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Remarks on Analytic Hypoellipticity and

Local Solvability in the Space of Hyperfunctions

By Seiichiro Wakabayashi

Abstract. Let p(x,D) be a pseudodifferential operator on R
n

with a ( formal) analytic symbol p(x, ξ), and let x0 ∈ R
n. In this paper

we prove that the transposed operator tp(x,D) of p(x,D) is locally
solvable at x0 modulo analytic functions in the space of hyperfunctions
if p(x,D) is analytic hypoelliptic at x0. We also microlocalize this
result.

1. Introduction

Let P be a linear partial differential operator on R
n with C∞ coeffi-

cients, and let x0 ∈ R
n. In Treves [10] and Yoshikawa [13] it was proved

that if P is hypoelliptic at x0, then there is a neighborhood U of x0 sat-

isfying the following; for every f ∈ C∞(U) there is u ∈ D′(U) such that
tPu = f in U . Here tP denotes the transposed operator of P . Recently

Albanese, Corli and Rodino proved in [1] that the above result is still valid

in the framework of the Gevrey classes and the spaces of ultradistributions.

Moreover, Cordaro and Trépreau proved in [2] that P is locally solvable at

x0 in the space of hyperfunctions if the coefficients of P are analytic and

P is analytic hypoelliptic at x0. Precise definitions of local solvability and

analytic hypoellipticity will be given in Definition 1.4 below. They obtained

more general results in the first section of [2] which may be a continuation

of Schapira [8] and [9]. The aim of this paper is to prove that for a pseu-

dodifferential operator p(x,D) the transposed operator tp(x,D) is locally

solvable at x0 modulo analytic functions in the space of hyperfunctions if

p(x,D) is analytic hypoelliptic at x0 ( see Theorem 1.6 below). We shall

also microlocalize this result, i.e., we shall give the corresponding result in

the space of microfunctions ( see Theorem 1.5 below).

2000 Mathematics Subject Classification. Primary 35G05; Secondary 35A07, 35H10,
35A20.

89



90 Seiichiro Wakabayashi

We shall explain briefly about hyperfunctions, microfunctions and pseu-

dodifferential operators acting on them. For the details we refer to [12]. Let

ε ∈ R, and denote 〈ξ〉 = (1 + |ξ|2)1/2, where ξ = (ξ1, · · · , ξn) ∈ R
n and

|ξ| = (
∑n
j=1 |ξj |2)1/2. We define

Ŝε := {v(ξ) ∈ C∞(Rn); eε〈ξ〉v(ξ) ∈ S},

where S ( ≡ S(Rn)) denotes the Schwartz space. We introduce the topology

to Ŝε in a natural way. Then the dual space Ŝ ′
ε of Ŝε can be identified with

{v(ξ) ∈ D′; e−ε〈ξ〉v(ξ) ∈ S ′}, since D ( = C∞
0 (Rn)) is dense in Ŝε. If

ε ≥ 0, then Ŝε is a dense subset of S and we can define Sε := F−1[Ŝε]
( = F [Ŝε]) ( ⊂ S), where F and F−1 denote the Fourier transformation

and the inverse Fourier transformation on S ( or S ′), respectively. For

example, F [u](ξ) =
∫
e−ix·ξu(x) dx for u ∈ S, where x · ξ =

∑n
j=1 xjξj for

x = (x1, · · · , xn) ∈ R
n and ξ = (ξ1, · · · , ξn) ∈ R

n. Let ε ≥ 0. We introduce

the topology in Sε so that F : Ŝε → Sε is homeomorphic. Denote by S ′
ε the

dual space of Sε. Since Sε is dense in S, we can regard S ′ as a subspace

of S ′
ε. We can define the transposed operators tF and tF−1 of F and F−1,

which map S ′
ε and Ŝ ′

ε onto Ŝ ′
ε and S ′

ε, respectively. Since Ŝ−ε ⊂ Ŝ ′
ε ( ⊂ D′),

we can define S−ε = tF−1[Ŝ−ε], and introduce the topology in S−ε so that
tF−1 : Ŝ−ε → S−ε is homeomorphic. S ′

−ε denotes the dual space of S−ε.

We note that S ′
−ε = F [Ŝ ′

−ε] ⊂ S ′ ⊂ S ′
ε and F = tF on S ′. So we also

represent tF by F . Let A(Cn) be the space of entire analytic functions on

C
n, and let K be a compact subset of C

n. We denote by A′(K) the space

of analytic functionals carried by K, i.e., u ∈ A′(K) if and only if (i) u :

A(Cn) � ϕ �→ u(ϕ) ∈ C is a linear functional, and (ii) for any neighborhood

ω of K in C
n there is Cω ≥ 0 such that |u(ϕ)| ≤ Cω supz∈ω |ϕ(z)| for ϕ ∈

A(Cn). Define A′(Rn) :=
⋃
K �Rn A′(K), S∞ :=

⋂
ε∈RSε, E0 :=

⋂
ε>0 S−ε

and F0 :=
⋂
ε>0 S ′

ε. Here A � B means that the closure A of A is compact

and included in the interior
◦
B of B. We note that F−1[C∞

0 (Rn)] ⊂ S∞ and

that S∞ is dense in Sε and S ′
ε for ε ∈ R. For u ∈ A′(Rn) we can define the

Fourier transform û(ξ) of u by

û(ξ) ( = F [u](ξ)) = uz(e
−iz·ξ),

where z ·ξ =
∑n
j=1 zjξj for z = (z1, · · · , zn) ∈ C

n and ξ = (ξ1, · · · , ξn) ∈ R
n.

By definition we have û(ξ) ∈
⋂
ε>0 Ŝ−ε ( = F [E0]). Therefore, we can regard
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A′(Rn) as a subspace of E0, i.e., A′(Rn) ⊂ E0 ⊂ F0, ( see Lemma 1.1.2 of

[12]). The space F0 plays an important role in our treatment as the space

S ′ does in the framework of C∞ and distributions. For a bounded open

subset X of R
n we define the space B(X) of hyperfunctions in X by

B(X) := A′(X)/A′(∂X),

where ∂X denotes the boundary of X.

Let u ∈ F0. We define

H(u)(x, xn+1) := (sgn xn+1) exp[−|xn+1|〈D〉]u(x)/2

( = (sgn xn+1)F−1
ξ [exp[−|xn+1|〈ξ〉]û(ξ)](x)/2 ∈ S ′(Rn))

for xn+1 ∈ R \ {0}, and

supp u :=
⋂

{F ; F is a closed subset of R
n and there is a real

analytic function U(x, xn+1) in R
n+1 \ F × {0}

such that U(x, xn+1) = H(u)(x, xn+1) for xn+1 �= 0}.

We note that supp u coincides with the support of u as a distribution if

u ∈ S ′ ( see Lemma 1.2.2 of [12]). Moreover, for a compact subset K of R
n,

u ∈ A′(K) if and only if u is an analytic functional and supp u ⊂ K ( see

Proposition 1.2.6 of [12]). Let K be a compact subset of R
n. It follows from

Theorem 1.3.3 of [12] that for any u and K as above there is v ∈ A′(K)

satisfying supp (u − v) ∩ K ⊂ ∂K, and if v = v1, v2 are such functions in

A′(K) we have supp (v1−v2) ⊂ ∂K. Therefore, we can define the restriction

map from F0 to A′(K)/A′(∂K) ( = B(
◦
K)) which is surjective. For x0 ∈ R

n

we say that u is analytic at x0 if H(u)(x, xn+1) can be continued analytically

from R
n × (0,∞) to a neighborhood of (x0, 0) in R

n+1. We define

sing supp u := {x ∈ R
n; u is not analytic at x}.

Next let u ∈ B(X), where X is a bounded open subset of R
n. Then there

is v ∈ A′(X) such that the residue class of v is u in B(X). We define

supp u := supp v ∩X, sing supp u := sing supp v ∩X.

These definitions do not depend on the choice of v. So we say that u is

analytic at x0 if x0 /∈ sing supp u. Let X be an open subset of R
n. We
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also define B(X) ( see Definition 1.4.5 of [12]). For open subsets U and

V of X with V ⊂ U the restriction map ρUV : B(U) � u �→ u|V ∈ B(V )

can be defined so that ρUU is the identity mapping and ρVW ◦ ρUV = ρUW for

open subsets U , V and W of X with W ⊂ V ⊂ U . By definition we can

also define the restriction map from F0 to B(X), and we denote by v|X the

restriction of v ∈ F0 to B(X) ( or on X). We define the presheaf BX by

associating B(U) to every open subset U of X. By definition BX is a sheaf

on X.

Next we shall define analytic wave front sets and microfunctions.

Definition 1.1. (i) Let u ∈ F0. The analytic wave front set

WFA(u) ⊂ T ∗
R
n \ 0 ( � R

n × (Rn \ {0})) is defined as follows: (x0, ξ0) ∈
T ∗

R
n \ 0 does not belong to WFA(u) if there are a conic neighborhood

Γ of ξ0, R0 > 0 and {gR(ξ)}R≥R0 ⊂ C∞(Rn) such that gR(ξ) = 1 in

Γ ∩ {〈ξ〉 ≥ R},

|∂α+α̃ξ gR(ξ)| ≤ C|α̃|(C/R)|α|〈ξ〉−|α̃|(1.1)

if 〈ξ〉 ≥ R|α|, and gR(D)u ( = F−1[gR(ξ)û(ξ)]) is analytic at x0 for R ≥ R0,

where C is a positive constant independent of R.

(ii) Let X be an open subset of R
n, and let u ∈ B(X) and (x0, ξ0) ∈

T ∗X\0 ( � X×(Rn\{0})). Then we say that (x0, ξ0) /∈ WFA(u) ( ⊂ T ∗X\0)

if there are a bounded open neighborhood U of x0 and v ∈ A′(U) such that

v|U = u|U in B(U) and (x0, ξ0) /∈ WFA(v)

Remark. (i) WFA(u) for u ∈ B(X) is well-defined. Indeed, it follows

from Theorem 2.6.5 in [12] that for any v ∈ A′(Rn) with x0 /∈ supp v there

is R1 > 0 such that gR(D)v is analytic at x0 if R ≥ R1, where {gR(ξ)}R≥R0

is a family of symbols satisfying (1.1).

(ii) Several remarks on this definition are given in Proposition 3.1.2 of

[12].

(iii) From Theorem 3.1.6 in [12] and the results in [3] it follows that our

definition of WFA(u) coincides with the usual definition.

Let U be an open subset of the cosphere bundle S∗
R
n over R

n, which is

identified with R
n × Sn−1. We define

C(U) := B(Rn)/{u ∈ B(Rn); WFA(u) ∩ U = ∅}.
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Since B is a flabby sheaf, we have

C(U) = B(U)/{u ∈ B(U); WFA(u) ∩ U = ∅}

if U is an open subset of R
n and U ⊂ U × Sn−1. Elements of C(U) are

called microfunctions on U . We can define the restriction map C(U) � u �→
u|V ∈ C(V) for open subsets U and V of R

n × Sn−1 with V ⊂ U . Let Ω be

an open subset of R
n × Sn−1. We define the presheaf CΩ on Ω associating

C(U) to every open subset U of Ω. Then CΩ is a flabby sheaf ( see, e.g.,

Theorem 3.6.1 of [12]). For each open subset U of R
n we define the mapping

sp: B(U) → C(U × Sn−1) such that the residue class in C(U × Sn−1) of

u ∈ B(U) is equal to sp(u). We also write u|U = sp(u)|U for u ∈ B(U) and

v|U = sp(v|U )|U for v ∈ F0, where U is an open subset of U × Sn−1.

Assume that a(ξ, y, η) ∈ C∞(Rn × R
n × R

n) and there are positive

constants Ck ( k ≥ 0) such that

|∂αξ Dβ+β̃y ∂γηa(ξ, y, η)|(1.2)

≤ C|α|+|β̃|+|γ|(A/R)|β|〈ξ〉m1+|β|〈η〉m2 exp[δ1〈ξ〉 + δ2〈η〉]

if α, β, β̃, γ ∈ (Z+)n, ξ, y, η ∈ R
n, 〈ξ〉 ≥ R|β|, where Dy = −i∂y, R ≥ 1,

A ≥ 0, m1,m2, δ1, δ2 ∈ R and Z+ = N ∪ {0}. It should be remarked that

some functions satisfying the estimates (1.2) with m1 = m2 = 0 and δ1 =

δ2 = 0 are given in Proposition 2.2.3 of [12]. We define pseudodifferential

operators a(Dx, y,Dy) and ra(Dx, y,Dy) by

a(Dx, y,Dy)u(x) = (2π)−nF−1
ξ

[∫ (∫
e−iy·(ξ−η)a(ξ, y, η)û(η) dη

)
dy

]
(x)

and ra(Dx, y,Dy)u = b(Dx, y,Dy) for u ∈ S∞, respectively, where

b(ξ, y, η) = a(η, y, ξ). Applying the same argument as in the proof of Theo-

rem 2.3.3 of [12] we have the following

Proposition 1.2. a(Dx, y,Dy) can be extended to a continuous linear

operator from Sε2 to Sε1 and from S ′
−ε2 to S ′

−ε1, respectively, if{
ν > 1, ε2 − δ2 = ν(ε1 + δ1)+,

ε1 + δ1 ≤ 1/R, R ≥ e
√
nνA/(ν − 1),

(1.3)
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where c+ = max{c, 0}. Similarly, ra(Dx, y,Dy) can be extended to a con-

tinuous linear operator from S−ε1 to S−ε2 and from S ′
ε1 to S ′

ε2, respectively,

if (1.3) is valid.

Remark. (i) We had a slight improvement in the remark of Theorem

2.3.3 of [12], i.e., we can take R1(S, T, ν) = e
√
nν/(ν − 1) there instead of

R1(S, T, ν) = enν/(ν−1) if n = n′ = n′′, S(y, ξ) = −y ·ξ and T (y, η) = y ·η.
This is reflected in the condition (1.3).

(ii) Since for any open sets Xj ( j = 1, 2) with X1 � X2 one can construct

a symbol a(ξ, y, η) satisfying (1.2) with m1 = m2 = 0 and δ1 = δ2 = 0,

supp a ⊂ R
n ×X2 ×R

n and a(ξ, y, η) = 1 for (ξ, y, η) ∈ R
n ×X1 ×R

n, one

can use the operator a(Dx, y,Dy) instead of cut-off functions.

Definition 1.3. Let Γ be an open conic subset of R
n×(Rn \{0}), and

let X be an open subset of R
n. Moreover, let R0 ≥ 0.

(i) Let R0 ≥ 1, m, δ ∈ R and A,B ≥ 0, and let a(x, ξ) ∈ C∞(Rn × R
n).

We say that a(x, ξ) ∈ Sm,δ(R0, A,B) if a(x, ξ) satisfies

|a(α+α̃)

(β+β̃)
(x, ξ)| ≤ C|α̃|+|β̃|(A/R0)

|α|(B/R0)
|β|〈ξ〉m+|β|−|α̃|eδ〈ξ〉

for any α, α̃, β, β̃ ∈ (Z+)n, (x, ξ) ∈ R
n × R

n with 〈ξ〉 ≥ R0(|α|+ |β|), where

a
(α)
(β)(x, ξ) = ∂αξ D

β
xa(x, ξ) and the Ck are independent of α and β. We also

write Sm(R0, A,B) = Sm,0(R0, A,B) and Sm(R0, A) = Sm(R0, A,A). We

define S+(R0, A,B) =
⋂
δ>0 S

0,δ(R0, A,B).

(ii) Let R0 ≥ 1, mj , δj ∈ R ( j = 1, 2), Aj ≥ 0 ( j = 1, 2) and

B ≥ 0, and let a(ξ, y, η) ∈ C∞(Rn × R
n × R

n). We say that a(ξ, y, η) ∈
Sm1,m2,δ1,δ2(R0, A1, B,A2) if a(ξ, y, η) satisfies

|∂α+α̃ξ Dβ
1+β2+β̃
y ∂γ+γ̃η a(ξ, y, η)| ≤ C|α̃|+|β̃|+|γ̃|(A1/R0)

|α|(B/R0)
|β1|+|β2|

× (A2/R0)
|γ|〈ξ〉m1+|β1|−|α̃|〈η〉m2+|β2|−|γ̃| exp[δ1〈ξ〉 + δ2〈η〉]

for any α, α̃, β1, β2, β̃, γ, γ̃ ∈ (Z+)n, (ξ, y, η) ∈ R
n × R

n × R
n with 〈ξ〉 ≥

R0(|α|+ |β1|) and 〈η〉 ≥ R0(|γ|+ |β2|). We also write Sm1,m2,δ1,δ2(R0, A) =

Sm1,m2,δ1,δ2(R0, A,A,A). Similarly, we define S+(R0, A1, B,A2) =⋂
δ>0 S

0,0,δ,δ(R0, A1, B,A2).
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(iii) Let A,B ≥ 0, and let a(x, ξ) ∈ C∞(Γ). We say that a(x, ξ) ∈
PS+(Γ;R0, A,B) if a(x, ξ) satisfies

|a(α+α̃)
(β) (x, ξ)| ≤ C|α̃|,δA

|α|B|β||α|!|β|!〈ξ〉−|α|−|α̃|eδ〈ξ〉

for any α, α̃, β ∈ (Z+)n, (x, ξ) ∈ Γ with |ξ| ≥ 1 and 〈ξ〉 ≥ R0|α| and

δ > 0. We also write PS+(Γ;R0, A) = PS+(Γ;R0, A,A). Moreover, we

say that a(x, ξ) ∈ PS+(X;R0, A,B) if a(x, ξ) ∈ C∞(X ×R
n) and a(x, ξ) ∈

PS+(X × (Rn \ {0});R0, A,B).

(iv) Let A,C0 ≥ 0, and let {aj(x, ξ)}j∈Z+ ∈
∏
j∈Z+

C∞(Γ). We say that

a(x, ξ) ≡ {aj(x, ξ)}j∈Z+ ∈ FS+(Γ;C0, A) if a(x, ξ) satisfies

|a(α)
j(β)(x, ξ)| ≤ CδC

j
0A

|α|+|β|j!|α|!|β|!〈ξ〉−j−|α|eδ〈ξ〉

for any j ∈ Z+, α, β ∈ (Z+)n, (x, ξ) ∈ Γ with |ξ| ≥ 1 and δ > 0, where Cδ is

independent of α, β and j. We also write a(x, ξ) =
∑∞
j=0 aj(x, ξ) formally.

Moreover, we write FS+(X;C0, A) = FS+(X × (Rn \ {0});C0, A).

(v) For a(x, ξ) =
∑∞
j=0 aj(x, ξ) ∈ FS+(Γ;C0, A) we define the symbol

(ta)(x, ξ) by

(ta)(x, ξ) =

∞∑
j=0

bj(x, ξ), bj(x, ξ) =
∑
k+|α|=j

(−1)|α|a(α)
k(α)(x,−ξ)/α!.

Remark. It is easy to see that (ta)(x, ξ) ∈ FS+(Γ̌; max{C0, 4nA
2},

2A), where Γ̌ = {(x, ξ); (x,−ξ) ∈ Γ}. Moreover, we have (t(ta))(x, ξ) =

a(x, ξ).

Let Γ be an open conic subset of R
n × (Rn \ {0}), and assume that

a(x, ξ) ∈ PS+(Γ;R0, A), where A ≥ 0 and R0 ≥ 1. Let Γj ( 0 ≤ j ≤ 2)

be open conic subsets of Γ such that Γ0 � Γ1 � Γ2 � Γ, and write

Γ0 = Γ ∩ (Rn × Sn−1), where Γ2 � Γ implies that Γ0
2 � Γ. It fol-

lows from Proposition 2.2.3 of [12] that there are symbols ΦR(ξ, y, η) ∈
S0,0,0,0(R,C∗, C(Γ1,Γ2), C(Γ1,Γ2)) ( R ≥ 4) satisfying 0 ≤ ΦR(ξ, y, η) ≤ 1,

supp ΦR ⊂ R
n × Γ2 and ΦR(ξ, y, η) = 1 for (ξ, y, η) ∈ R

n × Γ1 with

〈η〉 ≥ R. Put aR(ξ, y, η) = ΦR(ξ, y, η)a(y, η). Then we have aR(ξ, y, η) ∈
S+(R,C∗, 2A + C(Γ1,Γ2), A + C(Γ1,Γ2)) for R ≥ max{4, R0}. Let u ∈
C(Γ0

0), and choose v ∈ F0 so that v|Γ0
0

= u. Applying Proposition 1.2
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with a(ξ, y, η) = aR(η, y, ξ) and noting that aR(Dx, y,Dy) = ra(Dx, y,Dy),

we can see that aR(Dx, y,Dy)v is well-defined and belongs to F0 if R ≥
max{4, R0, 2e

√
n(2A + C(Γ1,Γ2))}. Moreover, aR(Dx, y,Dy)v determines

an element (aR(Dx, y,Dy)v)|U ∈ B(U), where U is a bounded open

subset of R
n satisfying Γ0

0 ⊂ U × Sn−1, and, therefore, an element

sp((aR(Dx, y,Dy)v)|U )|Γ0
0
(≡ (aR(Dx, y,Dy)v)|Γ0

0
) ∈ C(Γ0

0). It follows from

Lemma 2.1 below that (aR(Dx, y,Dy)v)|Γ0
0

does not depend on the choice

of ΦR(ξ, y, η) if ΦR(ξ, y, η) ∈ S0,0,0,0(R,B) and R ≥ R(A,B,Γ0,Γ1), where

R(A,B,Γ0,Γ1) > 0. From Lemma 2.2 it follows that for each conic subset

Ω of R
n × (Rn \ {0}) with Ω � Γ0 there is R(A,Ω,Γ0,Γ1,Γ2) > 0 such

that WFA(aR(Dx, y,Dy)w) ∩ Ω = ∅ if R ≥ R(A,Ω,Γ0,Γ1,Γ2), w ∈ F0

and WFA(w) ∩ Γ0 = ∅. Therefore, we can define the operator a(x,D):

C(Γ0
0) → C(Γ0

0) by a(x,D)u = (aR(Dx, y,Dy)v)|Γ0
0

for R $ 1, and the oper-

ator a(x,D): C(Γ0) → C(Γ0). Moreover, it follows from Lemma 2.2 that

a(x,D)(w|U ) = (a(x,D)w)|U for w ∈ C(V),

where U and V are open subsets of R
n × Sn−1 satisfying U ⊂ V ⊂ Γ0. So

we can define a(x,D): CΓ0 → CΓ0 , which is a sheaf homomorphism. Let

X be an open subset of R
n, and assume that a(x, ξ) ∈ PS+(X;R0, A).

Similarly, taking Γ = X × (Rn \ {0}), we can define the operator a(x,D):

B(U) → B(U)/A(U) and the operator a(x,D): B(U)/A(U) → B(U)/A(U),

where U is a bounded open subset of X and A(U) denotes the space of

all real analytic functions defined in U ( see, also, §2.7 of [12]). In doing

so, we may choose ΦR(ξ, y, η) ∈ S0,0,0,0(R,C∗, C(Γ1,Γ2), C(Γ1,Γ2)) so that

ΦR(ξ, y, η) = 1 for (ξ, y, η) ∈ R
n × X1 × R

n, where Γj = Xj × (Rn \ {0}).
Moreover, we can define the operator a(x,D): BX → BX/AX and the

operator a(x,D): BX/AX → BX/AX , which are sheaf homomorphisms.

Here AX denotes the sheaf ( of germs) of real analytic functions on X.

Assume that a(x,D) is a differential operator in X. Let K be a com-

pact subset of X. Then, by duality we can define a(x,D)w ∈ A′(K) for

w ∈ A′(K). From Proposition 1.2.6 of [12] and the definition of analytic

functionals we have supp a(x,D)w ⊂ supp w for w ∈ A′(K). Therefore, we

can define a(x,D): BX → BX , which is a sheaf homomorphism. From The-

orem 2.7.1 of [12] and Lemma 2.5 it follows that two definitions of a(x,D):

BX → BX/AX are consistent.

Next we assume that a(x, ξ) ≡
∑∞
j=0 aj(x, ξ) ∈ FS+(Γ;C0, A). Choose
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{φRj (ξ)}j∈Z+ ⊂ C∞(Rn) so that 0 ≤ φRj (ξ) ≤ 1,

φRj (ξ) =

{
0 if 〈ξ〉 ≤ 2Rj,

1 if 〈ξ〉 ≥ 3Rj,

|∂α+βξ φRj (ξ)| ≤ Ĉ|β|(Ĉ/R)|α|〈ξ〉−|β| if |α| ≤ 2j,

where the Ĉ|β| and Ĉ do not depend on j and R ( see §2.2 of [12]). Then it

follows from Lemma 2.2.4 of [12] that

ã(x, ξ) :=
∞∑
j=0

φ
R/2
j (ξ)aj(x, ξ) ∈ PS+(Γ;R, 2A + 3Ĉ, A)

if R > C0. So we can define a(x,D)u ∈ C(Γ0) by a(x,D)u = ã(x,D)u.

Indeed, applying the same argument as in §3.7 of [12] we can see that

a(x,D)u ∈ C(Γ0) does not depend on the choice of {φRj (ξ)}. Similarly,

a(x,D) defines a sheaf homomorphism a(x,D): CΓ0 → CΓ0 .

To state our main results we need the following

Definition 1.4. Let Γ be an open subset of R
n × (Rn \ {0}), and let

p(x, ξ) ∈ PS+(Γ;R0, A) ( or p(x, ξ) ∈ FS+(Γ;C0, A)), where R0 ≥ 1 and

A,C0 ≥ 0.

(i) For z0 = (x0, ξ0) ∈ Γ we say that p(x,D) is analytic microhypoelliptic

at z0 if there is an open neighborhood U of (x0, ξ0/|ξ0|) in Γ∩ (Rn × Sn−1)

satisfying supp u = supp p(x,D)u for any u ∈ C(U), i.e., the sheaf homo-

morphism p(x,D) : CU → CU is injective.

(ii) For z0 = (x0, ξ0) ∈ Γ we say that p(x,D) is microlocally solvable

at z0 if there is a open neighborhood U of (x0, ξ0/|ξ0|) in Γ ∩ (Rn × Sn−1)

satisfying the following; for any f ∈ C(U) there is u ∈ C(U) such that

p(x,D)u = f in C(U), i.e., p(x,D): C(U) → C(U) is surjective.

(iii) Assume that Γ = X × (Rn \ {0}), i.e., p(x, ξ) ∈ PS+(X;R0, A)

( or p(x, ξ) ∈ FS+(X;C0, A)), where X is an open subset of R
n. Let

x0 ∈ X. We say that p(x,D) is analytic hypoelliptic at x0 if there is an

open neighborhood U of x0 in X satisfying supp u = supp p(x,D)u for any

u ∈ B(U)/A(U), i.e., the sheaf homomorphism p(x,D): BU/AU → BU/AU
is injective. Similarly, we say that p(x,D) is locally solvable at x0 modulo

analytic functions if there is an open neighborhood U of x0 in X satisfying
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the following; for any f ∈ B(U)/A(U) there is u ∈ B(U)/A(U) such that

p(x,D)u = f in B(U)/A(U), i.e., p(x,D): B(U)/A(U) → B(U)/A(U) is

surjective. Assume that p(x, ξ) is a polynomial of ξ whose coefficients are

real analytic functions of x defined in X. Then we say that p(x,D) is

locally solvable at x0 if there is an open neighborhood U of x0 in X such

that p(x,D): B(U) → B(U) is surjective.

Theorem 1.5. Let Γ be an open conic subset of R
n × (Rn \ {0}) and

z0 = (x0, ξ0) ∈ Γ. Let p(x, ξ) ∈ FS+(Γ;C0, A), where A,C0 ≥ 0. Then

(tp)(x,D) is microlocally solvable at (x0,−ξ0) if p(x,D) is analytic micro-

hypoelliptic at z0.

Theorem 1.6. Let X be an open subset of R
n and x0 ∈ X. Let

p(x, ξ) ∈ FS+(X;C0, A), where A,C0 ≥ 0. Then (tp)(x,D) is locally solv-

able at x0 modulo analytic functions if p(x,D) is analytic hypoelliptic at x0.

In §2 we shall give preliminary lemmas. Theorems 1.5 and 1.6 will be

proved in §3.

The author would like to thank Professor P. Schapira for informing him

about the paper [2] of Cordaro and Trépreau.

2. Preliminaries

In this section we shall prepare a series of lemmas for the proofs of

Theorems 1.5 and 1.6.

Let Γ be an open conic subset of R
n×(Rn\{0}). We write Γε = {(x, ξ) ∈

R
n × (Rn \ {0}); |(x, ξ/|ξ|) − (y, η/|η|)| < ε for some (y, η) ∈ Γ} for ε > 0.

For a subset U of R
n and ε > 0 we write Uε = {x ∈ R

n; |x − y| < ε for

some y ∈ U}. We also write γε = {ξ ∈ R
n \ {0}; |ξ/|ξ| − η/|η|| < ε for some

η ∈ γ} for a conic subset γ of R
n \ {0} and ε > 0.

Lemma 2.1. Let p(ξ, y, η) ∈ S+(R0, A). Assume that p(ξ, y, η) = 0 if

(y, η) ∈ Γε, |ξ/|ξ| − η/|η|| ≤ ε/4 and 〈ξ〉 ≥ R0, where ε > 0. Then there is

R0(ε) > 0 such that

WFA(p(Dx, y,Dy)u) ∩ Γ = ∅ for u ∈ F0

if R0 ≥ R0(ε)A.
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Proof. It follows from Proposition 1.2 that p(Dx, y,Dy)u ∈ F0 if

u ∈ F0 and R0 ≥ 2e
√
nA. Let (x0, ξ0) ∈ Γ, and let U × γ be an open conic

neighborhood of (x0, ξ0) satisfying U × γ ⊂ Γ. We choose {gR(ξ)}R≥R so

that supp gR ⊂ γε/4, g
R(ξ) = 1 in γ ∩ {〈ξ〉 ≥ R} and

|∂α+α̃ξ gR(ξ)| ≤ C|α̃|(ε)(C(ε)/R)|α|〈ξ〉−|α̃|

if 〈ξ〉 ≥ R|α|, where the Cj(ε) and C(ε) are positive constants depending

on ε. Put

p̃R(ξ, y, η) = gR(ξ)p(ξ, y, η) (∈ S+(R,RA/R0 + C(ε), RA/R0, RA/R0))

for R ≥ R0. Then we have p̃R(ξ, y, η) = 0 if y ∈ Uε/2, |ξ/|ξ| − η/|η|| ≤
ε/4 and 〈ξ〉 ≥ R0. Applying Corollary 2.6.3 of [12] we see that there

are positive constants Rj(ε) ( j = 1, 2) such that p̃R(Dx, y,Dy)u ( =

gR(D)(p(Dx, y,Dy)u)) is analytic in U for u ∈ F0 if R ≥ R1(ε)(RA/R0 +

C(ε))+R2(ε) and R ≥ R0. From the definition of WFA(·) the lemma easily

follows. �

Lemma 2.2. Let p(ξ, y, η) ∈ S+(R0, A), and let Γ1 be an open conic

subset of Γ such that Γ1 � Γ. Then there is R0(Γ1,Γ) > 0 such that

WFA(p(Dx, y,Dy)u) ∩ Γ1 = ∅ if u ∈ F0, WFA(u) ∩ Γ = ∅ and R0 ≥
R0(Γ1,Γ)A.

Proof. By Proposition 1.2 we have p(Dx, y,Dy)u ∈ F0 if u ∈ F0

and R0 ≥ 2e
√
nA. Let u ∈ F0, and assume that WFA(u) ∩ Γ = ∅. Let

(x0, ξ0) ∈ Γ1, and let U × γ be an open conic neighborhood of (x0, ξ0)

satisfying U × γ ⊂ Γ1. Then there is ε > 0 such that U2ε × γ3ε � Γ. We

choose {gRj (ξ)}R≥R0 ( j = 1, 2) so that supp gR1 ⊂ γε, supp gR2 ⊂ γ3ε,

gR1 (ξ) = 1 in γ ∩ {〈ξ〉 ≥ R}, gR2 (ξ) = 1 in γ2ε ∩ {〈ξ〉 ≥ R} and

|∂α+α̃ξ gRj (ξ)| ≤ Cj,|α̃|(ε)(C(ε)/R)|α|〈ξ〉−|α̃|

if 〈ξ〉 ≥ R|α| and j = 1, 2, where the Cj,k(ε) and C(ε) are positive constants.

Then it follows from Proposition 3.1.2 (i) and (ii) of [12] that there is R(ε) >

0 such that gR2 (D)u is analytic in Uε if R ≥ R(ε). Put

pR1 (ξ, y, η) = gR1 (ξ)p(ξ, y, η)gR2 (η) (∈ S+(R,RA/R0 + C(ε)))

pR2 (ξ, y, η) = gR1 (ξ)p(ξ, y, η)(1 − gR2 (η)) (∈ S+(R,RA/R0 + C(ε)))
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for R ≥ R0. Note that gR1 (D)(p(Dx, y,Dy)u) = pR1 (Dx, y,Dy)u + pR2 (Dx, y,

Dy)u. By Corollary 2.6.6 of [12] there are positive constants R1(ε) and

R2(ε) such that pR1 (Dx, y,Dy)u is analytic in U if R ≥ R1(ε)(RA/R0 +

C(ε)) + R2(ε) and R ≥ R0 ≥ 2e
√
nA. On the other hand, we have

pR2 (ξ, y, η) = 0 if |ξ/|ξ| − η/|η|| < ε and 〈η〉 ≥ R.

Therefore, it follows from Lemma 2.1 ( or Corollary 2.6.3 of [12]) that

pR2 (Dx, y,Dy)u is analytic in R
n if R ≥ R′

0(ε)(RA/R0 + C(ε)), where

R′
0(ε) > 0. Indeed, one can apply Lemma 2.1 to pR2 (ξ, y, η)φR1 (η). Propo-

sition 1.2 implies that pR2 (Dx, y,Dy)(1 − φR1 (D))u is analytic. This proves

the lemma. �

Lemma 2.3. Let q(ξ, y, η) be a symbol in C∞(Rn×R
n×R

n) such that

|∂α+α̃ξ Dβy ∂
γ
η q(ξ, y, η)| ≤ C|α̃|+|γ|,δ(A/R0)

|α|+|β|〈η〉|β|eδ〈ξ〉+δ〈η〉

if 〈ξ〉 ≥ R0|α|, 〈η〉 ≥ R0|β| and δ > 0, where A ≥ 0 and R0 ≥ 1. Let U be an

open subset of R
n, and assume that q(ξ, y, η) = 0 for (ξ, y, η) ∈ R

n×Uε×R
n,

where ε > 0. Then there is R(ε) > 0 such that q(Dx, y,Dy)u is analytic in

U if u ∈ F0 and R0 ≥ R(ε)A.

Proof. It follows from Proposition 1.2 that q(Dx, y,Dy) is a continu-

ous linear operator on F0 if R0 ≥ 2e
√
nA. In order to prove the lemma we

shall apply the same argument as in the proof of Proposition 3.2.1 of [12].

We may assume that U is bounded. We can write

〈D〉νe−ρ〈D〉q(Dx, y,Dy)u =

∞∑
k=1

∞∑
j=1

〈e−δ〈η〉û(η), fRν,δ,j,k(x, η; ρ)〉η

for u ∈ F0, ν = 0, 1, 0 < ρ ≤ 1 and 0 < δ ≤ 1, where M ∈ Z+ satisfies

M > n/2, R ≥ R0, ψ
R
j (ξ) := φRj−1(ξ) − φRj (ξ) ( j ∈ N) and

fRν,δ,j,k(x, η; ρ) = (2π)−2n

∫
ei(x−y)·ξ+iy·η+δ〈η〉

× ψRk (η)〈x− y〉−2M 〈Dξ〉2M (〈ξ〉νe−ρ〈ξ〉ψRj (ξ)q(ξ, y, η)) dξdy.

Here the φRj (ξ) are symbols as in §1. Since Re (1 + (x − y) · (x − y)) =

1 + |Re x− y|2 − | Im x|2 for x ∈ C
n and y ∈ R

n, fRν,δ,j,k(x, η; ρ) is analytic
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in x if | Im x| < 1. Let us first consider the case where j, k ∈ N and

2R(k − 1) − 1 ≥ 6Rj. Then we have |η| ≥ 2|ξ| if ψRj (ξ)ψRk (η) �= 0. Let K

be a differential operator defined by

tK = |ξ − η|−2
n∑
!=1

(η! − ξ!)Dy� .

A simple calculation gives

|∂αξ ∂γηKk{ψRk (η)〈ξ〉νe−ρ〈ξ〉ψRj (ξ)q(ξ, y, η)}
≤ C|α|+|γ|,δ′(16nA/R0)

k〈ξ〉ν−|α|〈η〉−|γ|eδ
′〈ξ〉+δ′〈η〉

if δ′ > 0. Here we have used the facts given in §2.1 of [12]. Taking M >

(|γ| + n)/2, we can write

〈η〉!DγηfRν,δ,j,k(x, η; ρ) = (2π)−2n

∫
ei(x−y)·ξ+iy·η+δ〈η〉

× 〈x− y〉−2M 〈η〉!
∑
γ′≤γ

(
γ

γ′

)
tδ,γ−γ′(y, η)D

γ′
η 〈Dξ〉2MKk

× {ψRk (η)〈ξ〉νe−ρ〈ξ〉ψRj (ξ)q(ξ, y, η)} dξdy,

where tδ,γ(y, η) = e−iy·η−δ〈η〉Dγηeiy·η+δ〈η〉. Therefore, we have

|〈η〉!DγηfRν,δ,j,k(x, η; ρ)| ≤ Cδ,|γ|,!,δ′,R j−2k−2〈Re x〉|γ|

× exp[(δ + δ′ + (ρ1 + δ′)/2 − 1/(3R))〈η〉]

if 9 ∈ Z+, γ ∈ (Z+)n, δ′ > 0, x ∈ C
n, | Im x| ≤ ρ1 ≤ 1/2 and R0 ≥ 32enA.

Moreover, 〈e−δ〈η〉û(η), fRν,δ,j,k(x, η; ρ)〉η is analytic in x and

|〈e−δ〈η〉û(η), fRν,δ,j,k(x, η; ρ)〉η| ≤ Cδ,R,r(u)j−2k−2(2.1)

if u ∈ F0, x ∈ C
n, |Re x| ≤ r, | Im x| ≤ ρ1 ≤ 1/2, R ≥ R0 ≥ 32enA and

δ+ρ1/2 < 1/(3R). Next consider the case where j, k ∈ N and 2R(k−1)−1 <

6Rj. Then we have 2〈η〉 ≤ 9〈ξ〉(1 + 27R/〈ξ〉) if ψRj (ξ)ψRk (η) �= 0. Let L be

a differential operator defined by

tL = |x− y|−2
n∑
!=1

(x̄! − y!)Dξ�
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for x ∈ C
n with Re x ∈ U and y /∈ R

n \ Uε. Then we have

|∂γηLj+M{ψRk (η)〈ξ〉νe−ρ〈ξ〉ψRj (ξ)q(ξ, y, η)}|
≤ C|γ|,M,δ′,R(

√
n(A/R0 + (Ĉ + 6(1 +

√
2))/R)/ε)j

× |x− y|−M 〈ξ〉ν−M 〈η〉−|γ|eδ
′〈ξ〉+δ′〈η〉

if δ′ > 0, x ∈ C
n and Re x ∈ U . Taking M > |γ| + n, we have

|〈η〉!DγηfRν,δ,j,k(x, η; ρ)| ≤ Cδ,|γ|,!,ε,R(U)j−2k−2

if 9 ∈ Z+, γ ∈ (Z+)n, x ∈ C
n, Re x ∈ U , | Im x| ≤ ρ1 and{

R0 ≥ 4e
√
nA/ε, R ≥ 4e

√
n(Ĉ + 6(1 +

√
2))/ε,

9δ + ρ1 < 1/(3R).
(2.2)

Moreover, 〈e−δ〈η〉û(η), fRν,δ,j,k(x, η; ρ)〉η is analytic in x and

|〈e−δ〈η〉û(η), fRν,δ,j,k(x, η; ρ)〉η| ≤ Cδ,ε,R(U, u)j−2k−2(2.3)

if u ∈ F0, x ∈ C
n, Re x ∈ U , | Im x| ≤ ρ1 ≤ 1/2 and (2.2) is valid. We put

V (x, xn+1) = H(q(Dx, y,Dy)u)(x, xn+1)

and assume that

R0 ≥ max{32enA, 4e
√
nA/ε},

0 < ρ1 < min{1/2, 1/(3R0), ε/(12e
√
n(Ĉ + 6(1 +

√
2))}.

Then it follows from (2.1) and (2.3) that 〈Dx〉νV (x, ρ) ( ν = 0, 1) can be

continued analytically to {x ∈ C
n; Re x ∈ U and | Im x| < ρ1}. Applying

Lemma 1.2.4 of [12] to the Cauchy problem{
(1 − ∆x,xn+1)v(x, xn+1) = 0,

v(x, ρ) = V (x, ρ), (∂v/∂xn+1)(x, ρ) = −〈Dx〉V (x, ρ),

we can show that V (x, xn+1) can be continued analytically from R
n×(0,∞)

to U × (ρ− ρ1,∞). This implies that q(Dx, y,Dy)u is analytic in U . �
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Lemma 2.4. Let a(x, ξ) be a symbol satisfying

|a(α)

(β+β̃)
(x, ξ)| ≤ C|α|+|β̃|,δ(A/R0)

|β|〈ξ〉|β|eδ〈ξ〉

if 〈ξ〉 ≥ R0|β| and δ > 0, where R0 > 0 and A ≥ 0. Let U be an open subset

of R
n, and assume that

|a(α)
(β)(x, ξ)| ≤ C|α|B

|β||β|! e−c〈ξ〉

for x ∈ Uε, where B, c and ε are positive constants. Then there is C > 0,

which is independent of A, R0, B, c and ε, such that a(x,D)u is analytic

in U if u ∈ F0 and R0 ≥ CA.

Proof. Choose symbols ϕR(x, ξ) ∈ S0(R,C∗, C(ε)) ( R ≥ 4) so that

0 ≤ ϕR(x, ξ) ≤ 1, supp ϕR ⊂ Uε × R
n and ϕR(x, ξ) = 1 for x ∈ U2ε/3. We

put

aR1 (x, ξ) = ϕR(x, ξ)a(x, ξ), aR2 (x, ξ) = (1 − ϕR(x, ξ))a(x, ξ).

Then we have

|aR(α)
1(β) (x, ξ)| ≤ C|α|+|β|,εe

−c〈ξ〉,

|aR(α)
1(β) (x, ξ)| ≤ C|α|B

|β||β|!e−c〈ξ〉 for x ∈ U2ε/3.

Since e−c〈ξ〉/2û(ξ) ∈ S ′ and

aR1 (x,D)u(x) = (2π)−n〈e−c〈ξ〉/2û(ξ), eix·ξ+c〈ξ〉/2aR1 (x, ξ)〉ξ

for u ∈ F0, a
R
1 (x,D)u(x) is analytic in U2ε/3. Moreover, we have supp aR2 ∩

U ε/3 × R
n = ∅ and

|aR(α)

2(β+β̃)
(x, ξ)| ≤ C|α|+|β̃|,δ(A/R0 + C(ε)/R)|β|〈ξ〉|β|eδ〈ξ〉

if R ≥ R0, 〈ξ〉 ≥ R|β| and δ > 0. It follows from Theorem 2.6.1 of [12]

that there are C > 0 and R(ε) > 0 such that supp aR2 (x,D)u ∩ U = ∅ if

R0 ≥ CA, R ≥ R(ε) and u ∈ F0. This proves the lemma. �

Let Γ be an open conic subset of R
n × (Rn \ {0}), and assume that

a(x, ξ) ∈ PS+(Γ;R0, A), where A ≥ 0 and R0 ≥ 4. Let Γj ( j = 1, 2)
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be open conic subsets of Γ such that Γ1 � Γ2 � Γ. Moreover, let ε > 0,

and let X × γ be an open conic subset of Γ1 such that X2ε × γ2ε ⊂ Γ1.

We choose symbols ΦR(ξ, y, η) ∈ S0,0,0,0(R,C∗, C(Γ1,Γ2), C(Γ1,Γ2)) and

ϕR(x, ξ) ∈ S0,0(R,C∗, C(ε)) and gR(ξ) ∈ S0,0(R,C(ε)) ( R ≥ 4) so that 0 ≤
ΦR(ξ, y, η), ϕR(x, ξ), gR(ξ) ≤ 1, supp ΦR ⊂ R

n × Γ2, supp ϕR ⊂ Xε × R
n,

supp gR ⊂ γε ∩ {|ξ| ≥ R}, ΦR(ξ, y, η) = 1 for (ξ, y, η) ∈ R
n × Γ1 with

〈η〉 ≥ R, ϕR(x, ξ) = 1 for (x, ξ) ∈ Xε/2×R
n and gR(ξ) = 1 for ξ ∈ γε/2 with

|ξ| ≥ 2R ( see Proposition 2.2.3 in [12]). Put aR(ξ, y, η) = ΦR(ξ, y, η)a(y, η)

and AR(x, ξ) = ϕR(x, ξ)gR(ξ)a(x, ξ). We denote γ0 = γ ∩ Sn−1. Then we

have the following

Lemma 2.5. There is R1(A,Γ1,Γ2, ε) ≥ 4 such that

(AR(x,D)u)|X×γ0 = (aR(Dx, y,Dy)u)|X×γ0 in C(X × γ0),

i.e.,

(AR(x,D)u)|X×γ0 = a(x,D)(u|X×γ0) in C(X × γ0),

if R ≥ max{R0, R1(A,Γ1,Γ2, ε)} and u ∈ F0.

Proof. It suffices to show that there is R1(A,Γ1,Γ2, ε) ≥ 4 such that

WFA(aR(Dx, y,Dy)u−AR(x,D)u) ∩X × γ = ∅

if R ≥ max{R0, R1(A,Γ1,Γ2, ε)} and u ∈ F0. Write

aR(Dx, y,Dy) −AR(x,D) = aR1 (Dx, y,Dy) + aR2 (Dx, y,Dy) on F0,

where

aR1 (ξ, y, η) = (ΦR(ξ, y, η)gR(η) − ϕR(y, η)gR(η))a(y, η),

aR2 (ξ, y, η) = ΦR(ξ, y, η)(1 − gR(η))a(y, η).

We note that

|∂α+α̃ξ Dβy ∂
γ
ηa
R
1 (ξ, y, η)|

≤ C|α̃|+|γ|,δ(C∗/R)|α|((A + C(Γ1,Γ2) + C(ε))/R)|β|〈η〉|β|eδ〈η〉
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if 〈ξ〉 ≥ R|α|, 〈η〉 ≥ R|β| and δ > 0, and that aR1 (ξ, y, η) = 0 if y ∈ Xε/2.

By Lemma 2.3 there is R1(A,Γ1,Γ2, ε) ≥ 4 such that aR1 (Dx, y,Dy)u is

analytic in X if u ∈ F0 and R ≥ R1(A,Γ1,Γ2, ε). It is easy to see that

aR2 (ξ, y, η) ∈ S+(R,C∗, 2A + C(Γ1,Γ2), A + C(Γ1,Γ2) + C(ε)) if R ≥ R0,

and that aR2 (ξ, y, η) = 0 if η ∈ γε/2 and |η| ≥ 2R. Therefore, from Lemma

2.1 there is R2(A,Γ1,Γ2, ε) ≥ 4 such that

WFA(aR2 (Dx, y,Dy)u) ∩ R
n × γ = ∅ for u ∈ F0

if R ≥ max{R0, R2(A,Γ1,Γ2, ε)}, which proves the lemma. �

Next assume that a(x, ξ) ≡
∑∞
j=0 aj(x, ξ) ∈ FS+(Γ;C0, A). We put

ã(x, ξ) =
∑∞
j=0 φ

R/2
j (ξ)aj(x, ξ) ( ∈ PS+(Γ;R, 2A+3Ĉ, A)) and ãR(ξ, y, η) =

ΦR(ξ, y, η)ã(y, η) ( ∈ S+(R,C∗, 2A + C(Γ1,Γ2), 2A + 3Ĉ + C(Γ1,Γ2))) for

R > C0.

Lemma 2.6. There is R(A,Γ1,Γ2, ε) ≥ 4 such that

(tãR(Dx, y,Dy)u)|X×(−γ)0 = (ta)(x,D)(u|X×(−γ)0) in C(X × (−γ)0)

if R ≥ R(A,Γ1,Γ2, ε) and u ∈ F0, where −γ = {ξ; −ξ ∈ γ}.

Proof. Note that tãR(Dx, y,Dy)u = BR(Dx, y,Dy)u for u ∈ F0,

where BR(ξ, y, η) = ãR(−η, y,−ξ). It follows from Corollary 2.4.7 in [12]

that there are symbols qj(x, ξ) ( j = 1, 2) and R(C0, A1) > max{4, C0} such

that tãR(Dx, y,Dy) = q1(x,D) + q2(x,D) on S∞, q1(x, ξ) ∈ S+(4R, Ĉ∗ +

10A1) and

|q(α)
2(β)(x, ξ)| ≤ C|α|,R(4R + 1)|β||β|!e−〈ξ〉/R

if R ≥ R(C0, A1), where A1 = max{C∗, 2A + 3Ĉ + C(Γ1,Γ2)} and Ĉ∗ is a

positive constant. There is R(C0, A1, ε) ≥ R(C0, A1) such that

|∂αξ Dβx{q1(x, ξ) − q(x, ξ)}| ≤ C|α|,R(R + 1)|β||β|!e−〈ξ〉/R

if (x,−ξ) ∈ Xε × γε and R ≥ R(C0, A1, ε), where

bj(x, ξ) =
∑
k+|α|=j

(−1)|α|a(α)
k(α)(x,−ξ)/α! ( j ∈ Z+),

q(x, ξ) =
∞∑
j=0

φ4R
j (ξ)bj(x, ξ) for (x,−ξ) ∈ Γ.
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Write

tãR(Dx, y,Dy) = q̃1(x,D) + q̃2(x,D) + B̃R(Dx, y,Dy) on S∞,

where q̃j(x, ξ) = qj(x, ξ)g
R(−ξ) ( j = 1, 2) and B̃R(ξ, y, η) = ãR(−η, y,

−ξ)(1−gR(−ξ)). Proposition 1.2 implies that q̃2(x,D)u is analytic if u ∈ F0.

It follows from Lemma 2.1 that there is R1(C0, A1, ε) ≥ 4 such that

WFA(B̃R(Dx, y,Dy)u) ∩ R
n × (−γ) = ∅ for u ∈ F0

if R ≥ R1(C0, A1, ε). We note that bj(x, ξ) ∈ FS+(Γ̌;C ′
0, 2A), where C ′

0 =

max{C0, 4nA
2}. Put

b̃(x, ξ) =
∞∑
j=0

φ
R/2
j (ξ)bj(x, ξ) (∈ PS+(Γ̌;R, 4A + 3Ĉ, 2A)),

bR(x, ξ) = ϕR(x, ξ)gR(−ξ)b̃(x, ξ)

(∈ S+(R,C∗ + 4A + 3Ĉ + C(ε), 2A + C(ε))),

where R > C ′
0. Then we can see that q̃1(x, ξ) − bR(x, ξ) ∈ S+(4R,A2) and

|∂αξ Dβx{q̃1(x, ξ) − bR(x, ξ)}| ≤ C|α|,RA
|β|
R |β|!e−〈ξ〉/(24R)(2.4)

if x ∈ Xε/2 and R ≥ max{R1(C0, A1, ε), eC
′
0/2}, where A2 = max{Ĉ∗ +

10A1+4C(ε), 4C∗+16A+12Ĉ+4C(ε)} and AR = max{R+1, 2A}. Indeed,

we have

bR(x, ξ) − q(x, ξ)gR(−ξ) = gR(−ξ)
∞∑
j=0

(φ
R/2
j (ξ) − φ4R

j (ξ))bj(x, ξ)

for x ∈ Xε/2,

supp (φ
R/2
j − φ4R

j ) ⊂ {ξ; Rj ≤ 〈ξ〉 ≤ 12Rj},
|∂αξ Dβx{bR(x, ξ) − q(x, ξ)gR(−ξ)}|

≤ C|α|,R,ε

∞∑
j=0

(j!/(1 + jj))(C ′
0/R)jχj(ξ)(2A)|β||β|!e〈ξ〉/(24R)

≤ C ′
|α|,R,ε(2A)|β||β|!e−〈ξ〉/(24R) if x ∈ Xε/2 and R ≥ eC ′

0,
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where χj(ξ) =

{
1 if Rj ≤ 〈ξ〉 ≤ 12Rj,

0 otherwise.
The estimates (2.4) and Lemma

2.4 implies that there is C > 0 such that q̃1(x,D)u− bR(x,D)u is analytic

in X if u ∈ F0 and R ≥ CA2. This gives

WFA(tãR(Dx, y,Dy)u− bR(x,D)u) ∩X × (−γ) = ∅ for u ∈ F0

if R ≥ max{R1(C0, A1, ε), CA2}. So the lemma easily follows from Lemma

2.5. �

For ε, ν ∈ R we can define

L2
ε,ν := {f ∈ S ′

−ε; 〈x〉νeε〈D〉f(x) ∈ L2(Rn)}.

Indeed, eε〈D〉f(x) ∈ S ′ and 〈x〉νeε〈D〉f(x) is well-defined in S ′ if f ∈ S ′
−ε.

L2
ε,ν is a Hilbert space in which the scalar product is given by

(f, g)L2
ε,ν

:= (〈x〉νeε〈D〉f, 〈x〉νeε〈D〉g)L2 ,

where (·, ·)L2 denotes the scalar product of L2(Rn).

Lemma 2.7. Let a(ξ, y, η) be a symbol satisfying

|∂αξ Dβ+β̃y ∂γηa(ξ, y, η)|
≤ C|α|+|β̃|+|γ|(A/R0)

|β|〈ξ〉−|α|+|β|〈η〉−|γ| exp[δ1〈ξ〉 − δ2〈η〉]

for any α, β, β̃, γ ∈ (Z+)n and (ξ, y, η) ∈ R
n × R

n × R
n with 〈ξ〉 ≥ R0|β|,

where A ≥ 0, R0 ≥ 1 and δ1, δ2 ∈ R.

(i) a(Dx, y,Dy) is well-defined on L2
ε2,ν and maps continuously L2

ε2,ν to

L2
ε1,ν if R0 ≥ 25e

√
nA, 2(ε1 + δ1)+ < ε2 + δ2 and 3(ε1 + δ1) + 2(ε2 + δ2)− <

1/R0.

(ii) If ε1 < ε2 and ν1 < ν2, then L2
ε2,ν2 ⊂ L2

ε1,ν1 and the inclusion map

L2
ε2,ν2 � u �→ u ∈ L2

ε1,ν1 is compact.

Remark. The assertion (i) is given in Lemma 5.1.6 of [12] when ν = 0.



108 Seiichiro Wakabayashi

Proof. (i) Choose a symbol g(ξ, η) so that |∂αξ ∂
γ
η g(ξ, η)| ≤

C|α|+|γ|〈ξ〉−|α|〈η〉−|γ|, g(ξ, η) = 1 if |ξ| ≤ 3|η|/2 or |ξ| ≤ 1, and g(ξ, η) = 0 if

|ξ| ≥ 2|η| and |ξ| ≥ 2. We put

a1(ξ, y, η) = g(ξ, η)a(ξ, y, η), a2(ξ, y, η) = (1 − g(ξ, η))a(ξ, y, η).

Let ε1, ε2 ∈ R satisfy 2(ε1 + δ1)+ < ε2 + δ2. Then we have

|∂αξ Dβy ∂γη {exp[ε1〈ξ〉 − ε2〈η〉]a1(ξ, y, η)}| ≤ C|α|+|β|+|γ|〈ξ〉−|α|〈η〉−|γ|.

Therefore, there is b1(x, ξ) ∈ S0
1,0 such that

exp[ε1〈D〉]a1(Dx, y,Dy) exp[−ε2〈D〉] = b1(x,D) on S∞.

Moreover, we have

|∂αξ Dβy ∂γη {exp[−δ〈ξ〉 + δ2〈η〉]a2(ξ, y, η)}|
≤ C|α|+|β|+|γ|〈ξ〉−|α|〈η〉−|γ| exp[−(δ − δ1)〈ξ〉/2]

if δ > δ1. This gives a2(Dx, y,Dy)v ∈ S−δ and
∑∞
j=1 ψ

R0
j (D)a2(Dx, y,

Dy)v = a2(Dx, y,Dy)v in S−δ if v ∈ S∞ and δ > δ1, where ψRj (ξ) =

φRj−1(ξ) − φRj (ξ). Put

ã2(ξ, y, η) =

∞∑
j=1

ψR0
j (ξ)Kja2(ξ, y, η),

where K = |ξ − η|−2
∑n
k=1(ξk − ηk)Dyk . Then we have

a2(Dx, y,Dy) = ã2(Dx, y,Dy) on S∞,

|∂αξ Dβy ∂γη {exp[ε1〈ξ〉 − ε2〈η〉]ã2(ξ, y, η)}|
≤ C|α|+|β|+|γ| exp[(δ1 − 1/(3R0) + ε1 + 2(ε2 + δ2)−/3)〈ξ〉]

if R0 ≥ 25e
√
nA, where c− = max{−c, 0} ( see the proof of Lemma 5.1.6 of

[12]). Now assume that R0 ≥ 25e
√
nA and 3(ε1 + δ1)+ 2(ε2 + δ2)− < 1/R0.

Then there is b2(x, ξ) ∈ S−∞ ( ⊂ S0
1,0) such that

exp[ε1〈D〉]a2(Dx, y,Dy) exp[−ε2〈D〉] = b2(x,D) on S∞.
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Putting b(x, ξ) = b1(x, ξ) + b2(x, ξ) ( ∈ S0
1,0), we have

exp[ε1〈D〉]a(Dx, y,Dy) exp[−ε2〈D〉] = b(x,D) on S∞.

Let ν ∈ R, and put

b̃ν(x, ξ) = (2π)−n Os-

∫
e−y·η〈x〉νb(x, ξ + η)〈x + y〉−ν dydη,

where Os-
∫

denotes an oscillatory integral. Then we have b̃ν(x, ξ) ∈ S0
1,0

and

〈x〉νb(x,D)(〈x〉−νv) = b̃ν(x,D)v on S.

Let χ(ξ) be a function in C∞
0 (Rn) such that χ(ξ) = 1 if |ξ| ≤ 1. Then

we have 〈x〉νχ(D/j)(〈x〉−νf(x)) → f(x) in S as j → ∞ for f ∈ S. This

implies that {〈x〉νf(x); f ∈ S∞} is dense in L2(Rn). Therefore,

〈x〉ν exp[ε1〈D〉]a(Dx, y,Dy) exp[−ε2〈D〉]〈x〉−ν can be extended to a

bounded operator on L2(Rn), i.e., a(Dx, y,Dy) maps continuously L2
ε2,ν

to L2
ε1,ν .

(ii) Assume that ε1 < ε2 and ν1 < ν2. Then there is c(x, ξ) ∈ S−1
1,0

such that 〈x〉ν2 exp[(ε1 − ε2)〈D〉](〈x〉−ν2u) = c(x,D)u for u ∈ S. Therefore,

the operator: L2(Rn) � u �→ 〈x〉ν1 exp[(ε1 − ε2)〈D〉](〈x〉−ν2u) ∈ L2(Rn) is

compact ( see, e.g., Theorem 5.14 of [5]). This proves the assertion (ii). �

Lemma 2.8. Let X and X1 be bounded open subsets of R
n satisfying

X1 � X, and let a(ξ, y, η) be a symbol such that supp a ⊂ R
n × X1 × R

n

and

|∂αξ Dβ+β̃y ∂γ+γ̃η a(ξ, y, η)|(2.5)

≤ C|α|+|β̃|+|γ̃|(A/R0)
|β|+|γ|〈ξ〉m1−|α|+|β|〈η〉m2−|γ̃| exp[δ1〈ξ〉 + δ2〈η〉]

if 〈ξ〉 ≥ R0|β| and 〈η〉 ≥ R0|γ|, where A ≥ 0, R0 ≥ 1 and m1,m2, δ1, δ2 ∈ R.

Put ε = dis(X1,R
n \X), and assume that u ∈ F0 and that u is analytic in a

neighborhood of X, where dis(Y1, Y2) := inf{|x− y|; x ∈ Y1 and y ∈ Y2} for

Y1, Y2 ⊂ R
n. Then there are positive constants δ(ε, u) and δj(ε, u) ( j = 1, 2)

such that a(Dx, y,Dy)u ∈ Sδ if R0 ≥ 4e
√
nmax{1, 2/ε}A, 2δ1 + (δ2)+ <

1/R0, δj ≤ δj(ε, u) ( j = 1, 2) and δ < min{1/(2R0), δ(ε, u)}.
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Proof. We shall prove the lemma in the same way as Theorem 2.6.7

of [12]. Put uρ(x) = e−ρ〈D〉u(x) for ρ > 0. Then we have uρ(x) ∈ C∞(Rn)

for ρ > 0 and

|Dβuρ(x)| ≤ C(u)A(u)|β||β|! for x ∈ X and 0 < ρ ≤ 1,(2.6)

|uρ(x)| ≤ Cρ(1 + |x|)! for x ∈ R
n and ρ > 0,

where C(u), A(u) and Cρ are positive constants and 9 ∈ Z+. Let X2 be an

open subset of X satisfying X1 � X2 � X and dis(X1,R
n \X2) = ε/2. We

choose a family {χj}j∈N of C∞
0 (X) so that χj(x) = 1 in X2 and |Dβχj(x)| ≤

C(C∗j/ε)|β| for |β| ≤ j. Then (2.6) yields

|F [χjuρ](ξ)| ≤ C ′(u)(1 +
√
n(C∗/ε + A(u))j)j〈ξ〉−j

for 0 < ρ ≤ 1. Note that

∂αξ F [a(Dx, y,Dy)ψ
R
j (D)eρ〈D〉(χjuρ)](ξ)

= (2π)−n
∑

α1+α2=α

α!

α1!α2!

∫
e−iy·(ξ−η)aα1,α2(ξ, y, η)ψRj (η)

× eρ〈η〉F [χjuρ](η) dηdy,

where aα1,α2(ξ, y, η) = (−iy)α
1
∂α

2

ξ a(ξ, y, η). Replacing p(ξ, y, η) by

aα1,α2(ξ, y, η) in the proof of Theorem 2.6.7 of [12], we have

|∂αξ F [a(Dx, y,Dy)ψ
R
j (D)eρ〈D〉(χjuρ)](ξ)|(2.7)

≤ CR,R0,α(u)jn+m22−j〈ξ〉m1e−δ〈ξ〉

if ρ > 0, R ≥ 2e(1+
√
n(C∗/ε+A(u))), R0 ≥ 2e

√
nA, ρ+ δ2 +2(δ1 + δ)+ ≤

1/(3R), δ1 ≤ 1/(2R0) and δ ≤ 1/(2R0). Similarly, we have

|∂αξ F [a(Dx, y,Dy)ψ
R
j (D)eρ〈D〉((1 − χj)uρ)](ξ)|

≤ Cρ,A,R,R0,α(u)j−2〈ξ〉m1e−δ〈ξ〉

if ρ > 0, R ≥ 8e
√
n(C∗ + Ĉ + 6(1 +

√
2))/ε, R0 ≥ 4e

√
nmax{1, 2/ε}A,

δ ≤ 1/(2R0), 2δ1 + (ρ + δ2)+ ≤ 1/R0, ρ + δ2 ≤ 1/(3R) and δ ≤ 1/(12R) −
δ1 − (ρ + δ2)/4. This, together with (2.7), yields

|∂αξ F [a(Dx, y,Dy)u](ξ)| ≤ CR0,α(u, a)〈ξ〉m1e−δ〈ξ〉



Analytic Hypoellipticity and Local Solvability 111

if R0 ≥ 4e
√
nmax{1, 2/ε}A, δ2 +2(δ1 +δ)+ < c(ε, u)/3, 2δ1 +(δ2)+ < 1/R0,

δ ≤ 1/(2R0) and δ + δ1 + δ2/4 < c(ε, u)/12, where c(ε, u) = min{1/(2e(1 +√
n(C∗/ε + A(u)))), ε/(8e

√
n(C∗ + Ĉ + 6(1 +

√
2)))}, which proves the

lemma. �

Lemma 2.9. Let Γ be an open conic subset of R
n×(Rn\{0}) satisfying

Γ � R
n×(Rn\{0}), and let a(ξ, y, η) be a symbol such that supp a ⊂ R

n×Γ

and a(ξ, y, η) satisfies the estimates (2.5) if 〈ξ〉 ≥ R0|β| and 〈η〉 ≥ R0|γ|.
Let ε > 0, and assume that u ∈ F0 and that WFA(u) ∩ Γε = ∅. Then

there are positive constants R0(ε), δ(ε, u) and δj(ε, u) ( j = 1, 2) such that

a(Dx, y,Dy)u ∈ Sδ if R0 ≥ R0(ε)A, 2δ1 + (δ2)+ < 1/R0, δj ≤ δj(ε, u)

( j = 1, 2) and δ < min{1/(2R0), δ(ε, u)}.

Proof. One can prove the lemma in the same way as in the proof of

Lemma 4.1.1 of [12], using Lemma 2.8 instead of Theorem 2.6.7 of [12]. �

It follows from Lemma 2.7(ii) that {L2
1/j,1/j}j∈N is a compact injective

sequence of Hilbert spaces, i.e., the inclusion maps: L2
1/j,1/j � u �→ u ∈

L2
1/(j+1),1/(j+1) ( j ∈ N) are compact. We denote by X the inductive limit

lim−→L2
1/j,1/j of the sequence {L2

1/j,1/j} ( as a locally convex space). Then X
is a separable complete bornologic (DF) Montel space and for any bounded

subset B of X there is j ∈ N such that B ⊂ L2
1/j,1/j and B is bounded

in L2
1/j,1/j ( see, e.g., Theorems 6 and 6′ in [4]). For terminology we refer

to Schaefer [7]. Moreover, S is open ( resp. closed) in X if and only if

S ∩ L2
1/j,1/j is open ( resp. closed) in L2

1/j,1/j for each j ∈ N, i.e., the

topology of X is the inductive limit topology of {L2
1/j,1/j} as a topological

space ( see Theorem 6 in [4]). By Theorem 9 of [4] we have

L2(Rn) ×X × X = lim−→ (L2(Rn) × L2
1/j,1/j × L2

1/j,1/j),(2.8)

where the inductive limit on the right-hand side is the inductive limit as a

locally convex space.

Lemma 2.10. Let F be a closed subspace of L2(Rn) ×X ×X , and put

Fj = F ∩ (L2(Rn) × L2
1/j,1/j × L2

1/j,1/j).

Then we have F = lim−→Fj ( as a locally convex space).
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Proof. By Proposition 8.6.8(i) of [6] it suffices to show that S is

open in L2(Rn) × X × X if S ∩ L2(Rn) × L2
1/j,1/j × L2

1/j,1/j is open in

L2(Rn)×L2
1/j,1/j×L2

1/j,1/j for each j ∈ N, i.e., the topology of L2(Rn)×X×X
is the inductive limit topology of a sequence {L2(Rn) × L2

1/j,1/j × L2
1/j,1/j}

of topological spaces. We note that (2.8) is also valid if the inductive limits

lim−→L2
1/j,1/j ( = X ) and lim−→ (L2(Rn)×L2

1/j,1/j ×L2
1/j,1/j) are replaced by the

inductive limits as topological spaces. Recall that the topology of X coin-

cides with the inductive limit topology of {L2
1/j,1/j} as a topological space.

Therefore, the topology of L2(Rn) × X × X coincides with the inductive

limit topology of {L2(Rn)×L2
1/j,1/j×L2

1/j,1/j} as a topological space, which

proves the lemma. �

3. Proof of Theorems 1.5 and 1.6

First we shall prove Theorem 1.5. Assume that p(x,D) is analytic mi-

crohypoelliptic at z0. Let Γj ( 0 ≤ j ≤ 2) be open conic subsets of Γ such

that z0 ∈ Γ0 � Γ1 � Γ2 � Γ. By assumption we may assume that

supp p(x,D)u = supp u for u ∈ C(Γ0
0),(3.1)

where Γ0
0 = Γ0∩(Rn×Sn−1). Choose ΦR(ξ, y, η) ∈ S0,0,0,0(R,C∗, C(Γ1,Γ2),

C(Γ1,Γ2)) ( R ≥ 4) so that 0 ≤ ΦR(ξ, y, η) ≤ 1, supp ΦR ⊂ R
n × Γ2 and

ΦR(ξ, y, η) = 1 for (ξ, y, η) ∈ R
n × Γ1 with 〈η〉 ≥ R. We put

pR(ξ, y, η) = ΦR(ξ, y, η)

∞∑
j=0

φ
R/2
j (η)pj(y, η),

where R > max{4, C0}. Then we have

pR(ξ, y, η) ∈ S+(R,C∗, 2A + C(Γ1,Γ2), 2A + 3Ĉ + C(Γ1,Γ2)).

By definition there is R(A,Γ0,Γ1,Γ2) > max{4, C0} such that

(pR(Dx, y,Dy)v)|Γ0
0

= p(x,D)(v|Γ0
0
) in C(Γ0

0),

WFA(pR(Dx, y,Dy)v) ∩ Γ0 = WFA(v) ∩ Γ0(3.2)

if R ≥ R(A,Γ0,Γ1,Γ2) and v ∈ F0. Let Ωj ( j = 1, 2) be open conic

neighborhoods of z0 satisfying Ω2 � Ω1 � Γ0, and let ΨR(ξ, y, η) ∈
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S0,0,0,0(R,C∗, C(Ω2,Ω1), C(Ω2,Ω1)) ( R ≥ 4) satisfy supp ΨR ⊂ R
n × Ω1

and ΨR(ξ, y, η) = 1 for (ξ, y, η) ∈ R
n × Ω2 with 〈η〉 ≥ R. We assume that

R ≥ max{R(A,Γ0,Γ1,Γ2), 25e
√
nmax{2A+C(Γ1,Γ2), C(Ω2,Ω1)}}. Let X

be the locally convex space defined in §2, i.e., X = lim−→L2
1/j,1/j . We define

an operator T : L2(Rn) → X ×X as follows;

(i) the domain D(T ) of T is given by

D(T ) = {f ∈ L2(Rn); (1−ΨR(Dx, y,Dy))f ∈ X and pR(Dx, y,Dy)f ∈ X},

(ii) Tf = ((1 − ΨR(Dx, y,Dy))f, p
R(Dx, y,Dy)f) for f ∈ D(T ).

It follows from Lemma 2.9 and the analytic microhypoellipticity of p that

X = D(T ) if R ≥ R(Ω2,Ω1,Γ0), where R(Ω2,Ω1,Γ0) is a positive constant

depending on Ω2, Ω1 and Γ0. Indeed, let u ∈ D(T ). Then u ∈ L2(Rn)

and there is j ∈ N such that (1 − ΨR(Dx, y,Dy))u ∈ L2
1/j,1/j . Since

pR(Dx, y,Dy)u is analytic in R
n, (3.2) gives WFA(u) ∩ Γ0 = ∅. It fol-

lows from Lemma 2.9 that there are R(Ω2,Ω1,Γ0) > 0 and δ(u,Ω1,Γ0) >

0 such that ΨR(Dx, y,Dy)u ∈ L2
δ,ν if R ≥ R(Ω2,Ω1,Γ0), ν ∈ R, δ <

min{1/(2R), δ(u,Ω1,Γ0)}. This implies that u ∈ X .

We next show that T is a closed operator. Assume that R ≥
R(Ω2,Ω1,Γ0). Let A be a directed set, and let {wa}a∈A be a directed family

of points in L2(Rn)×X×X satisfying wa → w ≡ (f, g, h) in L2(Rn)×X×X ,

where wa = (fa, (1 − ΨR(Dx, y,Dy))fa, p
R(Dx, y,Dy)fa) ∈ graph(T ). De-

fine Z = lim←−L2
−1/j,−1/j . Then Z is a reflexive Fréchet space and Z ′ = X

with obvious identification ( see, e.g., Theorems 1 and 11 of [4]). More-

over, we have also X ⊂ Z ⊂ F0 with obvious identification and the in-

clusion map ι : X � v �→ v ∈ Z is continuous. Indeed, let B be a

bounded subset of X . Then there is j ∈ N such that B is bounded in

L2
1/j,1/j ( see Theorem 6 of [4]). This implies that there is CB > 0 such

that ‖〈x〉1/je〈D〉/jv‖ ≤ CB for v ∈ B, where ‖f‖ denotes the L2-norm

of f ∈ L2(Rn). Therefore, B is bounded in Z. Since X is bornologic,

the inclusion map ι is continuous ( see Theorem 6 in [4]). Noting that

Z and L2(Rn) are metric spaces and that (1 − ΨR(Dx, y,Dy))fa → g in

Z and fa → f in L2(Rn), we have (1 − ΨR(Dx, y,Dy))f = g ( in Z).

Similarly, we have pR(Dx, y,Dy)f = h. This implies that f ∈ D(T ) and

Tf = ((1 − ΨR(Dx, y,Dy))f, p
R(Dx, y,Dy)f). Therefore, T is a closed op-

erator.
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Let {pi}i∈I be a fundamental system of semi-norms on X , i.e., for any

continuous semi-norm q on X there are i ∈ I and C > 0 satisfying q(f) ≤
Cpi(f) for f ∈ X . graph(T ) is a closed subspace of L2(Rn) × X × X and

its topology ( the induced topology) is generated by a family of semi-norms

{qi}i∈I , where

qi(w) = ‖f‖ + pi((1 − ΨR(Dx, y,Dy))f) + pi(p
R(Dx, y,Dy)f)

for w = (f, (1−ΨR(Dx, y,Dy))f, p
R(Dx, y,Dy)f) ∈ graph(T ). From Lemma

2.10 we have

graph(T ) = lim−→ ( graph(T ) ∩ (L2(Rn) × L2
1/j,1/j × L2

1/j,1/j)).

It is obvious that the projection: graph(T ) � (f, (1 − ΨR(Dx, y,Dy))f,

pR(Dx, y,Dy)f) �→ f ∈ X is closed. Since the injective limit of ( weakly)

compact sequence of locally convex spaces is barreled, the strong dual of

a reflexive Fréchet space and B-complete, it follows from the closed graph

theorem that for any i ∈ I there are j ∈ I and C > 0 such that

pi(f) ≤ Cqj(w)(3.3)

for w = (f, (1 − ΨR(Dx, y,Dy))f, p
R(Dx, y,Dy)f) ∈ graph(T ).

For terminology and the closed graph theorem we refer to §8 of chapter IV

in [7].

Lemma 3.1. For any i ∈ I there are j ∈ I and C > 0 such that

pi(f) ≤C(pj((1 − ΨR(Dx, y,Dy))f) + pj(p
R(Dx, y,Dy)f)

+ ‖e−〈D〉f‖) for f ∈ X .

Proof. The inclusion map ι : X � f �→ f ∈ H1(Rn) is continu-

ous, where H1(Rn) denotes the Sobolev space of order 1. Indeed, let B

be a bounded subset of X . Then there are j ∈ N and CB > 0 such

that ‖〈x〉1/je〈D〉/jf‖ ≤ CB for f ∈ B. It is obvious that ‖〈D〉f‖ ≤
(j/e)‖〈x〉1/je〈D〉/jf‖ for f ∈ L2

1/j,1/j . So B is bounded in H1(Rn) and ι

is continuous. Thus there are i0 ∈ I and C0 > 0 satisfying

‖〈D〉f‖ ≤ C0pi0(f) for f ∈ X .(3.4)
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On the other hand, for any ε > 0 there is Cε > 0 such that

‖f‖ ≤ ε‖〈D〉f‖ + Cε‖e−〈D〉f‖ for f ∈ H1(Rn).(3.5)

Therefore, from (3.3) with i = i0, (3.4) and (3.5) there are j0 ∈ I and C1 > 0

such that

‖f‖ ≤ C0pi0(f)

≤ C1(pj0((1 − ΨR(Dx, y,Dy))f) + pj0(p
R(Dx, y,Dy)f) + ‖e−〈D〉f‖)

for f ∈ X . This, together with (3.3), proves the lemma. �

Let f ∈ A′(Rn). We shall show that there are an open neighborhood U
of (x0, ξ0/|ξ0|) in R

n×Sn−1, which is independent of f , and u ∈ X ′ such that

(tp)(x,D)(u|U ) = f |U in C(U). We note that f ∈ A′(Rn) ⊂ X ′ ⊂ F0 ⊂ S ′
δ

and S∞ ⊂ Sδ ⊂ X for δ > 0. Moreover, we have

〈g, v〉X ′,X = 〈g, v〉S′
δ ,Sδ

for δ > 0, g ∈ X ′ and v ∈ Sδ,
〈g, v〉S′

ε,Sε = 〈g, v〉S′
δ ,Sδ

for ε ≥ δ, g ∈ S ′
δ and v ∈ Sε,

where 〈·, ·〉X ′,X ( resp. 〈·, ·〉S′
δ ,Sδ

) denotes the duality between X ′ and X
( resp. S ′

δ and Sδ). Therefore, we denote simply by 〈·, ·〉 these dualities.

Define

M := L2
−1 ×X × X ,

N := {(v, (1 − ΨR(Dx, y,Dy))v, p
R(Dx, y,Dy)v) ∈ M; v ∈ S∞},

where L2
ε = L2

ε,0. Let F be a linear functional on N defined by F (w) =

〈f, v1〉 for w = (v1, v2, v3) ∈ N . Note that there are i1 ∈ I and C2 > 0

satisfying |〈f, v1〉| ≤ C2pi1(v1) for v1 ∈ X . By Lemma 3.1 there are j1 ∈ I

and C3 > 0 such that

|F (w)| ≤ C3(pj1(v2) + pj1(v3) + ‖e−〈D〉v1‖) for w ≡ (v1, v2, v3) ∈ N .

Therefore, it follows from the Hahn-Banach theorem that there is F̃ ≡
(−ψ,−ϕ, u) ∈ M′ ( = L2

1 ×X ′ ×X ′) such that F̃ |N = F , i.e.,

〈f, v〉 = − 〈ψ, v〉 − 〈ϕ, (1 − ΨR(Dx, y,Dy))v〉
+ 〈u, pR(Dx, y,Dy)v〉 for v ∈ S∞.
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This yields

〈tpR(Dx, y,Dy)u, v〉 = 〈f + ψ + (1 − tΨR(Dx, y,Dy))ϕ, v〉

for v ∈ S∞, i.e.,

tpR(Dx, y,Dy)u = f + ψ + (1 − tΨR(Dx, y,Dy))ϕ in F0.

Note that ψ ∈ A(Rn). Let Ω3 be an open conic neighborhood of (x0,−ξ0)

satisfying Ω3 � Ω̌2, where Ω̌2 = {(x, ξ); (x,−ξ) ∈ Ω2}. From Lemma 2.1

there is R1(Ω3,Ω2,Ω1) > 0 such that

WFA((1 − tΨR(Dx, y,Dy))ϕ) ∩ Ω3 = ∅ if R ≥ R1(Ω3,Ω2,Ω1).

Therefore, Lemma 2.6 gives

(tp)(x,D)(u|Ω0
3
) = f |Ω0

3
in C(Ω0

3),

where Ω0
3 = Ω3 ∩ (Rn × Sn−1), which proves Theorem 1.5.

Similarly, one can prove Theorem 1.6 if one choose Γ = X × (Rn \ {0}).
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