2

q − 1

∑
j∈G(q)

j([1]) +
2

q − 1

∑
j∈G(q)

j([−1]) = 0

in Vk(2q). This implies the formula for k even.

Now we assume that k = 1. We have

(1 + ξjq) = ξjq · (1 + ξ−jq ) and

q−1∏
j=1

(1 + ξjq) = 1.

Therefore the formula for k = 1 follows from Corollary 4.3.4. One can also

use the fact that V1(2q)
G(q) = 0.

The point ii) of the lemma is proved in the same way as the point ii) of

Lemma 5.1.1. �

Let

α(k) := vq(1− 2k−1)
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be the exponent of the highest power of q which divides 1− 2k−1. It is clear

that α(k) < k − 1 and we have

1− 2k−1 = a(k) · qα(k),

where a(k) is not divisible by q.

Proposition 5.2.8. Let us assume that Conjecture 4.3.1 holds. Let q

be a prime number congruent to 3 modulo 4. In the image of the morphism

of Lie algebras

[Ψτ ]
[G(q)] : grLieU(L, S, �)[G(q)]

→


 ⊕

0<α<q

Lie(X,Y )


 ×̃(Lie(X,Y )/〈Y 〉, { })

there are elements D2, D3, . . . , Dk, . . . homogeneous of degree 2, 3, . . . , k, . . .

respectively whose coordinates calculated modulo I2 are(
(a(k) · (1− qk−1)[Y,Xk−1])0<α<q; (q − 1) · 2k−1 · qk−1−α(k) [Y,Xk−1]

)
for k > 1 and odd;(

(([Y,Xk−1])α∈G(q), (−[Y,Xk−1])α/∈G(q)); 0
)

for k > 1 and even.

Proof. First we consider the case when k is odd. The �-adic poly-

logarithm �k(1) is a generator of H1(GQ; Q�(k)). Hence �k(1) restricted to

H1(GL; Q�(k)) is non-zero. Therefore [�k(1)] is a non-zero, G(q)-equivariant

homomorphism from grLieU(L, S, �)k to Q� vanishing on decomposable el-

ements. This implies that the restriction of [�k(1)] to grLieU(L, S, �)
[G(q)]
k is

non-zero. Hence there is σk ∈ grLieU(L, S, �)
[G(q)]
k such that [�k(1)](σk) �= 0.

We set

Dk := [Ψτ ]
[G(q)]

(
(q − 1) · 2k−1 · qk−1−α(k)

�k(1)(σk)
· σk

)
.

Let us assume that k is even. The symbol
∑

j∈G(q) j([1]) is non-trivial in

Vk(2q) and belongs to Vk(2q)
G(q).Hence the symbol

∑
j∈G(q) j([1]) is a gener-

ator of Vk(2q)
G(q). Hence it follows from Lemma 5.0.5 that

∑
j∈G(q) �k(−ξ

j
q)
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is a generator of H1(GQ(µq); Q�(k))
G(q). Therefore the restriction of∑

j∈G(q)[�k(−ξ
j
q)] to grLieU(L, S, �)

[G(q)]
k is non-zero. Hence there is σk ∈

grLieU(L, S, �)
[G(q)]
k such that

∑
j∈G(q)[�k(−ξ

j
q)](σk) �= 0. We set

Dk := [Ψτ ]
[G(q)]

(
q − 1

2
· 1∑

j∈G(q) �k(−ξ
j
q)(σk)

· σk

)
.

It is clear that the constructed elements D2, D3, D4, . . . , Dn, . . . have the

required properties. �

Proposition 5.2.9. The Lie algebra Im ([Ψτ ]
[G(q)]) is free, freely gen-

erated by the elements D2, D3, . . . , Dm, . . . .

Proof. One only need to notice that α(k) < k−1. We left the details,

which are the same as in the proof of Proposition 5.1.3, to readers. �

Theorem 5.2.10. Let us assume that Conjecture 4.3.1 holds. Let q be

a prime number different from � and congruent to 3 modulo 4. We assume

that � does not divide q − 1. Let V := P1 \ {0, 1,∞} and let

τ :=
∐

0<j<q

π(VQ̄;−ξjq ,
→
01).

The representation

θ
Q(µq)/Q(i

√
q)

τ : Gal (Q(i
√
q)/Q(i

√
q)(µ�∞))→

⊕
0<α<q

GL (Q�{{X,Y }})

has the following properties:

i) it is unramified outside finite places of Q(i
√
q)(µ�∞) lying over �;

ii) the representation θ
Q(µq)/Q(i

√
q)

τ respects the filtration

{
⊕

0<α<q I(Q�{{X,Y }})i}i∈N of
⊕

0<α<q Q�{{X,Y }};

iii) any σ ∈Gal(Q̄/Q(i
√
q)(µ�∞)) acts on

⊕
0<α<q

(
I(Q�{{X,Y }})i/

I(Q�{{X,Y }})i+1
)

as the identity;
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iv) the image of the associated graded Lie algebra representation

Θ
Gal(Q(µq)/Q(i

√
q))

τ :
∞⊕
i=1

(
Fi(θ

Q(µq)/Q(i
√
q)

τ )/Fi+1(θ
Q(µq)/Q(i

√
q)

τ )
)

−→
⊕

0<α<q

End (Q�{{X,Y }})

is a free Lie algebra, freely generated by elements D2, D3, . . . , Dm, . . . .

Proof. We omit the detailed proof as it is the same as the proofs of

Theorems 5.1.5 and 5.2.4. We only notice that the Galois representation

GQ(i
√
q)(µ�∞ ) → Aut set(τ)

is unramified outside finite places of Q(i
√
q)(µ�∞) lying over �. This implies

that there is no generator in degree 1. �

5.3. We assume that q is a prime number different from � and that � does

not divide q − 1. We assume also that q ≡ 1 mod 4.

We shall construct geometrically �-adic realization of the associated

graded Lie algebra of the fundamental group of the tannakien category

of the mixed Tate motives over SpecOQ(i
√
q).

Observe that the Galois group

Gal (Q(µ4q)/Q) = Gal (Q(i)/Q)×Gal (Q(µq)/Q) = Z/4∗ × Z/q∗.

Let s ∈ Gal (Q(µq)/Q) = Z/q∗ be a generator and let c ∈ Gal (Q(i)/Q) =

Z/4∗ be the complex conjugation.

We denote by H(q) the subgroup of Gal (Q(µ4q)/Q) generated by (c, s) ∈
Z/4∗ × Z/q∗. Then the subfield of Q(µ4q) fixed by H(q),

Q(µ4q)
H(q) = Q(i

√
q).

We shall study the action of GQ(µ4q) on the disjoint union of torsors of paths

t :=
∐

0<j<4q
(j,4q)=1

π(VQ̄; ξj4q,
→
01).
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We set

L = Q(µ4q) and K = Q(i
√
q).

Observe that a triple (VQ(µ4q); ξ
j
4q,

→
01) (for 0 < j < 4q and (j, 4q) = 1) has

good reduction everywhere, hence we set

S = { p ∈ V(Q(µ4q)) | p divides � }.

Lemma 5.3.1. We have

i) Let σ ∈ (Hn/Hn+1) ⊗ QH(q). The coordinates of Ψ
H(q)
t (σ) calculated

modulo I2 + Γn+1L(X,Y ) on each component are

(
((

1

q − 1

q−1∑
k=1

�n((−1)kiξs
k

q )(σ))[Y,Xn−1])t∈H(q),

((
−1

q − 1

q−1∑
k=1

�n((−1)kiξs
k

q )(σ))[Y,Xn−1])t/∈H(q) ; 0
)

for n > 1 and even;

(
(

1− qn−1

(1− q)qn−1
· 1− 2n−1

22n−1
�n(1)(σ)[Y,Xn−1])t∈(Z/4q)∗ ;

�n(1)(σ)[Y,Xn−1]
)

for n > 1 and odd; (
( 0 )t∈(Z/4q)∗ ; 0

)
for n = 1.

ii) Let σ ∈ (grLieU(L, S, �))
[H(q)]
n . The coordinates of [Ψt]

[H(q)](σ) calcu-

lated modulo I2 + Γn+1L(X,Y ) on each component are given by the

same formula as in point i) if we replace �n(1) and �n((−1)kiξs
k

q ) by

[�n(1)] and [�n((−1)kiξs
k

q )] respectively.

Proof. Let n = 1. We have the identity

x4q − 1

x− 1
=
xq − 1

x− 1
· (xq +1) · (x2 +1) ·

q−2∏
k=0

(x− (−1)kiξs
k

q ) ·
q−2∏
k=0

(x+(−1)kiξs
k

q ).
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Hence we get

q−2∏
k=0

(1− (−1)kiξs
k

q ) ·
q−2∏
k=0

(1 + (−1)kiξs
k

q ) = 1.

Therefore
∏

t∈H(q)(1 − t(iξq)) =
∏q−2

k=0(1 − (−1)kiξs
k

q ) and
∏

t∈H(q)(1 −
t(−iξq)) =

∏q−2
k=0(1 + (−1)kiξs

k

q ) are units of the ring OQ(i
√
q). The only

units of the ring OQ(i
√
q) are roots of unity. This implies the lemma for

n = 1.

Let us assume that n > 1. Observe that −iξ−1
q does not belong to the

H(q)-orbit of iξq. Hence the set of primitive 4q-th roots of 1 is a union of

H(q)-orbits of iξq and −iξ−1
q . Observe also that all primitive q-th roots

of 1 belong to one orbit of H(q). Now the first part of the lemma follows

from Corollary 4.3.4 and from distribution and inversion relations for �-adic

polylogarithms and we leave it for readers.

The second part of the lemma follows in the same way as in Lemma

5.1.1. �

Proposition 5.3.2. Let q be a prime number different from � and con-

gruent to 1 modulo 4. We assume that � does not divide q − 1. We assume

also that Conjecture 4.3.1 holds. In the image of the morphism of Lie alge-

bras

[Ψt]
[H(q)] : grLieU(L, S, �)[H(q)]

→


 ⊕

0<α<4q
(α,4q)=1

Lie(X,Y )


 ×̃(Lie(X,Y )/〈Y 〉, { })

there are elements D2, D3, . . . , Dm, . . . homogeneous of degree 2, 3, . . . ,

m, . . . respectively whose coordinates calculated modulo I2 are((
([Y,Xn−1])t∈H(q), (−[Y,Xn−1])t∈(Z/4q)∗\H(q)

)
; 0
)

for n > 1 and even;(
(a(n)(1− qn−1)[Y,Xn−1])t∈(Z/4q)∗ ; (1− q) · qn−1−α(n) · 22n−1[Y,Xn−1]

)
for n > 1 and odd;

( ( 0 )t∈(Z/4q)∗ ; 0 )
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for n = 1.

Proof. The proposition follows from Lemma 5.3.1. The details which

are similar to the proof of Proposition 5.1.2 we omit. �

Proposition 5.3.3. The Lie algebra Im ([Ψt]
[H(q)]) is free, freely gen-

erated by the elements D2, D3, . . . , Dm, . . . .

Proof. As in the proof of Proposition 5.2.9 one need to notice that

n− 1− α(n) > 0. The details of the proof we left to readers. �

Theorem 5.3.4. Let us assume that Conjecture 4.3.1 holds. Let q be

a prime number different from � and congruent to 1 modulo 4. We assume

that � does not divide q − 1. Let V := P1 \ {0, 1,∞} and let

t :=
∐

0<j<4q
(j,4q)=1

π(VQ̄; ξj4q,
→
01).

The representation

θ
Q(µ4q)/Q(i

√
q)

t : Gal (Q(i
√
q)/Q(i

√
q)(µ�∞))→

⊕
0<α<4q
(α,4q)=1

GL (Q�{{X,Y }})

has the following properties:

i) it is unramified outside finite places of Q(i
√
q)(µ�∞) lying over �;

ii) it respects the filtration {
⊕

0<α<4q
(α,4q)=1

I(Q�{{X,Y }})i}i∈N of⊕
0<α<q

(α,4q)=1
Q�{{X,Y }};

iii) any σ ∈Gal(Q̄/Q(i
√
q)(µ�∞)) acts on

⊕
0<α<q

(α,4q)=1

(
I(Q�{{X,Y }})i/

I(Q�{{X,Y }})i+1
)

as the identity;

iv) the image of the associated graded Lie algebra representation

Θ
Gal(Q(µ4q)/Q(i

√
q))

t :
∞⊕
i=1

(
Fi(θ

Q(µ4q)/Q(i
√
q)

t )/Fi+1(θ
Q(µ4q)/Q(i

√
q)

t )
)
⊗Q

−→
⊕

0<α<q
(α,4q)=1

End(Q�{{X,Y }})

is a free Lie algebra, freely generated by D2, D3, D4, . . . , Dn, . . . .
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5.4. We continue to study Galois actions on torsors of paths. In this sec-

tion we shall construct geometrically an �-adic realization of the associated

graded Lie algebra of the motivic fundamental group of the category of

mixed Tate motives over Spec Z .

Let

V := P1 \ {0, 1,∞}.

Let q be a prime number greater than 2 and different from �. Let ξq =

exp (2πi
q ) be a primitive q-th root of 1. We shall study actions of Galois

groups on a disjoint union and on a product of π1(VQ̄;
→
10)-torsors

tq :=
∐

0<α<q

π1(VQ̄;−ξαq ,
→
10) and Tq :=

∏
0<α<q

π1(VQ̄;−ξαq ,
→
10).

We have Q(µ2q) = Q(µq). Observe that the Galois group GQ(µq) acts on

tq and on Tq. Observe that a triple (VQ(µq);−ξαq ,
→
01) has good reduction

everywhere, hence we set

S := {p ∈ V(Q(µq)) | p divides �}.

We shall apply formalism from section 4 to

L := Q(µ2q), K := Q and Z/q∗ = Gal(Q(µ2q)/Q).

The action of GQ(µq) on tq yields a Lie algebra representation

Ψtq :
∞⊕
k=1

((Hk/Hk+1)⊗Q) →


 ⊕

0<α<q

Lie(X,Y )


 ×̃(Lie(X,Y )/〈Y 〉, { }),

where

Hk :=
⋂

0<α<q

Hk(VQ(µq);−ξαq ,
→
10)

for k ∈ N.

Lemma 5.4.0. We have:
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i) Let σ ∈ Hk. The coordinates of Ψtq calculated modulo I2 +

Γk+1L(X,Y ) on each component are(
(�k(−ξαq )(σ)[Y,Xk−1])0<α<q ; �k(1)(σ)[Y,Xk−1]

)
for k > 1 and (

(�1(−ξαq )(σ)Y )0<α<q ; 0
)

for k = 1;

ii) Let σ ∈ (grLieU(L, S, �)[Z/q
∗])k. The coordinates of [Ψtq ]

[Z/q∗](σ) cal-

culated modulo I2 + Γk+1L(X,Y ) on each component are given by the

same formulas as in the point i) if we replace �k(1), �k(−ξαq ) and

�1(−ξαq ) by [�k(1)], [�k(−ξαq )] and [�1(−ξαq )] respectively.

Proof. The lemma follows from Lemma 1.1.0 and Definition 3.0.1 of

�-adic polylogarithms. �

The group Z/q∗ = Gal (Q(µq)/Q) acts on the associated graded Lie

algebra grLieU(L, S, �). We shall study the Lie algebra homomorphism

[Ψtq ]
[Z/q∗] : (grLieU(L, S, �))[Z/q

∗]

→


 ⊕

0<α<q

Lie(X,Y )


 ×̃(Lie(X,Y )/〈Y 〉, { }).

Lemma 5.4.1. Let q be a prime number greater than 2 and different

from �. We assume that � does not divide q − 1. We have

i) Let σ ∈ ((Hk/Hk+1)⊗Q)Z/q
∗
. The coordinates of Ψ

Z/q∗

tq (σ) calculated

modulo I2 + Γk+1L(X,Y ) on each component are

(((1− 2k−1) · (1− qk−1)

2k−1 · qk−1 · (q − 1)
�k(1)(σ)[Y,Xk−1]

)
0<α<q

;

�k(1)(σ)[Y,Xk−1]

)

for k > 1 and odd;

( ( 0 ) )0<α<q ; 0 )
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for k > 1 and even;

( ( 0 ) )0<α<q ; 0 )

for k = 1.

ii) Let σ ∈ (grLieU(L, S, �))
[Z/q∗]
k . The coordinates of [Ψt]

[Z/q∗](σ) calcu-

lated modulo I2 + Γk+1L(X,Y ) on each component are given by the

same formula as in point i) if we replace �k(1) by [�k(1)].

Proof. The first part of the lemma follows from Lemma 5.4.0, Corol-

lary 4.3.4 and the distribution and inversion relations for �-adic polyloga-

rithms. For k = 1 we use the relation
∏q−1

k=1(1 + ξkq ) = 1.

The second part of the lemma is proved in the same way as part ii) of

Lemma 5.1.1. �

We recall that

1− 2k−1 = a(k) · qα(k),

where a(k) is an integer not divisible by q.

Proposition 5.4.2. In the image of the morphism [Ψtq ]
[Z/q∗] there are

elements D3, D5, D7, . . . , D2n+1, . . . homogenous of degree 3, 5, 7, . . . , 2n+

1, . . . respectively whose coordinates calculated modulo I2 are( (
a(2n+ 1) · (1− q2n)[Y,X2n]

)
0<α<q

; 22n · q2n−α(2n+1) · (q − 1)[Y,X2n]
)

for n = 1, 2, 3, . . . .

Proof. The �-adic polylogarithm �2n+1(
→
10) is a rational non-zero mul-

tiple of the Soule class - the generator of H1(GQ; Q�(2n + 1)). Therefore

�2n+1(
→
10) restricted to H1(GL; Q�(2n+ 1)) is also non-zero. It follows from

Proposition 4.2.8 that [�2n+1(1)] restricted to (grLieU(L, S, �)[Z/q
∗])2n+1 is

non-zero. Therefore there is σ2n+1 ∈ (grLieU(L, S, �)[Z/q
∗])2n+1 such that

[�2n+1(
→
10)](σ2n+1) = 1. We set

D2n+1 := (q − 1) · 22n · q2n−α(2n+1) · [Ψtq ]
[Z/q∗](σ2n+1). �
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Proposition 5.4.3. The Lie algebra Im ([Ψtq ]
[Z/q∗]) is free freely gen-

erated by elements D3, D5, . . . , D2n+1, . . . .

Proof. The proof is identical to the proof of Proposition 5.1.3 and we

omit it. �

Theorem 5.4.4. Let q be a prime number different from 2 and from �.

We assume also that � does not divide q− 1. Let V = P1 \ {0, 1,∞} and let

tq :=
∐

0<α<q

π1(VQ̄;−ξαq ,
→
10).

Then we have:

i) the representation

θ
Q(µ2q)/Q
tq : Gal (Q/Q(µ�∞)) −→

⊕
0<j<q

GL (Q�{{X,Y }})

is unramified outside finite places of Q(µ�∞) lying over �;

ii) the representation θ
Q(µ2q)/Q
tq respects the filtration

{
⊕

0<α<4q
(α,4q)=1

I(Q�{{X,Y }})i}i∈N of
⊕

0<α<q
(α,4q)=1

Q�{{X,Y }};

iii) any σ ∈Gal(Q̄/Q(µ�∞)) acts on
⊕

0<α<q
(α,4q)=1

(
I(Q�{{X,Y }})i/

I(Q�{{X,Y }})i+1
)

as the identity;

iv) the image of the associated graded Lie algebra representation

grLie θ
Q(µ2q)/Q
tq is a free Lie algebra, freely generated by D3, D5, . . . ,

D2n+1, . . . .

Proof. Observe that −ξq ≡ ξq mod 2 and −ξq ≡ −1 mod q. Hence

the triple (P1\{0, 1,∞}; ξjq ,
→
10) has good reduction everywhere. Proposition

4.1.7 implies that the representation

ψtq : Gal (Q(µ2q)/Q(µ2q)) −→ Autset(tq)

is unramified outside finite places of Q(µ2q) dividing �. The rest of the proof

repeats arguments of the proof of Theorem 5.1.5. �



On the Galois Actions on Torsors of Paths 257

The representation of GQ on π1(VQ̄;
→
10) was studied by Ihara, Deligne,

Grothendieck and others. This representation is unramified outside � (see

[9]). We do not know if the image of the associated graded Lie alge-

bra representation is free, freely generated by single generators in degrees

3, 5, 7, . . . , 2n + 1, . . . . The representation of GQ on π1(VQ̄;
→
10) is isomor-

phic to the representation of GQ on π1(VQ̄;
→
10)-torsor of paths π(VQ̄;

→
10,

→
01)

(see [22]).

We hope that Theorem 5.4.4 will help to understand the representation

of GQ on π (VQ̄;
→
10,

→
01) and hence also on π1(VQ̄;

→
10). Notice that for any

prime q greater than 2 the image of the morphism gr Lie θ
Q(µ2q)/Q
tq from

Theorem 5.4.4 is free, freely generated by elements D3, D5, . . . , D2n+1, . . .

of degrees 3, 5, . . . , 2n+ 1, . . . respectively.

To realize �-adically the associated graded Lie algebra of the motivic

fundamental group of the tannakian category of mixed Tate motives over

Spec Z[i] (resp. Spec Z[i
√

2], resp. Spec Z[i
√

2][12 ]) one needs to study

Galois action on torsors of paths
∐

k=1,5,7,11 π(VQ̄; ξi12,
→
01) (resp.∐

0<j<8
j odd

π(VQ̄; ξj8,
→
01), resp.

∐
0<j<24
(j,24)=1

π(VQ̄; ξj24,
→
01)).
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