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Preface

As social conditions change, we communicate via language in order to grasp the change. However, such
activity changes our mentality and behavior, and these micro-level changes can often trigger the alternation
of social conditions. Hence we can consider it as a point of view which is useful for the stablhzatlon of
social conditions to 1nvest1gate the dynamics of a remark spreading among people.

In this paper, “rumor” is defined as a remark which spreads among the general public in a. short
time through chain of word-of-mouth communication. We mathematically analyze the time change of the
number of people who know: a rumor and actively try to spread 1t which gives a criterion on how bigly it
gets around.

A basic mechanism of rumor transmission is that, when a person who does not know a rumor meets
and talks with another person who knows and spreads it, the former person knows it through the story
about it the latter person gives. On the other hand, a basic mechanism of the spread of infectious diseases
is that, when a person who is not infected with a disease comes near another person who is infected with
it, its pathogen moves from the latter person into the former one, who develops the disease. This analogy
implies that we can establish the models for rumor transmission in the same way as those for infectious
diseases.

By way of introduction, let us do a quick review of SIR model, which is most elementary in the models
for infectious diseases. We classify the population into three subpopulations: susceptibles, infected (or
infectious) people and recovered (or removed) people. We assume that people in each subpopulation
behave in the same manner, a susceptible develops a disease by the contact with infected people, and
infected people recover (or are quarantined) at a constant rate. Taking this assumption into consideration,
we formulate SIR model as follows:

45(t)=—BSt)I(t)
L1(t) = BSH)I(t) —7I(t)
ER(t) =I(t)

where S(t) is the population (or population density) of susceptibles at time ¢, I(t) the population of infected
people and R(t) the population of recovered people. (3 represents the infection rate, v the recovery rate and
BI(t) the force of infection. Although we classify the population according to their disease condition more
minutely, we should notice that a R-state individual does not cause the state-change of other individuals
he/she encounters because he/she does not spread the pathogen.

Then let us introduce the rumor-transmission models we are going to analyze in this paper. In Chapter
1, we classify the population according to their rumor state into three subpopulations: susceptibles (people
who do not know a rumor), spreaders (people who know and spread it) and stiflers (people who know and
prevent from spreading it). We assume three types of rumor-state change induced by contacts between
individuals: ’

(i) A susceptible knows the rumor and becomes a spreader or a stifler with the contacts with spreaders.
(ii) A spreader gets tired of the rumor and becomes a stifler with the frequent contacts with spreaders.

(iii) When a spreader contacts a stifler, the spreader transmits the rumor at a constant frequen.cy, and
after hearing it, the stifler tries to remove it, because the stifler shows no interest in it or denies it.
As a result, the spreader becomes: a stifler.

(iii) can be translated in terms of SIR model as follows: a R-state individual is immune and gives the
immunity to the spreaders he/she meets, which is unrealistic concerning infectious diseases. This is one of
the differences between rumors and infectious diseases. Another important difference is that most rumors
are modified in the communication process in a short time while, as far as infectious diseases are concerned,
a pathogen does not often become mutated in a short time. With this in mind, we assume for some models
in Chapter 1 that the modification of a rumor does not cause the state-change of spreaders because they



always know the latest rumor through communication with each other, but cause the state-change of stiflers
into susceptibles because they are not active enough to know the latest rumor, which is substantially far
from the rumor they know.

In Chapter 1, we propose rumor-transmission models described with differential equation for the fol-
lowing three cases:

closed population Birth, death, emigration and immigration are ignored. This assumption is valid when
we consider the temporary spread of a rumor.

constant emigration and immigration A certain number of newcomers are always immigrated as sus-
ceptibles, while some people are removed from the population at a constant rate on account of death
or emigration.

age structure The frequency of contacts between individuals and the probability of state-change depend
on age. Birth rate and death rate also depend on age and not on rumor-state.

For these differential equation systems we check their well-posedness and investigate their global dynamics,
i.e., what the density (or the share) of each subpopulation is like after a long time.

As for the model of closed population, the system is substantially an autonomous nonlinear ordinary
differential equation system on a 2-dim compact set. By using Dulac-Bendixson Criterion we can proof
that the w—set of any trajectory is an equilibrium. Hence we can virtually specify the global dynamics
by examining the number of equilibria and their local stability. The model of constant emigration and
immigration can be treated in the same way as that of closed population if we pay attention to the situation
after long periods of time where the total population tends to a constant number.

There are two types of equilibria. - One is rumor free equilibrium (RFE), where all individuals are
susceptibles, and the other is rumor endemic equilibrium (REE), where susceptibles, spreaders and stiflers
coexist. For ordinary equation systems we show that REE is globally asymptotically stable if and only if
the number of newly added spreaders in a unit time when a very small number of spreaders invade RFE
is larger than the extent of spreaders’ decrease with emigration and immigration.

The age-structured rumor transmission model is described with partial differential equation system
with boundary condition. This model has RFE, and the maximum number Ry of newly added spreaders
in a unit time when a very small number of spreaders invade RFE is obtained as a spectral radius of an
operator on an infinite-dimensional function space. We show that if Ry < 1 then the system has no REE
and if Ry > 1 then it has a REE. In addition, we show that REE bifurcates forward from RFE and is
locally asymptotically stable if Ry > 1 and |Rp — 1| is small enough.

The concept of persistence has attracted attention as an index of the global behavior of dynamical
systems other than the stability of equilibria. It means whether a component of the population avoids
extinction after long periods of time. In particular, the system is called uniformly strongly persistent about
a component if there exists some € > 0 such that, for any initial condition where the component exists, its
amount is always over ¢ after long periods of time. ‘

In Chapter 2, we quote a theorem which gives a sufficient condition for the system’s uniform strong
persistence and introduce two examples to which we can apply the theorem. Moreover, we apply the
theorem to the age-structured rumor-transmission models in Chapter 1 and Chapter 4 and show that
the system is uniformly strongly persistent about spreaders (and stiflers), which means that the number
of spreaders (and stiflers) is always over a constant number after long periods of time if spreaders (and
stiflers) exist at the beginning.

Well, we cannot ignore the effect of outside sources of information on rumor transmission although
word-of-mouth has much impact on it. Mass media are examples of outside source of information, and
here we identify with the mass media those who has much impact on other people through the mass media.
And, while we implicitly assume in Chapter 1 that stiflers are not the first to talk about the rumor, they
may be active to remove it, for example by spreading its rival rumor. We define such stiflers as “active
stiflers” in distinction from the (passive) stiflers we consider in Chapter 1. In Chapter 3, we combine the
following factors for a closed population and investigate the global behavior of the system:

o (passive) stiflers or active stiflers
e rumors are modified or not

e no mass media, rumor-spreading mass media or rumor-suppressing mass media



It is striking that in the model with active stiflers, variable rumor and mass media both forward bifurcation
and backward bifurcation can occur according to parameters, which affects the set of goals for the suppress
of the rumor. ‘ '

In Chapter 4, we introduce an age-structured rumor-transmission model with active stiflers and in-
vestigate it in the same way as in Chapter 1 in order to find out more closely the possibility that the
system shows different dynamics according to stiflers’ behavior. In fact, unlike the age-structured model in
Chapter 1, this model can have an equilibrium where only susceptibles and spreaders coexist, and an equi-
librium where only susceptibles and active stiflers coexist. We can obtain the condition for their existence
and their local stability. :
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Chapter 1

Deterministic models for rumor
transmission

Abstract ’ -

In this chapter, we consider deterministic models for the transmission of a rumor. First, we investigate the
age-independent case and introduce four models, which are classified according to whether the population is closed
or not and whether the rumor is constant or variable. After formulating the models as finite-dimensional ODE
systems, we show that the solutions converge to an equilibrium as ¢t — oco. Next, we investigate a model for the
transmission of a constant rumor in an age-structured population with age-dependent transmission coefficients..
We formulate the model as an abstract Cauchy problem on an infinite-dimensional Banach space and show the
existence and uniqueness of solutions. Then, under some appropriate assumptions, we examine the existence of its
nontrivial equilibria and the stability of its trivial equilibrium. We show that the spectral radius Ro := r(’f“) for
some positive operator T' is the threshold. We also show sufficient conditions for the local stability of the nontrivial
equilibria. Finally, we show that the model is uniformly strongly persistent if Ry > 1.

Keywords: Rumor transmission; Threshold condition; Age-structured population; Rumor-free equilibrium; Rumor-endemic
equilibrium; Global stability; Local stability; Uniform strong persistence

1;1 Introduction

In this chapter we apply models similar to those used in epidemiology to the “transimission of a rumor,”
which is the social phenomenon that a remark spreads on a large scale in a short time through chain of
communication. ‘

Rumor transmission is an example of social contagion processes. Pioneering contributions to their
modeling, based on epidemiological models, date back to [2, 3, 4, 5]. In those days both deterministic models
and stochastic models were used, and the former were so simple that they were solved analytically and
regarded as the first approximation of the latter. Nearly a decade later, Daley and Kendall [6] explained the
importance of dealing with stochastic rumor models rather than deterministic ones, henceforth stochastic
models have been actively studied (see, for example, [7, 8, 9, 10, 11, 12, 13] and [14] for survey). The basic
rumor transmission model which they used is called Daley-Kendall model after [6], and the simplified basic
model is called Maki-Thompson model after [15]. We also refer the reader to [16, 17] for details.

Recently Pearce [18] and Gani [19] analyzed the probability generating functions in the stochastic rumor
models by means of block-matrix methodology. In addition, Dickinson and Pearce [20] studied stochastic
models for more general transient processes including epidemics.

Independently of this series of studies, deterministic models for rumor transmission have been studied
sporadically. For example, Castillo-Chévez and Song [21] proposed the transmission models for a fanatic
behavior based on the models for sexually transmitted diseases, and analyzed them qualitatively and
numerically. Bettencourt et al [22] is another recent example, which deals with the spread of ideas.

Now, some rumors alternate propagation with cessation, momentarily modified in some cases. We can

_take “the rumor of Orléans” [23] for instance. We shall call such rumors recursive rumors for the meantime.
‘We could attribute their occurrence to the distance in space and time. One mechanism might be as follows:
The rumor spread locally in a region spills over out of the region where it has never been spread with
movement of people and information. Another mechanism might be as follows: Since the power of fending
off the rumor is weak, it survives in secret after its cessation. After a while, more and more people are



unfamiliar with the rumor due to immigration from other areas, birth and the modification of the rumor.
This might result in its repetition. ' ,

Noymer [24] proposed age-structured transmission models of “urban legends,” which we could identify
with rumor. In his models new people are constantly supplied through birth. Analyzing numerically, he
“found that the system seemed to converge to the steady state through damped oscillation but neither to
behave periodically nor to show undamped oscillation. Note that he constructed his models based on the
model for measles and hence ignored the law of mass action in the removal mechanism considered in the
stochastic rumor models such as the Daley—Kendall model. Both age-structure and the law of mass action
in the removal mechanism are considered to be important for rumor transmission.

In this chapter, we propose and mathematlcally analyze deterministic models for rumor transmission.
In Section 1.2, we examine age-independent rumor transmission models, which are extensions of the de-
terministic Daley—Kendall model. In the last sections we introduce an age-structured rumor transmission
model, We owe the argument there to [25]. We first establish the well-posedness of the time evolution
problem., Next, introducing a positive operator T, we show that the system has at least one nontrivial
equilibrium if and only if the spectral radius r(7T') is larger than 1. We examine the asymptotical stability
of the equilibria. We show that the model is uniformly strongly perSIStent if Ryp > 1. Finally we briefly
discuss open problems and pos31ble extensmns of the basic model.

1.2 Age-independent models for the transmission of a constant
rumor ' '

Let N(t) denote the total population at time ¢t. We divide the population into three classes; the susceptible
class, the spreader class and the stifler class, each of which we call rumor-class.- Each population at time
t is denoted by X(t),Y (¢), Z(t) respectively. Those who belong to the susceptible class, whom we call
susceptibles, don’t know about the rumor. Those who belong to the spreader class, whom we call spreaders,
- know about the rumor and spread it actively. Those who belong to the stifler class whom we call stzﬂers,
know about the rumor and don’t spread it. By definition, we have

X(t) +Y(t) + Z(t) = N(t).

We assume that no transition of rumor-class happens unless a spreader contacts someone, since the two
people who aren’t spreaders don’t talk about the rumor. That is, it is spreaders that are involved in the.
transition of rumor-class.

When a spreader contacts a susceptible, the spreader transmits the rumor at a constant frequency and
the susceptible knows about it. Then the susceptible doesn’t always become a spreader, but may doubt
its credibility and consequently becomes a stifler. And so, we assume that aX (¢)Y (¢t)At/N(t) susceptibles
change their rumor-class and become spreaders at a constant rate § € (0,1] during the small interval
(t,t + At), where « is a positive constant nurnber representing the product of the contact frequency and
the probability of transmitting the rumor.

When two spreaders contact, both of them transmit the rumor at a constant frequency. Hearing it
again and again, the spreader gets bored, gradually loses interest in it, and consequently becomes a stifler.
And so, we assume that 3Y (t)2At/N(t) spreaders become stiflers during the small interval (¢, + At),
where [ is a positive constant number. ‘

When a spreader contacts a stifler, the spreader transmits the rumor at a constant frequency, and after
hearing it, the stifler tries to remove it, because the stifler shows no interest in it or denies it. As a result,
the spreader becomes a stifler. And so, we assume that vY () Z(t) At/N(t) spreaders become stiflers during
the small interval (¢,t + At), where  is a positive constant number.

For the meantime we assume that the rumor is “constant,” that is, the same remark is transmitted at
all times. Then stiflers don’t change their rumor-class.

First, we consider the transmission of a constant rumor in a closed population, where people are neither
born nor died. This assumption may be valid in the situation where the rumor spreads explosively in a
short time and soon goes out. Then the dynamics of the population is governed by the following system:

1) — Y{(t)
X(t)'— OlX(t)N(t) |
Y(t) Y (t) Z(t)
| Y(t) = afX(t )N(t) gY (t Wt) — Y (t Kf@ | (1.2.1) -



where * denotes the differentiation with respect to t. Now N(¢) is independent of time and can be denoted
N, 0<> 0) » ' ’
We introduce new variables z,y, z by

2(t) = ])\i—(é; (8 = % At) = %
Then we obtain the new system for z,y, z: ‘ ’
o(t) = —az(t)y(t),
§(t) = afz(t)y(t) — By(t)* — vy(t)=(t),
2(t) = (1 = O)a(t)y(t) + By(t)” + yy(t)=(t).
Scaling time by setting 7 := «ot, we havq

/

' = ~ay, (1.2.2a)
y' =y(0z — by — c2), ; (1.2.2b)
7 = y{(1 = )z + by + ez}, (1.2.2¢)

where ’ denotes the differentiation with respect to 7 and b := 3/a, c:=~/a are positive constants.
Let us consider the scaled system (1.2.2a) (1.2.2b) (1.2.2c). We rewrite 7 as t. We define Q C R3 by

Q= {(z,y,2) eRy’ |z +y+2 =1} (1.2.3)

It is easy to show that the system (1.2.2a) (1.2.2b) (1.2.2c) has a unique solution on (—oo0,00) in €. for
any initial data in 2. Note that z(t) = 0 for all ¢ € R if z(0) = 0 and that y(¢) = 0 for all t € R if y(0) = 0.

In the case z(0) > 0 and y(0) > 0, we have z(t) > 0 and y(t) > 0 for all t € R. Hence, for all t € R,
x'(t) < 0 and so z(t) is strictly decreasing. Since the set {z(t) | t € R} is bounded, the limits

z(00) := lim z(¢), bx(—oo) = lim z(t)
t—oo t——o0

exist and satisfy 0 < z(00) < z(—o0) < 1. At the same time, we find 2/(¢t) > 0 for all t € R and a
similar discussion yields that the limits z(c0), 2(—00) exist and satisfy 0 < z(—o0) < z(c0) < 1. Hence, as
t — 400, y(t) converges. The limits (z(+00),y(£o0), z2(+00)) are the equilibria of the system in Q, i.e.,

equal to (t,0,1 — ) (0 <t < 1). Hence we have y(£oo) = 0. In particular, the rumor goes out eventually.
Let

M ={(z,y,2) € Q| 0z — by — cz < 0},
Qo :={(z,y,2) € Q| 0z — by — cz > 0}.

In each domain y(fx — by — cz) doesn’t change its sign, so we find that the point (z(¢),y(t), 2(t)) € Q
moves from (s into Q; within a finite time, i.e., there exists some T € R such that (x(¢), y(t), 2(t)) € Q2
whenever ¢ < T and (z(t),y(t), 2(t)) € Q1 whenever ¢ > T'. Therefore, y(t) takes its maximum at ¢t =T

Let 9 0 ( )
: c+ lo%
Ry = c 17(0) = <1 + 5 > N .

When y(0) = Y(0)/Ny is sufficiently close to 0, Ry > 1 means x(0) > ¢/(c + ), so we see that y(t) takes
its maximum at t = T > 0, i.e., the rumor spreads and goes out just once. In contrast, Ry < 1 means
z(0) < ¢/(c+ 6), so we see that y(t) is strictly decreasing, i.e., the rumor doesn’t spread. From this point
of view, it can be safely said that Ry is the threshold of this system.

Next, let us see the transmission of a constant rumor in a population with constant immigration and
emigration. Let B be the sum of the population birth rate and the immigration rate, and p the sum
of the population death rate and the emigration rate. We assume that B, u are positive constants, that
the newcomers are all susceptibles, and that death and emigration are independent of rumor-class. These
assumptions can be formulated as follows: '

X(0) = B - aX () ~ nX(0),
V(1) = abX (1) ((?) oY (¢ )}Qﬁ?) Y ( % Y (), (1.2
| Zt)=a(1 - 9)X(t)]%% + ﬂY(t)% + w(t)% —uZ(b).



Adding these equations, we see that the total population N(t) satisfies

N(t) = B - uN(2).

N (t) converges to Ny := B/ as t — oo.
First, let us consider the limit system

X(6) = o - aX (6 - (1),
7(6) = abx (052 - gy () S w2 v,

Ny N

Scaled in the same way as (1.2.1), this system takes the form

o (t) = d{L— ()} — 2()u() 12
Y/ (8) = u(O{Ba(t) — bu(®) — (L~ a(t) = (1) ~ a), -

~ where d := u/a is a positive constant and the scaled time 7 is again called ¢ for simplicity. It is easy to
show that, for any initial data in €2, there exists a unique solution z,y of the system (1.2.5) on [0, c0) in
Q.

Let

floy) =d(l—2) —ay, g(z,y) = y{be —by — (1 —z —y) - d},
F(z,y) = '(f(z,9), 9(z,y)) ‘

where ¢ denotes the transpose of the vector. Let us explore the equilibria in €, i.e., the point (z,y) € Q
satisfying f(z,y) = g(z,y) = 0.

From the latter equation g(z,y) =0, we get y = 0 or 0z — by — c¢(1 —x —y) — d = 0. If we substitute
y = 0 into f(z,y) = 0, we obtain « = 1. The boundary equilibrium

= («°,9°) = (1,0)

is always in Q regardless of the parameters b, ¢, d, 8. This equilibrium represents the situation that no one
knows about the rumor. In this context, one could also call it rumor-free equilibrium (RFE). The Jacobian

matrix at RFE is given by
o -d -1
DF(x ');<0 —d+6>

and its eigenvalues are —d(< 0), —d + 6.
t(1,0) is an eigenvector corresponding to —d. Now suppose y(0) = 0, then the solution is given by

2(t) = 1 — e~%(1 — 2(0)), y(t)=0.

Hence the segment Iy := [0,1] x {0} included in z-axis is positively invariant, and for any initial data in:
Iy, (z(t),y(t)) converges to x° as t — oo. That is, Iy is the intersection of {2 and the stable manifold of
x°. ' :

Let Q' := Q\ I, then we find that that 0 < d < § implies that x° is a saddle and any point sufficiently
close to x° in Q' doesn’t close to x° eventually, so x° is asymptotically unstable in Q'. And we know that
d > 0 implies that x° is a sink and so locally asymptotically stable in Q.

Then, let us examine the existence of equilibria satisfying y # 0. ’

Suppose (z,y) € . Since f(0,y) = d # 0, any equilibrium (z,y) € @, if it exists, satlsﬁes z # 0. So,
we can assume that ¢ >0, y >0, z+y < 1.

In the case d > 1, taking into consideration the conditions 0 < z < 1 < d and 1 — z > y, we have

Ao o s ) >0,

from which it follows that no equilibrium exists in €.
In the case d < 1, f(z,y) = 0 gives

(1-=z)d
=2 <1~
Y - > z,



which implies d < x < 1, so we have 0 < y < 1 — d. On the other hand, g(z,y) = 0 and y # 0 lead to

_ (b—c)y+ (c+4d)
f+c

and by substituting it into f(z,y) = 0 we obtain an equation h(y) = 0 at most quadratic with respect to
y, where .
h(y) := (c = b)y® — (c +d — ed + db)y + d(8 — d).

Note that

h(0) = (6 — d)d,
hl—d)=—-(1—dp—(1-0)d<0 (. b>0).

Suppose § < d < 1. If ¢ — b > 0, the graph of v = h(u) is concave, so h(0) < 0 and h(1 —d) < 0 yield
~that h(y) < 0 whenever 0 <y <1 —d. Otherwise, i.e., if c —b <0, since
ct+d—cd+bd=c(l-d)+b+bd >0,

we find , .
' W (y)=2(c—bly—(c+d—cd+bd) <0 whenever 0 <y <1-—d.

Hence h(y) is strictly decreasing and it follows that h(y) < h(0) < 0. In both cases, under the condition
0 <d<1,h(y) <0 holds whenever 0 < y < 1 — d and we see that h(y) = 0 has no solution in the range.
Suppose 0 < d < 6, then we have ‘

h(0) = (6 — d)d > 0,

0—d\ {(1-0)d+(1—-d)b}(0+c)(0—d)
h<9+b)_" | 0+ b)2 <0
h(1—-d)<0.
Hence, noting ,
(1—d) 6—d_(1—d)b+(1—0)d>0’

S 0+b 0+b :
we find that the equation h(y) = 0 has the only solution y* in (0,1 — d], which satisfies 0 < y* < Z;Jrff(<
1 —d). Set ‘ '
. -y terd
=
0+c
then the inequalities )

0—d—(0+0by*
0+ c

o= by* +d+c(1 —y*)

>0, 1-z"—y* =
0+ c Ty

>0

hold and it follows that (z*,y*) € €/, which is the only interior equilibrium. which we could call rumor-
endemic equilibrium (REE). ‘ '

Next, let us discuss the local stability of REE. Assuming 0 < d < 8, we examine the eigenvalues of the
Jacobian matrix M := DF(x*) at x*, which is given by

S \O+oyt —d—c+ (O +c)z*+ (—2b+2c)y* )
Then a little calculation gives rise to
det M = —y*W (y*) > 0~

and
(0 —d)trM =y"K, where K :=(c—b)y" — {c(1 —6) + (1 +0)0}.

Now, let us examine the sign of K. If ¢ — b < 0 then it is clear that K < 0. Otherwise, we see that

. d+c+bd—cd— /Dy
¥y= 2(c —b) B

where

Do := (d+c+bd—cd)® —4(c—b)(0 —d)d
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= (—~d+c+bd — cd)® + 4d{c(1 — 0) + bb}.

Since ,
2K = —d+c+bd—cd— /Dy —2c(1—0)—2(0 —d) — 2b0,

we have K < 0 clearly if —d + ¢ + bd — c¢d < 0, and this holds even if —d+ c+bd— cd > 0, because
\/—0 > —d 4+ ¢ + bd — cd, which follows from the form of Dy.

Hence we obtain tr M < 0. From it and det M > 0 we can conclude that the real part of any eigenvalue
of M is negative and so REE is locally asymptotically stable.

Let us apply Dulac-Bendixson Criterion (cf. [29]) to exclude the possibility of a periodic orbit or a
cyclic chain of equilibria, i.e., a piecewise smooth closed curve consisting of finitely many equilibria and of
orbits connecting them. It is convenient to write the system in term of y and z as follows:

y =y{0(1—y—2)—by—cz—d},
2 =y{(1—0)(1 -y —2)+by +cz} — dz.

We define a Dulac function p(y, z) := (yz) ™! on the domain {(y,2) € R4? |y > 0,2 >0,y +2 < 1}. Then
we have ‘ ' '

E%(p(y,z)y{(?(l —y- z) —by —cz—d}) + %(p(y,z)(y{(l —0)(1—y—2)+by+cz} — dz)) ,
__{9+b+ (1—9)(1—y).+by}7

z 22

and this is strictly negative on the domain. Hence we can use Dulac-Bendixson Criterion.

It follows from the above results and Poincaré-Bendixson trichotomy (cf. [29]) that, if 0 < d < 6, x*
is globally asymptotically stable in .

Therefore, we have the following results:

Theorem 1.2.1. Concerning the system ( 1.2.5 ),
(i) if d > 6, then RFE is the only equilibrium and g?o‘bally asymptotically stable in Q, and

(i1) if 0 < d < 8, then the system has the only equz’libﬁum x* = (z*,y*) in ', which is globally asymp-
totically stable in Q.

By applying the theory of asymptotically autonomous differential equations (cf. [26, 27] and [28,
Appendix F]), we find that the solutions of the system (1.2.4) show the,same type of large-time behavior
as the limit system, unless u = af. Hence Y (t) converges to 0 or a positive number as t — oo and
this system has no undamped oscillation. And we also find that Ry := 6/d = af/u is the threshold of
the system (1.2.4). 7y := p~! is the mean sojourn time spent in the spreader class with no rumor-class
transition. Hence, Ry := (af)Ty gives the average number of susceptibles that a spreader can let into
spreader class during the time 7y, provided that the whole population is susceptible. In this context, one
could also call it basic reproduction number. :

1.3 Age-independent models for the transmission of a variable
rumor

In this section, we consider the effect of some kind of modification of a rumor on its transmission.

So far we didn’t take into consideration the possibility of the transition from the stifler class into the
susceptible class, but in reality it is thought to exist. It is partly because the rumor gradually slips out of ‘
the memory of stiflers and so they become regarded as susceptibles when they hear the same rumor again.

However, what is thought to be more important for the transition is the effect of the modification of a -
rumor. Some rumors are modified in the communication process, which we call variable. Even if someone
knows such a variable rumor at one time, substantially he doesn’t know the modified one after a long
period of time.

~ In general, the transition is considered to be dependent on how long he/she has been in the stifler
class, his/her age and the speed at which the rumor is modified. For simplicity, these factors are ignored -
in the models below, and we assume that nZ(t) At stiflers become susceptibles during the small interval
(t,t + At), where n is a positive constant number. This means that the transition rate from the stifler
class into the susceptible class is independent of stifler’s age and exponentially distributed with respect to
the duration. For the above assumption we referred to those used in the influenza model [30, 31, 32].
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First, we consider the transmission of a variable rumor in a closed population: Our model takes the
following form: '

X(0) = ~aX ()03 + 200
Y(t) = aOX(t)%% —BY (¢ % - 7Y(t)%, (1.3.1)
216) = a1 = )X (1) 03 + Y (O +9Y (O 5 ~ 020

Noting the total population N (t) is a constant number Ny, after scaling time, we obtain the equations for

the new scaled dependent variables x(t) := X (¢t)/N(t), y(t) =Y (t)/N(¢), 2(t) := Z(t)/N(¢):
¥ =—zy+k(l—z—1y),

=k v (1.3.2)

Y =y{fz—by—c(l-—z—-y)}

where k :=n/a is a pos1t1ve constant number and / denotes the derivative with respect to dimensiornless
time.
The equilibria and the dynamics of the system (1.3.2) are as follows:

Theorem 1.3.1. The system (1.3.2) has RFE x° = (1,0), which is asymptotically unstable in Q'. And it
has the unique REE x* = (z*,y*) in ¥, which is asymptotically globally stable in Y.

Next, we consider the transmission of a variable rumor in a population with constant immigration and
emigration. Then we obtain the following system: '

( X(t) =B — uX(t) - aX(t)% +nZ(t),
V(t) = ~¥ (0) + a0X() 3 — BY () 3 ~ 17 () 3, (133
2(8) = —uZ(t) + a(l - e)X(t)]KV% + ﬁY(t)%« 4 w(t)%((% —nZ().

As in the case of the system (1.2.4), first let us discuss the two-dimensional limiting scaled system
x :d(l—x)—xy+k(l—aé—y),
{y'zy{@x—by~c(1——m—y)—d}.
The equilibria and the dynamics of the system (1.3.4) are as follows:
Theorem 1.3.2. Concerning the system (1.3.4), :
(i) if d > 0, then RFE x° = (1,0) is the only equilibrium and globally asymptotically stable in Q, and

(1.3.4)

(i) if 0 < d < 6, then the system has the unique REE x* = (z*,y*) in Q', which is globally asymptotically
stable in Q. RFE is asymptotically unstable in :

We omit the proof of Theorems 1.3.1 and 1.3.2, since it is the same as that of Theorem 1.2.1. See 1]
for details.

1.4 Age-structured model for rumor transmission

Henceforth, we consider the transmission of a constant rumor in a closed age-structured population under
the demographic growth. Let a € [0,w], where the number w(< c0) denotes the life span of the population,
and X (¢,a),Y (t,a), Z(t,a) be the age-density functions at time ¢ of the susceptible class, the spreader class,
* and ‘the stifler class respectively. Let P(t,a) := X (t, a)+Y(ta)+ Z(t,a) be the age-density of the total
number of individuals, then the total size of the population is given by N (¢ fo (t,a)da.

The basic system can be formulated as follows:

(0 + 8a) X (t,a) = —(ula) + Ai(t,a) X (¢, a),
(at + aa)Y(t a) A (t, a)e(O’)X(tv a) - (p,(a,) + A2 (ta a'))Y(t7 a)7
(0 + 0a)Z(t,a) = M(t,a)(1 — 6(a)) X (t, ) + A2(t,a)Y (T, a) — p(a)Z(t, ),
w (1.4.1)
X(t,0) = /0 m(a)P(t, a)da,
Y(t,0)=0, Z(t0)=0,
X(0,a) = Xo(a), Y(0,a) =Yo(a), Z(0,a)=Zo(a)



w(a), m(a) stand for the age-specific natural death rate and fertility rate respectively. (Xo(a), Yo(a), Zo(a))
is a given initial data. A;(t,a) is the force of transition into the spreader class on a susceptible individual
aged a at time ¢t and defined by

‘Al(t,a) — N_l(tj /Ow ala,0)Y (t,0)do,

where a(a,o) is the transmission rate between a susceptible individual aged a and a spreader aged o.
6(a) stands for the probability the susceptible individual aged a who knows about the rumor becomes a
spreader. As(t,a) is the force of transition into the stifler class on a spreader aged a at time ¢ and defined
by

Na(t,a) i ﬁ /0 " (B(a, )Y (£, 0) + 1, 0) 2 (¢, 0)} do,

where (3(a,0) is the transmission rate between a spreader aged a and another one aged o, while v(a,0) is
the transmission rate between a spreader aged a and a stifler aged o. .
It follows from (1.4.1) that P(t, a) satisfies the McKendrick equation

(8 + 8,)P(t,a) = —p(a)P(t,a), 7
P(t,0) / m(a)P(t,a)da, ' (1.4.2)
P(0,a) = Py(a): = Xo(a) + Yo(a) + Zo(a).

Note that we implicitly assume that there is no true interaction between demography and the spread of the
rumor. Hence, it is convenient to introduce the fractional age distribution for each rumor-class as follows:

; Z(t,a)

x(t,a) = P(t, a) ) y(tv (1) = P(t,a)’ z(t’a) = P(t, (l) '

Then the new system for the fractional age distributions is given as follows:

(B + 0p)z(t,a) = =A1(t, @)x(t, a),

(815 + 04 )y(tv a’) = )‘1( ) ( ) (tv (L) - )‘Z(t’ a’)y(tv a)a

(0 + 0a)z(t, a) = Ai(t,a)(1 — 0(a))z(t, a) + A2(t, a)y(t, a),

x(t, 0)=1, y(0)=0, =z(t0)=0," (1.4.3)
)\1 (t,a) = /0 ala ,0)y(t, o) do,
/O Y(t,0){B(a,0)y(t,o) + v(a,0)z(t, o)} do,
where (¢, a) is defined by ‘
. bt a) = P(t,a)

[y P(t,a)da’

According to the stable population theory (see, for example, [33, 34]), as t — oo, ¥ converges to the
persistent normalized age distribution uniformly with respect to a:

—)\oaf
Jim w(t.0) = ofa) = T
O .

where )¢ denotes the intrinsic rate of natural increase, F(a) is the survival rate defined by

F(a) = exp (— | o) da) ,

and c(a) is called relatlvely stable age dlStI‘lbuthIl Note that fo da = 1.
In the following we assume that the stable age distribution is already attained. Then system (1.4.3) is
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rewritten as the autonomous system below:

—)\1(t a)z(t,a),

(0, + 0a)a(t, a) =
(0r + 00)y(t,a) = Ai(t,a)0(a)x(t,a) — Xa(t, a)y(t, a),
(0 4+ 0a)2(t,a) = Mi(t,a)(1 — 0(a))z(t, a) + Aa(t, a)y(t, a),
s =1, y0) =0 2(1,0)=0
Mt a) = y(t,o)do,
Nalt,a) = / () {B(a, )y (t, ) + v(a, 0)2(t, o)} do
0

We mainly consider the system (1.4.4) under the condition

z(t,a) >0, y(t,a) >0, 2(t,a) >0, z(t,a) +y(t,a) + z(t,a) = 1.

(1.4.4)

(1.4.5)

Under this condition, we can formally exclude the susceptible class from the basic system. That is, instead
of the basic system (1.4.4), we can consider the following system with linear homogeneous boundary
conditions, which is more convenient to consider the well-definedness of the time evolution problem:

( (at + aa)y(tv a) = /\1( ) ( ){1 - y(t’ a) - Z(t, CL)} - /\2(t7 a)y(t» a)’
(0 + 0a)2(t,a) = M(t,a)(1 = 6(a)){1 — y(t, a) — 2(t, a)} + Aa(t, a)y(t, a),
y(tv 0) =0, 2(t0)=0,
Mt a) = /Ow ala,0)c(a)y(t,o) do, |
Ao(t,a) = /Ow c(o){B(a,0)y(t,o) + v(a,0)z(t,0)} do.

The state space of this system is
Q={(y.2) € (LL(O,w)* |y +2 <1},

where :
LY (0,w) = {f € L*(0,w) | f(a) >0 a.e.}

is a positive cone of L!(0,w), and E := (L1 (0,w))? is a positive cone of E := (L'(0,w))?.
Let us define an unbounded linear operator ‘A on E as follows:

(46)(a) = (fd({da —d(}da) @LEZ;)

where ¢ = *(¢1, ¢2) and the domain of A is defined by

D(A) := {¢p = (¢1,¢2) € E | ¢1, po are absolutely continuous on [0,w], ¢1(0) = ¢(0) = 0}.

Let F' be a nonlinear operator on E defined by

C( Mlal 61001 - 61(a) — da(a)} — Aola] b1, dalés(a)
F(o)e) = ( (4] 61]{1 — 9(a)}{1 — 61 (a) — da(a)} + Aola| ¢1,¢2]¢1(a)> )

where A\[a|¢1], A2]a| @1, 2] are defined by
Moldl: = [ " (g, 0)c(0)é(0) do,
alalon,a]: = [ el0)18(0,0)61(0) +1(0,7)onlo) o

(1.4.6)

(1.4.7)

(1.4.8)

Let us define an F-valued function u = *(y,z). Then system (1.4.6) can be formulated as a semilinear

Cauchy problem on the Banach space E:

%u@ = Au(t) + F(u(®), u(0) = up.
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Lemma 1.4.1. The operator A generates a Cy-semigroup {etA}t>0 and the state space Q is positively
invariant with respect to the semiflow defined by {e'};>0.

Proof. Let {T'(t)}+>0 be a nilpotent translation Cp-semigroup on L'(0,w) induced by

0, t—a >0,

pla—1t), a—t>0. (1.4.10)

(T(t)¢)(a) := {

Furthermore, let {7'(t)}¢>0 be a Co-semigroup on E defined by

(1) <¢1(a)> — ((T(t)¢1)(a)> .
¢2(a) (T(t)¢2)(a)
Then, it is clear that A is the generator of the Cy-semigroup {T(t)}¢>0. Since {T'(t)}s>0 is a translation

semigroup and (T(t)¢)(a) = *(0,0) whenever t > a, obviously Q is positively invariant with respect to the
semiflow induced by {et4};>o. , |

Let || - || be the usual norm on L'(0,w) and || - |z be a norm on E defined by

18]l := max{||g1], $all}, ¢ = *(d1,62) € B.
Let L(D) (D C RY) be a positive cone of L°(D) defined by
L¥(D) = {f € L*(D) | f(a) 2 0 ae.}
Assumption 1.4.2. «,3,v € L°°((0 w) X (0,w)), and 6,c € LY(0,w).
Under this assumption, set

a® :=esssupa, B :=esssupB, v :=ess supry, > := ess supc.

Lemma 1.4.3. Under Assumption 1.4.2, the map Flg : Q — E is Lipschitz continuous and there erists
a number k > 0 such that (I +kF)(Q) C Q.

Proof. First, let us prove the first part. Let ¢ = *(¢1,02) € Q, ¥ = Y(¢1,12) € Q and F(¢) =
t(F1(¢), F2(¢)). Applying the triangle inequality, we get the evaluation as follows:

() — B ()
= [ Pulaloalo@)a — o1(@) = éa(a) ~ Nl dalér(a)
— Aifali1]0(a)(1 — ¢1(a) — ¥2(a)) + Aofalthr, Polih a)‘ da
< [ {nlalodo@| 1~ 61(0) = 0)) ~ (1 = 1(@) ~ bala)
0
+6(@)(1 — Y1(a) — a(a))|Malalér] — Mifalya]| -
+ Aslaldy, do]|d1(a) — Ya(a)| + 7/11(0)1)\2[G|¢1, $2] — Aalalty, lbz]’} da
Concerning the last line of the above evalilation, from the inequalities

61(a), ba(a), Y1(a), a(a) > 0, dr(a) + da(a) < 1, 1(a) + Yala) < 1

we see that |
Ailalr] < /w a®c(o)do = a°§, N (1.4.11)
0 - .
1>‘1[G|¢1] -\ [allbl]l < /O a(a,0)c(0)|¢1(0) — ¥1(0)|do < a™c™|l¢1 — ¢,
alalén, o] < [ ela)(B% +97)dr < 6744,
[alals, 62 = Aalalin, vl |
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</ " e(0)B(a, 0)|1(0) — ()] do + [ dontacioato) - waio) a0
0 0 -
< 81 — ]| + 62 —val.

Hence we have

[ F1() — Fi(¥)]|
(g1 = Y1l + g2 — p2ll) + > c>wlldr — || -
+ (8% +4°)[d1 — Y1 + > B%wl[d1 — Y1 + v Fw]|p2 — 2|
< (207 4+ a®c®w + 87 + 97 + T %w + Y Fw) ¢ — P k-

The same evaluation gives rise to
[1F2(¢) — F2(¥)]] < (22 +a™c™w + 8% + 7 + ™B%w + 7™ w)|¢ — ¥|b-

Therefore, we obtain

[F(¢) — F(¥)lle < Kll¢ — ¥,
where K := 20 + a®c™w + 8% + 7% + ¢ %0 + 7w,

which implies that F|q is Lipschitz continuous.
To prove the second part, let. ¢ = (g1, ¢2) € , then we have

$1(a) + kF1(8)(a) + ¢2(a) + kF2(9)(a) = kAi[al¢1](1 — ¢1(a) — ¢2(a)) + d1(a) + ¢2(a),

yWthh is less than or equal to 1 Whenever 0 < k < (a®)~! because of (1.4.11). It is obvious that
¢2(a) + kFy(¢)(a) > 0. Since

#1(a) +kFi(9)(a) = (1 — kXz[algr, ¢2])d1(a) + kX1 [alé1]0(a)(1 — ¢1(a) — ¢2(a))

and 0 < Ao[algr, o] < B + 4, ¢1(a) + kF1(¢)(a) > 0 holds whenever k < (8% + y*°)~ L.
Therefore, if we choose k£ > 0 so small that

0 < k <min{(a™)7t, (8= +~>°)"1}, : (1.4.12)
then we find that (I +kF)(Q) C Q. O
According to [35] , the Cauchy problem (1.4.9) can be rewritten as follows:

%u(t) = <A = %) u(t) + %(Id +EkF)u(t), u(0)= uoyé Q,

where k is chosen such as 0 < k < 1 and (1.4.12) are satisfied. Its mild solution is given as the solution of
the integral equation (the variation-of-constants formula, see [36, Chapter 6]):

. ,
u(t) = e * tetAyy 4+ k1 / eh T (tms)glt=a) ALy (g) 4 kF(u(s))} ds.
. 0

. Let {S(t)uo}t>0 be the semiflow induced by this mild solution. On the other hand, let {u™ }neN be a
sequence of E defined by u’(¢) := ug and

ur () = ek e ug + Kk~ / H(-9) gl DALY (s) 4+ kF(u™(s))} ds.

If u™ € €, then e"ug, e=4{y"(s) + kF(u"(s))} € Q , which implies u"! € Q since Q is convex. It
follows from the Lipschitz continuity of F' that 4™ uniformly converges to the mild solution S(¢)ug. Hence,
u™ converges to S(t)up in E and we have S(t)ug € Q since Q is closed. Thus we obtain the following
theorem:

Theorem 1.4.4. The Cauchy problem ( 1.4.9)'has a unique mild solution S(t)uo, and Q is positively
invariant with respect to the semiflow {S(t)uo}ti>0. If uo € D(A), then S(t)up gives a classical solution.
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1.5 Existence of rumor-endemic equilibria

In this section, we consider the condition for the existence of rumor-endemic equilibria of the system
(1.4.4). We denote the density vector at the rumor-endemic equilibrium by *(z*,y*, 2*), and the forces of
~ rumor-class transition A1*, A2*. They must satisfy the following system: '

Lot (@) = M (@) (o), (15.1a)
ad;y*(a) = A\ *(a)f(a)z*(a) — A*(a)y*(a), | (1.5.1b)
%z*(a) = *(@)(1 - Bla))s"(a) + Xo" @)y (a), (15.1¢)

S 0)=1, () =0, 2*(0)=0, (15.1d)

M) = Ow oa,0)c(0)y (0)do, (1.5.1¢)
o™ (a) = /O " (o) {8, 7 (0) +1(0,0)2"(0)} do (15.1f)

By formal integration, we obtain the following expressions:

7*(a) = e~ o M (@)do

y*(a') :/ e_ f: A2*(T) dT)\l*(o')e(o‘)e_ foa )‘1*(7') dr dO',
0

a b
2*(a) = / {Al*(b)(l—e(b))e‘fo M@)o\ () / e—f:Az*vwm*(a)e(a)e—fo°'h*<f>dfda} b,
0 0 .

Substituting them into (1.5.1e) and (1.5.1f) gives the following nonlinear integral equations:

A1*(a) :/ ala,0)c(0) {/ e~ AT AT N () g(b)e™ Jo T (r)dr db} do, (1.5.2a)

0

0
Xo*(a) = ; B(a,o)c(o) {/0 e_‘ J7 AT A\ = (b)g(b)e™ Joxr(mar db} do

+/ v(a,a’>c<o'></ {M*(b)(l—9(b))e‘f°””(”)d°
0 0 :

b
+ A2*(b) / e I3 27T\ 2 (Yg()em ST 2T (M) dr do—} db) do’. (1.5.2b)

0 .

Let ® be the nonlinear operator on E defined by

0

®1(u)(a) == /0 ) a(a,0)c(o) { / T e I () 7, (b)8(b)e~ Jo ma () dr db} do, (1.5.3a)

Qa(u)(a) == /w Bla,o)c(o) {/U e~ Jy u2(7) dTm(b)O(b)e_ S us(r) dT'db} o
0 0
+ /Ow (a, 0’)0(0’)(/00 {ul(b)(l — g(b))e~ Jo m(@)do

b ’ ' :
+ ug(b) / e S (M) ATy (5)f(o)e JT wa(T) AT da} db) do/, (1.5.3b)
0 .

O(u) = (B (u), Po(w), u=‘(ur, us) € E. :  (15.30)

We find that ® is a positive operator on £ and ®(0) = 0. Let T': E — E be the Fréchet derivative of ®
at 0, then T is given as follows:

Tu = Y(Tiu, Tou), u€ E,

(Thu)(a) := /Ow #1(a,b)ui(b)db, * | (1.5.4a)

(Tyu)(a) = /0 " (. bYus (b) db, | (1.5.4b)
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&1(a,b) := 6(b) /bw a(a,0)c(o) do, ' (1.5.4¢)

é2(a,b) / B(a, o)e(o) do + (1 — B(b)) /b " (@, 0)e(o) do (1.5.4d)

Now, let us define a linear operator 7' on L'(0,w) by |
(Tu)(a) ;=T 1 / ¢1(a,b)u(b)db, ue L'(0,w). (1.5.5)
If v = %(vi,v2) € E is an eigenvector of T corresponding to A # 0, then bl' is an eigenvector of T

corresponding to A since B

(Tv1)(a) = (T1v)(a) = Avi(a).
Meanwhile, if v; € L'(0,w) is an eigenvector of T corresponding to A # 0, then v = *(vy,v3) € F is an
eigenvector of T' corresponding to A, where vy is expressed in terms of v; as follows:

va(a) 1= A1 /0 " ba(a, b)or (5) db

In particular, v = %(vj,vs) € F is a positive eigenvector of T' corresponding to A # 0 if and only if
v, € LY(0,w) is a positive eigenvector of T corresponding to A # 0. In addition, T doesn’t have any
eigenvectors corresponding to 1 in E if and only if T doesn’t have any eigenvectors corresponding to 1 in
L1 (0,w). :

In the following we make some assumptions deriving some important properties of T and ®:

Assumption 1.5.1. (i) 6(a) > 0 and c¢(a) >0 for almost all a € (0,w).

(i) There exist a number by € (0,w) and a number g9 > 0 such that ala,0) > g for almost all (a,0) €
(0,w) x (w— bg,w).

(iii) afa,o0),B(a,0),v(a,0),0(a) are extended as 0 when a or o is in R\ [0,w], then the following holds
umformly with respect to o:

w

lim la(a+ h,0) — ala,0)|da =0
h—0 0

1im /w |ﬁ(a+h,0)—ﬁ(a,a)|da:0,
hm/ lv(a+h,0) —v(a,0)|da =0,

lim |0(a+h) f(a)|da =0
h—0 Jg '

Now, let us summarize some ideas from positive operator theory. For more detail, the reader may refer
to [37]. As for basic results on Banach lattices and positive operators, see, for example, [38].

Let X be an ordered vector space and X, its positive cone. For u,v € X, u < v if and only if
v—u € X4. X4 is called total if X4 — X is dense in X. Let Y be an ordered vector space and Y, its
positive cone. The dual of X is denoted by X*. An operator T : X — Y is called positive if TX, CY;.
A subset of X* cons1st1ng of all positive linear functionals on X is called the dual cone, Wthh we denote
by X7.

We Write F(u)as(Fyu)forue X, F e X*. A positive linear functional f € X7 is called strictly positive
if (f,u) >0 for all w € Xy \ {0}. u € Xy is called nonsupporting point if (f,u) > 0 for all f € X7 \ {0}.
Let T be a positive linear bounded operator on X. T is called nonsupporting if for all v € X1 \ {0} and
for all f € X7 \ {0} there exists a positive integer p depending on wu, f such that (f, T"u) > 0 whenever
n > p. T is called semi-nonsupporting if for all u € X, \ {0} and for all f € X7 \ {0} there exists a
positive integer p depending on wu, f such that (f, TPu) > 0. It is obvious that, if T' is nonsupporting, it
is semi-nonsupporting. )

Given a linear operator T' on E, v(T') stands for its spectral radius, s(T") the spectral bound of T, p(T")
the resolvent set of T, o(T) the spectrum of T and F,(T') the point spectrum of T'. T* stands for the dual
operator of T

Theorem 1.5.2 (Klein-Rutman, [39]). Let X be a Banach space and X its positive cone, which is total.
Let T be a compact positive linear operator on X satisfying r(T') > 0.
Then r(T) is an eigenvalue of T and the corresponding eigenvector ¢ € X \ {0} exists.
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Theorem 1.5.3 ([37]). Let X be a -Banach space and Xy its positive cone, which, is total. Let T be
a semi-nonsupporting positive linear operator on X. We assume that r(T') is a pole of the resolvent
R\T)=(\—T)"1. Then the following holds:

(i) 7(T) € P,(T)\ {0} and r(T) is a simple pole of the resolvent.

(i1) The eigenspace corresponding to r(T) is one-dimensional subspace of X spanned by a quasi-interior
pointp € Xo. If ¢ € X4, c € R satisfy T = c¢, then ¢ = r(T) and there exists a real number k > 0
such that ¢ = k1.

(i1i) r(T) € P,(T*) and the eigenspace of T* corresponding to v(T') is a one-dimensional subspace of X*
spanned by a strictly positive functional f.

By applying the method of the Krasnoselskii’s fixed point theorem [40, Theorem 4.11], we have the
following (see [25, Proposition 4.6]):

Theorem 1.5.4. Let ¥ be a positive nonlinear operator on a real Banach space X with a positive cone

X,. We assume that ¥(0) =0 and U has the strong Fréchet derivative T := U'(0), which has a positive

eigenvector vo € Xy corresponding to the eigenvalue Ag > 1 and no eigenvector corresponding to the

eigenvalue 1 in X4. In addition, we assume that ¥ is completely continuous and ¥(Xy) is bounded. ~
Then, ¥ has a non-zero positive fized point.

Let X be an ordered vector space. X is called a vector lattice if x V y := sup{z, y},z Ay := inf{z, y}
exist for all z,y € X. The norm ||| on a vector lattice X is called a lattice norm if |z| < |y| implies
llz|l. < [ly||, where |z| := z V (—z). A Banach lattice is a Banach space X endowed with an ordering <
such that (X, <) is a vector lattice and the norm on X is a lattice norm.

The following comparison theorem is due to [41].

Theorem 1.5.5. Let X be a Banach lattice. For positive linear bounded operators S, T on X, the following
holds:

(i) S < T implies r(S) < r(T).

~(it) Moreover, if S,T are semi-nonsupporting and compact, then S <T, S # T, r(T) # 0 imply r(S) <
r(T).

After the above preparations, we firstly consider the properties of 7' defined by (1.5.5).
Lemma 1.5.6. T is nonsupporting.

Proof. Since ¢;(a,b) > 0 holds for all a,b € (0,w), if u > 0 then Tw > 0, that is, 7" is positive. Let

s(€) = {50’ i€ € (W —bo,w), (1.5.6)

0, otherwise,

“then a(a,o) > s(o) for all a,0 € ]R Let fo be a linear functional on Li(O,w) defined by ‘
(fo,u) == /Ow 6(b) (/bw s(o)c(o) da) u(b) db. (1.5.7)
The assumption s,c,6 € LE(0,w) implies fhat fo e (LY0,w))x. Moreover, since
/bw s(o)e(o)do >0, for all b € (0,w)

holds, we ﬁnd that fy is strictly positive. ~
Let u € LY (0,w). a(a,o) > s(o) yields that T > (fo,u)e, where e(a) = 1, a € R. Hence

Ty > (fo,u)(fo, e)"e, for all n € N,

and for all F € (L*(0,w))% \ {0} and for all n € N the following holds:

i

(F,T™u) > (fo, u){fo, )" (F,e) > 0.

Therefore, T is nonsupporting. |

Lemma 1.5.7. T is compact.
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Proof. First observe that

da

/O (62(a+ hyb) — 1 (a,b)| da — /0 o(b) /b (ala + h, o) — a(a, 0))e(c) do

< /Ow </bw la(a+ h,0) — a(a, 0)|e(o) da> da
< /Ow {/Ow la(a+ h,0) — a(a,o)] da} c(o) do.r

Assumption 1.5.1 implies that, for all € > 0, there exists § > 0 such that

/ la(a+ h,0) — ala,0)|da <e, foralloceR
0

holds whenever |h| < §. This gives

/w |¢1(a+ h,b) — ¢1(a,b)|da < e/wc(a)da =e.
0 0

Now, let {uy | A € A} be a bounded subset of L (0,w). Note that |jux|| < Co for some positive constant
Cy. Then we have

w

/ (Tuo-+ ) = (Tun)(@)]do < [ ([ 16160+ 1 - er(a 0 a0) oy o
< ellunll < Coe.

From the above evaluation and the well-known compactness criteria in L* (see, for example, [42, p.275]),
we see that {T'uy | A € A} is relatively compact in L'(0,w), hence T is compact. O a

According to Lemmas 1.5.6, 1.5.7 and Theorems 1.5.2, 1.5.3, the spectral radius r(T) of the operator
T is the only positive eigenvalue with a positive eigenvector ug € Li (0,w) which is a nonsupporting point.
Moreover, r(T) is an eigenvalue of T* with a strictly positive eigenfunctional Fp.

Secondly, let us consider the properties of ® defined by (1.5.3c).

Lemma 1.5.8. @ is completely continﬁous, and there exists a constant My > 0 such that ||@(u)| < My
whenever u € E.

Proof. Let {uy = *(u},u3) € E|\ € A} be a bounded subset of E. By definion ||uy|| < Cy holds for some
constant Cy > 0. Then we have

| 1w a+ ) — @ (u3)(@)] da
0
< ["da [“latat ho) - aa,o)elo) { | e B jape i e db} do.
0o . 0 . 0
Now, if 0 < b < 0 < w then it follows from
.
l—/ u}\(T) dr
0

that e~ Jo wA(M) d7 < ¢Co. Similarly we have e~ /5 ¥3(1) 47 < ¢Co_ Hence it follows that

b
< [ @iar < il < o
0

/Ow |1 (un)(a+ h) — P1(ur)(a)| da
< 200 /0 " da /0 " la(a+ hyo) - a(a,0)|d(o) { /0 " [l (5)16(0) db} do
— 200 /Ow da /Ow db {/bw la(a + h, o) — a(a,o)|c(o) da} 0(b)|u3 (b)| db. |

Assumption 1.5.1 implies that, for all € > 0, there exists § > 0 such that

o ,
/ lafa + h,0) — a(a,o)|da < € for all o € R whenever |h| < 4.
0
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With this, a similar estimation as in the proof of Lemma 1.5.7 gives:
o
/ |1 (up)(a+ h) — ®1(uy)(a)] da < e2“°Che.
0 v

Hence, A1 := {®;(uy) | A € A} is relatively compact in L'(0,w). Similarly we find that Ay := {®3(u,) |
A € A} is also relatively compact in L(0,w). ,

Let A:= {®(uy) | A € A}, then A C A; x A; implies A C A x A, = A7 x A,, where A stands for the
closure of A. Since A7, Ay are compact, A, x As is compact, so A, Wthh is a closed subset of A; X A, is
also compact. The above proves that ® is completely continuous.

Next, for any u = *(uy,uz) € E,, it follows that

||q>;(u)|| = /0 " da { /O : afa,o)e(o) ( / " o i walr) I (b)B(b)e™ Jo wa(T)dr db) d&}
Lo (oo re o)
el <1z
:/wd {[ a(a, o)e( (1—e foul(TdT)da}

/ da / .

Similarly we find that
; [@2(u)|| < (8% +27)w.
Let My := (™ + 3% + 27%°)w, then we see that ||®(u)|| < M. O

After the above preparations, we can prove the following threshold results:

Theorem 1.5.9. (i) If r(T) < 1, then u = 0 is the only solution of u = ®(u) in Ey, i.e., RFE is the
only equilibrium of the system. - .

(i) If 7(T) > 1, uw = ®(u) has at least one solution in E, \ {0}, i.e., the system has at least one REE.

Proof. Suppose r(T) < 1. We assume that u = ®(u) for some u = *(u1,us) € B4 \ {0}. Then we have
= ®;(u). Note that u; € L} 10,w)\ {O} because u; = 0 implies u = ®(u) = 0, which contradicts the
assumptlon u € E;\ {0}

Since 0 < o < b implies e~ /i’ “Q(T)dTe_ Jo (M) dr <1 it follows that
Tuy —uy = Tuy — &1 (u) € LL(0,w) \ {0}.
hence (F0>7 Tuy — u1) > 0 because Fjp is strictly poéitive. On the other hand, observe
(Fo,ful —uy) = (T*Fy,uy) — (Fo,uy)
= (r(T) — 1)(Fo, wa).

Since r(T) —1 < 0 and (Fp,u1) > 0, we have (Fp, Ty — u1) < 0, which is a contradiction. Therefore u = 0
is the only solution of u = ®(u) in E.

Next suppose r(I') > 1. Then we see that T has a positive eigenvector corresponding to 7‘( I and
no eigenvector in E, corresponding to the eigenvalue 1. In addition, ® has the properties stated in
Lemma 1.5.8. Therefore, Theorem 1.5.4 implies that ® has a non-zero positive fixed point O

From the above result, we can regard r(T) as the basic reproduction number of this system, which is
denoted by Ry in the followmg

1.6 Stability of rumor-free equilibrium

In this section, we consider the stability of RFE.
The first element y(t) of u(t) in (1.4.9) satisfies the abstract equation on L(0,w):

L0 = Byo) + Pytt) - (1 - 9(0) — =()) ~ Nl Iy(#),
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y(0) = yo € L'(0,w),
where z(t) is regarded as given and we define as follows:
D(B) := {u € L'(0,w) | u is absolutely continuous on [0,w], u(0) = 0}, (1.6.1)

Bu(a) = —a%u(a), weD(B), (162)

Pu(a) := 6(a) /Ow afa, or)c(o)u‘(o) do.

Let {T'(t)}+>0 be the nilpotent translation semigroup on L*(0,w) defined by (1.4.10), which is generated
by B. Let C(t) be a bounded operator on L'(0,w) defined by :

Cltyu = (Pu) - (1 - y(t) = #(t)) = Aala| v, 2Jy(1).
For any u € L} (0,w) we have C(t)u < Pu; because
z(t) =1—y(t) —2(t) <1, Pua) >0, Xlaly,2]y(t) > 0.
Since T(t), t > 0 is a positive operator on L!(0,w), we have
T(s)C(t)u < T(s)Pu, for all s,¢ >0 and for all u € L (0,w).
Hence, rewriting the equation

gy(t) = By(t) + C(t)y(t)

with the variation-of-constants formula gives
- . t :
y(0) =T+ [ T(t = 5)C(s)y(s) ds
- Jo

< T(t)yo + /0 T(t - 5)Py(s)ds

for all t+ > 0. Hence, if we denote the Cy-semigroup generated by B + P by {W(t)}:>0, we obtain
0<y(t) < W(t)yo, foralltecRy. (1.6.3)
Now, 1et us consider the spectrum of B + P.

Lemma 1.6.1. For any A € p(B+ P), the resolvent R(\, B+ P) is compact and expressed with a compactb
operator T, as follows:

(R(\, B + P)u)(a) = / ’ e @) (I = Ty) " tu)(r) dr, ‘ (1.6.4)
0
o(B+P)=P,(B+P)={\ecC| le o(T)}, _ (1.6.5)

where u € LY (0,w), a € R4,

Proof. For u € L(0,w), let v := R(\, B + P)u and let us express v in terms of u.
(A — (B + P))v = u is rewritten as follows:

v'(a) = —Mv(a) + X(a) + u(a),

w
where X(a) := G(a)/ a(a,0)c(o)v(o)do, a € Ry
0 :
v € D(B) implies v(0) = 0, so the above integral-differential equation can be transformed as follows: ‘

v(a) = /Oa e Mo (X (1) + u(T)) dr.

If we multiply a(7’,a)c(a) on both sides of the above equation, integrate with respect to a on (0,w) and
multiply 6(7"), we get

X" =0(") /Ow/oz(T',a)c(a) </Oa e;)‘(“‘T) (X(7) + u(r)) d7'> da
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- /O " (X () +u(r))dr,
where ¢y (a,b) == 6(a) /bw e MY o(a,0)¢(o) do.

For f € L'(0,w), let
@)@ = [ s
~ then we get the equation with respect to X as follows:
X=DX+TusI-1)X="Twu
Hence, X is uniquely determined if and only if 1 € p(T,\), when
X =(-T) T

Noting that X R o X
Xtu=T-T)" T +I-T)u=(I-T))"u,

we derive the equation (1.6.4). ‘

With Assumption 1.5.1, the same evaluation as in the proof of Lemma 1.5.7 yields that Ty is compact.
From (1.6.4) we see that R(), B+ P) is the integral operator whose integral kernel is a continuous function,
hence it is a compact operator on L'(0,w). So, B+ P has a compact resolvent, from which (1.6.5) follows

O

Let ©:={AeC|1ea(Th)}
‘ Assumption 1.6.2. There exist an interval (by,b2) C (w — bp,w) and a number €’ > 0 for which
0(b) >¢', forall be (by,bs).
Theorem 1.6.3. r(f’s(Ber)) =1 holds, where s(B + P) means the spectral bound of B+ P.
To show the above theorem, we prepare the following lemmas in advance:
Lemma 1.6.4. lim)_, _, T(T)\) = 400 and limy_, o r(TA) =0.

Proof. We define s(§) by (1.5.6) and f by

(fa u) = /Ow 6(b) </bw s(a)c(a);“x(”“b) da) u(b) db.

Note that, when A = 0, f) equals to fo defined by (1.5.7). The same argument as in-the proof of
Lemma 1.5.6 shows that fy is a strictly positive linear functional on L'(0,w) and

Thu > (fr, ue,

from which it follows that 77 is nonsupporting. In addition, in Lemma 1.6.1 we saw that 7% is compact.
Hence, r(T,\) is an eigenvalue of T)\ with a strictly positive eigenfunctional Fy. Then we have

(Fx, Tau) > (fr,u)(Fr,e) & (DN (Fr,u) > (Fru)(Fye).

Sﬁppose u = e, then Fy is strictly positive, from which (Fx,e) > 0 follows. Hence we get

T(T)\) Z <f)\7 6>.

With Assumptions 1.5.1 and 1.6.2, we see that

) = [ storcto ([ omee ) do
> /l: ec(o) (/I:Z gleMo-b) db> do

w ~A(o—b1) (] — g=Mb1—b2)
= / ec(o)e’ - = 1-e ) do.
by —=A

- 23



As X tends to —oo, e 7b1)(1 — e~Mbi=b2)) /(_)) tends to infinity, hence (f\,e) tends to infinity from
Fatou’s lemma, and r(7T}) also tends to infinity.

Next, observe that .
(Thu)(a) < aoo/ (/ e MY ¢(o) da) u(b) db.
0 b

The same argument as above gives

w w w _ a—Ao
r(Ty) < a°°/ (/ e M ¢(g) da) db = a°°/ c(‘o')l——e—'— do.
0o \Jb 0 A

Then, Lebesgue’s dominated convergence theorem yields that f: c(o)(1—e *9)/Ado — 0 as A — oo, from
which we have r(Ty) — 0. O

Lemma 1.6.5. )\ — r(T%) is continuous and strictly decreasing. In addition, r(T\) = 1 has the unique
root Ao in R, which satisfies Ag € .

Proof. r(T)"is a point spectrum of T but not an accumulating point of o(T). The mapping R 3 X
T\ € £(L*(0,w)), where L(L'(0,w)) is endowed with the topology induced by the operator norm, is
continuous. Hence A — (1) is continuous (see, for example, [43, IV-§3.5]).

In addition, T\ is nonsupporting and compact for all A € R, and if A < X then Ty > TA/ T)\ =+ Ty
and r(Ty) > 0, so Theorem 1.5.5 implies that r(T\) > r(Ty).

Hence we find that A — r(TA) is continuous and strictly decreasing. From it and Lemma 1.6.4, we
see that r(T ) = 1 has the unique root Ap in R. Since T,\O is nonsupporting and compact, we have
1 =r(Ty,) € o(T»,), which yields that Ao € 2. O

We referred the idea of the proof of the following lemma to [44, Theorem 6.13].
Lemma 1.6.6. Re\ < Xg for all A € £\ {Ao}.

Proof. For all A € ©, 1 = o(Th) and so Ty = v for some v € L'(0,w).
For u € L'(0,w) we define |u| € L% (0,w) by |u|(a) := |u(a)|. Then we see that

[vl(a) = [Txv(a)]

< (" i@ ([ 1 Dla(a,0)e(0) do
[ oo ([ )

= TReA|v|(a), for all a € (0,w),

ie., |v] = |T>\v| Tre Alv]- Let Frea be a strictly positive eigenfunctional of Tf{e  corresponding to
r(Tre ), then we have
(Tre 2) (FRex, [V]) > (Frex, [v])-

From (FRe x, |v]) > 0 it follows that r(Trex) > 1. Since A — r(T}) is strictly decreasing by Lemma 1.6.5,
we obtain that Re A < Aq.

Now suppose Re A = Ag. Then we have |v] < Tholv|. T T, lv| > |v], letting F), be a strictly positive
eigenfunctional of T %, corresponding to r(TAO) =1, we see that

<F)\0?|U‘> <F)\0’T)\0|U‘> <T;0F>\ovlvl> = <F/\0’|Ul>7

which is a contradiction. Hence we have Ty,|v| = |v]. Let vy € L} (0,w) be a nonsupportlng eigenvector
of T}, corresponding to the eigenvalue 1, then |v| = coup for some co > 0. Hence

v(a) = wo(a) - oo™
for some function & : (0,w) — R. Obsefve

IT,\UKG) = |v|(a) = Qovo(a) = COTAOUO(G>1

which is rewritten in terms of integration as follows:

db / g(o,b)do| = / ~db / l9(a,b)| do, (1.6.6)
0 b 0 b
where g(o,b) := O(a)vg(b)coeik('f)e_>‘("_b)a(a, o)c(o).
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From (1.6.6) it follows that g(o,b) = go(o,b)e™** for some positive function go(o, b) and some constant real
number k; independent of o, b (see, for example, [45:, Theorem 1.33]). Hence we may assume

k(b) — (ImX) (o — b) = ki,

then the following holds:”
Th(a) :/ 0(a)vo(b)coe™® (/ e_)‘(“_b)a(a,o)c(a) do) db
0 , b
w w
:/ B(a)vo(b)cg </ e ReA=b+iki o (g 0) (o) da> db
0 b ‘

= eiklcofxovo(a)
= coe*1ug(a),
from which it follows that o X '
coezkga)vo(a) =wv(a) =Thv(a) = coe™ug(a),

ie., emA)(e=b) — 1 holds whenever 0 < b < 0 < w. Therefore we have Im A = 0 and this completes the
proof. ' ‘ O

Proof of Theorem 1.6.3. Lemma 1.6.1 implies that s(B+ P) = sup{Re A | A € X}, hence from Lemma 1.6.6
we have \g = s(B + P). Lemma 1.6.5 implies that 1 = r(T),), therefore we obtain the conclusion. [
After the above preparations we can prove the global stability for RFE in the case Ry < 1.

Theorem 1.6.7. If Ry = r(T) < 1, the trivial equilibrium (z,y,2) = (1,0,0) of the system (1.4.4) is
globally asymptotically stable in the state space {(z,y,2) € (LL(0,w)®) |z +y+ 2z = 1}.

Proof. The translation Co-semigroup {T'(t)}:>o is nilpotent, so it is eventually norm continuous. In ad-
dition, with Assumption 1.5.1, the same evaluation as in the proof of Lemma 1.5.7 yields that P is
compact. Hence {W (t)}+>0, generated by B + P, is also eventually norm continuous ([38, A-II, Theorem
1.30]). Therefore we can apply the spectral mapping theorem [38, A-III, Theorem 6.6] and we obtain
wo(B + P) = s(B + P), where wy(B + P) denotes the growth bound of the semigroup {W (t)}:>o.

On the other hand, observe that

A ~ ~

T'(TQ) = T‘(T) <1l= T(TS(B+P))f

Since \ — r(T) is strictly decreasing, we have s(B + P) < 0.
Hence, wo(B + P) < 0 and |W(t)|| — 0 as t — oo. From (1.6.3) it follows that y(t) — 0 as t — oco. It
is easily seen from (1.4.4) that A(¢,-) — 0 and z(¢) — 1. This completes the proof. O

Finally, in the case Ry > 1, the following holds:
Theorem 1.6.8. If Ry > 1, then the trivial equilibrium (z,y, z) = (1,0,0) of system (1.4.4) is unstable.

Proof. Let us consider the abstract equation:

Sylt) = By(o) + Py(t) - (1= y(t) ~ 2(2)) = Nalo |y, y(0),

where y(0) = yo € L'(0,w). The linearization of its right-hand side at 0 gives (B + P)y(t). Since

r(To) = Ro > 1 =r(TyB41p))s

we have s(B + P) > 0, from which it follows that B + P has an eigenvalue whose real part is positive.
This completes the proof. ' O
1.7 Stability of rumor-endemic equilibria

Let us investigate the local stability of REE (z*,y*, z*) under the condition Ry > 1 and the proportionate
mixing assumption (PMA): ‘

Assumption 1.7.1. «, 3,7 are expressed as follows:

a(a,0) = aa(a)az(0),  Bla,0) = fi(a)B2(0), (e, 0) =n(a)r(0).

a1, az, B, 82,71,72 € L (0,w), and B1 and y1 are linearly independent in L>°(0,w).
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The assumption a(a, o) = a1(a)az(0) means that there is no correlation between the age of a susceptible
- individual and the age of a spreader in their contact. The interpretation of the other assumptions is the

same. Although PMA is simplistic because people usually mix differently, our analysis would be far more
difficult without PMA. ‘ o
Let a$° := ess sup a; etc.. Notice that we can calculate Rg under PMA. In fact, we see that

(Tw)(a) = a1 () /0 " u(0)o) ( /b " (o)) da) b

and substituting «; for u gives

(TFar)(@) = (o) [ a;@e(b) ( /  ax(0)e(o) da) b,

0

which yields through the change of integral order that

Ry =/0w as(o)c(o) (/00 a1(b)8(b) db) do. E (1.7.1)

In this section, we fix the coefficients a1, as, f1, B2,71,72 and 0 so that Ry = 1 holds, and we rewrite
this a1 as af. By definition we have

/Dw o;z(b)c(a) (/00 a’{(b)e(b) db) do = 1. | ; (1_72)

Let a;(a) := eaf(a), where € is the bifurcation parameter here and Ry = €. PMA implies that A\;* and
A2* have finite-dimensional ranges, i.e.,

M7 (a) = cran(a) = cieai(a),  A*(a) = c2fi(a) + csm(a),

where

cvim [ axlorlo @) do, eri= | CBl)lo (o) oy i [ malo)lo) (o) do,

Note that the condition ¢; = 0 implies c; = c3 = 0 and corresponds to RFE and that the condition
¢1 > 0 corresponds to REE. Then, (1.5.2a) and (1.5.2b) is expressed as a nonlinear system for ¢1, ¢, ¢3

corresponding to REE :
‘ @j(cl;CQ,Cg;E)ZO, j=172’37

where

O1(c1,c9,c3;€) = 6/ ag(o)c(o) </ ez [y Ar(m)dr—cs J;7 71(T)dTof{(b)@(b)e\_‘315fob 0‘;(T)deb> do —1,
0 0 ~

O2(c1,ca,c3;€) i= cls/ ',82(0)0(0) (/ e~ Y Ar(n)dT—cs [T v (AT o x () (p)e 1€ I O‘;(T)deb) do — co,
0 “\Jo

Os3(c1,co,c3;€) 1= 015/ ’yz(a/)c(a’){ / ai(b)(1— O(b))e_clsfob aj (r)dr
0 0
. b i
T (esBr(6) + cwl(b))( [ el e 0 g o)) "’“”drd"> db}d‘” —cs.
0

By using (1.7.2), we see that ©;(0,0,0;1) = 0 for j = 1,2, 3. Let us use the implicit function theorem to find
a solution (c1(g), c2(g), cs(¢)) bifurcated at the point ¢ = 1 from the trivial solution (c1,ca,c3) = (0,0,0).
Let M(cy, ca,c3;€) be the Jacobian matrix of the mapping

c1 ©1(c1,¢2,c3;€)
ca | = | Oalci,c,c37€) |,
c3 O3(c1,c2,c3;€))
ie.,
00; ,
M(Cl,C2,C3;€) = <—l(01a02703;€)> .
i,j=1,2,3

6Cj
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At the bifurcation point, this matrix takes the form

| 891(0,0,0;1) 5$2(0,0,0;1) (0,0,0;1)
M(0,0,0;1) = | $22(0,0,0;1) -1 0 ,
' 892(0,0,0;1) 0 -1

where

691 “ 7 *i ’ *
Be, —(0,0,0;1) = /(; az(a)c(a)/o ozl(b)é’(b)/0 aj(r)drdbdo < 0,

8@ w g
—1(0 0,0;1) = /0 ag(a)c(a)/o ai (b / /3’1 ydrdbde <0,

w o b
‘:;91 (0,0,0; 1) /O as(0)e(o) /0 o (b)8(b) /0 y(r)drdbdo <0,
; %@2 (0,0,0;1) = / Ba(o)c(o )/0 a1 (b)8(b) dbdo > 0,
90

Fer (0,0,0:1) = /O a(0)c(o )/00 1(6)(1—6(b)) dbdor > 0.

It follows that

90, 90, 6@2
7o (0:0.,0:1) + 5 (0001)8

is strictly negative. Hence, we can apply the implicit function theorem to show the existence of a branching
solution (c1(g), c2(€),cs(e)) with ¢1(1) = ca(1) = c3(1) = 0 when & > 1 is small enough. In addition, we

see that
er'(1) ~ 91(0,0,0;1) ) 1
e'(1) | = =M(0,0,0;1)71 (o 0,0:1) | = 5= ?;33 (0,0,0;1) | .
\¢3'(1) 92:(0,0,0;1) 0 \222(0,0,0;1)
(

REE (z*,y*, 2*) depends on A1* and A2*, ie., c1(€),ca(€), c3(e) When € > 1 is small enough, which
admits such expression as '

(@) = z*(aie), y'(a) =y"(ase), ="(a) = ="(ase).

Dy := det M(0,0,0;1) = (0,0,0;1) + 5= 8@1 (0 0,0; 1)693 (0,0,0;1)

OJQ) L@m

Then, we h‘ave

885”; (a;1) = —ci'(1) /0 ’ at(0)do,
@ =a') [ ai(e)(e)do
0z*

= | i ()(1— 0(0)) do.
Then, let us return into the discussion of the local stability of REE. Let
(t,a) = z*(a) + 2(t,a), y(t,a) = y"(a) + Y(t, a), 2(t,a) = z"(a) + 2(t,a)
be a solution of system (1.4.4). (Z(t,a), §(t, a), Z(t,a)) denote the small perturbationé from REE. Note
that ‘
Z(t,0) = §(t,0) = 2( 0)=0, (1.7.3)
Z(t,a) + y(t,a) + Z(t,a) = 0. (1.7.4)
The small perturbations satisfy the following equations:
(@ +8)3(t,0) = —3(t,a) (M (@) + M (¢, @) — " (@) A (¢, @),
(0 + 0a)F(t, a) = (¢, a)0(a) (A" (a) + A (t, ) + 27 (a)f(a) M (¢, a)
= g(t,a)(A2* (@) + Aa(t, a)) — y* (@) Aa(t, a), (1.7.5)
(5 + 0a)3(t, @) = Z(t,a) (1 — (@) (\*(a) + M (t,)) + 2" (@)(1 = B(a)) M (£, a)
+5(t, a)(A2* (@) + Ao(t, @) +y" (a) Aa(t, ),
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where

Mi(t,a) = /Ow d(a o)c(o)g(t, o) do,
Rolt,a) = / o(0){B(a, o)t 7) + 7(a, )3(¢, o)} do.

We can formulate (1.7.5) as an abstract semilinear problem on the Banach space (L*(0,w))3:

%u(t) = Au(t) + Gu®),  ult) = HE ), 5t ), 3t ). (1.7.6)
The generator A is defined by ‘ ‘
—d/da 0 0 ¢1(a) ¢
(4¢)(a):=| 0  —d/da 0 g2(a) |, o= {2, (1.7.7)
0 0 —d/da os3(a) o3 ,

where the domain of A is defined by

D(A) := {¢ = Y(¢1, b2, P3) € (L' (0,w))? | b1, ba, ¢3 are absolutely continuous on [0, w],
$1(0) = ¢2(0) = ¢3(0) = 0, ¢1(a) + ¢2(a) + ¢3(a) = 0}. (1.7.8)

The nonlinear term G is defined by

G(u) == "(G1(u), G2(u), Gs(w)),
G1(u) = —ui (A + Pyug) — z* Pyug,
Ga(u) := u18(M\* + Pyug) + 2 0Pyug — ua(A* + Pgus + Pyus) — y*(Pgua + Pyus),
G3(u) == u1(1 — 0) (A" + Paug) + 2™ (1 — 0) Pyug + uz(A2"™ + Pgus n Pyug) + y* (Pgug + Pyus),

where, for f € L'(0,w),

(Psf)(a / Bla,o)c o)do, (1.7.9)

The linearized equation of (1.7.6) around u = 0 is givén by

4

dt

where the bounded linear operator C is the Fréchet derivative of G(u) at u = 0 given by

u(t) = (A+ Clu(?),

. _ul)\l —x*P, U2
Cu:=|. u1ON* + 20 Pyug — ’U/2)\2* — y*(Pg'lQ ~+ Pﬂ,u;:,) .
( — 6)/\1* + x*(l — 0>PQUQ + 11,2/\2* + y*(PBuz + P,Y'UJ;J,)

Now let us consider the resolvent equation for A + C:

C—(A+C)v=u, veDA), uc(L'0w)? CeC. (17.10)

Then we have | ‘ /
vi(a) = —Cvi(a) — M (@i (a) — 2" (a) (Pava)(a) + u1 (a), (1.7.11a) .
- vh(a) =—§v2(a)+ 1"(a)0(a)vi(a) + 0(a)z"(a)(Pavz)(a) — Az(a)vz(a)
y*(a)(Pgv2)(a) — y*(a)(Pyvs)(a) + uz(a), (1.7.11Db)
vé(a)=—CU3( ) + M (@)(1 = 6(a))vr(a) + (1 - 8(a))z"(a) (Pavz)(a)
+ As(a)va(a) +y™(a) (Pav2)(a) + y*(a)(Pyvs)(a) + us(a). (1.7.11c)
From (1.7.11a) and v, (0) = 0, we obtain '
= [[er (N Pa)) +un(rpe T ar (1712)
0
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From (1.7.11b) and v2(0) = 0, we have

a) = /Oa{Al*(o)H(o)vl(a) +8(0)z* (0)(Pavz)(0) = y*(0)(Psv2)(0)
’ — 5" (0)(Pyw3)(0) 4 ug(0) e~ ¢ (@D S A" (M AT 45 (1.7.13)
Let
&= [ axlo)lonio)dn &= [ Balo)elopa(o)do, 6= [ “elo)elo)uslo)do, (1714

Assumption 1.7.1 implies

(Pav2)(a) = &1aa(a),  (Pav2)(a) = &61(a),  (Pyvs)(a) = &m(a).
Inserting (1.7.12) and (1.7.13) into (1.7.14) yields a three-dimensional system as

&1 Uil | |
(I - ®(¢,¢)) (52) = (m) , (1.7.15)
&3 n3 ‘

where I is the 3 x 3 unit matrix and ®(¢,e) = (¢i;(¢,€))1<i,j<3 @ 3x 3 matrix. ¢4;(¢,e)and n; (1 <4,5 < 3)
are defined as follows:

ouce) = [ <r>c<r>< [ o1 @iozaito )e-“r—“)e—@(ﬁ’fiﬁﬂ”‘l"%@f““”“d") v

—/ {/ 5@1 )e_C(T_U)e_CQ(s)f;.al(T)dT'“Csv(E)f;’h(T)d
0 .
x (/ eaf(1')e ¢ 7T g e (E) J§ ead T)deT)dO'} dr,
¢12(Ca’€) = / </ y o; 5 61 C('f o) -Cz(s)frm(‘r)d‘r cs(s)f"yl(ﬂ- deU) dr,
0
¢13(C”5) = / (/ y*(o;¢)v1(0)e —((r—0)g=ca(e) [; Br(r)dr—ca(e) J; m(r)dr dcr) dr,
0
$21(C,€) / Ba(r )</ 8(0)z*(0; €)eat (0)eSTT—Pe=ca() [T Br(m) dr=ca(e) [7 m(r)dr do—> &
- / Ba(r)e( { / ci(e B(c)e (=) me(®) [5 Br(r) dr=es &) [ () dr
0 0

X (/ eal (r)e ¢ g (®) J§ eai(m)dr dT) do} dr,
622(,) / Balr
$23(C,€) / ﬂz c(r

s
Sl
| $31(¢,e) = /0 Yo (r)e(r) (/ *(0;e)eat(0)e S (Tmeme1(e) [y eai () dr do) dr
=, o
1

y ore ,31 e —¢(r— cr)e—cz(e)f’“gl(r d‘r—cs(e)fT'n('r)dr do‘) d .

/ *(0;6)m (0)e ST eme2() Jo Br(m) dr—ca(e) [7 v (r) dr da) dr

7‘ / 0. c 6051( )e—C(r-—o?e—cz(s) ST Bi(r)ydr—ca(e) [T vi(r)dr dU) dr

O / o1 (e)ea(0)f(o)e=Sr=)ge2(E) J7 By dr—co(e) [T m(r)d
0

% (/ ca T/)e—C(U—T )e—Cl(E foa eaj(r)dr d'r/) da'} d?",

1(
¢32 ¢,€) /w ’Yz (/ y ag; E)ﬂl ) —((r—o)g—ca(e) ST Bi(r)dr—c3(e) [J vi(r)dr dO’) dr,
0 0
o33( C, /w Yo (r (/ y*(o;e 'yl )e—C(r—a)e—cz(E) JT Bi(r)dr—cs(e) [T vi(r)dT do) dr,
0 0 ' :
"=

u2 —((r U)e-—c2 e) [T Bi(r)dr—cs(e) [T va(r)dr da) dr

w
052 <

S~
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+/ as(r)e(r) /c1(6)5‘04’1*(U)G(U)e_C(T_”)e_”(e)fgﬁl(")d“%(s)f;”(ﬂ“
0 0 ’

) </cr u1(7_,)e_¢(a—‘r')e—t:1(6)f ) eay(r)dr dr ) dO'} dr,
0 :
Ny = ¢ Ba(r)e(r) /T. uz(0)e=Cr=)e2(®) Jz By dr=es(e) [ m(r)dr da> ar
0 0

+ [ Balr)elr) / c1(e)eat (0)8(c)eCr=)gmea(e) I3 Bi(r) dr—ca(e) [} m(r)dr
0 0

X </ ul(T’)e_C(a_T/)e_cl(s)f5 caq(r)dr dT') da} dr,
0 ,

/T uy (0)e~Sr=gmer(e) [y cai(m)dr dcr) dr
O . B

- /w Ya(r)e(r) (/T ug(0)e ST Neme2(®) J5 Ar(m) dr=ca(e) [om(r)dr da) dr
0 0 ’

= [M e} [ exe)zat@)ploe e ares@ i
0 0 .

x < / uy (r)e ¢ gmen(e) [T eai(r)dr dr’) da} dr.
0

¢ij (0,1) are calculated as follows:

611(0,1) = /0 " aa(r)e(r) ( /O " 0(0)0 (o) dcr> dr =1,
$21(0,1) = /Ow Ba(r)e(r) < 01« 8(c)at (o) da> dr = Q@(o 0,0;1),

o000 = [“2a(r)er) ([ 0= 0toatio)ar ) ar = T2 0.0,00),
¢4(0,1)=0 (i=123 j=23.

In addition, we observe that

Bgél (0, 1) /w aa(r)e(r) (AT O(o)as(o)(—r + d) da) dr <0,

agéj 0,1)=0 (=123, j=2,3),

%91 (0,1) = 89%0 0,0;1){1 + cx/( >}+1+%@ ©.00:1) + 24(0.0.0:1),
C3

2012 0,1) — e (1 )%@1 (0,0,0;1),

013 00,

5% 0,1)=¢c1 ()83(0001)

Now we denote the determinant of I—®(¢, €) by £({,e). We see that the roots of f({, 1) give the eigenvalues
of the linearized system at RFE. If e = 1, then f(0,1) = 0 and we can see that

of 91
o¢ A

Then the implicit function theorem implies that the equation f(¢,&) = 0 can be solved locally as ¢ = ((¢)
with ¢(1) = 0. At the same time, it is rather easy to see that

9 0,1) = - Z12(0,1) > 0.

0 (0,1) = ~22110,1) - 2822 (0,1)6(0,1) ~ 2220, 1)1 (0,1
a@ 90, 00
= —Doey/(1) =1 — acl (0,0,0;1) — e —(0,0,0;1) — Bes ! (0 0,0;1)
‘ 8@1 6@1 661 ‘
= &(0001) 80(0001) . =210,0,0;1) >
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which means that the dominant eigenvalue goes to the left half complex plane as € increases small enough
from 1. The well-known technique based on the Rouché’s theorem (see [33, Proposition 4. 1]) yields that
¢(g) is the dominant root of f as long as |e — 1| is small enough.

Now, let us examine the relationship between the dominant eigenvalue and the local stability of REE.
Let ¥* = 0(A + C) be the spectrum of A + C, then the following holds:

Lemma 1.7.2. (i) * can be rewritten as follows:
Y*=P,(A+C)={(eC]| f(¢(e) =0}
(ii) The linearized semigroup {e"A+C)},5¢ is eventually compact and
- wo(A+C)=s(A+C)=sup{Re(| (€ Pq(A + )}

Proof. The resolvent equation (1.7.10) is solvable if and only if I — ®((,¢) is invertible, i.e., f({,g) = 0.
Hence we have

p(A+C)={CeC|f(¢e) #0}, I ={CeC[f((e) =0}

It is easy to show that the resolvent R((, A+ C) is compact for any ¢ € p(A + C), from which it follows
that ¥* = P,(A 4 C) and we have shown the first assertion.
Let us prove the second assertion. The linearized generator A+ C' is decomposed as A+ C; + Cs, where

C1u = t(—>\1*ul, 9/\1*u1 — )\Q*UQ, (1 — 9))\1*U1 + /\2*u2)

and
—z*(Pyuz)
CQU‘:: 9$*(Pa’u,2) - y*(Pg'LLQ + PfY’U,g,)
(1 — 0)z*(Pauz) + y* (Pguz + Pyus)

We easily find that the operator A + Cj is the generator of a multistate stable population with a finite
age interval (see [34]). Hence it follows that the population semigroup generated by A + C; is eventually
compact and its essential growth wi(A + Cy) is —oco. Since Cs is compact due to Assumption 1.5.1, we
have wi1(A + C1 + C2) = wi1(A + C1) = —oo (see [46, Proposition 4.14]). Then the second assertion is
obtained from [46, Proposition 4.13]. : d

From the above results and the principle of linearized stability (see, for example, [46, Proposion 4.17]),
we conclude:

Theorem 1.7.3. Under Assumption 1.7.1, the rumor-endemic equilibrium bifurcates forward from RFE
and is locally asymptotically stable if Ry > 1 and |Rg — 1| is small enough.
1.8 Uniform strong persistence

‘In this section we show that Ry > 1 implies uniform strong rumor persistence under PMA.

PMA with Assumption 1.5.1 (ii) implies that o;(a) > 0 for almost every a € (0,w) and as(c) > 0 for
almost every o € (w — by, w). Moreover, it implies that

A1 (t,a) = ai(a)1(t), where ¥1(t) := /Ow az(a)c<a)y(t, o)do | ; (1.8.1)

and

&wwzm@%m+n@%@

© where

/ Bo(0)e(oVu(t,0) do,  a(t) 1= /wayg(o)c(o)z(t,cr)d&_ ,’ (1.8.2)

By integrating along characteristics we obtain from the partial derivative equation for y(t,a) in (1.4:4)
that

y(t,a) = / (o)1t —a+0)0(0)z(t —a+o,0)e” I ’\2(t"’+T’T) 4T do (1.8.3)
, - Jo . :

if t > a, and
et
y(t,a) = yola —t)e” Jo de(ma—tdrydr 4 xo(a —t) / {a1(a —t+ s)1(s)
0
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X B(a—t+ s)e” Jo Mmatin) dr=[Iha(razttr)dry g5

if t < a. If t > w, by substituting this into (1.8.1) and letting 7 = s — o , we have
010) = [ as@elo)] [ et - Y= (s = (e = e T g g,
/ Yr(t—r { / as(s)e(s)ar(s — r)8(s — r)z(t — 1,5 — r)e” Jo-r A2lt=stmm)dr ds} dr.

if t <w. Let c¢(a) = 0 for @ > w, then we have

(
¢ ¢ ‘
= /0 1t — r){ /T ag(s)c(s)ay(s —r)0(s — r)z(t —r,s —r)e” Jir dalt=stmr)dr ds} dr (1.8.4)

if t > w. Similarly, if t < w, then we have ’
t ot s ‘
t) = / (t — r){ / as(s)c(s)ar(s —r)0(s =r)x(t —r,s —r)e” Joow Aa(t=strr)dr ds} dr
0 T .

+/ as(a)c(a)yo(a — t)e™ Jo r2(ma—t+m)dr g
t

t. w
+ / Y1t — r){ / aa(s)e(s)an (s — 1)0(s — r)ao(s — t)e™Jo A TsmtETI AT [ Aa(ms—tim) dr ds} dr.
0 t

Let ¢1,5(t) := 1(b+¢t) for b > 0, then from the way c(a) is extended for a > w we see that

1t / P1p(t—1) / 2(s)e(s)ar(s —r)8(s —r)x(t+b—1r,s—7)
x @~ Joor Aa(t=strHbr)dr ds} dr (1.8.5)
for sufficiently large ¢.
Lemma 1.8.1. (1) Ift > a, then z(t,a) > 0. And if t < a and zo(a —t) > 0, then z(t,a) > 0.
(2) If y(t,a) > 0, then y(t +o,a+0) >0 for allo € (O,w —a). '

Proof. From the partial derivative equation for z(t,a) in (1.4.4) we have
x(t7 a) = z(t—a,0)e” Jo M(t—atr,r)dr

for t > a. This and z(t —a,0) = 1 imply that z(¢,a) > 0 for ¢t > a. The case t < a and z¢(a —t) > 0 is as
well. ,
From the partial derivative equation for y(¢,a) in (1.4.4) and A\i(¢,a)f8(a)z(t,a) > 0, we have

| (0 + 8a)y(t,a) > =Xa(t, a)y(t, a).
Integrating along characteristics gives
y(t+ 0,0+ o) > y(t,a)e™ Jo AeltHmatndr ¢
thus we havé the conclusion. | o k O

The following lemma states that spreaders never clear out unless there are no spreaders frorh start.
Lemma 1.8.2. If ||yo|| > 0, then |ly(t)]| > 0 for allt > 0.

Proof. Suppose ||y(to)|| = 0 for some t = to > 0. Then we have y(to,a) =0 for almost every a € (0,w).

If to is sufficiently large, then we find from Lemma 1.8.1 that y(to —t1,a) = 0 for all t; € (0,bo) and
almost every a € (0,w — t1), where by is defined in Assumption 1.5.1 (ii). In addition, the integrand of
. (1.8.3) is strictly positive except ¥ for almost every o € (0,a), hence we obtain 1 (t) = 0 for almost
every t € (to — a,tp). Since this holds for almost every a € (0,w), we find 11(t) = 0 for almost every

€ (to — w,tg). The fact that as(o)c(o) in (1.8.1) is strictly positive for almost every o € (w — bo,w)
implies that y(t,a) = 0 for almost every t € (to — w,tp) and almost every a € (w — bg,w). Then we find
again from Lemma 1.8.1 that y(to —t1,a) = 0 for all t; € (0,bo) and almost every a € (w—t1,w). Therefore
it follows that y(t,a) = 0 for all ¢ € (to — by, to] and almost every a € (0,w).

By iterating this discussion finite times, we obtain y(0,a) = 0 for almost every a € (0,w), where the
above discussion should be modified a little when ¢ < w. This contradicts the assumption [|yo| > 0, thus
we obtain the conclusion.

32



Here, we introduce the concept of rumor persistence. Persistence in the general meaning is detailed
in Sections 2.1 and 2.2, and consistent with the following definition of rumor persistence. The rumor is

called uniformly weakly persistent if there exists some € > 0, which does not depend on the initial data
(x(0,-),y(0,), 2(0,-)) and satisfies

/ c(a)y(0,a)da >0 = limsup/ c(a)y(t,a)da > «.
0 0

t—o0

The rumor is called uniformly strongly persistent if there exists some € > 0, which does not depend on the
initial data (z(0,-),y(0,),2(0,-)) and satisfies

t—o00

/ c(a)y(0,a)da >0 = liminf/ c(a)y(t,a)da > e.
0 0 ’

It is clear that uniform strong persistence implies uniform weak persistence.
First, let us show the weak result. We referred the idea of its proof to [47].

Theorem 1.8.3. If Ry > 1, then the rumor is uniformly weakly persistent.

Proof. Assume that for any € > 0 there exist some Ty > 0 and some appropriate initial condition such
that fo y(t,a)da < ¢ for all t > Ty. We can choose Ty to be so large that (1.8.5) holds for all t > Tj.
By the deﬁmtlon of 11 (¢t) and o(t), it is easily seen that

Ui(t) < 0z, Yalt) < B5%¢
for t > Tpy. Next, let us obtain the upper bound for ¢3(t). The conditions that z(t,a) < land [ ¢(o)do =

1 imply that
At a) <a®e, Aa(t,a) < e+

for t > Tj. It follows that
(0¢ + 0a)2(t,a) < a™e + (8% +77)y(t, a)

for t > Ty. Hence, if t — a > Ty, integrating the above inequality along characteristics gives
/ a
2(t,a) < a®ae + (8% +™) / y(t—a+1,7)dr.
0

Therefore, if t > Ty + w, we have
‘ 1 w o ’
1/)3(15) Saoog.§w2+(/3005_|-,700)/ </ y(t—a+T,T)dT> do
' 0 0 .
1 . ) w w—1u .
=a%¢ - §w2 + (B%e + 7‘”)/ </ y(t —u,7) dr) du
0 ‘

0
1 w
<a%e- §w2 + (8% + 7“)/ edu
0
1
= a®¢- §w2 + (8% +7™)we

In what follows, we can assume for simplification that, for any € > 0, there exist some Tp > 0 and some
appropriate initial condition such that (1.8.5) and '

w
/ y(tva) da < €, 1/)z(t) <eg, 1= 1,2,3
0 ,
hold for ¢+ > Tj. Integrating the partial derivative equation for z(¢,a) in (1.4.4) along characteristics gives

z(t+b—rs—r)=e Jo Tvilttbmsina(r)dr (1.8.6)

>e~€ o ai(r)dr

fort > Ty, 0<r <s<tandb>0. Hence it follows from (1.8.5) that

P1p(t / brp(t—r {/ 2(s)c(s)ar (s — r)f(s — r)e=cHo T (M dreme S (Br{mm () dr ds}

33



This implies that

Y1,p+7(t)
= wl,b(t + T)

. t+T t+T »
2 Y1 pyr(t —7) {/ az(s)c(s)ar(s — r)8(s — r)ecJo T ea(m) dre=e [T (Br(m)+m(r)dr ds} dr
0 [ ;

t r+T .
> / Y1ppr(t =) {/ as(s)e(s)ar (s — r)f(s — re~sJo (D drg=e [ (Bu(n)+m (7)) dr ds} dr
0 r :

for all ¢ > 0 if we take sufficiently large 7' > 0. Taking Laplace transforms leads to

—

Prosr(N) = o (N (e, A D), | (18.7)

where *

e’} r+T
F(e,\,T) := / e'”{ / as(s)c(s)aq(s—r)f(s—r)
0 r '
—sfs ral('r)d‘r ef ﬁl(r)—i-’yl(r))d‘r dS} r (188) )

Since 1, is bounded, the Laplace transform of 41 p;7(A) is defined for all A > 0. Moreover,
Tlim F(0,0,T) = / {/ as(s)e(s)aa(s —r)f(s—r) ds} dr
— . 0 r

_ /0 ) { / ) a(s)e(s)on (s = )0(s —7) ds} dr,

which is equal to Rg > 1 through the change of variables: o = s, b= s—r. Since F(g, A\, T) is continuous,
we see that F'(e,\,T') > 1 if €, > 0 are chosen small enough and T large enough. Then (1.8.7) implies
that @()\) = 0, which means v 47 = 0 a.e. on [0,00), i.e., 11(t) = 0 for almost every ¢t > b+ T.

Take some ¢t = T1 > b+ T for which ¢1(T1) = 0 holds, then we have y(Ty,a) = 0 for almost every
a € (w —bp,w). On the other hand, if we take any p,q such that 0 < p < ¢ < w — by and ¢ — p < by, then
(p+T7,g+7) C (w—bo,w) for any 7 € (w— by — p,w — q). There exists some 7 € (w — by — p,w — q) such
that ¢ (T +7) = 0, so that y(T1 4+ 7,a) = 0 for almost every a € (p+ 7,q + 7), which implies by means of
Lemma 1.8.1 that y(71,a) = 0 for almost every a € (p,q). Hence y(T1,a) = 0 for almost every a € (0,w),
from which it follows that |ly(T3)|| = 0. ‘

However, we have |ly(T3)|| > 0, because of the assumption ||yo|| > 0 and Lemma 1.8.2. This contradicts
the above result. ' O

Next, let us show that uniform weak persistence implies uniform strong persistence for the system
(1.4.4). . ~ ‘
Let & : R x 2 — Q be the semiflow induced by the system (1.4.4) via

@(t’ t(an Yo, ZO)) = t(a}(tv ')) y(tv ’)7 Z(t9 ))’

where i
Q:= {t(%’y,z) S (L}F(O,W))S | c+y+z= 1}

“is the state space of the system.
For sufficiently large To(> w), set

- {@ TO’ xOvyO)ZO)) | t(a:07 yOaZO) S Q}
Then we have the following:
Lemma 1.8.4. B is relatively éompact in Q.

Proof. It is obvious that B is bounded. Observe that Assumption 1.5.1 with PMA 1mphes that for any €
there exists ¢ > 0 such that .

/ lai(a+h) —aq(a)|da < g,
0
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/w 8(a+ h) — 0(a)| da < e
0

whenever |h| < §. We can assume that § < €.

Let ®(t, *(z0,0,20)) = ‘(x(t,-),y(t,-),2(t,-)) € B. Let Pj*(u1,uz,ug) := u; (j = 1,2,3) be the
projection operator on (L(0,w))3.

First, we find that, if a,a + h € (0,w), then

|z(t,a+ h) — z(t,a)| = e~ b A (t—a—htr,r)dr _ e o M(t—atm,r) dTl

a+h a
< / /\1(t—a—h+7',7')d7—/ M(t—a+7,7)dT
0 0

h a:
= / Al(t—a—h+r,7)d7+/ (ar(7+h) —ar(7)1(t —a+7)dr
0 0 ,

IA

h ~ a A
/ M{t—a—h+7,7)d7 +/ la1(r+h) — a1 (7)1 (t —a+7)dr
0 0 :

a®™|h] + a5’

<
< (@™ +ax’)e.

This implies that, if A > 0, then

w w—h w
/ lz(t,a + h) —:E(t,a)|da=/ |z(t,a + h) —w(t,a)|da+/ 10— z(t,a)|da
0 0 . w—h

< (@™ +as)we+ h

<{(a® +aP)w+1}e. ’ (1.8.9)

The case h < 0 is as well. Hence, Theorem 2.2.4 yields that Py B is relatively compact in P; ). ~
Next, let us see that the same argument leads to the fact that P,B is relatively compact in PpQ. If
a,a+ h € (0,w), then ‘ ‘

y(t,a + h) — y(t,a)

h
= / M(t—a—h+0,0)00)z(t —a—h+o,0)e Jo M-ahirdr g,
A _

a
+ / 1t —a+o){ar(oc+h)8(c + h)z(t —a+ 0,0 + h)
0
x e~ Jo Aaltmatr i) dr _ o (5)0(0)a(t — a + o, o)™ Jo A2(tmatTr)dTy g5
It follows that
|y(t7 a+ h) - y(tv a’)|
a a
< a®|h|+ 045"/ laa(o 4+ h) — cr (o) do + 04°°/ 60(c + h) — 0(0)|do
0 0
a . )
+a°°/ lz(t —a+o,0+h)—z(t—a+o,0)|do
0
+a® /a |e_ [2 Ae(t—atr,7+h)dT e J2 X2 (t—atT,7) dT| do
0
<a®e+asle+a¥e+ {(a™ +ax¥)a+1}e

‘+a°°/ {/ |)\2(t—a+7',7'+h)—Ag(t—a+7,7')|d'r} do,
0 4

where the evaluation similar to (1.8.9) is fnade. Let us evaluate the last term of the above inequality. We
have

ot —a+ 7,7 +h) — Aot —a+7,7) |

= Yot —a+7)(Bu(r + h) = Bi(7)) + 3t — a+ ) (0 (7 + k) = (7)),
and the evaluation '

/ * il — a4 1) (Ba(r + ) — By (1) dr < e 1810)
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holds whenever |h| < 4 if § > 0 is chosen small‘enough.' This is true if §5° = 0, because then B2(c) = 0 for
almost every o € (0,w) and it follows that 12(t) = 0 for all t. Otherwise, B2(c) > 0 for some o € (0,w),
so that Assumption 1.5.1 implies that

/“’ |B1(a + h) —,31(a)|da <e€

‘holds whenever |h| < ¢ if § > 0 is chosen small enough. This gives the evaluatlon (1.8.10). The same
argument leads to the evaluation ,

/ (e - @+ 1)+ ) = (D] dr < o

whenever |h| < § if § > 0 is chosen small enough. Hence we have

/{/ |)\2(t—a-|—7',T—|—h)—/\g(t—a+7',7-)|d7'} dag/(ﬁgo—l—vé’o)sdo
0 o 0
< (B3 +13°)ea,

which yields that |y(¢,a + h) — y(¢,a)| < Coe for some constant Cy > 0.
The same evaluation as (1.8.9) implies that

/ ly(t,a+ h) —y(t,a)| da < (Cow + 1)e.
0 )

Therefore we obtain that P B is relatively compact in P2Q;
Then it is obvious that P3B is relatively compact in P3{2 and we have the conclusion. O

Theorem 1.8.5. If Ry > 1, then the rumor is uniformly strongly persistent.

Proof. Since we have already shown that the rumor is uniformly weakly persistent, the assertion is a direct
consequence of Theorem 2.2.3. All we have to do is to make sure the “compactness condition.”

It is clear that the autonomous semiflow @ is continuous. We define p: Q@ — Ry by

o(*(,9,2)) 1= /0 " e(@y()da, ‘z.y,2) €.

Then we find that p is uniformly continuous on Q. Lemma 1.8.2 implies that
p(®(t, t(x,y,2)) > 0 for all t > 0 whenever p(P(*(z,y,z)) > 0.

By the definition of B, we have &(t,! (z,y, z)) — B as t — oo. In addition, Lemma 1.8.4 implies that Bis
compact. Therefore we obtain the conclusion. ‘ ' O

1.9 Discussion

In this chapter we have examined rumor transmission models motivated by S-I-R type epidemic models.

We have derived the global behavior of the age-independent rumor transmission models which are
extensions of the deterministic Daley-Kendall model. The result is that there is no undamped oscillation
and the solution converges to some equilibrium as ¢t — oo.

In addition, we have shown that, in the age-structured transmission model of a constant rumor, there
exists a threshold value Ry := r’(T) given as the spectral radius of the positive linear operator T and that
RFE is the only equilibrium and globally asymptotically stable if Ry < 1 and at least one REE exists if
and only if Ry > 1. Moreover, assuming PMA, we have shown that Ry > 1 implies that the rumor is
uniformly strongly persistent and REE is locally asymptotically stable if |Ro — 1| is small enough. ;

Assuming PMA is a huge simplification. Without PMA, even uniform strong persistence or the local
stability of REE is a difficult problem.

As for the age-structured model considered in this chapter, how many REEs exist in the case Ry > 1
is left as open problems, which should be investigated in the near future. It would be also an interesting
open problem whether the stable REE could lose its stability and lead a bifurcation of periodic or chaotic
solutions. Moreover, the age-structured model for a variable rumor remains to be analyzed.

Our rumor transmission models could be extended to several directions: one way is to introduce more
fine structures such as how the transition rate from the stifler into the susceptible class depends on duration
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in the case of a variable rumor. Another important way of extension is to introduce the effect on mass
communication, which could be considered as both rumor-source and rumor-“vaccination.” We will discuss
it in Chapter 3. Moreover, it would be interesting to consider the case that several conflicting rumors are
transmitted ([20, 21, 50, 51]), which would be useful in the control of a rumor which is troublesome for an
individual or an organization.
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Chapter 2

A note on persistence about
structured population models

Abstract

In this chapter we report some results on persistence in two structured population models: a chronic-age-
structured epidemic model and an age-duration-structured epidemic model. Regarding these models we observe
that the system is uniformly strongly persistent, which means, roughly speaking, that the proportion of infected
subpopulation is bounded away from 0 and the bound does not depend on the initial data after a sufficient long
time, if the basic reproduction ratio is larger than 1. We derive this by adopting Thieme’s technique, which requires
some conditions about positivity and compactness. Although.the compactness condition is rather difficult to show
in general infinite-dimensional function spaces, we can apply Fréchet-Kolmogorov L'-compactness criteria to our
models. The two examples that we study illuminate a useful method to show persistence in structured population
models.

Keywords: structured -population model; persistence; compactness condition

2.1 Introduction

Persistence and permanence are considered as important concepts of dyhamical systems and of systems
in ecology, epidemics etc. These concepts concern the long-term survival of each component of a system
of interacting components, for example of species in an ecological community, genotypes, strategies in an
evolutionary game, or polynucleotides competing for energy sources. In epidemics, they are related to
the question whether the disease is never eradicated after sufficiently long time. Persistence means the
long-term survival of some of all components of a system, while permanence addresses the limits of growth
for some (or all) components of the system. We refer to Hutson and Schmitt [52] and Thieme [53] for
background information and references. - -

An important theorem concerning them was obtained by Thieme [49](or see [48]) which shows that
uniform weak persistence implies uniform strong persistence. This means in the words of population
dynamics that, if the size of a population, while it may come arbitrarily close to 0 every now and then,
always climbs back to a level that is eventually independent of the initial data, then the size is bounded
away from 0 and the bound is eventually independent of the initial data. The theorem has been gradually
used in structured population models (for example, see [54, 55, 56, 57]). However, the number of systems
proved to have the property of persistence (permanence) has been at present far fewer than those proved
to have the property of the local asymptotic stability (or instability) of an equilibrium. Its major reason is
that the former property was mathematically established later than the latter. Another reason is seemingly
that it is difficult to find an attracting (or absorbing) set and to show compactness conditions linked with
persistence and permanence. However, we consider the problems here on a finite domain for the structural
variable which require an approach somewhat different from those used so far — that is, the method
of using Thieme’s technique [47] and Fréchet—Kolmogorov L!-compactness criteria. The method is fully
presented in [1, §8]. :

This chapter is structured as follows. Section 2.2 presents some ideas from persistence theory. We
define the concept of persistence rigorously in the words of dynamical systems, and see what theorems are
useful for showing uniform strong persistence in structured population models. We illuminate the method
by proving uniform strong persistence in two models in the following sections. In Section 2.3 we deal with
a chronic-age-structured epidemic model which was first proposed by Martcheva and Castillo-Chévez [58].
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In Section 2.4 we discuss an age-duration-structured epidemic model which was first proposed by Inaba
[59]. Section 2.5 summarizes our discussions and presents an open problem:

2.2 Mathematical tools used in this chapter

Let X be a metric space with metric d. Let @ : [0,00) x X — X be a semiflow on X, i.e., $;0P, = D, s for
all ¢, s > 0, where ®; denotes the mapping @(t,-) : X — X. Let p: X — [0,00) be a nonnegative uniformly
continuous functional on X. We assume that the composition ¢ := p o & is a continuous mapping from
[0,00) x X — R.

- Definition . (i) @ is called weakly p-persistent if limsup, . o(t,z) > 0 whenever p(z) > 0.
(i) @ is called strongly p-persistent if liminf;_, oo o(t,xz) > 0 whenever p(z) > 0.

(ii1) @ is called uniformly weakly p-persistent if there ezists some ¢ >0 such that lim SUp;_,o 0(t, ) > €
whenever p(z) > 0. ‘

() @ is called uniformly strongly p-persistent if there exists some € > 0 such that liminf, o o(t,z) > €
whenever p(zx) > 0.

If no misunderstanding about the functional p is possible, we use persistent rather than p-persistent.

Example 2.2.1. Let us consider the prey—predatof model proposed by Lotka and Volterra:

' (t) = x(t){a — By(t)},
y'(t) = —y(t){y - x(t)},
z(0) =20 >0, y(0)=yo >0,
where z(t) denotes the population density of the prey at time ¢, y(¢) the population density of the predator
at time t and «, B, 7, ¢ are strictly positive constants. This system induces a continuous semiflow @ on
the state space €2 := Ry x R4, where Ry denotes the set of nonnegative real numbers. ,

For example, we define p; as p1(z, y) := =, then o1(¢, (zo0, v0)) := p1(D(¢, (zo, yo))) represents the-
population density of the preys at time ¢ under the condition that the population density of the prey and
that of the predator at time 0 are ¢ and yo respectively. We can easily find that & is strongly p;-persistent,
that it is uniformly weakly p;-persistent with limsup,_, . o1 (¢, (x, y)) > v/(26) whenever p;(z, y) > 0 and
that it is not uniformly strongly pi-persistent because for any € € (0, v/9) liminf; .o, o1(¢, (g, B/a)) = €.

On the other hand, let us define ps as p2(x, y) 1=y, then oa(t, (zo, Yo)) := p2(D(t, (zo, Yo))) represents
the population density of the predator at time ¢ under the condition that the population density of the
prey and that of the predator at time 0 are z¢ and yo respectively. Note that @ is not weakly ps-persistent,
because the predators eventually die out if there are no preys at time ¢ = 0. ’

We consider the following compactness condition (C):
There exist some €9 > 0 and a closed subset B of X with the following properties:
(i) If p(z) < o, then limy_ o d(P:(z), B) = 0, that is, for every € > 0, there éxists some ¢ > 0
such that for every s > t some b € B .can be found with d(®(s,x),b) < e.
(ii) For every g1 € (0,e0), the intersection B M p~lley, ] is compact.-
Remark 2.2.2. If we take B as &.,({), where t; is a nonnegative constant, then condition (C)-a) is

satisfled by itself for any €. The reason is as follows: take any z € €, then for ¢t > t; we have &;(z) =
Dy (Pi—t,(x)) € Dy, (2) = B, which gives rise to the fact that d(P,(x), B) = 0 for any ¢t > ¢p. '

The next theorem is due to Thieme [49)].

Theorem 2.2.3. Let the compactness condition (C) hold and assume that o(t,x) > 0 for allt > 0
whenever p(x) > 0. Then uniform weak persistence implies uniform strong persistence.

The reader may easily find the above theorem’s proof in [49, 48].

When we apply this theorem to some structured population models, the metric space (X, d) is often
taken as the finite product space of L'(S) for some S C R™, where R™ denotes Euclidian n-space. Hence,
it is necessary to have some compactness criteria in function spaces in order to verify the compactness
condition (C)-b). Fréchet-Kolmogorov’s Theorem generalised to R™ ([60, Theorem IV.8.21]) is a useful
criterion: : :
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Theorenr 2.2.4. Let S be a subset of R"™, B the o-algebra of Borel subsets of S, 1 the Lebesgue measuré
~on B, and 1 < p < co. Then a subset K of LP(S, B, i) is relatively compact if and only if it is bounded in
LP(S, B, 1) and the following limits are uniform for f € K:

lim / |f(z1 4+ hiy.ooy@n + hn) — f(z1,.. ., 20) P dey - - - dzy, = 0, (2.2.1)
hiyenhn—0 J g ,
lim |f(x)|P dz =0, ‘ : (2.2.2)
M —o00 S\Cns )

where Cpy is the cube M <zy,...,2p <M.

In the following, the notation of B and y is omitted. If S is an interval of R and K is a subset of Ll(S)
consisting of absolutely continuous functions, condition (2.2.1) can be substituted into that of uniform
boundedness of the derivative of the functions in K, which is easier to prove. We will use the following
corollary in the next section.

Corollary 2.2.5. Let S be an interval of R and K a subset of L'(S) consisting of absolutely continuous
functions. Then K is relatively compact if condition (2.2.2) holds and K and {f’ | f € K} are bounded in
L(S).

Proof. We have only to consider condition (2.2.1), since the other conditions hold. From our assumption,
there exists a positive constant C such that || f'|[z1(s)y < C holds for any f € K Then we have for z € S

and h >0 - .
z+h z+h
/ £ dy| < / ()| dy.

[5G +m - 1@< [ 15@hdy =17l < On
S S

If(@+h) = fz)] =

By changing the order of integrals we obtain

The case h < 0 is the same. Hence we find that condition (2.2.1) holds and the limit is uniform for
feK. : O

2.3 Persistence in a chroniC—age-structured_ population model

Let us consider the following system proposed by Martcheva and Castillo-Chévez [58, (3.2)(3.4)(3.5)] as
an epidemiological model of hepatitis C with a chronic infectious class structured by age-since-infection:

s’ = b(1 — 8) — yis — sDy(¢) + Ayu(t),

i = yis + sD,(t) — (b+ k)i,

(0r +09)u(B,t) = —(b+ a(8))u(b, t), (2.3.1)
u(0,¢) = ki, :

5(0). = sp; 4(0) = ip; u(f, 0) = ug(h)

with the relation -
s(t) +i(t) +/ u(d, t)=1
. 0
where )

Dy(t) = /0 " S0, ) 4, Au(t) = /0 ” a(®)u(6,t)do.

s(t) denotes the portion of the susceptible population in the total population at time ¢, i(t) the portion
of the population’ infected with acute hepatitis C in the total population at time t and (6, t) the age-
since-infection density at time ¢ — normalised by divided by the total population — of individuals infected
with chronic hepatitis C (with or without cirrhosis), where § means the time spent in the chronic stage.
b means birth/recruitment rate, v the effective contact rate of individuals with acute hepatitis C, k the
rate of progression to chronic stage, a(f) the age-since-infection structured treatment/recovery rate for
the chronic stage, () the age-since-infection structured effective contact rate of individuals with chronic
hepatitis C. ‘

In the following, we change the notation of s, 4, u into z, y, z respectively for convenience. Moreover,
we introduce the finite maximum age-since-infection w, which the original paper [58] assumed infinite. The
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main reason for this modification is to simplify the discussion. In reality, it is reasonable to assume that
the maximum age-since-infection is finite, since the human life span is finite. So, the system is rewritten

as follows:
o'(t) = b{1 — 2(t)} — yz(t)y(t) — 2(t) D= (t) + As(1),
Y'(t) = yz(t)y(t) + z(t)D.(t) — (b + k)y(t),
(0r + 09)2(0, t) = —{b+ a(0)}2(8,1), ‘ (2.3.2)
Z(O’ t) = ky(t),
z(0) = zo; y(0) = yo; 2(0,0) = 20(0)
with '

aw+y@y+/w4andezL
0
==/w&@zWJﬁw,Axﬂnz/wawVWJﬂw
0 . 0

Assumption 2.3.1. (i) b, k, v are strictly positive constants.
(1t) 6(6) is bounded above and strictly positive a.e. on [0,w). We denote by §° the supremum of 6.

(iii) a(-) is nonnegative, locally integrable on [0,w) and [ c(f) df = oo, which means that every individual
at z-stage returns into x-stage by the time the age-since-infection 6 reaches w.

For this system, the basic reproduction ratio is defined as follows:

v+ Jy 6(0)kL(F)df

Ro = btk o

(2.3.3)

where £(6) := e~ exp(— fo :
Martcheva and Castlllo—Chavez [58] proved the following theorem, in which it makes no difference
whether w is finite:

Theorem 2.3.2. Let Assumption 2.3.1 hold, then we have:
(i) If Ry < 1 then the trivial equilibrium (z,y,z) = (1,0,0) is globally asymptotically stable.

(1) If Ry > 1 the trivial equilibrium is unstable and there is a unique nontrivial equilibrium, which is
locally asymptotically stable if [" kL(0)df < 1.

Next, let us consider the semiflow induced by system (2.3.2). We define its state space Q as follows:

Q= {(w,y,z) eERy xRy x LY (0,w) |z +y+ |2 - 1, / a(f)z(0)do < oo} .
. o 0

Then we can prove the following proposition. It means the system’s well-posedness, i.e., that system (2.3.2)
has a unique continuous solution with values in © and the solution depends on its initial value continuously.

Proposition 2.3.3. System (2.3.2) induces a continuous semiflow ® on the state space Q.

Proof. From the third equation of system (2.3.2) we obtain

dew:{%w—@aMnmww—n if w> 0>t (234

ky(t — 0)£(6) | if 9 < min{t,w},

where T'(0) := exp(— foe o) dr). We define &) := a()L(6) and 5(9) := 6(8)L(), and the asterisk
denotes the convolution operation defined by
t
= /0 flt— T)g(T) dr

Substituting (2.3.4) into the equation for z and y in system (2.3.2), we get

#(1) = b1~ 2(®)} ~ a(B)y(t) — o)1+ ¥)(O) + FL(0)} + k(@ * 1) (¢) + Falr), 235)
() = 13()y(t) +2(ORE * »)(0) + Fi (D) ~ b+ k(o) |
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where we define &(#) = §(8) = 0 for R\ [0,w] and Fi(t), Fa(t) are given functions depending on the initial
data as '

Fi(t) = /t . 5(0)20(0 — t)e—btr(é) JT(0 —t)db
Fy(t) := / : a(8)20(6 — t)e™"'T(9)/T(0 — t) db

for t < wand Fy(t) := 0, Fy(t) := 0 for t > w. Equations (2.3.5) are regarded as a two-dimensional finitely-
retarded functional differential equation, since the minimum of retard is —w. Then we can obtain the
conclusion by applying standard local existence and uniqueness results for retarded functional differential
equation (see Hale [61, Section 2.2]) to the integro-differential equation (2.3.5). Global existence and
continuous dependency on the initial value will follow immediately. |

Now, we come around to prepare for the proof of uniform strong persistence. Let

p(z,y,2) =y + 2l ot (,y,2)) = p((t, (2,9, 2)))
for (z,y,2) € Q and t > 0. We can easily find that p : Q@ — R is nonnegative and uniformly continuoﬁs.
Lemma 2.3.4. We have 2(6,t) > 0 if either of the following tonkconditz'ons hold:
(i) w >0 >t and zo(6 —t) > 0, or
(ii) 6 < min{t,w} and y(t —6) > 0. ‘
Proof. Let us see '(2.3;4). Noticing that I'(s) > 0 for all 0 < s < w, we have the conclusion. O
Lemma 2.3.5. Ifyo > 0, then y(t) > 0 for all t > 0.

Proof.- From the second equation of system (2.3.2) and the non-negativity of z, y, z, we have the inequality

y'(t) = —(b+ky(),

which' leads to the inequality
' y(t) = yoe TR > 0.

Lemma 2.3.6. o(t, (%0, Y0, 20)) > 0 for all t > 0 whenever p(zo,%yo, 20) > 0.

Proof. If yo > 0, then the assertion is obvious from Lemma 2.3.5. Let us consider the case yo = 0 and
llzo]| > 0.

Assume that, for some to > 0, o(to, (zo,%0,20)) = 0 holds, i.e., y(to) = 0 and z(,ty) = 0 for a.e.
6 € [0,w]. Then we can find from Lemma 2.3.4 (ii) that y(t) = 0 for all ¢ € [0,%o]. On the other hand, the
assumption of ||zg|| > 0, Lemma 2.3.4 and the continuity of D, (t) imply that there exists some ¢; > 0 such
that D, (¢) > 0 for all ¢t € [0,#;). In addition, it is easily seen from the first equation of the system (2.3.2)
that z(t) > 0 for all ¢ > 0. Hence, z(t)D,(t) > 0 for all ¢ € (0,t1), which leads to y(t) > 0 for sufficiently
small ¢ > 0. ThlS is contradictory. ‘ O

Lemma 2.3.7. System (2.8.2) satisfies the compactness condition (C) with eg = 1 and B the closure of
D1, (Q), where Ty > w is a sufficiently large positive number.

Proof. Taking Remark 2.2.2 into consideration, we find t»hét we have only to prove that B is relatively
compact in . Let P;, Py, P3 be projections defined by

Pl(iL’,y,Z) =7, Pz(a:,y,z) =Y, P3(xay,z) =z

for (z,y,2) € RxRx L'(0,w). We have P\B, P;B C [0,1], so P\ B and P, B are relatively compact. Then,
all we have to do is to prove that P3B is relatively compact, since the direct product space of compact
spaces is compact (Tychonoff’s Theorem) and the direct product space of the closure of topological spaces
X (X € A) is the closure of [],., Xx. To this aim, we use Corollary 2.2.5.

Let (z(t),y(t), 2(-,)) be a solution of system (2.3.2), where we take an initial condition (zo, Yo, 20(-))
arbitrarily. Noticing that z(t), y(t), [|z(,t)|| € [0, 1], it follows from the equation for y in (2.3.2) that

ly' @) < v+ }/Ow 5(0)z(, t)dd| +b+k
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§7+6°°/ 2(0,6)d0 + b+ k
0

<y+6*+b+k (2.3.6)
for all t > 0. And by the definition of £(#) we have that (

/w 1£/(6)|d6 = — / £/(6) 9
0 0 o
‘ =£(0) - L(w) = 1. (2.3.7)
By using (2.3.4), (2.3.6) and (2.3.7), we obtain for any ¢t > Tg
Jonclc, 0 = [ 1= k' (e - 0)2(0) + bt~ ) @)] a0
' <k(y+8®+b+k)|L]| + K,

which implies the boundedness of the set {2’ | (z, y, 2(-)) € B}. From this fact with the boundedness of
P3B, we can apply Corollary 2.2.5 to derive that P3B is relatively compact. This completes our proof. [

And now let us prove the result on persistence with the above preparations, which imply that system
(2.3.2) satisfies all assumptions in Theorem 2.2.3. In the words of epidemiology, the rate of individuals
infected with acute or chronic hepatitis C is bounded away from 0 and the bound is eventually independent
of the initial data.

Theorem 2.3.8. System (2.8.2) is uniformly strongly p-persistent if Ry > 1.

Proof. Thanks to Theorem 2.2.3, we have only to show the uniform weak p-persistence for system (2.3.2).
Let ¢q(t) := vy(t + d) + D,(t + d) for d > 0. By applying the method of variation of constant into
equations (2.3.2) we have

t+d )
y(t + d) = goe~HRIE+HD) / 2(1) {7y (r) + Da(r)}e~ C+RE+d=") g7
0

t+d : ,
> / £(){y(r) + D (r) e~ GHREHD) g
d

t . .
= / ba(t — )zt +d —r)e”EHR 4y, (2.3.8)
0
where 7 :=t+ d — 7. Using this and (2.3.4), for sufficiently large t we have
D.(t+d)= / 8(0)ky(t +d — 6)L(0) do
0
w t+d—0
> / 5(0)kL(6) / () fyy(r) + Dy (7)o~ GHREH=0-7) 41 g
0 - JO
w t+d » '
_ / S(6)LL(0) / 2t +d— ) {yy(t +d— 1) + Dyt + d — r)}e~E+D=0) 4r g
0 [
t T :
= / ba(t — )zt +d —r)e”CFTor / 5(0)kL(9)e®H46 dr, (2.3.9)
0 0

where in the last line we changed the order of integrals and used the setting of §(6)£(#) = 5(6): 6(6) = 0
for R\ [0,w]. We substitute (2.3.8) and (2.3.9) into the expression of ¢4(t) to obtain

t) > / t ba(t — )t +d — r)e”CTRr {7 + / ' §(0)kL(6)ev R de} dr. (2.3.10)

Suppose that system (2.3.2) is not umformly weakly p-persistent, then for any ¢ € (0, 1) we can choose
some initial condition (o, yo, zo) and some T > 0 which satisfy p(zo, o, 20) > 0 and

y(t)+/ z2(0,t)df <e, z(t) >1—c¢, Vit > T.
O B

If d > T is sufficiently large, then we have

t) > /0 t ba(t —r) - (1 —e)e” bR {7 + /0 ' 5(0)kL(h)ebrR? do} dr
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for all ¢ > 0. Taking Laplace transforms leads to

$a(N) > da(N)F (e, N), \l (2.3.11)
where

F(e,\) = / e (1 —g)eCFR)r {wr / 5(9)k£(9)e<b+k>9d9} dr.
0 0

Since  ¢q is bounded, qAﬁd()\) is defined for all A > 0. We can easily find through the change of integral
variables that F(0,0) = Ry > 1. Since F(g,)\) is continuous, we see that F(e,\) > 1 if e,A > 0 are
chosen small enough. Then (2.3.11) implies that ¢4(\) = 0, which means ¢q(t) = 0 a.e. on [0,00), i.e.,
y(t) = D,(t) = 0 for almost every ¢ > T. This contradicts Lemma 2.3.6. a

2.4 Persistence in an age—duration—structured population model

Let us consider the followmg system proposed by Inaba [59] as an age-duration-structured population
model for HIV infection in a homosexual community:

(O + 04)x(t,a) = —A(t, a)z(t,a),
(0 + 37)31(75, 7;a) =0,

z(t,0) = y(t,0;a) = )\(t a)a:(t a), .
/\( ) P(t)) fo fo (a,b,7) (t 73b—7)dr db, (2.4.1)
= [y Bla){z(t,a) + [§ T(r;a — 7)y(t, 750 — 7)dr} da,

ac(O,a) =xg(a), y(0,7;a)= yo(r, a).

" First, we shall follow [59] in order to derive (2.4.1). We divide the homosexual population into three
groups: S (uninfected but susceptible), I (HIV infected) and A (fully developed AIDS symptoms). Let
S(t, a) be the age-density of the S-population at time ¢ and age a, I(t,7; a) the density of the I-population
at time t and age-since-infection (duration) 7 which were infected at age a, and A(t, 7; a) the density of
the A-population at time ¢ and age-since-infection 7 for individuals who have developed AIDS at age a.
Let B be the birth rate of the S-population, u(a) the age-specific natural death rate, (7; a) the rate of
developing AIDS at disease-age 7 for the S-individuals at age a, §(7; a) the death rate at duration 7 due
to AIDS for the individuals who have developed AIDS at age a and A(t, a) the infection rate (the force of
infection) at age a and time ¢. Then, the dynamics of the population is governed by the following system:

((0: + 8a)S(t,a) = —{u(a) + At, a)}S(t, a),

(0 + 0:)I(¢t,m5a) = —{pu(a+ 1) + (75 )}, 75 a),

(0y + 0 )A (t 7ia) = —{pla + 1)+ 6(1; a) }A(¢, 75 a),
S(t,0) =B, I(t,0;a)=A(t,a)S(t a),

A(t, 0;a) = [ v(r5a—1)I(t, 75 a—7)dT,

5(0,a) = So(a), I(0,7;a) = Is(;a), A(0,7;a) = Ao(T;a).

(2.4.2)

A(t, a) is assumed to have the following expression:
(P(t )) I(t, 7; b—7)dr db,

”f/ﬁ P

where ((a, b, 7) is the transmission probability that a S-person of age a becomes infected by sexual contact
with an infected partner of age b and disease-age 7, w denotes the upper bound of age of the sexually active
population, P(t) is the total size of sexually active population given by

Pt) = /()w {S(t, ’O') + /OU I(t, 7,0 — T)dT} do

and C(P) denotes the mean number of sexual partners an average individual has per unit time when the
population size is P.
Let us simplify system (2.4. 2) by introducing new functions z, y by

S(t, a) = z(t, a)Bl(a), vI(t, 75 a) = i(t, 73 a)Bl(a + 7)[(7; a),
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where {(a), I'(a) are the survival functions defined by
I(a) :=e Jo #@)do  D(7: g) 1= o= T H(os0)do,
Then, we obtain a simplified system (2.4.1) for (z, y), where
C(P) = C(P)/P, K(a,b,7):=8(a, b, 7)BIB)T(7; b— 7).

In the following, we make some assumptions for the coefficients and the functions appearing in (2.4.1),
some of which can be satisfled when we impose appropriate restrictions on u, 7, 3 etc.

Assumptidn 2.4.1. (i) B, w are strictly positive constants.
(i) 1:]0,w] — R is a monotone non-increasing Lebesque-measurable function and 1(0) = 1 and l(w) = 0.
(iii) T : Ry 2 —[0,1] is Lebesque-measurable and I'(-;a) is monotone non-increasing for any fized a € R
| () K(a,b,7) is expressed as ki(a)ka(b,T), where
(a) ki(a) > 0 if a € [0,w], and otherwise ki(a) = 0. In addition, k1 € LY (R) and we denote its '

essential upper bound by k.

(b) If ka(b,7) # 0, then (b,7) € Ag := {(b,7) € R?|0 < 7 < b < w}. In addition, there exists some
constant a+ € (0,w] such that ka(b, 7) > 0 whenever (b,7) € Do := {(b,7) € Ao |b -7 <at}

(¢) ko € LY (R?) and we denote its essential upper bound by k$°.

(v) C(P) is strictly positive, monotone non-increasing for P > 0 and there exists some constant L > 0
such that for all P,Q > 0 we have

6(P) - C(@Q)| < LIP - Q.

Let us generate additional ideas about Assumption 2.4.1 to supplement. (i) states that w — the upper
bound of age of the sexually active population — is finite as in system (2.3.2) in Section 3, which makes
the following discussion easier. (iv) is the proportionate mixing assumption, that is, there is no correlation
between the age of susceptibles and the age of infectives, hence it is not necessarily realistic but very helpful
for theoretical analysis. (iv)-b) is a technical assumption, stating that individuals who have 1nfected by
age a; have non-zero force of infection. (v) implies that Cp := limp o C(P) exists and is finite.

Mathematical well-posedness of the time evolution problem (2.4.1) is proved in [59, Appendix A],
where the semigroup solution can be constructed by using the perturbation method of non-densely deﬁned
operators [62].

For system (2.4.1), the basic reproduction ratio is deﬁned as follows:

Ry := C(Py) / i k1 (2) / : ka(b,b — z)dbdz, , (2.4.3)

where Py := [ Bl(a)da.
Lemma 2.4.2. The following relations hold for t > w:

z(t,a) + /a y(t,m;a—7)dr =1, 7 (2.4.4)
0 ’ v

z(t,a) + /GF(T;@ —7m)y(t, 50— 7)dr < 1, (2.4.5)
o .

P(t) < F. (2.4.6)

C(P) <C(P)<Co. . (247)

Proof. Let .
fla)=z(t—a+a,a) +/ y(t—a+ao,a—T1;7)dT,
0 : ,
then it is easy to show that f'(a) = 0, so f(«) does not depend on « and f(a) = f(0) = z(t — a,0) =
The other relations are obvious from (2.4.1), (2.4.4) and Assumption 2.4.1: a

Let us consider the semiflow induced by this system. We define its state space 2 := Lﬁ_(O,w) X L},_(A),
where A := {(a,b) € R? | a >0, b >0, a+b < w}. Mathematical well-posedness of the time evolution
problem (2.4.1) implies the following proposition:
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Proposition 2.4.3. System (2.4.1) induces a continuous semiflow & on the state space .

Let
N Cpw o pb
| o(t) := C’(P(t))/o /o ko(b,T) y(t, ;b — 7) d7 db.
Then we have A(t,a) = k1(a)é(t) and for any ¢t > 1

y(t,7;a) = y(t — 7,0;a) = A\t — 7,a)z(t — 7,a)
= ki(a)¢(t — 1)a(t — 7). (2.4.8)
Let

w b v
o(z,y) :=/0 /0 ka(b, 7)y(T;b — 7) d7 db,
o(t, (z,y)) = p(2(t, (2,9)))

for (z,y) € Q and t > 0. We can easily find that p : 2 — R is nonnegative and uniformly -continuous. In
addition, we find that

() = C(P)a(t, (z,y))- v (2.4.9)

Then, let us prove the positivity results. First, the upper-boundedness of A and the equation for z in
system (2.4.1) lead to

z(t,a) >0 whenever ¢ > a. _ (2.4.10)

‘Lemma 2.4.4. If p(:co,yo) > 0, then o(t, (zo,y0)) > 0 for all t > 0.

Proof. Let (z(t,-),y(t, ;) = D(t, (zo,yo)). Suppose there exists some t, > 0 such that o(to, (0, ¥0)) = 0.
Then, y(to,7;b— 7) =0 for a.e. (b,7) € Dy. : '
If 0 <7 <b < tg, from (2.4.8) we have the relation

y(to, ;b - 7) = ki(b—T7)d(to — T)z(to — 7,b— 7) (2.4.11)

and z(tg — 7,b — 7) > 0. Hence, we have ¢(tg — 7) = 0 for almost every (b, 7) satisfying 0 < 7 < b < tg
and (b,7) € Dy. From this and the continuity of ¢, we have ¢(0) = 0, and this and the relation (2.4.9)
give rise to p(zo,yo) = 0(0, (x0,y0)) = 0, which contradicts the assumption p(zo,y0) > 0. O

Now, let us prove that system (2.4.1) satisfies the compactness condition (C). While we can apply
a multi-dimensional version of Corollary 2.2.5, it might be good to illuminate the technique of using
Theorem 2.2.4, which is slightly different from that in Section 2.3.

Lemma 2.4.5. System (2.4.1) satisfies the compactness condition (C) with eg = 1 and B the closure of

D1, (A), where Ty > 2w is a sufficiently large positive number.

Proof. Taking Remark 2.2.2 into consideration; we find that we have only to prove that B is relatively
compact in Q. Let P;, P, be projections defined by

Pi(z,y) =z, Po(z,y) =y for (z,y) € L(0,w) x L}(A).

Our aim is to prove that P; B and P, B are relatively compact.
Let ((t,-),y(t,-; -)) be the solution of system (2.4.1), where we take an initial condition (zo(-),yo(-; -))
arbitrarily. For convenience, we define z(t,a) = 0 for a € R\ [0,w] and y(¢,7;a) = 0 for (7,a) € RZ\ A.
Since k; € L'(R) and ¢ is uniformly continuous on [0, Tp], which is based on its continuity on [0, Tp),
for any € > 0, there exists some § = d(g) € (0,¢) such that

/ |]€1((I, + h) — kl(a)|da <€
R

for any h with |h| < ¢ and - .
|o(t+h) — (1) <e

whenever h < ¢ and t,t + h € [0,Tp]. In the following, we fix such € and 4.
Let 0 <a<w-—hand0<h<d. Using (2.4.1), Lemma 2.4.2 and

Cw b
lo(t)| < C’o/ ks / y(t,7,b—71)dr db < Cok3°w,
0 0
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we can evaluate as follows:

z(To, a + h) — 2(To, a)

— ’e— 0a+h XTo—a—h+r,r)dr _ e—‘foa MTo—a+mr,r)dr

<

a+h a
/ /\(To—a—h—i-r,r)dr—/ MTop—a+r,r)dr
0 0

a o
S/ I)\(To—a+r,r+h)—)\(To—a+r,'r)|dr\+/ IMTo —a—h+rr)|dr
0 0

a ) h
I/ |k1(r+h)—kl(r)|¢(T0—a+r)dr+/ kl(T)QS(To’—a-—h‘l‘?")d?“
0 0
< CokPw(l + kX)e. (2.4.12)
Then we have

w w—h w .
/ ((Toa + h) — o(Tp, )| da = / &(To,a + h) - o(Ty, a)|da + / 2(Th, )| da
0 0

w—h

< Cok® (L4 k®)w?e + h
< {Cok3° (1 + k{°)w® + 1le.

The case h < 0 is the same. Hence, it follows from Theorem 2.2.4 that P; B is relatively compact.
Next, let hy, he € (0,6) and (1,a), (T + hi,a+ hs) € A, ie.,

(1,a) € Apyny = {(a,b) €R*|a>0,b>0, a+b<w—hy —hs}
Then we find that ‘

|y(T07T+h1;a+h2) —’y(t,T;(Z)|
= y(To — 7 — h1,0;a + ha) — y(Tp — 7,0; a)]
< |k1(a + hg) —_ kl(a)i¢(To e hl)l‘(To\— T — hl,a + hz)

-+ kl(a)|¢(T0 -7 — hl) — ¢)(T0 — T)|$(T0 - T — hl,a+ hz)

+ k1(a)p(To — 7)|x(To — 7 — h1,a + ha) — x(To — 7, a)|
< |k1(a+ ha) — k1(a)|Cok5°w - 1 + k% - 1 + k3° - Coks*w - CokCw(1 + k5°)e,

where a similar evaluation as (2.4.12) and the relation (2.4.8) are used. Hence we have
/ ly(To, 7 + h1;a + ha) — y(t, 7;a)| dr da < Che,
Ahy,hy
where )

Cy = Cok5*w® 4 {k5° + C3 (k3° )2k (1 + ki®)w? hw? /2.
Tt follows that '

/ ly(To, T + hisa + ho) — y(t, 7;0)| dda
A !

='/ ]y(TO,T+h1;a—|—h2)—y(t,T;a)[dea—i-/ y(t,7;a)dr da
A'11,h2 : . A\Ahlth

< (C:1 + 2)5

Other cases, for example h; < 0 and hy > 0, are about the same, whose discussion is omitted here. Hence,
it follows from Theorem 2.2.4 that P, B is relatively compact. This completes our proof. O

And now let us prove the result on persistence with the above preparations, which imply that system
(2.4.1) satisfies all assumptions in Theorem 2.2.3. Roughly speaking, the following theorem states that the
rate of infecteds is bounded away from 0 and the bound is eventually independent of the initial data.

'Theor‘em 2.4.6. System (2.4.1) is uniformly strongly p-persistent if Ry > 1.
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Proof. Thanks to Theorem 2.2.3, we have only to show the uniform weak p—peréistence for system (2.4.1).
Suppose that system (2.4.1) is not uniformly weakly p-persistent, then for any e € (0,1) we can choose
some initial condition (o, yo) and some sufficiently large Ty > 0 which satisfy p(zo,0) > 0 and

/ / kz(a, T)y(t, 750 —7)drda < e for all t > Tp.
o Jo ;

Then we obtain ~
Mt,a) < ki1(a)C(P(t))e for all t > Ty,

which implies that
x(t,a):x(t—aO)exp< / /\(t—a-l-rr)d)
> exp ( / ki(r)C(P(t —a+r))dr ) (2.4.13)

for any t > Tp.
At the same time, if ¢ > w, then we have

N w b .
o(t) = O(P(1)) /0 /0 Ea(b,7)a(b — 1)t — )a(t — 7,6~ ) dr db
= /w.qs(t -7) {C’(P(t)) /w ka(b, k1 (b— T)x(t — 7,6 — T) db} dr

/¢t—7{ ())/Ttk2(b PV (b— )x(t—T,b—T)db}dT,

where we have used the fact that kq(b,7) = 0 if b > w or 7 > w, which is obvious from Assumption 2.4.1
iv)b). In the same reason, ¢q4(t) := ¢(¢t + d) (d > 0) satisfies that

t+d

ba(t) = p(t+d—T) {G(P(t+d)) /

t+d '
koo (b, 7)key (b —T)m(t—l—d—r,b )db} dr

/¢dt—T{ P(t+d)) /kszkl(b—T) (t+d—rT,0 —T)db} (2.4.14)

for sufficiently large t(> w)
(2.4.7), (2.4.13) and (2 4.14) imply that

t _ t b—r
q(t) > /0 ¢dalt —7) {C(Po)/ ka(b, 7)k1(b— T) exp (—E : Cok1(r) dr) db} dr

If d is larger than a sufliciently large positive number T, we find that

t+T ; t+T b—r | , :
Salt) > /0 qbd(t—T){C(Po) / oo (b, 7)er (b — 7) exp <—s O Cokl(r)dr> db} dr

t ~ T+T b—r1
> / Ga(t —7) {C(Po)/' ka(b, 7)k1(b— 7) exp (—6 Coky (r) dr> db} dr
0 T 0

for all t > 0. Taking Laplace transforms leads to

where

[eS) T+T v b—r
F(e,\\T) := / e AT {C’(Po) / ka(b, 7)k1(b— T) exp (—s Coks (1) d'r) db} dr.
0 T 0

Since ¢4 is bounded, q@d()\) is defined for all A > 0. Moreover,
hm F(0,0,7) / C(Py) {/ kz(b,T)kl(b—T)db} dr
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_ /0 " 6my) { / " ka, (s - 7) db} dr

=Ry > 1.

Since F'(e, A\, T) is continuous, we see that F(e,A\,T) > 1 if ¢, A > 0 are chosen small enough and T large
enough. Then (2.4.15) implies that ¢4()\) = 0, which means ¢4(t) = 0 a.e. on [0,00), i.e., #(t) = 0 for
almost every ¢t > d + T. This contradicts Lemma 2.4.4. ‘ O

2.5 Discussion

In this paper we have shown: uniform strong persistence in two structured population models. Uniform
weak persistence has been proved by using positivity result and the Laplace transform of the force of
infection ¢4(t), where we have seen the model’s basic reproduction ratio Ry plays an important role. Then
we have applied the theorem stating uniform weak persistence implies uniform strong persistence under
the compactness condition (C) to derive the two model’s uniform strong persistence. In order to verify
the compactness condition (C)-b) we have made use of Fréchet—-Kolmogorov’s Theorem that states the
compactness criteria for the subset of LP-space. '

In Section 2.3, we do not use ¢(t), whose alternative is o(t, (z,y, 2)) = y(t)+]|/2(t, -)||. Assumption 2.3.1
and v > 0 assure that o(t, (z, y, 2)) > 0 if and only if ¢o(¢) > 0. From this point of view, the discussion
in Section 2.3 and that in Section 2.4 are virtually identical.

Assuming that the upper bound of age or age-since-infection is finite facilitates the proof of persistence,
but we see no problem in that the assumption is realistic and reasonable. The case that w is infinite could
be handled by a splitting introduced by Schappcher (see [54, 56, 57, 46]).
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Chapter 3

The impact of mass media on rumor
transmission

3.1 Introduétion

Rumor transmission is considered as a social phenomenon that a remark spreads on a large scale in a short
time through chain of communication. Its mathematical models, most of which are similar to the models
describing the spread of infectious diseases because word-of-mouth and infectious diseases have much in
common, have been constructed and investigated since the 1950s. They contain deterministic models
expressed in terms of ODE or PDE system such as those discussed in Chapter 1. On the other hand, the
effect of outside source, mass media for example, can have a considerable effect on rumor transmission,
although it is not taken into consideration in most of the existing rumor transmission models. For example,
while many people, getting more conscious of global warming, take measures to it, some researchers voice
on skepticism for it through mass media so extensively that the number of people who agree with the
researchers’ skepticism is gradually increasing. ‘

In this chapter, we regard mass media or the people in the population who have much influence by
using them as outside sources, and discuss how they affect the dynamics of rumor transmission in the
population.

3.2 Rumor-spreading mass media : simple extensions

As in Section 1.2, we denote by N (t) the total population at time ¢, which consists of susceptibles, spreaders
and stiflers. Each population at time ¢ is denoted by X (t), Y'(t), Z(t) respectively.

First, we assume that mass media constantly spread a rumor and as a result pX (¢) At susceptibles
and ¢Z(t) At stiflers become spreaders during the small interval (¢, ¢ + At), where p, q are strictly positive
constants and p does not necessarily equal ¢, which means that it is valid to regard the impact of mass
media on susceptibles as different from that on stiflers. We also assume that the spreaders do not change
their behavior after they rediscover the rumor in mass media.

3.2.1 Constant rumor with rumor-spréading mass media

In the case of the transmission of a constant rumor in a closed population, if the dynamics of the population
without mass media is governed by system (1.2.1), its dynamics taking the effect of mass media into
consideration is governed by the following system:

(. Y ()
X() = ~aX(0) 0] - PX () |
- V() YO o 20
Y(o) =Aa9X 0 5y~ P Oy — Y O F +oX(0) +aZ(0), (3.2.1)
2(0) = a1 = )X () 305 + BY () 57) + 77 () ) — a2

Taking into consideration that N(t) is constant, we can rewrite it in.the terms of



as follow:
i(t) = —ax(t)y(t) — px(t),

§(t) = aba(t)y(t) - Bly(1)}? — y(t)=(t) + pa(t) + q=(t), (3.2.2)
&(t) = a(l = 0)z(t)y(t) + B{y(t)}* +yy(t)2(t) — ¢2(t),
It is easy to show that system (3.2.2) has a unique solution on (—oo, co) in
0= {(ac y,z)€R+3|x+y—|—z‘=l}

for any initial data in Q. :
Substituting z(t) = 1 — y(¢t) — 2(¢) into (3.2. 2) we can obtain the equations for y and z only:

J=af(l—y—2)y— By’ —yyz+p1l -y —z)+qz,
i=a(l-0)(1-y—2)y+By* +vyz — gz

We define a Dulac function p(y, ) := (yz)~! on the domain {(y, z) e Ry* |y >0, 2 >0, y+ 2 < 1}.
Then we have -

(%w(y, {af(1 —y — 2)y — By — yyz +p(l —y— 2) + qz})

+ %(p(y, {a(l—0)(1—y —2)y+ By + vyz — qz})
:_{ae+ﬁ+a(1—9)(l—y)+ﬂy+p(1—Z)+%}’

z 22 y2z

-which is strictly negative on the domain. Hence we can apply Dulac-Bendixson Criterion to exclude the ‘
possibility of a periodic orbit or a cyclic chain of equlhbrla
Now, let us explore the equilibria in 2.

—azy—pr=0 < z(ay+p) =0
gives z = 0. Then, substituting z = 0 and 2z = 1 —y into
afzy — By — yyz + pr +qz = 0,

we find that f(y) = 0, where
fy) = =By" — (v — (1 —y).
f(y) is at most quadratic with respect to y and f(0) = ¢ > 0, f(1) = =B < 0. Hence, f(y) has a unique
root y* in the open interval (0, 1).
Therefore, we have the following results:

Theorem 3.2.1. System (3.2.2) has only one equilibrium (0, y*, 2*) with y* > 0, z* > 0, y* +2* =1,
‘which is globally asymptotically stable in .

3.2.2 Variable rumor with rumor-spreading mass media

Next, in the case of the transmission of a variable rumor in a closed population, if the dynamics of the
population without mass media is governed by system (1.3.1), its dynamics taking the effect of mass media
- into consideration is governed by the following system: i

[ X(0) = ~aX(t) 0 +12(0) - pX(0),
e oaxn YO s YO 70
Y(t) = afX(t )W - ( ) NG Y(t)m +pX(t) + qZ(t), (3.2.3)
2(0) = a1 = )X (O 33 + Y (303 +9Y (O 3 —n2(0) ~ 420,

Taking into consideration that N(t) is cons’cant, we can rewrite it in the terms of
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as follow: ~
&(t) = —az(t)y(t) + nz(t) — pz(?),

§(t) = afz(t)y(t) — B{y(t)}* — vy(t)z(t) + pa(t) + q2(t), (3.24)
(1) = a1 = O)z(t)y(t) + B{y(t)}* + vy (t)2(t) — nz(t) — qa(t),
It is easy to show that system (3.2. 2) as a unique solution on (—o0o, 00) in
Q= {(a: y,2) ERZPlzty+z=1}

for any initial data in Q. ,
Substituting x(t) = 1 — y(t) — z(t) into (3.2.4), we can obtain the equations for y and z only:

g=af(l—y—2)y—By* —yyz+p(l—y—2)+qz
é:a(l—ﬁ)(l——y—z)y+ﬂy2»+’7yz’—nz—qz. '

We define a Dulac function p(y, z) := (yz)~! on the domain {(y, 2) € Ry2 |y >0, 2 >0, y+ 2z < 1}.
Then we have

(%(p(y, 21—y —z)y— By —yyz+p(l —y — 2) + qz})

F o (ply, ol — )1~y — 2y + B + vz — nz — g2})
:_{a9+ﬂ+a(1—9)(1—'y)+ﬁy p(l—z)+%+n}’

z 22 + Y2z Y Y

which-is strictly negative on the domain. Hence we can apply Dulac-Bendixson Criterion to exclude the
possibility of a periodic orbit or a cyclic-chain of equilibria.

Now, let us explore the equlhbrla in (. By substituting 2 = 1 — 2 — y into —azy + 7z — px = 0, we
have
n(l—y)

—azy+nl—z—y)—pr=0 & r= ————,
Y+ n( y)—p » o

Substituting this and z = 1 — x — y into oz@scy By? — yyz +px + gz = 0, we obtain the equation f(y) = 0,
where .

F) :={(ab+7)y+p—atnl —y) + {=By* — vyl —y) +a(l —y)}(ay +p + 7).
We find that ‘
f(0)=plg+n) >0, f(1)=-Bla+p+n) <O0.
Then, noting that f(y) is of at most thlrd degree, we obtain that f(y) has at most three roots in the open
interval (0, 1).

, Since it would be complicated to find out in a precise sense how many roots of f(y) exist'in (0, 1) in
general, let us assume 6 = 1 for simplicity. Then

and we can conclude that f(y) has a unique root in (0, 1) and in (—£, 0) respectively. Let y* be the root
n (0, 1), then

ay*+p+n’
ay* +p

Saml-at -y =0y S

satisfies the conditions z* > 0, z* > 0.
The above argument is valid when 6 is sufficiently close to 1 because of the continuity of the function
0 — f (—2). Therefore we have the following:

Theorem 3.2.2. If 0 is sufficiently close to 1, then System (3.2.4) has only one equilibrium (z*, y*, 2*)
with x* > 0, y* >0, 2* >0, o* + y* + 2* = 1, which is globally asymptotically stable in Q.
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3.3 Active stiflers

So far, we have examined the dynamics of rumor transmission on the assumption that stiflers do not
show their judgment towards the rumor unless they hear of it. For example, when a stifler contacts a
susceptible, the stifler is not the first to transmit the rumor and the susceptible remains not to know it. In
this viewpoint, we may call such a passive stifler skeptic. On the other hand, it could be that some people
actively deny the rumor, whom we can call “active stiflers.” They voluntarily tell susceptibles and spreaders
that the rumor is false, while their stories may be based on hearsay information obtained through their
acquaintances or mass media. In other words, active stiflers prevent the spread of the rumor by spreading
its rival rumor. In this section, we investigate the transmission of a rumor in a closed population consisting
of susceptibles, spreaders and active stiflers, and the impact of mass media on the transmission.

3.3.1 Constant rumor without mass media

First, as the simplest case, we treat the transmission of a constant rumor, and take into consideration the
possibility of three kinds of transition; from susceptible class into spreader class, from susceptible class
into active stifler class, and between spreader class and active stifler class. We can express our model in
the framework of ODE as follows: ‘

X(t) = —ozX(t)]}:[—E% ~ 5X(t)§—(%,
Y (1) = aX (1) Yg; _ 'y‘Y(t)%, | (3.3.1)
20 =¥ (O 53 +0X(O 50,

where « is the susceptible-spreader interaction parameter, § the susceptible-stifler interaction parameter,
v the spreader-stifler interaction parameter. We assume that « and ¢ are strictly posmlve, and that v can
take any value in R\ {0}.

- Since the total population N(t) := X (t) + Y (t) + Z(t) is constant, we can rewrite the system (3.3.1) in
the terms of ~ ___

oft) 1= T U0 = . 20 = 3
as follows:
#(t) = —az(t)y(t) — (t)Z(t)
() = az(t)y(t) — yy(t)z(t), (3.3.2)
2(t) = yy(t)z ()+5$() (t),
It is easy to show that system (3.3.2) has a unique solution on (—o0, 00) in

Qi={(z,y,2) eER3 |z +y+2z=1}

- for any initial data in Q. Substituting z(¢) =1 — y(¢) — 2(¢) into (3.3.2), we can obtain the equations for
y and z only: ‘

{ J=al-y—2)y—yz (333)

=qyz+6(1 -y —2)z.

We define a Dulac function p(y, z) := (yz)~! on the domain {(y,2) € R42 |y >0, 2> 0, y+2z < 1}.
Then we have

5Pl Mol —y =y =D+ 3ol Howe +80 -y - ah) = - (242,

which is strictly negative on the domain. Hence we can apply Dulac-Bendixson Criterion to exclude the
‘possibility of a periodic orbit or a cyclic chain of equilibria.
We can easily find out that the equilibria of (3.3.2) in Q are

Eo(1, 0, 0), E,(0, 1,0), E,(0, 0, 1).

The Jacobian matrices of system (3.3.3) at these equilibria are

a 0 —-a —a—7 ' —y 0
M|E0:<O 6>7 M|Ey=<0 ~y >7 M|Ez:<’)/—6 _6)?

Therefore we have the following:
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Theorem 3.3.1. System (5.3.2) has three boundary equilibria E, Ey, E, in Q."

If v >0, then {(z, y, z) € Q| 2 = 0} \ Ey is the stable manifold of the saddle E,, and the sink E, is
globally asymptotically stable in Q \ I,.

Ifv <0, then {(z, y, 2) € Q| y =0} \ Ey is the stable manifold of the saddle E,, and the sink E,
globally asymptotically stable in Q\ I,.

3.3.2 Constant rumor with rumor—spreading mass media

Next, we add the effect of mass media that constantly spread the rumor to system (3.3.1) as system (3.2.1)

to obtain
() = —aX() 31 ~ 0K () — X (D),
V(t) = aX () ) — 7Y (03 + X (0) + a2, (3:3.4)
2(8) = ¥ ()5 + X (0 5% - 4200,
where p and ¢ are sfrictly positive constants. Since the total population N(t) := X(¢) + Y (¢) + Z(t) is
constant, we can rewrite the system (3.3.4) in the terms of
() o X () _ Y@ _ 2@
z(t) = N y(t) := N 2(t) = N
e ollon (1) = —as(B)u(t) - 5e(0)2(t) — pa(t)
y(t) = am(t)y(t) — yy(t)=(t) +pfﬂ(t) +qz(t), (3.3.5)

4(t)

Yy(8)2(t) + 0z (t)2(t) — q2(t),

It is easy to show that sys’gem (3.3.5) has a unique solution on (—oo, 00) in

for any initial data in Q. Substituting z(t) =

y and z only:

) {

We define’ a Dulac function p(y, z) :=

Then we have

%(p(y, z){a(l -

)
(a5
—(=+=+

2y

p(l-2) ¢

Y2z _> ’

y2

y=a(l-
z=yyz+6(l—y

y =2y =2 Fp(l-a-y)+ qz}) +

= {(, y, )eR+3|z+y+z_1}

— y(t) — 2(t) into (3.3.5), we can obtain the equations for

y—2)y—vyz+p(l—y—2)+qz,

g (3.3.6)

-1 G.R+2|y>0,z‘>0,y+z<l}.

(yz)~! on the domain {(y, 2)

(oMo, )z + 51—y~ 2)z - g2))

which is strictly negative on the domain. Hence we can apply Dulac-Bendixson Criterion to exclude the
possibility of a periodic orbit or a cyclic chain of equilibria.
We can easily find out that the equilibria of (3.3.5) in  are

E,(0, 1,0), yz<0 g 1—9-),

y

where E,, exists in Q if and only if v > ¢. The Jacobian matrices of system (3.3.6) at these equilibria are

agq ag
—a—p —a—-v-p+q _ (" T4 =p —5 P
M|g, = ( 0 - )’ Mlp,, = "a=8)(r—q) —8lr—q) | -
v q , 8l Y
If v > ¢(> 0), then we have
5 —
tr Mg, = Mgy —p- -9 <0,
Y Y
_ -0 -d+pytoag

det M|,

7

v

which implies that the two eigenvalues of M|g,, have strictly negative real parts.

Therefore we have the following:
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Theorem 3.3.2. System (3.5.5) has two equilibria By, Ey, in Q, while E,, exists in Q if and only if
Y24

If v < q, then E, is globally asymptotically stable in ).

If v > q, then the segment I, = {(z, y, 2) € Q| z = 0} is the stable mamfold of the saddle E,, and
Ey. is globally asymptotically stable in Q \ I,.

3.3.3 Variable rumor without mass media

Let us consider the transmission of a variable rumor. Unlike Section 1.3 and system (3.2.3), we assume
that both spreaders and active stiflers have the possibility of transiting into the susceptible class because
the rumor is modified in the communication process momentarily.

We can express our model in the framework of ODE as follows:

() = ~aX ()03~ XO 5 +mY () + w20
Y(t) = aX(t)% — 'yY(t)%((%'— mY(t), (3.3.7)
Z(t) = m@% +6X(O) T~ mZ ()

‘where 11 and 7y are strictly positive constants and denote the transition rates from each rumor-class into
the susceptible class. ’

Since the total population N (¢ ) X (t)+Y(t)+ Z(t) is constant, we can rewrite the system (3.3.7) in
the terms of '

z(t) ==
£(t) = —az(t)y(t) — 0z(t)z(t) + my(t) + n22(t), »
y(t) = ax(t)y(t) — yy(t)z(t) — my(t), (3.3.8)
(1) = vy(8)2() + 0x(t)2(t) — m22(t),

a
It is easy to show that system (3.3.8) has a unique solution on (—oo, 0o) in

as follows:

={(z,y,2) eR’ |z +y+2=1}

for any initial data in Q. Substituting z(¢) = 1 — y(t) — 2(¢) into (3.3.8), we can obtain the equations for
y and z only:
) =o(l —y— 2)y —yyz — my, o
y A-y—2)y—y my (3.3.9)
Z=qyz+06(1 —y—2)z — Nz

We define a Dulac function p(y, 2) = (yz)~!

Then we have

on the domain {(y, 2) e R4? |y >0, 2 >0, y+ 2z < 1}.

By P10 Ha ~y =2 =20 =)+ ol e 80—y =2 —moe) = = (S 47

which is strictly negative on the domain. Hence we can apply Dulac-Bendixson Criterion to exclude the
possibility of a periodic orbit or a cyclic chain of equ1l1br1a
In the following, we assume

1A A6 a

for simplicity. Let us explore the equilibria of system (3 3.8). Possible equilibrié are three boundary
equilibria
EO(l, Ov 0)7 El(l — Y1, Y1, 0)7 E2(1 — 22, Oa 22)

and an interior equilibrium E*(z*, y*, 2*), where

T ' 2
=1-—=(<1), =1--=(<1),
pi=1- (<), =1 - 2(< )

oo YEm e am—dm =y —my) . (a=m)y—(oen—dm)
THa—=46"" " Ty +a—06) (v +a=9)

For simplicity, we assume that * # 0, y* # 0, z* # 0.
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The Jacobian matrices of system (3.3.9) at these equilibria are

_(a—m 0 _fay:r O
M|Eo —( 0 6_772>_< 0 522>7
) e )

(a—=m1)y—(anz—dn1) (y+a=98) =«
0 o 771”)’&5"72 ni 0 ’Y'Yaa z

) anz—n1—y(§—n2) 0 Y(yta—=68) . « 0
M|g, == < [ " ) = ( 5 Y. > ,
(v=9)(1- 72) n2—0 \ (v =9)za —0z

_( —ayt —(a+)y"
M|E* = ((,.Y_ 6)2* —5z* > .

We find that

tr Mg = —ay”™ = 6z°, det M|g~ = y*2"v(y + a—9).
In the following, we classify. the phase-plane for system (3.3.9) in

Aiz{(y,Z)GWIyZO, zzo,y+z§1}

‘and discuss the existence and the local stability of its equilibria. We identify the projection of Ej onto
yz-plane with Ey and so on. Let ‘

nt(A) i= {(y, 2) €R |y >0, 2> 0, y+2 < 1}
I, ={(y,2) e Al z=0}, L :={(y,2)eA|y=0}.

On the phase-plane, the y—nullcline is

y=0, fily, z) == —(a+7)y-—az+a—m =0,
and the z—nullcline is
2=0, fa(y, z2):=(y=98)y—0z+d—m2 =0.

The line f(y, z) = 0 passes through E; and E*, and the line f2(y, z2) = 0 E2 and E*. The slopes of the -
lines fi(y, z) = 0 and fa2(y, z) = 0 are, if they exist,

.

«a )
1= 2= =

_m,

If 77 > 0 and T >0, then
: at+vy<0 and v—462>0,

which are inconsistent because «, ¢ are strictly positive.
Case 1. y1 <0 and z3 < 0.

Ejy is a sink in A and locally asymi)totically stable (LAS). E, and E, do not exist in A.

If B* € Int(A), then the slopes 17 and T must be both strictly positive, which is a contradiction.
Hence E* ¢ Int(A). :

Therefore, Ey is globally asymptotically stable (GAS) in A (Fig.3.1 A).

Case 2. y1 > 0 and 22 <0 (i.e., o > n and § < 72).
Ejy is a saddle in A, and its stable manifold contains I,. Ey € I, and Ey ¢ L.
If E* € Int(A), then the slope T5 must be strictly positive, i.e.,

T>0 & v>4, (3.3.10)

and under this condition, z* must be strictly positive, i.e., |
(@ —m)y — (anz —dm) > 0. (3.3.11)
Conversely, if (3.3.11) holds, then ’

5> ang — 0my _5:04(772—5) =0z S
a—m a—1 Y1

f)/_
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from which it follows that o
1< ——-
a+d
and that E* € Int(A). Hence, E* € Int(A) iff (3.3.11) holds, when E; is a saddle, whose stable

<E<Q

manifold contains I, \ Ey. E* is GAS in A\ (I, U I,) (Fig.3.1 B).

Case 3.

Case 4.

If E* ¢ Int(A), (3.3.11) does not hold, and from the assumption 2* # 0, we have

 (e=m)y—(am—om) <0.
Hence, E; is GAS in A\ I, (Fig.3.1 C).

y1 <0and z2 >0 (i.e.,, « <m and § > 7).
Ej is a saddle in A; and its stable manifold contains I,,. Ey ¢ I, and Es € I,.

A similar discussion as in Case 2, we can easy find that E* € Int(A) iff

ang — by — (6 —n2) > 0, ‘ (3.3.12)
when E is a saddle, whose stable manifold contains I, \ Ey. E* is GAS in A\ (I, UI,). (Fig.3.1
D) /
If E* ¢ Int(A), (3.3.12) does not hold, and from the assumption y* # 0, we have

ang —om — (6 —n2) < 0.
Hence, E is GAS in A\ I, (Fig.3.1 E).

y1 >0 and 29 > 0 (i.e., & > m and § > n9).
E, is a source in A. E; € I, and By € I,.

If y* < 0 and z* < 0, then E* exists in the third quadrant of yz-plane, and the slopes T} and T5
must be both strictly positive, which is a contradiction. _
Assume that y*2* < 0, then E* ¢ Int(A). The sign of (a""l)'y_ogo‘""’_ém) is different from that

of w. Hence, if (’0‘""1)7_;“"2_6"1) < 0, then E is a saddle, whose stable manifold
contains I, \ Eo, and E; is GAS in A\ I, (Fig.3.1 F). Otherwise, E is a saddle, whose stable
manifold contains I, \ Ey, and F; is GAS in A\ I, (Fig.3.1 G).

Assume that y* > 0 and 2* > 0.

4-i) y(y+a—4) >0,
Then we have .
(@=m)y>an —dn >y —n2). (3.3.13)

If v > 0, then v + o — & > 0 and it follows from (3.3.13) that
a—m+n—§6>0

and | 5 (@ —m +m—0)
ang — a— -
N =1 > 2 771+m_772=771 M+ N2
=M =

Otherwise, v + @ — § < 0 holds and it follows from (3.3.13) that

> 0.

o—m+n—0>0

and

ang —dm n2(a—m +m2 — )

ey L — — 1y = < 0.
Y+m e 5 1m +m =2 5 —m

In both cases, we see that z* > 0 and E* € Int(A). (3.3.13) implies that E; is a saddle,
whose stable manifold contains I, \ Ep, and Es is also a saddle, whose stable manifold
contains I, \ Ey. We find «
tI‘MlE*<0, detM]E*>0,‘

which implies that M |p~ has two eigenvalues whose real parts are both strictly negative.
Hence E* is GAS in A\ (I, U I;) (Fig.3.1 H). ‘ '
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4-ii) y(vy+a—4) <O0.

Then we have '
(& =m)y > an — 0n > (6 — o),
which implies that E;, Fy are both LAS (bistable).

A similar discussion as in the case v(vy +a—38) > 0, it is easily found that z* > 0 and
E* € Int(A). We have det M |g« < 0, which implies that E* is a saddle. The stable manifold
of E* is the separatrix which splits the basin of attraction of E; and that of Fy (Fig. 3.1

).

3.3.4 Variable rumor with rumor-spreading mass media

Now, we add to system (3.3.7) the effect of mass media that constantly spread the rumor to obtain

X(t) = “)3%5)) _sx() JZV((t) FIY () +mZ(0) - pX(0),
¥(t) = aX(t)% - 'yY(t)% ~mY () + pX(t) + qZ(b), (3.3.14)
20 =¥ () 55 + OX (0500 - m2(0) — a2(0),

where v can take any value in R\ {0}, 71 > 0, 72 > 0 and the other parameters are strictly positive.
Since the total population N(t) := X(t) 4+ Y (t) + Z(t) is constant, we can rewrite the system (3.3.14)
in the terms of .

as follows:
L(t) = —ax(t)y(t) — 6x(t)z(t) + my(t) + n22(t) — px(t),

(
y(t) = az(t)y(t) — vy(t)2(t) — my(t) + pz(t) + gz(t), (3.3.15)
£(t) = vy(t)z(t) + 0x(t)2(t) — n22(t) — qa(t),

)

It is easy to show that system (3.3.15) has a unique solution on (—oco, 0o) in
Qi={(z,y,2) eERP |z +y+2z=1}

for any initial data in Q. Substituting (¢) = 1 — y(¢) — 2(¢) into (3.3.15), we can obtain the equations for
y and z only: :

(3.3.16)

y=a(l—y—2)y—yyz—my+p(l—z-y)+gz,
2=yyz+6(l—y—2)z — ez — qz.

We define a Dulac function p(y, z) := (yz)~!

Then we have

on the domain {(y, 2) € R4? |y >0, 2 >0, y+2 < 1}.

(%(p(y, A{a(l—y—2)y =z —my+p(l -z — y) + q2})

4 g_ c )z +0(1 =y — 2)2 — a7 — g2})

:f<g+_+_<__2_2_>+%>,
2.y y=z Y

which is strictly negative on the domain. Hence we can apply Dulac-Bendixson Criterion to exclude the
possibility of a periodic orbit or a cyclic chain of equilibria.

Next, let us investigate the equilibria of system (3.3.15). (z*, y*, z*) is one of them if and only if it
satisfies (z*, y*, 2*) € Q and

fl(x*v y*7 Z*) = fz(a;*) y*7 Z*) = fg(x*’ y*7 Z*) =0,
where

i, y, 2) = —awy — dzz + My + oz — pa,
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Fig. 3.1: yz-phase plane of system (3.3.9). (A) corresponds to Case 1. (B) corresponds to E* € Int(A)
in Case 2. (C) corresponds to E* ¢ Int(A) in Case 2. (D) corresponds to E* € Int(A) in Case 3. (E)
corresponds to E* ¢ Int(A) in Case 3. (F) corresponds to y*z* < 0 and (o‘_m)v‘sa"?_é"l) < 0 in Case -

4. (G) corresponds to y*z* < 0 and {&=m= (0”72 1) > 0 in Case 4. (H) corresponds to Case 4-i). (I)
corresponds to Case 4-ii).
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FA 2, y, 2) = awy —yyz —my +pz + ¢z,
2z, y, 2) == yyz + 0xz — oz — q2.
Note that f'(z, y, 2) + f*(z, y, 2) + f3(z, y, z) = 0.
f3(x*, y*, 2*) = 0 implies :
2" =0 or yy*+d6r*—ny—q=0.
In the case 2* = 0, it follows from f?(z*, y*, 0) = 0 and (z*, y*, z*) € Q that
az*y* + pr* — niy* =0 and z*+y*=1.
Eliminating y* from these equations, we have g!(z*) = 0, where
9'(z) = az(l — ) + pr —m (1 — z).

Since g'(x) is quadratic with the coefficient of its quadratic term negative, and gt(0) = - <
0, g'(1) = p > 0, we find that g*(z) has a unique root z, in the interval (0, 1), where

_atptm—(atp+m)?—dan
20 ’
a—p-m+(atp+m)®—danp
2a ' -
Hence, Ey(zo, yo, 0) is an equilibrium of system (3.3.15).
Here, the Jacobian matrix of (3.3.16) at the equilibrium (z*, y*, 2*) is

Yo:=1—x0=

M:'(a(1—2y*-z*)—7z*—p—m —(a+7)y —p+q )
- (=) VWAl —y —22) —m2—q

Hence we have

0 nTo + 7YYo — M2 —q
~ Observing that 2y and yo do not depend on v, we see that the function v = 0xg + Yyo — 12 — q is
strictly monotone increasing. So, we can find a constant v which satisfies dxg + Yoo — 72 — ¢ = 0, and
it follows that, if v < = then Ey is LAS, and if v > ~ then Ej is a saddle, whose stable manifold is
{(z, y, ) € Q| 2 =0}. v is expressed as follows:

(2 +4q-9) (a—p—nl—\/(a+p+m)2—4am)
2p

o= +6

Next, we shall examine the case Yy* +0x* —ny —q=0. Let

A:={(z,y) eR*[2>0,y>0, z+y <1}

Case 1. § <mg +q.

Since it follows that

(a+p-—m)®—{(a+p+m)*—dan} = —4pny <0,

we find that
: a—p—m —/(a+p+mn)?—dan < —2p,
hence " 5)(—2p) :
70>_(772 q2 . p Ty
P
1) vy <ma+gq.

Then we have (Fig.3.2 A)
Az, y) €R? |y + 8z —m2 —g =0} N A C {(1, 0)}.
The point (1, 0, 0) cannot be an equilibrium of system (3.3.15) because f1(1, 0, 0) = —p #

0. Hence, system (3.3.15) has no equilibria except Eo, which is GAS in Q because v < 7.
The xy-phase plane is as Fig. 3.2 B.
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e Ey
,/”'\\I
1

Fig. 3.2: zy-phase plane in Case 1-i). (A) represents the position of the line yy + 6z — 1 — ¢ = 0-and A.
(B) represents the global dynamics of system (3.3.15).

1-ii)

1-iii)

d=7=m+q. ;
yy* + 0z* — 2 —q = 0 implies z* + y* = 1, i.e.,, 2* = 0. Then system (3.3.15) has no
equilibria except Fy, which is GAS in .

d<m+qg<. . ‘
~ Since (z*, y*) € {(z, y) € R? | yy + dz — m2 — ¢ = 0} N A, it must satisfy (Fig.3.3 A)
0<a <a, y<y <2l
Y
where 5
Y—N2—4 —7N2—4q
= =1—-zi=———:.
o oy S Ay e
Let s : 5 5
R ]

then the equation z* must satisfy is g%(z*) = 0. Here g?(x) is at most quadratic, whose

quadratic term is

ol sl pe-stns

and it follows that

— 1 — +
PO =np T gy B,
8! b :
9*(ay) = —aw(L = zy) — pry + (1 — 1) = —g' (1) (3.3.17)

Since the function [7 + ¢, 00) 3 v = x4 = z4(¥) is strictly monotone increasing and its
range is [0, 1), there exists a unique v = 71 such that x;(v1) = 9. Then we have

dxo + Y% —n2 —q =d0zi(n) + n{l —zt(n)} —m—q=0,

which implies v; = vy because yg > 0.
Hence, if v > 70, then z1 > z¢ and g*(xt) < 0, which implies that g*(z) has only one root
x1 in the interval [0, z4]. System (3.3.15) has just two equilibria Ey and Ei(z1, y1, 21)-
The latter satisfies :

N2+ g — 6z

92(x1):0’ 0< <x’[7 Y1 = ~

zn=1-z-uy.

‘We have ,
Mg, = (@ =y =72 =p=m (a7 —ptq
o (7 - 6)21 —521

and a little calculation gives rise to the following:

det M|p, = —v21 - (g°)'(z1),-
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tr M|g, = (az1 —v21 —m) —ay; —p — 0z
pxr1+qz ’
= PTG —p—bn
Y1
We find that det M|g, > 0 and tr M|p, < 0, which implies that M| El has two eigenvalues
whose real parts are both strictly negative. Hence E; is GAS in {(z,y, z) € Q| z # 0}
(Fig. 3.3 B). :

On the other hand, if 7, + ¢ < v < 70, then g %(z1) > 0, hence there are two possibilities:
g*(z) has no root in the interval [0, z4], or g*(z) has two roots z1, zo there. In the former
case, the bifurcation diagram of z = 2*(v) with v the bifurcation parameter is as Fig. 3.4
A, which shows that a supercritical bifurcation occurs at v = <. In the latter case,
the bifurcation diagram is as Fig. 3.4 B, which shows that a subcritical bifurcation occurs
as v = 7. The middle branch in the range v2 < v < Yo represents the equilibrium
Es(z2, y2, 22), which satisfies

0< 20 < 21, 0<1¢1<$C2<:17T.

Hence :
det M|g, >0, detM|g, = —vzo-(¢%) (22) <0

which implies that E; is LAS and Ej is a saddle (Fig.3.3 C).

A B C
7] ) Y
l N 1 ~
Eqy ®
. E, «‘\ N e Fo
Ey
\ SN
0 1 0 1

Fig. 3.3: xy-phase plane in Case 1-iii). (A) represents the position of the line yy + 6z —n2 — ¢ = 0 and A.
(B) and (C) represent the global dynamics of system (3.3.15).

A B
Z* Z*
. El
’70 /y
o) N E O

Fig. 3.4: Bifurcation diagram in Case 1.

Case 2. § > n2 +q.
It is easily seen as in Case 1 that vg < 79 + ¢q.

24) y>m2+g.
Since (z*, y*) € {(z, y) € R? | vy + dz —m2 — ¢ =0} N A, it must satisfy (Fig.3.5 A)

N2 +q

0<x*<772+q
- T ¢

0<y* <

)
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g*(z) is at most quadratic and
g°(0) > 0, .
n2+q o—m—g +
gz<—)=—q~ 2 __p"’]Z q

5 5 s <0 (3.3.18)

Hence g2(x) has only one root z; in the interval [0, 22 and the equilibrium E; satisfies
det M|p, > 0 and trM|g, < 0. Therefore, Fy is a saddle and E; is GAS in {(z, y, 2) | 2 #
0}. ,
2ii) v <m2+gq.
Smce (x*, y*) € {(z, y) € R? | vy + 6z —m2 — g = 0} N A, z* must exist between z; and
(Flg 3.5 B or Fig. 3.5 C).

A B K - C

Fig. 3.5: zy-phase plane in Case 2. Each figure represents the position of the line yy +dz —n2 —¢ =0
and A. (A) corresponds to Case 2-i). (B) corresponds to 0 < v < nz + ¢ in Case 2-ii). (C) corresponds to
v < 0 in Case 2-ii).

The function (—oo, 72 + q) 3 v — x4 is strictly decreasing and its range is (0, 1). Then it
follows that there exists a unique v = 71 such that z4(y1) = zo, and we can easily show as
in Case 1 that v1 = 7o.

If 7o < v < M2 + ¢, then 0 < x4 < z0, which implies g'(z1) < 0 and g*(z+) > 0. From this
and (3.3.18) we observe that g?(x) has only one equilibrium z; between x4 and 2254, If
v > 0, then

Ty <31 < 22__(;‘_9_ and (¢?)(z1) < 0.

Otherwise, if v < 0, then

N2 +4q
)

Both cases imply that det M|z, > 0 and tr M|g, < 0, therefore the global behavior of
system (3.3.15) is the same as Case 1-iii). ' :
If v < 70, then zp < x4 < 1, which implies g'(zt) > 0 and g*(zt) < 0. From this
and (3.3.18) we observe that g?(z) has no root between z; and 227 under the condition
v(y — & + &) > 0. In this case, Fy is GAS in Q. Otherwise, i.e., under the condition
v(y — & + ) < 0, there are two possibilities: g?(z) has no root in the interval [0, z{], or
g2() has two roots x1, T2 there, which satisfies ‘

<z <zt and (¢%)(z1) > 0.

Tt < Ty <71 < B (y>0)
"2;"’<x1<x2<:c1 (v<0)

which implies

(9°)(22) <0 < (¢%)'(21) (¥ <0)

In the case g2(x) has no root, the bifurcation diagram of z = 2*(y) with y the bifurcation
parameter is as Fig. 3.4 A, which shows that a supercritical bifurcation occurs at v = g.
In the other case, the bifurcation diagram is as Fig.3.4 B, which shows that a subcritical
bifurcation occurs as ¥ = vy. The middle branch in the range 72 < v < 7o represents the
equilibrium Es(x2, y2, 2z2). The dynamics is the same as in the case § <n2 +¢ < v < 0.

{<g2>'<x1.> <0< (g% (22) (v>0)
)
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3.4 Rumor-suppressing mass media

So far we have treated the situation where mass media spread rumor. In contrast, we shall discuss the
situation where mass media constantly suppress rumor in the following. We assume that rumor-suppressing
mass media change pX(t)At susceptibles and qY (t)At spreaders into stiflers during the small interval
(t, t+ At), where p, q are strictly positive constants and p does not necessarily equal to g. We also assume
that the stiflers do not change their behavior after they rediscover the rumor in mass media.

3.4.1 Constant rumor with rumor-suppressing mass media

In the case of the transmission of a constant rumor in a closed population, if the dynamics of the population
without mass media is governed by system (1.2.1), its dynamics taking the effect of mass media into
consideration is governed by the following system:

(. Y(t)

X(t) = —aX(t)m —-pX (1),
Y(t)= aOX(t)% - ﬁY(t)%‘— wY(t)% —qY (¢), ' (3.4.1)‘
Z(t) = a(l - 9)X(t)% + ﬂY(t)% + w(t)% +pX (1) +qY (1),

Taking into consideration that N(¢) is constant, we can rewrite it in the terms of

z(t) == N’ y(t) :== %;%, 2(t) := NG)
as follow:
&(t) = —ax(t)y(t) — pz(t),
§(t) = abx(t)y(t) — B{y(6)}* — vy(0)=(t) — ay(t), (3.4.2)

3(t) = a1 — )z (t)y(t) + B{y(t)}* + vy(t)z(t) + px(t) + qy(t),

It is easy to show that system (3.4.2) has a unique solution on (—oo, 00) in
Qi={(z,9,2) eR’ |z +y+2=1}

for any initial data in 2. Moreover, since (z(t), y(¢), 2(t)) € Q, (0, 0, 1) is the only equilibrium of system
(3.4.2), t — x(t) is monotone decreasing and t — 2(t) is monotone increasing. Therefore, we have the
following result:

Theorem 3.4.1. System (3.4.2) has only one equilibrium (0, 0, 1), which is GAS in .

3.4.2 Variable rumor with rumor-suppressing mass media

Next, in the case of the transmission of a variable rumor in a closed population, if the dynamics of the
population without mass media is governed by system (1.3.1), its dynamics taking the effect of mass media
into consideration is governed by the following system: ’

(o Y (1)

X() = ~aX(t) 355 + 7(8) - pX (1),
Vi) = a9X(i)]—l\/[% - ﬂY(t)% - Y(t)% _ g (1), ' (3.4.3)
2(6) = a(1 = )X ()5 + BY (O + 1Y ()5 — 12(6) + X (D) + aY 0.

Taking into consideration that N(t) is constant, we can rewrite it in the terms of

as follows:

g(t) = abx(t)y(t) — Bly(t)}* — yy(t)2(t) — qy(t), E (3.4.4)
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It is easy to show that system (3.4.4) has a unique solution on (—o0, 00) in

Qi {(z, 4, 2) €RY |24yt 2 =1)
for any/initial data in Q.
Substituting x(t) = 1 — y(t) — 2(t) into (3 4.4), we can obtain the equations for y and z only:
§=af(l—y—2)y—By* —yyz - gy, | (3.45)
t=al=0)(1-y—2)y+py’ +yyz —nz+p(l -y —2) +qy. B

We define a Dulac function p(y, z) == (yz)~' on the domain {(y, 2) e Ry%2 |y >0, 2 >0, y+2 < 1}.
Then we have

%(ﬂ(y, 2){ab(1 —y — z)y — By® — vyz — qu})

+ %(p(y, 2){0_4(1 -1 —y—2)y+ By + vz —nz+pl—y—2)+qy})

: =—a0+ﬂ—zi{ (1-0)(1— )+ﬂy+p-%+q},

z

which is strictly negative on the domain. Hence we can apply Dulac-Bendixson Criterion to exclude the
possibility of a periodic orbit or a cyclic chain of equilibria.
Next, let us investigate the equilibria of system (3.4.4). (z*, y*, z*) is one of them if and only if it
satisfies (w y*, 2*) € Q and ‘
—ar*y* +nz* —pz* =0, (3.4.6)
) afz*y* — B(y*)* — vy 2" — qy* = 0.
(3.4.7) implies .
y =0 or afz*—By* —vz"—q=0.
In the case y* = 0, it follows from (3.4.6) and (z*, y*, 2*) € Q that
o , 25 = p_
p+n p+n

E0< n 0,L>
p+n’ " ptn)

is a boundary equilibrium of system (3.4.4).
The Jacobian matrix of (3.4.5) at the equilibrium (z*, y*, 2*) is

M= ( af(z* —y*) = 2By — 2" —q —(af+ )y >
a(l=0)(z* —y*)+26y* +v2* —p+q {—a(l-0)+~v}y*—n—-p)"

Hence,

Hence we have

Mg, = R 0
B \a(l-0)75 +7 5% —p+a —n-p)’

h
where p

n
R a0p+n g 7
~ Therefore, we see that if R < 0 then Ey is LAS, and if R > 0 then Ej is a saddle, whose stable manifold
IS{ZE,y, )€Q|y_0}
Next, we shall examine the case afz* — By* — 'yz* — q =0. Let

Ai={(z,y) €ER? 220, y>0, z+y<1}.
the equation z* must satisfy is f(z*) = 0, where

f(z) = {(af +7)z —v—q}(az +n) + (=B +){-(p+n)z+n}.

Here, f(x) is quadratic and the coefficient of its quadratic term is a(af + ), which is strictly positive. In
addition, we obtain

7(0) = (8 +an <0,
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f< n )ZR,n(a+p+n)/_
p+n p+n

Observing that it follows from (z*, y*, 2*) € Q and (3.4.6) that

¥ e [O, L] ,
p+n
if R <0 then Ejy is the only equilibrium of system (3.4.4) and GAS in Q. Moreover, if R > 0 then f(x)

has only one root z; in (0, p_’l—n), which satisfies f'(z1) > 0, and system (3.4.4) has just two equilibria Ey
and F1(z1, y1, 21) (interior equilibrium), where

—(p+n)z1+n
Y= ( 77)1 (

>0), zn:=1—x1—1y1(>0).
oz + 1 ) 1 1 yl( )

The Jacobian matrix at E; is calculated as follows:

Mg, = ( —(ab + B)y: | —(af + 7))y )
BT N azy (1= 0y +By1 —p {—a(l—0)+~}pm—n—p)"

"Then a little calculation shows that

det M|g, = y1 - f'(z1) >0,
tr Mg, = (—a—B)y1—p—n+vn
_akiy +pTy n yi(abz1 — By — q)
21 21

a(l — 0)ziyr +pz1 + B(y1)? + g <
21

=—(a+B)y1—p

=—(a+B)y1—p— 0,

which implies that M|g, has two eigenvalues whose real parts are both strictly negative. Hence E; is GAS
in {(z, y, 2) € QA [y # 0}.
The above argument is summarized as follows:

Theorem 3.4.2. System (3.4.4) has two equilibria Eo, Ey in Q, while Ey ezists in ) if and only if

n p
R:=af — - —q>0.
p+n 7 p+n 1
If R <0, then Ey is GAS in Q. .
Otherwise, the segment {(z, y, z) € Q| y = 0} is the stable manifold of the saddle Ey, and Eq is GAS
in {(z,y, z) € ]y >0}

3.5 Discussion

In this chapter we have investigated the impact of mass media on rumor transmission, i.e:, how it affects
the system’s dynamics to add the rumor-class transitions caused by mass media. For example, while the
equilibria of system (1.2.1) are (N7, 0, No — N71) (0 < Ny < Np), where Ny-is the total population which
is constant, system (3.2.1) has a unique equilibrium with no susceptibles. This means that, although a
rumor, if not discussed by mass media, is destined to fade out, almost all people get to know it and some
" of them actively try to spread it if mass media keeps discussing it. On the other hand, the analysis of
system (3.4.1) implies that almost all people get to know it and never try to spread it if mass media keeps
suppressing it. This interpretation seems to be convincing when we consider the transmission of a constant
rumor in a closed population in a short period. However, if we consider the modification of rumor, i.e.,
compare systems (1.3.1), (3.2.3) and (3.4.3), the interpretation we can draw out, if any, is that the ratio
of each rumor-class after long periods of time varies according to the effect of mass media. We have not
" obtained the variation in concrete form, which would be troublesome to calculate.
" In Section 3.3 we have examined the dynamics of rumor transmission with active stiflers. Systems
(3.3.1), (3.3.4) and (3.3.7) are substantially equivalent to generalized Lotka—Volterra 2-species competition
‘system ([63]), so it is very natural that possible final situations are extinction, domination, coexistence
and bistability. We have also proved that possible final situations in system (3.3.14) are coexistence and
~ bistability. We should notice that our ODE systems describing rumor transmission with passive stiflers
have no chance of bistability. Concerning generalized Lotka—Volterra 2-species competition systems it is
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well-known that they are bistable if the competition between the two species is fierce, so it can be safely
said that our variable-rumor-transmission models with active stiflers are bistable if the ”competition”
between spreaders and active stiflers is fierce, where its meaning is harder to understand.

In Subsections 3.3.3, if we replace the role of the rumor with that of its rival rumor, i.e., we denotes
by Z(t) the population (density) of spreaders and by Y (¢) the population (density) of active stiflers, then
we should change o, d, v, 11, 12 into §, o, —7, 12, n1 respectively. However, this transformation does not
change the discussion in Subsection 3.3.3. If we transform so in Subsection 3.3.4, then the model becomes
a model of the transmission of a variable rumor with active stiflers and rumor-suppressing mass media.
Hence we have not treated such a model in Section 3.4.

We have implicitly assumed that mass media feed information about the rumor at a constant pace.
However, the pace may undergo a lot of changes. For example, they alternate discussing it in a short time
and putting aside it over a long time. We could formulate the influence of such kind of behavior as a
periodic pulse — Y >°_, §(t — mto)pX (t) instead of —pX (¢) and so on, where §(¢) is the d—function and to
is the cycle. Such a formulation is found in many models for infectious diseases with periodic vaccination,
and so we could expect that we can mathematically analyze rumor-transmission models with periodic
pulse-like influence of mass media and as a result we can show that some of them have periodic solutions
corresponding to recursive rumors.
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Chapter 4

Rumor transmission in a
age-structured population with active
stiflers

4.1 Model formulation

Let us consider the transmission of a constant rumor in a closed age-structured population under the
demographic growth. While we regarded stiflers as passive in Chapter 1, here we regard them as so active
that they voluntarily change susceptibles and spreaders into active stiflers- by making them believe that
the rumor is false.

Let a € [0, w], where w(< 00) denotes the life span of the population, and X (¢,a), Y(¢,a), Z(t,a) be
the age-density functions at time ¢ of the susceptible class, the spreader class and the active stifler class
respectively.

j P(t,a) == X(t,a) +Y(t,a) + Z(t,a)

denotes the age-density of the total number of individuals, then the total size of the population is given
by N(t) := [, P(t,a)da.
The system can be formulated as follows:

(0 + 8a) X (t,0) = —{pu(a) + Mi(t, a) + Mo (t,0)} X (t, a),
(0 +0,)Y (t,a) = Al(t, a)X(t, a) — {'u,(a,) + As(t, a)}Y(t, a>,
(Or + 0a) Z(t, a) = Aa(t,a) X (¢, a) + As(t,a)Y (t,a) — p(a)Z (¢, a),
X(t,0) = w‘m(a)P(t, a)da, _ , (4.1.1)
0 ;
Y(t,0)=0, Z(t0)=0,
X(0,a) = Xo(a), Y(0,a ) =Yy(a), Z(0,a)= Zo(a).

p(a), m(a) stand for the age-specific natural death rate and fertility rate respectively. (Xo(a), Yo(a), Zo(a))
is a given initial data. A1 (¢, a) is the force of transition into the spreader class on a susceptible individual
aged a at time t and defined by

Ai(t,a) @ / afa,0)Y (t,0)do,

where a(a,o) is the transmission rate between a susceptible individual aged a and a spreader aged o.
‘A2(t, a) is the force of transition into the active stifler class on a susceptible individual aged a at time ¢

and defined by
1 w
“Ao(tya) = jv—(—t—)/o 0(a,0)Z(t,0)do

where a(a, o) is the transmission rate between a susceptible individual aged a and an active stifler aged o.
As(t,a) is the force of transition into the active stifler class on a spreader aged o at time ¢ and defined .
by : »

As(t,a) = ﬁ /Ow ~v(a,0)Z(t,o)do,
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where y(a, o) is the transmission rate between a spreader aged a and an active stifler aged o.

It follows from (4.1.1) that P(t,a) satisfies the McKendrick equation (1.4.2). Note that we implicitly
assume that there is no true interaction between demography and the spread of the rumor. Hence, it is
convenient to introduce the fractional age distribution for each rumor-class as follows:

X(t,a) . .
Pta)’ y(t,a) := Plta)’ z(t,a) := Plta)

z(t,a) :==

Then the new system for the fractional age distributions is given as follows:

(O + 0o)z(t,a) = =M1 (¢, a)z(t, a) — A2 (t,a)z(t, a),
(¢ + a)y(t, a) = Ai(t, a)x(t, a) — As(t, a)y(t, a),
(O + 00)2(t,a) = Aa(t, a)z(t, a) + X3(t, a)y(t, a),
z(t,0) =1, y(t,0)=0, z(t,0)=0,
z(0,a) = zo(a), y(0,a) =yo(a), =2(0,a)= zo(a),

» (4.1.2)
Al(t,a):/o ala, 0)Y(t, o)y(t, o) do,

o(t,a) = /O ¥ S(a, o) (t, 0)2(t o) do,

alt,0) = [ a(t,0)(a.0)s(t,0) do

where (¢, a) is defined by

' P(t,a)

fs P(t,a)da’

According to the stable population theory, 1 converges to the persistent normalized age distribution
uniformly with respect to a as't — oo :

¥(t,a) =

e~ F(q)

Jim 9(t,a) = c(a) = m,

where A9 denotes the intrinsic rate of natural increase, F(a) is the survival rate defined by

F(a) :=exp (— /Oa o) da) :

and c(a) is called relatively stable age distribution. Note that fo ayda = 1.
In the following we assume that the stable age distribution is already attained. Then system (4.1.2) is
rewritten as the autonomous system below:

((0r + 0a)xz(t,a) = =M1 (t,a)x(t,a) — A2 (¢, a)z(¢, a), -
(6t + 8 )y( va) = )‘ ( ).’L'( ’a) - /\3(t’a')y(t’ a)7
(00 + 8a)z ( sa) = A2t a)z(t,a) + As(t, a)y(t, a),

2(t,0) =1, y(t,0)=0, =(t,0)=0,
2(0,a) = zo(a), y(0,a) = yo(a), 2(0,a) = zo(a),

w (4.1.3)’
Ai(t,a) = /0 a(a,0)c(o)y(t, o) do,
A2(t,a) = /Ow o(a, a)cia)z(t, o) do,
As(t,a) = /0“’ ~v(a,0)c(0)z(t, o) do.
We mainly consider the system (4.1.3) under the coﬁdition
z(t,a) >0, y(t,a) >0, z(t,a) >0, z(t,a) +y(t,a) + 2(t,a) = 1. (4.1.4)

Under this condition, we can formally exclude the susceptible class from the basic system. That is, instead
of the basic system (4.1.3), we can consider the following system with linear homogeneous boundary
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conditions, which is more convenient to consider the well-definedness of the time evolution problem:

(0 +0a)y(t,a) = M (t, a){1 — y(t, a) — 2(t, @)} = As(t, a)y(t, a),
(at +6a)z(t,a,) = /\2(t5 a’){l - (t7a') - ( ) )} + >‘3( ) )y(tva)7
y(t,0) =0, =z(¢t0) =0,

y(O,a) = yO(a')’ Z(Ova) = Zo(a),

Ai(t,a) = /‘JJ afa, a)c’(a)y(t,o) do, | ’ (4.1.5)
2(t, a) / d(a,0)c(0)z(t,0)do
Na(t,a) = / ~(a,0)e(0)2(t, ) d;,.

\ 0

The state space of this system is

Q= {(yvz) € (L-li-(oaw))z | y+z< 1}7

Let A be a differential operator on (L'(0,w))? defined by (1.4.7) and (1.4.8). Let F be a nonlinear
operator on (L'(0,w))? defined by '

_ (Mlal1{1 - 61(a) - da(a)} — Aslal 2] (a)
Flg)a):= (Al al al{1 — 61(a) — b2(a)} + dola ] ¢§]¢;<a>) !

where \i[a|¢1], Ao[a| o] and As[a| o] are defined by
Mol = [ ale0)e(o)é(o) ao
la] ) / 5(a, 0)c(0)9(c) do,
xlaldl: = [ 2(a,0)clo)o(o) do

System (4.1.5) can be formulated as a semilinear Cauchy problem on the Banach space (L'(0,w))?:

%u(t) = Au(t) + F(u(t)), u(0) = uo. (4.1.6)

Observe that Lemma 1.4.1 holds here.
Assumption 4.1.1. o, 6, v € LY ((0,w) x (0,w)) and c € L‘j_o(O, w).

Under this assumption, set

a™ :=ess supa, 6°° :=ess supd, 7> :=ess supy, ¢ := ess supc.

L'(0,w) is endowed with the usual norm, and (L*(0,w))? is endowed with the following norm :

18]l = max{llg1], [ é2ll}, ¢ ="(¢1, ¢2) € (L'(0,w))*.

We can easily show as Lemma1.4.3 that under Assumption 4.1.1 the map Flg : @ — (Ll(O,qu))2 is
Lipschitz continuous and (I + kF)(2) C Q holds for some k > 0. ,
Then, the same argument as Theorem 1.4.4 leads to the following theorem :

Theorem 4.1.2. The Cauchy problem (4.1.6) has a unique mild solution S(t)up, and Q is positively
invariant with respect to the semiflow {S(t)uo}ti>0. If uo € D(A), then S(t)uo gives a classical solution.

4.2 Existence of REE

In this section, let us consider the existence of rumor-endemic equilibria of system (4.1.3), which has
(z(a), y(a), z(a)) = (1, 0, 0) as RFE. We denote the density vector at the REE by *(z*, y*, 2*) and the
forces of rumor-class transition A;* (j = 1, 2, 3). They must satisfy the following system :
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As"(a) = /Ow ~(a,0)c(0)z* (o) do.

By formal integration, we obtain the following expressions:

z*(a) = e~ Jo T (e)+22" (o)} do

y*(a) = /a e~ [52"(T) TN *(0)e Jo T (A (M)} dr g
0

(4.2.1a)
(4.2.1b)

(4.2.1c)
(4.2.1d)

(4.2.1e)
(4.2.1f)

(4.2.1g)

a b
z*(a) :/o {Az*(b)e— fob{’\l*(””’\?*(”)}d”+)\3*(b)/0 e_f:/\z’*(ﬂd'r)\ﬁ( Je~ Jo T (TR (D} dr da} db.

Substituting them into (4.2.1e) (4.2.1f) and (4.2.1g) gives the following nonlinear integral equations for

A = t(Al*a A2*7 )\3*) :
N = o(V),

where v ‘
O(u) = *(D1(u), Pa(u), P3(u)),
@ (u)(a) 4:: /w a(a,o)c(a) {/0 e Jy us(r) dTUl(b)e_ Se{ui(r)+ua ()} dr db} do
0

0

:/ 5(0,’;0_)0(0_) {/ Uz(b)e— fob{ul(T)-Fu?(T)} dr db} do
0 0

w o a -, ‘ !
_|_/ i(a, O')C(O') {/ u3(a/) {/ e~ Jy us('r)drul(b)e_ S {ur () ua(r)} dr db
0 0 0

520 = [ 2(00)et0) { [ wae a1 b do

0

*/ v(a,0)e(o) [/ us(a’>{/ e I w Dy, (p)e= (s} ar gy
0 0

0

for u = (uy, ua, uz).

We find that ® is a positive operator on (L'(0,w))® and ®(0) = 0. Let T : (L'(0,w))?

be the Fréchet derivative of ® at 0, then T is given as follows:

TU = t(Tl'U,, TQU, T3’U;), u e (Ll (0)(")))3’

} da/] o,
} da'} o

— (L10,w))*

(Thu)(a) == /Ow dala,b)ur (b)db, (Tou)(a):= /Ow os(a, b)uz(b) db, (Tsu)(a):= /Ow ¢~ (a,b)ua(b) db,

w

Pala,b) == /b}v ala,0)c(o)do, ¢s(a,b) = /bw d(a,0)c(o)do, ¢,(a,b) = /b' ¥(a,0)c(o) do.

Let us define linear operators ”f’ (j=1,2,3) on L'(0,w) by

(Fyu)(a / bo(a,byu(d)db, (Tyu)(a) = /0 " bs(a,byu(b) b, (Tyu)(a / 6. (a,b)u

If v = *(vy1, vs, vs) is an eigenvector of T' corresponding to A(# 0), then we have

Tlvl : T1'U = )\’1)1,
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TQ’U2 - Tzv - )\’Uz,

T3’U2 = T3’l) = /\Ug,

i.e., v is an eigenvector of T} corresponding to A, and v; is an eigenvector of Th corresponding to A. On
the contrary, for given A # 0, if v; is an eigenvector of T} corresponding to A and v, is an eigenvector of
Ty corresponding to A, then - ‘

‘ v = t(’l}l, V2, )\_1(T3’U2>)

is an eigenvector of T corresponding to A. In particular, v = *(v1, ve, v3) is a positive eigenvector of T
corresponding to A # 0 if and only if v; is a positive eigenvector of T} corresponding to A, vs is a positive
eigenvector of T corresponding to A and vz = A7! (Tg,vz), where it should be noted that either v; or vg
(but not both of them) can equal to 0.

The following technical assumption gives some important aspects of Tj (j =1, 2) and ®.

Assumption 4.2.1. (i) c(a) is strictly positive for almost all a € (0,w).

(ii) There exist nonnegative functions 14(c), ns(c) such that they are strictly positive for a left neighbor-
hood at 0 = w and

afa,0) 2 na(o), 0(a,0) = ns(0)
for almost all (a, o) € (0,w) x (0,w).

(iii). c(a), a(a,0), 6(a,0), ¥(a,0) are extended as 0 when a or o is in R\ [0,w], then the following holds
uniformly with respect to o :

lim |a{a + h,0) — a(a,0)|da =0,
h—0 0 e

lim [6(a+h,o) — 5(a,va)| da =0,

h=0Jo

lim |v(a+ h,0) —v(a,0)|da =0

Then, the same statement as Lemmas 1.5.6, 1.5.7 and 1.5.8 holds, i.e.,
Lemma 4.2.2. (i) f’l and Ty are noynsupportmg and compact.
(it) @ is completely continuous and ®((L (0,w))?) is bounded.
Lemma 4.2.2 (i) and Theorems 1.5.2, 1.5.3 lead to the following lemma:

Lemma 4.2.3. (i) The spectral radius v(T}) is the only positive eigenvalue bf~7~’1 with a positive eigen-

vector uy € L}r(O,w) which is a nonsupporting point. It is an eigenvalue of Ty* with a strictly positive
eigenfunctional F7.

(i) 7(Tx) is the only positive eigenvalue of Ty with a positive eigenvector uy € LY (0,w) which is a
nonsupporting point. It is an eigenvalue of To* with a strictly positive eigenfunctional Fs.

Theorem 4.2.4. (i) If r(Ty) < 1 and r(Tz) < 1, then u = 0 is the only solution of u = ®(u) in
(LL(0,w))3, i.e., RFE is the only equilibrium of the system.

(ii) If r(Tl‘) > 1, then u = ®(u) has a solution u® = *(u1°, 0, 0) in (L1 (0,w))?, i.e., the system has
t(x®, y°,0) as an ASEE (active-stifler-extinct equilibrium,).

(iii) If r(Tn) > 1, then u = ®(u) has a solution uf = *(0, ust, us?) in (LL(0,w))3, i.c., the system has
t(zt, 0, 2') as a SPEE (spreader-extinct equilibrium,).

Proof. Suppose 7(Ty) < 1 and r(T3) < 1. Let us assume that u = ®(u) holds for some u = *(uy, uz, us) €
(LL(0,w))* \ {0}.
If u; # 0, then we obtain
Tyuy — uy = Thug — @1 (u) € L (0,w) \ {0}.

Since F} is a strictly positive functional, we find that (Fi, Tyug — u1> > (0. On the other hand, we have

<F1, Tlul — U1> = <T1*F1, ’LL1> — <F1, U1> = {7(T1) — 1}<F1, 11,1>.
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Since ’I”(Tl) —1<0and (Fi, u1) > 0, e see that (F}, Tyu; —u1) < 0, which is a contradiction.
Otherwise, if u; = 0, then (uq, u3) # (0, 0). We find that uy # 0, because u; = ug = 0 1Inphes

U3—‘I)3( ) 0.

Hence, a similar argument using 75, (Tz) and F» as above leads to a contradiction. Therefore, r(Tl) 1
and r(Ty) < 1, then u = 0 is the only solution of u = ®(u) in (L1 (0,w))®.

Next suppose (1) > 1. We have
®(*(u1, 0, 0)) = *(®1(w1), 0, 0),

where

@y (uqp) ::/ ala, U)c(a)/ ul(b)e_fot)”l(f)d% dbdo.
0 0

The Fréchet derivative of ®; at 0 is given by Ti. Since T} is nonsupporting and compact, and ®; is
completely continuous and &; (L} (0, w)) is bounded, which is easily checked, it follows from Theorem 1.5.4
that ®, has a non-zero positive fixed point, which we shall denote by u;°. Then we see that u® = t(u1°, 0, 0)
is a non-zero positive fixed point of ® and the corresponding REE (z°, 3°, 2°) is given by

0“ u1°(0o) da

=e
/ o IS wt g0
0.

JI(I

a

(J/

Finally, suppose T‘(Tg) > 1. We have

B0, uz, ua)) = (0, Ba(us), Ba(uz)),

where

Py (ug) ::/ o(a, a)c(a)/o ug(b)e™ Jo ua(r)dr dbdo,
0

By(uz) = / 7(a, o)e(o) /0 uy(b)e™ 3 4247 g dor
0

A similar argument as above implies that o, has a non-zero positive fixed point, which we shall denote
by us'. Let us define

— (i)3(u2T)7

then we see that uf = *(0, usT, u{f) is a non-zero positive fixed point of ® and the corresponding REE
(zf, yf, 21) is given by

(a) e~ Iy uz*(o')da
a =

a

/ Uz fo uz’ (o) do db.

This completes the proof. ' O

4.3 Stability of RFE

In this section, we consider the stability of RFE (z(a), y(a), 2(a)) = (L, 0, 0).
The first element y(t) of u(t) in (4.1.6) satisfies the following abstract equation on L!(0, w) :

&y(t) = By(t) + Pay(t) - {1 —y(t) — 2(t)} — Asla|2]y(?),
y(O) =Y € Ll(ovw)a

(4.3.1)

where z(t) is regarded as given, B is given by (1.6.1)(1.6.2), and we define as follows :
(Pat)a) = [ ale,0)e(o)f(c) do
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(Pif)a) = [ " 5(a, 0)e(0) £ () do,
(P,1)@) = [ 1(0,0)elo)s (o) do

0

Let {T(t)}s>0 be the nilpotent translation semigroup on L(0,w) defined by (1.4.10), which is generated
by B. Let C,(t) be a bounded operator on L*(0,w) defined by

Calt)u = (Pau) {1~ y(0) ~ 2(1)} — Nslal 2lu(t).
For any u € L} (0,w) we have C,(t)u < P,u, because
st) =1—y(t) — 2(t) <1, Pau(a) >0, Asla|2]y(t) > 0.
Since T'(t), t > 0 is a positive olperator on L'(0,w), we have
T(s)Co(t)u < T(s)Pyu, for all s,¢t > 0 and for all u € L% (0,w).
Hence, if we denote the Cp-semigroup generated by B + P, by {W4(¢)}+>0, we have ‘
0 <y(t) < Wa(t)yo, forallteRy..

In addition, if 7(7}) < 1, then wo(B+P), which means the growth bound of {W,(t)}+>0, is strictly negative
and |[Wa(t)|| — 0 as t — oo, which gives rise to y(t) — 0 as t — co. The above statement can be proved
in the same manner as in Section 1.4 and we omit the proof here.

‘Moreover, we can prove that RFE is GAS if #(T}) < 1 and r(T3) < 1 hold.

Theorem 4.3.1. If r(T1) < 1 and r(T2) < 1 hold, then (z(t), y(t), 2(t)) — (1, 0, 0) as t — oo for any
ingtial condition (2(0), y(0), 2(0)) = (zo, Yo, 20)- ‘

~ Proof. As mentioned above, r(T}) < 1 implies y(t) — 0 as t — co. Let f(t)(a) = As(t,a)y(t,a), then we
have f(t) € L} (0,w), and f(t) — 0 as t — oo. The latter is obtained because

w

010l = [ v { [ o))zt ao da

S/ y(t,a)y* da
0

=77 ly@®I.
The second element 2(t) of u(t) in (4.1.6) satisfies the following abstract equation on L!(0, w) :
d . .
~2(t)=B Psz(t) - {1 — y(t) — 2(t t),
< 2(6) = Ba(t) + Pya(t) - {1 - y(t) - #()} + () 152

2(0) = 2o € L'(0,w),

where y(t) and f(t) are regarded as given.. Let Cs(t) be a bounded operator on L*(0,w) defined by

Co(t)u = (Psu) - {1 - y(t) — 2(t)}. |
For any u € L} (0,w) we have Cs(t)u < Pyu, because

o(t) =1 —y(t)— 2(t) <1, Psu(a) > 0.
Since T(t), t > 0 is a positive operator on L!(0,w), we have
T(s)Cs(t)u < T(s)Psu for all s, ¢ > 0 and for all u € L} (0,w).
Hence, rewriting the equation
%z(t) = Bz(t) + Cs(t)2(t) + f(?)

with the variation-of-constants formula gives
( ¢
() = T(0z0+ [ T(t-9){Cs(2s) + (5)}ds
0 \ '

74



STz + [ T(t - 9){Pie(s) + 1(s)} s

for all ¢ > 0. Hence, if we denote by Z(t) the solution of the inhomogeneous initial value problem

we obtain
0<z(t)<z(t) forallt>0.

Under the assumption r(13) < 1, we can obtain wy(B + P5) < 0. Let {W5(t)}¢>0 be the Co-semigroup
generated by B + Fj, then there exist some M > 0 and p < 0 such that |[Ws(t)| < Me™#* because of the
fact wo(B + P5) < 0. In addition, f is bounded and measurable on [0, co) and f(t) — 0 as t — co. Hence
we can obtain Z(t) — 0 as t — oo ([36, Theorem 4.4]).

Therefore, 2(t) — 0 and z(t) =1 — y(¢t) — 2(t) — 0 as t — oo. o k O

On the other hand, in the case r(T}) > 1 or 7(T3) > 1, the following holds :
Theorem 4.3.2. If r(T1) > 1 or #(T3) > 1, then RFE is unstable.

Proof. As for Equation (4.3.1), the linearization of its right-hand side at 0 gives (B + P,)y(t). r(11) > 1
implies s(B + P,) > 0, which is derived in the same way as Theorem 1.6.8. Then it follows that B + P,
has an eigenvalue whose real part is positive and RFE is unstable. '

As for Equation (4.3.2), the linearization of its right-hand side at 0 gives (B + Pj)z(t). r(T1) > 1
implies s(B + Ps) > 0, then it follows that B + Ps has an eigenvalue whose real part is positive and RFE
is unstable. O

4.4 Stability of REE

In this section let us discuss the local stability of REE (z(a), y(a), 2(a)) = (z*(a), ¥*(a), z*(a)) under the
proportionate mixing assumption (PMA):

Assumption 4.4.1. «, 0, v are expressed as follows:

ala,0) = ar(a)ae(o), d(a,0) =d1(a)d2(0), 7(a,0)="1(a)y2(0).
We assume that o, ag, 61, 02, 11, v2 € LY (0,w).

In the following we denote ess sup a; by af° and so on. ~
Notice that we can obtain the concrete forms of r(7}) and r(T%). Since

(Fron)(a) = () / "t / " aa(0)e(o) dor db,
(Tz&)(a) 81(a / 81 (b / 83(c)c(c) do db,
we find that

r(Ty) = ]w a1(b) /w az(o)e(o)dodb = /w a)/ a1(b)dbdo, (4.4.1)
’(Tz / 51(b / ~ 0z(0)c(o)do db = / Sa(o / 81(b) dbdo. (4.4.2)

z(t,a) = z*(a) + Z(t,a), y(t, a) =y*(a) + §(t,a), 2(t,a) = 2*(a) + 2(t,a)

" be a solution of system (4.1.3). (Z(t,a), §(t,a), Z(t,a)) denote the small perturbations from REE. Note
that

Let

7(t,0) = g(t,0) = 2(t,0) =0, (4.4.3)
Z(t,a) + g(t,a) + Z(t,a) = 0. . (4.4.4)
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The small perturbations satisfy the following equations:

(8t + 8a)1_3(t, a)

—Z(t,a)(A1*(a) + M (t, a)) z*(a)

1(t @) — 2(t,a) (A2 (a) + A2 (t, ) — 2™ (a)Aa(t, a),
(00 + 0a)3(t, a) = Z(t, 0) (M *(a) + M (t,0)) +2* (@)X (8 0) — G(t, @) (As™(a) + As(t, @) — y* ()N (2, ),
(0¢ + 0a)2(t, @) = Z(t, a)(A2™(a) + Aa(t, @) + 2% (a)Aa(t, @) + §(t, a)(As*(a) + As(t, a)) + y*(a)As(t, a),
4.4.5)
where
Ai(t,a) = / a(a, o)c(o)y(t, o) do,
0
A2 (t,a) :/ d(a,0)c(0)z(t, o) do,
Jo
Na(ta) = / ~(a,0)e(0)3(t, ) do.
o
We can formulate (4.4.5) as an abstract semilinear problem on the Banach space (L*(0,w))3:
d w B B v
U8 = Au(t) + G(u(®), - u(®) = "(@(t,-), §(t, ), 2(¢,-))- (4.4.6)
The generator A is defined by (1.7.7) and (1.7.8). The nonlinear term G is defined by
G(u) = "(G1(u), G2(u), G3(v)),
Gy (u) = -—ul(/\1* + Pa’dg) — ¥ Pyug — ’11,1()\2* + P5U3) — z* Psus,
Ga(u) == uy (A" + Paug) + 2" Pyug — ug(A3* + Pyug) — y* Pyus,
Gg(’u,) = ul()\g* + P5U3) + ¥ Psus + ’CLQ()\g* + P7U3) + y*P,yug.
The linearized equation of (4.4.6) around u = 0 is given by
Sult) = (4 + Cpuld)
where the bounded linear operator C is the Fréchet derivative of G(u) at u = 0 given by
—uiA* — 2" Patg — wy N — 2 Psus
Cu:= [ uiM* + 2" Pyug — u2 3™ —y*Pyusz | .
Ui Ao* + ¥ Psuz + ug Az™ +‘y*P7u?,
Now let us consider the resolvent equation for A + C:
(¢~ (A+C)w=u, veD(A), ue (L'(0,w))? ¢eC. 44

Then we have

vi(a) = —Cvi(a) — A1*(a)vi(a) — z*(a)(Pav2)(a) — A2 (a)v1(a) — x*(a)(ngg)(d) + ul(a), (4.4.82)
vy(a) = —Cuz(a) + A" (a)vi(a) + 2" (a)(Pava)(a) — As™(a)va(a) — y*(a)(Psvs)(a) + uz(a),  (4.4.8b)
5 z )-

(a) = ~Cvs(a) + Ao (@0 () + 2*(@)(Prvs)(@) + As™ (@02 (a) + u*(@)(Pyus)(a) + us(a).  (4480)

From (4.4.8a) and v1(0) = 0, we obtain

_|_
+

<

vi(a) = / a{—x*(f)(Pavz)(T) —x*(r)(R;vg)(T) oy () e ST CERMTED R A g (4.4.9)'
0
From (4.4.8b) (4.4.9) and v3(0) = 0, we have
/ {M*(o)vi(o) + 2" (0 )(Pa@)(o) —y*(g)(pwg)(g)+U2(a)}e—4(a—a)e’—f; Aa*(r)dr’ 4, |
:/0 {Al (/ {07 () (Pav2)(7) — & (7)(Pyvs)(7) + tr (7)™ 7 CHMT0D 1A () o d7>

+ 2% (0)(Pav2)(0) — y*(0)(Pyvs) (o) + ug(a)}e_ Jo@rasm () dr g5 (4.4.10)
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F\:o‘m (4.4.8¢) (4.4.9) (4.4.10) and v3(0) = 0, we have
v3(a) = / {Xo*(0)v1(0) + As*(0)va(0) + 2*(0)(Psv3) (o) + y* (o) (Pyvs)(o) + ug(cr)}e_(a"")C do

-
Iy (/(A (/{ 7)(Pava)(r) — " (1)(Psvs)(7) + 11 (7))

x e~ f.,- (CHAL* () +A2* (")) dr’ dT)

2*(T)(Pav) (1) — *(T)(pév3)(7)+ul(T)}e—f:’(c+xl*(r’)+xz*(r’))dr' dr)

+27 (r)(Pav2)(r) — y*(r)(Pyvs)(r) + u2(r)>e" JECHA™ () dr’ d?")

+ 2 (0)(P5u3)(@) + 3™ () (Pyus)(0) + u3<0)} (0-0¢ dgr W
Let
&= [ axloylon(o)do, &= / (oelhnlo) o, &= [ mlelomlo)do,  (4412)

Assumption 4.4.1 implies

(Pav2)(a) = &1on(a), (Psvs)(a) = &261(a),  (Pyus)(a) = E3m(a).
Inserting (4.4.9) and (4.4.10) into (4.4.12) yields a three-dimensional system as

& m ‘
-2 (&) =1|mn], 0 (44.13)
&3 3
4.4.1 Stability of ASEE

In this subsection we consider the local stability of ASEE

(z*(a), y™(a), 2" (a)) = (2°(a), y°(a), 0)

under the condition r(Tl) > 1. Here we fix the coefficients a1, a2, &1, 62, 71, 2 so that r(71) = 1 holds,
and we rewrite this a; as af. By definition we have

where I is the 3 x 3 unit matrix.

/w as(o)e(o) /U ai(b)dbdo = 1. (4.4.14) -
0 0 ;

Let a1 (a) = eaj(a), where ¢ is the bifurcation parameter here and r(T)) = e. Assumption 4.4.1 implies
that '

A1*(a) = eaf(a)cr, where ¢i = / az(0)e(o)y® (o) do,
0
A2"(a) = As™(a) =0,
xo(a) = x"(a; 6) — gt o a;(r')d'r”

a
v0) =y (o) = | ccrafoje e 52500 g
0 .

Observe that ¢; = 0 corresponds to RFE and ¢; > 0 ASEE. Then we can obtain a nonlinear integral
equation for c¢; corresponding to ASEE: .
O1(c13¢) =0,

where

Or(erie) = [ alo)elo) ( [ et s eamican db) do 1.
0 0
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Since

6@1 ¢ 7 * b / /

S0:1) = f as(0)e(0) / ol (b) / @t () dr' dbdo < 0,
C1 0 0 0

we can apply the implicit function theorem to find a branching solution ¢; = ¢;(g) with ¢;(0) = 0 bifurcated
at the point € = 1 from the trivial solution ¢; = 0 when ¢ is sufficiently close to 1. In addition, we see that

80 80 00 -
/ 1) = 1 1 1
q=-(5200) Roy=- (L)
Now, let us return to (4.4.13). ®({) = ®((,¢) takes the following form:

CHEO I .
(¢,e) = 0 $22(C€)  ¢a23(e, Q) |,
0 ¢32(Ca 5)\ ¢33 (51 C)

where

$11(¢ ) = /O ’ ap(r)e(r) /0 ! {ecl (e)ai(o) ( /0 0 —z°(1;€)ead (1)e” f;’<cfec1 ()ai(r))dr’ dT)
+ 2°(0;€)ea(0) }e_(r_”)c do dr, |

$25(C.€) / 52(r)e(r) / (0:€)61(0)e=4T=) dor dir,

oml6.e) = [ 0aelr) [ v (oepmlo)e e doar

002(6,6) = [ loelr) [ 2" (o e)r(o)e 0~ doar,

$s3(C,€) = /O ’ Ya(r)e(r) /0 ' y°(0;€)71(0)e™ =) do dr.

It can be easily seen that

¢11(0,1) = /w as(r)e(r) /OT aj(o)dodr =1,

$22(0 / 5o (r (r)/le(cr)dadr:r(Tg),

$23(0,1) = ¢33(0;1) = 0,
8%1(0, 1) :/0 ozz(r)c(r)/o a3(o)(o —r)dodr <0,

Ox° . _ / ¢ * (o] /
T @D = =) [ ai)ar,

2000.1) = [ aatrtetr) [ (=201(@)q) [ ai(r)dr+ i) ) dodr -

If we define f(¢,¢) := det(I — @(( ;€)), then the roots of f (¢,1) give the eigenvalues of the linearized
system at RFE. We have f(0,1) =0 and

of
a

Hence, under the condition r(T ) # 1, we can apply the implicit function theorem that f(¢,e) =0 can be
solved locally as ¢ = {(¢) with ¢(1) = 0. At the same time, we find that

of
e

which means that the dominant eigenvalue goes to the left half complex plane as ¢ increases small enough
from 1. The well-known technique based on the Rouché’s theorem yields that () is the dominant root
of f as long as |¢ — 1| is small enough.

Then, we can derive the same lemma as Lemma 1 7.2. From this and the principle of linearized stability,
we conclude :

911

501 = .1 {r(T) -1}

==(0,1) = ~{r(T) — 1},

Theorem 4.4.2. Under Assumption 4.4.1 and the condition r(Ty) # 1, if #(T1) > 1 and 7(T}) is suffi-
ciently close to 1, then ASEEFE bifurcates forward from RFE and is LAS.
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4.4.2 Stability of SpEE
In this subsection we consider the local stability of SpEE
(@"(a), y*(a), 2*(a)) = (z'(a), 0, 2¥(a))

under the condition T(Tg) > 1. Here we fix the coefficients a1, ag, 1, da, 71, Y2 so that r(Tg) = 1 holds,
and we rewrite this d; as ¢7. By definition we have

/ " b2(0)c(o) / " 5t(b) dbdo = 1. (4.4.15)
0 0

Let 6,(a) = 0% (a), where ¢ is the bifurcation parameter here and r(Ty) = e. Assumption 4.4.1 implies
that

)\1*((1) = 0,
A2*(a) = ed7(a)ea, where ¢; :=/ 53(0)e(a)2t (o) do,
0
As3"(a) =y1(a)es, where c3 := / y2(0)e(0)2 (o) do,
0
21 (a) = 2 (a;6) = e~z Jo 81 () dr’

ZT(G’) = ZT(G;L‘?) = / 60261((0‘)9_532 Jo 63 (r)dr’ do.
0

Observe that co = 0 correspohds to RFE and ¢, > 0 ASEE. Then we can obtain a nonlinear integral
equation for ¢y corresponding to ASEE:
(-)2(02; 6) = 07

where

Oz(cz;€) = 8/' b2(0)c(o) (/ 5t (b)e Jo cexdi(r)ar’ db> do — 1.
0 0

Since . , ‘
@(0; 1= —/ 52(0)0(0)/ 51‘(b)/ 81 (r')dr’ dbde < 0,
dcy 0 0 0 ,

we can apply the implicit function theorem to find a branching sblution_cz = cy(e) with cp(1) =0 bifurcated
at the point € = 1 from the trivial solution co = 0 when ¢ is sufficiently close to 1. In addition, we see that

/08y, N\ o, 90, \7"
/ —— 1 =470 ——“/0- — —{ Z===(0-
m=--(520n) F2en-- (o)
Notice that c3 depends on ¢y in the following way:
cs(e) :/ 72(0)0(0)/ eca(€)dy(b)e” Jg ee2(@)81 (7 qp dr.
0 0

In particular, it follows that c3(1) = 0.
Now, let us return to (4.4.13). ®({) = ®(¢,¢) takes the following form:

$11(¢,€) 0 0
@(Ca 6) - * ¢22 (C? 5) 0 5

* * 0

where
$11(¢y€) = /w as(r)c(r) /T 2t (o;€)ay (o)™ Jo CHmDeaE@)dr’ 45 g,
' Jo 0 .
669 = [ aetr) [ (sNoieretio)

—eca(€)d (o) / z'(1;€)e0t (T)e” J7 (Ceca(e)si(r)) dr’ dT> e~ =) dg dr.
0
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It can be easily seen that

¢11(0,1) = /Ow as(r)e(r) /OT al(a)vda dr :,T(Tl)’
 $22(0,1) = /w d2(r)c(r) /OT 5{(@ dodr =1,
8¢22 (0,1) / da(r)e(r) /T 01(o)(oc —r)dodr <0,

8x .
9% —(q; / &1 (r"ydr’,

8322(0 1= /0 ‘52()()/0‘( 281 (o /5* )dr + 6% (o )) dc;dr:_

If we define f((,¢) := det(I — ®({,¢)), then the roots of f(¢, 1) give the eigenvalues of the linearized
system at RFE. We have f(0,1) =0 and

of
a

022
¢

Hence, under the condition (T}) # 1, we can apply the implicit function theorem that f(¢,e) = 0 can be
solved locally as ¢ = {(g) with ¢(1) = 0. At the same time, we find that

-7(0,1) =

(0, ){r(Ty) — 1}.

of ~
50 = 0B -1}

which means that the dominant eigenvalue goes to the left half complex plane as € increases small enough
from 1. The well-known technique based on the Rouché’s theorem yields that () is the dominant root
of f as long as |e — 1| is small enough. ‘

Then, we can derive the same lemma as Lemma 1.7.2. From this and the principle of linearized stability,
we conclude :

Theorem 4.4.3. Under Assumption §.4.1 and the condition r(Ty) # 1, if r(T2) > 1 and r(T3) is suffi-
ciently close to 1, then SpEE bifurcates forward from RFE and is LAS.

4.5 Rumor persistence

In this section we show that r(f’lj > 1 and 7(T3) > 1 implies uniform strong rumor persistence under
PMA.

PMA with Assumption 4.2.1 1mp11es that a1(a) > 0 for almost every a € (0, w), that there exists some
bs > 0 such that as(o) > 0 for almost every o € (w — bg, w), that §1(a) > 0 for almost every a € (0, w)
and that there exists some bs > 0 such that dz(c) > 0 for almost every o € (w — b1, w). In addition, it
follows that

A1(t,a) = ar(a)a(t), where ,(t) = /Ow .az(s)c(s)y(t, s)ds, | (4.5.1)
Ao(t,a) = 61(a)s(t), where s(t) / 82(8)c(s)z(t, 8)ds, (4.5.2)
A3(t,a) = al(a)zpy(i), where 1), (t) = [Jw vg(s)c(s)z(t, s)ds. . (45.3)

By integrating along characteristics, from we have from (4.1.3) that
y(t,a) = / a1(0)a(t —a+o)x(t —a+o,0)e” Jemmy(t-atn)dr g5 (4.5.4)
0
3(t,a) = / {01(0)¢s(t —a+ o)zt —a+o,0) + (o), (t —a+o)y(t —a+o,0)} do (4.5.5)
0 v

if t > a, and

y(t,a) = yo(a — t)e™ i nrFeD () dr
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, ‘
+ / a1(a —t+ 0)ha(0)x(o,0 + a — t)e™ Jo nra=tis (N dr g,
0

¢
z(t,a)=zo(a—t)+/0 {01(a =t + o)¥s(0)x(0,0 +a—t) +v(a—t+ o), (0)y(o,0 +a—t)}do

ift <a.

If t > w, then we substitute (4.5.4) into (4.5.1) and change the integral variable o mto ri=s5—0to
obtain

Yalt) = / an(s)e(s) / ar(s = r)ia(t = r)a(t = r,s — r)e” Jie (D74 DT g g
0
/ Yalt—1 / as(s)e(s)an (s — r)a(t —r,s — r)e” e mMr(E=stn)dr g0 g,

/ Yot =1 / as(s)e (s)ozl(s — )zt — 7,5 — r)e” Jomr MNP tst1) AT 4o gy (4.5.6)

T

Here, in the last line we used the assumption c(a) = 0 for a > w (Assumption 4.2.1 (iii)). Let q(t) :=
do(b+1t) for b > O, then we see that

¢
Yap(t T/Ja p(t—1) / as(s)e(s)ar(s —r)z(t+b—r,s— r)e Joos 71<T)¢7(t's+7+b) 4T dsdr. (4.5.7)

for sufficiently large ¢.
In the same way, if ¢ > w, then we have

:_/w a( ‘s Ye(s) /5{51 s—r)wg(t—r)x(t—r,s—'r)—l—fyl(s—,r)d)ﬂ,(t—r)y(t—r,s—r)}drds
/ Yt —1) / d2(s)c(s)d1(s — r)z(t —r,s — r)dsdr.

Let ts5(t) := ¢5(b+t) for b > 0, then we see that

¢6b / VYs.b t-—r’)/ da(s)e(s)d1(s —r)z(t+b—r,s —r)dsdr. (4.5.8)

for sufficiently large t.
Now, let us consider the semlﬂow induced by system (4.1.3). Theorem 4.1.2 yields the following
proposition: k

.

Proposition 4.5.1. System (4.1.8) induces a continuous semiflow @ on the state space
Q= {(z,y,2) € (LLOW)® [z +y+2z <1}

Let

o(t(z,9,2)) 1= /0 " da){y(@) + 2(a)} da,
U(t’ t(xv Y, Z)) = p(¢(t» t(x’ y,‘z)))

for *(z,y,2) € Q and t > 0. It is obvious that p : Q0 — R is nonnegative and uniformly continuous. The
following lemma can be proved in the same manner as Lemmas 1.8.1, 1.8.2 and 2.3.6.

Lemma 4.5.2. (i) If t > d, then x(t,a) > 0. And if t < a and xo(a —t) > 0, then x(t,a) > 0.
(ii) If y(t,a) > 0, then y(t + o,a+0) > 0 for all o € (0,w — a).

(iii) The function o — 2(t-+0,a+0) is nondecreasing. In particular, if 2(t,a) > 0, then z(t+0,a+0) >0
forallo € (0,w —a). -

(iv) If lyoll > O, then |ly(t, )| > 0 for allt >0.
(v) o(t, (z0,Y0,20)) > 0 for all t > 0 whenever p(*(zo,yo,20)) > 0.

In addition, the same argument as Lemma 1.8.4 gives rise to the following lemma:
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Lemma 4.5.3. System (4.1.3) satisfies the compactness condition (C) in Chapter 2 with ey = 1 and B
the closure of &1,(Q2), where Ty > w is a sufficiently large positive number.

Then, let us prove the results about rumor persistence.
Theorem 4.5.4. If r(T}) > 1 and r(T3) > 1, then system (4.1.3) is uniformly weakly p-persistent.

Proof. Assume that for any € > 0 there exist some Ty > 0 and some appropriate initial condition such
that

/ cla){y(t,a) + z(t,a)}da < e for all t > Ty.
0 .

We can choose Ty to be so large that for all ¢ > Ty (4.5.7) holds. By the positivity of ¢, y, z and the
definition of 1 (t), ¥5(t), ¥,(t), it is easily seen that

wa(t) < agoa’ ¢6(t) < 5506’ ¢7(t) S Y2

™

for any ¢t > Tp.
Integratlng along characteristics the partial derivative equation for z(¢,a) in system (4.1. 3) gives

a:(t +b— rs— 7’) — e Jo T {Ya (t+b—s+T) a1 (1) + s (t+b—s+7)61(T) } dT

> e=e08° 3T aa(r) dr—e8g® 5T du(r)dr (4.5.9)

for t > Tp, 0 <7 < s<tandb>0. Hence it follows from (4.5.7) and (4.5.8) that

% b / 7/)01 b t —r / 042( )C(S)O(l (8 _ T)e—eagO fcf—" a(r)dr—ed® fOS—r §1(7) d're—g»yzoo J’SS_T,Yl(»r) dr ds dT,

r

s p(t / Ysp(t — 1 / S2(s)c(s)d1(s — r)e—s0% Jo o (r) dr—ed® [T () dT g6 qp,
Hence, for sufficiently large T' > 0 and all t > 0, we have
wa,b+T<t) )
= '¢a b(t + T)
t+T t+T . o
> Yapsr(t —1) / s)e(s)an (s — r)e™e0% Jo T ea(r)dr—eds” [T di(r) dTo—ems ST 4g qp
0

s—7

r+T _ ) oo fs—r oo s
> / Yaptr(t =) / aa(s)e(s)an (s — r)e™o02 Jo T ea () dr=ed® [T i (n) dremen® [ m(n)dT g g gy
0 T

and

s—r

¢ T -,
Yspr(t) 2 / Yspr(t — r)/ d(8)c(s)d1(s — r)e_s"‘go o oea(r)dr—ed® [7TT01(T) dT o qp,
: 0 T

Taking Laplace transforms leads to

Papir(N) > Dapi(N)Fale, N, T),, (4.5.10)
Dspar(N) > Vs par(VFs(e, A, T), (45.11)

where _
oS] r+T
Fole,\,T) = /0 e"\’"{ / ag(s)e(s)aq(s — )

X e_EO‘So f;—f‘ oy (r)dr—edg® f;fr §1(7) d‘r—s'yzOO f:_r,ﬂ(‘r) dr dS} dr.

Fs5(e,\\T) == / e"\r{ / 82(s)c(s)1 (s — r)e 0% Jo " aalr) dr—edz® [7TT di(r) dr ds} dr.
. 0 ro.

Since 9, and s is bounded, the Laplace transform of ¥ p+1(A), ¥sp+7(N) is defined for all A > 0.
Moreover, . ~

lim F,(0,0,7) :/ / as(s)e(s)on(s —r)dsdr
T—oo 0 r
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= /Ow /Tw az(s)c(s)ar(s —r)dsdr

= T’(Tl),

Tll_)II;O Fg(O;O,T) = /0 /T d2(s)c(s)d1(s — r)dsdr
= /Ow‘/rw da(s)c(s)d1(s — r)dsdr
= ’I"(TQ). '

Under the assumption 7(71) > 1 and r(T%) > 1, the continuity of F,, Fj implies that Fo(e,\T) > 1
and Fs(e,\,T) > 1 if ,A > 0 are chosen small enough and T large enough. (4.5.10) implies that
@(/\) = 0, which means 9, 47 = 0 a.e. on [0, 00), i.e., 7,Z)a( ) = 0 for almost every ¢t > b+ T. The
same argument as in the proof of Theorem 1.8.3 gives rise to fo )y(T1, a)da = 0. We also obtain from
Fs(e, A\, T) > 1 that [’ c(a)z(T1, a)da = 0. Therefore we have

’

/ " a){(T1,a) + 2(T1, )} da = 0

However, this contradicts Lemma 4.5.2 (v). a

The following final theorem is concluded from Theorem 2.2.3, Lemma 4.5.2 (v), Lemma 4.5.3 and
Theorem 4.5.4. '

Theorem 4.5.5. If r(T1) > 1 and r(Ty) > 1, then system (4.1.3) is uniformly strongly p-persistent.

4.6 Discussion

In this chapter we have examined an age-structured rumor transmission model with active stiflers. We
have found that it has two thresholds r(71) and r(T5). If 'r(Tl) < 1 and r(T3) < 1 hold, then RFE is
the only equilibrium and globally asymptotically stable. If (77) > 1, then RFE is unstable and there
exists an ASEE. If r(T3) > 1, then RFE is also unstable and there exists a SpEE. Moreover, under PMA,
an ASEE bifurcates forward from RFE and is locally asymptotically stable if r(77) > 1, 7(T3) # 1 and
|r(T1) — 1| is small enough, a SpEE bifurcates forward from RFE and is locally asymptotlcally stable if
r(Ty) > 1, r(Tl) # 1 and |r(Ty) — 1| is small enough, and the rumor is uniformly strongly persistent
whenever r(Tl) > 1 and r(Ty) > 1.
We can find the same kind of open problems as the age-structured rumor transmission model in Chapter
1: analysis without PMA, the number of REEs, their local or global stability far from the bifurcation point,
the case of variable rumor and/or with mass-media, and so on. And there are another open problems left
for our future consideration: for example, whether there exists any REE other than ASEE or SpEE when
r(T1) > 1 or r(T) > 1, and whether we can loosen the sufficient condition for the rumor’s uniform strong
persistence.
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