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Remarks on Analytic Hypoellipticity and
Local Solvability in the Space of Hyperfunctions

By Seiichiro WAKABAYASHI

Abstract. Let p(xz, D) be a pseudodifferential operator on R™
with a ( formal) analytic symbol p(z,£), and let 2% € R™. In this paper
we prove that the transposed operator 'p(z, D) of p(x, D) is locally

solvable at 2° modulo analytic functions in the space of hyperfunctions

if p(x, D) is analytic hypoelliptic at 2. We also microlocalize this

result.

1. Introduction

Let P be a linear partial differential operator on R"™ with C*° coeffi-
cients, and let z° € R™. In Treves [10] and Yoshikawa [13] it was proved
that if P is hypoelliptic at x°, then there is a neighborhood U of 2 sat-
isfying the following; for every f € C°°(U) there is u € D'(U) such that
!Pu = f in U. Here 'P denotes the transposed operator of P. Recently
Albanese, Corli and Rodino proved in [1] that the above result is still valid
in the framework of the Gevrey classes and the spaces of ultradistributions.
Moreover, Cordaro and Trépreau proved in [2] that P is locally solvable at
20 in the space of hyperfunctions if the coefficients of P are analytic and
P is analytic hypoelliptic at z°. Precise definitions of local solvability and
analytic hypoellipticity will be given in Definition 1.4 below. They obtained
more general results in the first section of [2] which may be a continuation
of Schapira [8] and [9]. The aim of this paper is to prove that for a pseu-
dodifferential operator p(x, D) the transposed operator ‘p(z, D) is locally
solvable at 2° modulo analytic functions in the space of hyperfunctions if
p(z, D) is analytic hypoelliptic at 2 ( see Theorem 1.6 below). We shall
also microlocalize this result, i.e., we shall give the corresponding result in
the space of microfunctions ( see Theorem 1.5 below).
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We shall explain briefly about hyperfunctions, microfunctions and pseu-
dodifferential operators acting on them. For the details we refer to [12]. Let
e € R, and denote (&) = (14 |£>)Y/2, where £ = (&1,---,&,) € R™ and
€] = (7-1 16112, We define

S. = {v(€) € C®(R"™); Eu(¢) € S},

where S ( = S(R™)) denotes the Schwartz space. We introduce the topology
to ‘SA’E in a natural way. Then the dual space 62 of 3} can be identified with
{v(¢) € D; e*€y(¢) € S'}, since D ( = CF(R™)) is dense in S If
€ > 0, then 3\5 is a dense subset of S and we can define S, = .7-'_1[36]
(= FIS.]) ( c &), where F and F~! denote the Fourier transformation
and the inverse Fourier transformation on S ( or &'), respectively. For
example, F[u](§) = [ e @u(x)dr for u € S, where x - £ = > =y x4 for
x= (21, ,zp) ER"and £ = (&1, -+, &) € R™. Let € > 0. We introduce
the topology in S, so that F : 3’8 — &. is homeomorphic. Denote by S. the
dual space of S.. Since S; is dense in S, we can regard S’ as a subspace
of S.. We can define the transposed operators ‘F and {F~! of F and F~1,
which map &/ and 8. onto 8 and S/, respectively. Since S_. ¢ 8! ( € D),
we can define S_, = t]-"*l[g_a], and introduce the topology in S_. so that
tr-1 . :/S\_E — S_¢ is homeomorphic. S’ denotes the dual space of S_..
We note that S/, = F[§/.] ¢ & € 8. and F = 'F on &’. So we also
represent !F by F. Let A(C") be the space of entire analytic functions on
C", and let K be a compact subset of C". We denote by A’(K) the space
of analytic functionals carried by K, i.e., v € A(K) if and only if (i) u :
A(C™) 5 ¢ — u(p) € Cis a linear functional, and (ii) for any neighborhood
w of K in C" there is C,, > 0 such that |u(y)| < Cy sup,¢,, |p(z)| for ¢ €
A(C"). Define A'(R") := Ug crn A'(K), Soo 1= [eer Ses €0 1= [z S—e
and Fy :=(),5oSt. Here A € B means that the closure A of A is compact

and included in the interior B of B. We note that F~1[C§°(R")] C S and
that So is dense in S; and S for € € R. For u € A'(R™) we can define the
Fourier transform @(&) of u by

a(€) (= Flu)(€)) = ua(e™*9),

where 2-§ =37 z;§; for 2 = (21, ,2,) € C" and € = (&1, -+ , &) € R™
By definition we have 4(§) € (.- S_. (= F[&)). Therefore, we can regard
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A’'(R™) as a subspace of &, i.e., A'(R") C & C Fo, ( see Lemma 1.1.2 of
[12]). The space Fy plays an important role in our treatment as the space
S’ does in the framework of C*° and distributions. For a bounded open
subset X of R" we define the space B(X) of hyperfunctions in X by

B(X) = A(X)/A(0X),

where 0X denotes the boundary of X.
Let u € Fy. We define

H(u)(@, Zny1) = (580 Zny1) expl—|znp1[(D)]u(z)/2
(= (sgn zp1)Fg exp[—|zns1[(E)]a(€)](x)/2 € S'(R))

for 41 € R\ {0}, and

supp u := ﬂ{R F is a closed subset of R™ and there is a real
analytic function U (x, 2,41) in R"™\ F x {0}
such that U(x, xp41) = H(u)(x, xpy1) for 2,41 # 0}

We note that supp u coincides with the support of u as a distribution if
u € S ( see Lemma 1.2.2 of [12]). Moreover, for a compact subset K of R™,
u € A'(K) if and only if u is an analytic functional and supp u C K ( see
Proposition 1.2.6 of [12]). Let K be a compact subset of R™. It follows from
Theorem 1.3.3 of [12] that for any u and K as above there is v € A'(K)
satisfying supp (v —v) N K C 0K, and if v = vy, vy are such functions in
A'(K) we have supp (v; —vy) C OK. Therefore, we can define the restriction

map from Fy to A'(K)/A'(OK) ( = B(K)) which is surjective. For 20 € R”
we say that u is analytic at 2% if H(u)(x, £,,41) can be continued analytically
from R™ x (0,00) to a neighborhood of (z%,0) in R"*1. We define

sing supp u := {z € R"; u is not analytic at =}.

Next let u € B(X), where X is a bounded open subset of R™. Then there
is v € A'(X) such that the residue class of v is u in B(X). We define

supp u:=supp vN X, sing supp u := sing supp v N X.

These definitions do not depend on the choice of v. So we say that v is
analytic at 20 if 2 ¢ sing supp u. Let X be an open subset of R". We
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also define B(X) ( see Definition 1.4.5 of [12]). For open subsets U and
V of X with V' C U the restriction map p¥ : B(U) 3 u — uly € B(V)
can be defined so that pg is the identity mapping and pl‘//v ) pg = pgv for
open subsets U, V and W of X with W C V C U. By definition we can
also define the restriction map from Fy to B(X), and we denote by v|x the
restriction of v € Fy to B(X) (or on X). We define the presheaf Bx by
associating B(U) to every open subset U of X. By definition Bx is a sheaf
on X.
Next we shall define analytic wave front sets and microfunctions.

DEFINITION 1.1. (i) Let w € Fy. The analytic wave front set
WFa(u) C T*R™\ 0 ( ~ R™ x (R™\ {0})) is defined as follows: (2°,¢%) €
T*R™ \ 0 does not belong to W Fy4(u) if there are a conic neighborhood
[ of & Ry > 0 and {g%(&)}r>r, € C®°(R") such that gf(¢) = 1 in
rn{{§) = R},

(1.1) 027 g"(€)| < Clay(C/R) (€)1

if (¢) > R|a|, and g®(D)u ( = F1[gF(€)0(¢)]) is analytic at 2° for R > Ry,
where C' is a positive constant independent of R.

(i) Let X be an open subset of R™, and let u € B(X) and (z%,£0) €
T*X\0 (=~ X x(R™\{0})). Then we say that (z°,£%) ¢ WF4(u) (C T*X\0)

if there are a bounded open neighborhood U of z° and v € A'(U) such that
vl = uly in B(U) and (2°,£%) ¢ WF4(v)

REMARK. (i) WF4(u) for u € B(X) is well-defined. Indeed, it follows
from Theorem 2.6.5 in [12] that for any v € A'(R") with 2° ¢ supp v there
is Ry > 0 such that g¥(D)v is analytic at 2° if R > Ry, where {g7(¢)}r>r,
is a family of symbols satisfying (1.1).

(ii) Several remarks on this definition are given in Proposition 3.1.2 of
[12].

(iii) From Theorem 3.1.6 in [12] and the results in [3] it follows that our
definition of W F4(u) coincides with the usual definition.

Let U be an open subset of the cosphere bundle S*R"” over R™, which is
identified with R” x S"~. We define

CU) :=BR")/{u € B(R"); WFa(u) NU = 0}.
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Since B is a flabby sheaf, we have
CU)=BU)/{ue BU); WFEs(u)NU = 0}

if U is an open subset of R” and & C U x S"!. Elements of C(U) are
called microfunctions on Y. We can define the restriction map C(U) 3 u —
uly € C(V) for open subsets U and V of R" x S"~! with V C U. Let Q be
an open subset of R™ x S"~1. We define the presheaf Cq on § associating
C(U) to every open subset U of Q. Then Cq is a flabby sheaf ( see, e.g.,
Theorem 3.6.1 of [12]). For each open subset U of R™ we define the mapping
sp: B(U) — C(U x S™1) such that the residue class in C(U x S™71) of
u € B(U) is equal to sp(u). We also write ulyy = sp(u)|y for u € B(U) and
v|yy = sp(v|y) |y for v € Fy, where U is an open subset of U x S"~1.

Assume that a(&,y,n) € C®(R"™ x R™ x R") and there are positive
constants Cy ( k& > 0) such that

(1.2)  9¢DIPa7a(E,y.n)|
< Clay 314 py (A R)IHE) ™0 1) 2 expl61.(€) + 62 ()]

if a,3,8,7 € (Z1)", & y,m € R, (€) > R|B|, where D, = —id,, R > 1,
A >0, mi,mo, 61,02 € R and Zy = NU {0}. It should be remarked that
some functions satisfying the estimates (1.2) with m; = mgo = 0 and §; =
82 = 0 are given in Proposition 2.2.3 of [12]. We define pseudodifferential
operators a(D,,y, Dy) and "a(Dy,y, Dy) by

a(Dvy. D, uta) = @r) " [ ([ Maleympat) dn)dy) )

and "a(Dg,y,Dy)u = b(Dg,y,D,) for u € Su, respectively, where
b(&,y,m) = a(n,y,§). Applying the same argument as in the proof of Theo-
rem 2.3.3 of [12] we have the following

PROPOSITION 1.2.  a(Dy,y, Dy) can be extended to a continuous linear

operator from S., to S¢, and from S’ _, to S'_ , respectively, if

(1.3)

V>17 52_62:V(51+61)+7
e1+61 <1/R, R>eynvA/(v—1),
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where c; = max{c,0}. Similarly, "a(Dg,y, Dy) can be extended to a con-
tinuous linear operator from S_., to S_., and from S/ to S.,, respectively,
if (1.3) is valid.

REMARK. (i) We had a slight improvement in the remark of Theorem
2.3.3 of [12], i.e., we can take Ry (S,T,v) = ey/nv/(v — 1) there instead of
Ri(S,T,v)=env/(v—1)ifn=n"=n" S(y,&) = —y-Eand T(y,n) =y-n.
This is reflected in the condition (1.3).

(ii) Since for any open sets X; ( j = 1,2) with X; € X3 one can construct
a symbol a(§,y,n) satisfying (1.2) with m; = ms = 0 and 6; = 62 = 0,
supp a C R" x X9 x R™ and a(&,y,n) =1 for ({,y,n) € R™ x X; x R", one
can use the operator a(D,,y, D,) instead of cut-off functions.

DEFINITION 1.3. Let I" be an open conic subset of R x (R™\ {0}), and
let X be an open subset of R"™. Moreover, let Ry > 0.

(i) Let Ry > 1, m,6 € R and A, B > 0, and let a(z,§) € C°(R™ x R™).
We say that a(z, &) € S™°(Ry, A, B) if a(x, £) satisfies

0Tz, 6)| < C

(6+P) (A/Ro)™ (B Ry)#l(g)m+181-1al £5(6)

|a|+|8]
for any a, G, 6, 5 € (Z4)", (,€) € R" x R" with (£) > Ro(Ja| + |5]), where
agg; (x,8) = 8?Dga(x,§) and the C} are independent of o and 5. We also
write S™(Rg, A, B) = S™%(Rg, A, B) and S™(Ry, A) = S™(Ro, A, A). We
define ST(Ry, A, B) = 520 5% (Ro, A, B).

(i) Let Ro > 1, mj,6; € R (j = 1,2), 4; > 0 (j = 1,2) and
B > 0, and let a(§,y,n) € C°(R"™ x R™ x R™). We say that a(§,y,n) €
Smim2.0102( Ry Ay, B, Ag) if a(€,y,n) satisfies

0F D PG a(6, 1) < Ciapy g (Ar/ Ro) (B Ro) 1171
x (AQ/RO)|'Y\<€>m1+|51|*\5¢\<77>m2+|52\*|’7| expl61(€) + 62(n)]
Ro(le| +[8Y) and (n) > Ro(|y| + |6?]). We also write S™1m2:01:82(Ry A) =

Smim2.61,02(Ro AL A, A). Similarly, we define S*(Ro, A1, B,As) =
Nsso SV0(Ry, Ay, B, As).
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(iii) Let A,B > 0, and let a(z,§) € C®°(I'). We say that a(x,§) €

PST(T; Ry, A, B) if a(x, £) satisfies
g (@, €)] < Clags A B a1 81 g) 111

for any a,a,0 € (Z4)", (x,€) € T' with |{| > 1 and () > Rola| and
5 > 0. We also write PST(I'; Ry, A) = PST(T'; Ry, A, A). Moreover, we
say that a(z,&) € PST(X; Ro, A, B) if a(x,£) € C®°(X x R™) and a(z,§) €
PS+(X X (Rn \ {0})7R07A7 B)

(iv) Let A,Co > 0, and let {a;(z,&)}jez, € [[jez, C(I). We say that
a(z, &) ={a;(x,8)}jez, € FST(I;Co, A) if a(x, §) satisfies

laj3 (2. ©)| < CoCFAIHA jijal1||1ie) 3711

forany j € Z4, a, 8 € (Z4)", (x,€) € I' with |{| > 1 and 6 > 0, where Cj is
independent of a, # and j. We also write a(x,§) = Zj’io aj(z,€) formally.
Moreover, we write F.ST(X;Cp, A) = FST(X x (R™\ {0}); Cp, A).

(v) For a(z,§) = Y2725 a;(x,§) € FST(T;Co, A) we define the symbol

(‘a)(x,€) by

NE

bi(2,8), bi(w,&) = Y (-1)lla) (z,~)/al

k+lal=j

(a)(a,€) =}

J

Il
o

REMARK. It is easy to see that (‘a)(x,¢) € FST(I'; max{Cy, 4nA?},
2A), where I' = {(z,£); (z,—¢) € T'}. Moreover, we have (*(*a))(z,£&) =

a(z, £).

Let T' be an open conic subset of R™ x (R™\ {0}), and assume that
a(z,&) € PST(I'; Ry, A), where A > 0 and Rp > 1. Let I'; (0 < j < 2)
be open conic subsets of I' such that I'y € I'y1 € I'y € I', and write
% = rn (R* x "), where I'y € T implies that IY € T. It fol-
lows from Proposition 2.2.3 of [12] that there are symbols ®%(¢,y,n) €
SO000(R C,,C(T'1,T9),C(T1,T2)) ( R > 4) satisfying 0 < ®F(¢,y,m) <1,
supp ®f C R™ x I'y and ®%(&,y,n) = 1 for (£,y,1m) € R* x I'; with
(n) = R. Put a®(&,y,n) = (¢, y,m)a(y,n). Then we have a®(¢,y,n) €
S+(R, Cy,2A + C(I'1,Ty),A+ C(T'1,T)) for R > max{4, Ro} Let u €
C(T'Y), and choose v € Fy so that v[rg = u. Applying Proposition 1.2
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with a(&,y,n) = a®(n, y,€) and noting that a®(D,,y, Dy) = "a(Dx,y, Dy),
we can see that a'(D,,y, Dy)v is well-defined and belongs to Fy if R >
max{4, Ry, 2e\/n(24 + C(I'1,T2))}. Moreover, a*(D,,y, Dy)v determines
an element (af(D,,y,D,)v)ly € B(U), where U is a bounded open
subset of R" satisfying FO C U x S"', and, therefore, an element
sp((a®(Dy,y, Dy)v )U)Irg (E (af*(Dy,y, Dy)v )Iro) € C(TY). Tt follows from
Lemma 2.1 below that ( R(Dy,y, Dy)v )\Fg does not depend on the choice
of ®R(¢,y,n) if ®F(¢,y,n) € S®000(R, B) and R > R(A, B,Ty,T1), where
R(A,B,Ty,T'1) > 0. From Lemma 2.2 it follows that for each conic subset
Q of R™ x (R™\ {0}) with Q € Iy there is R(A,Q,T,I'1,T'2) > 0 such
that WFa(af'(Dy,y, Dy)w) NQ = 0 if R > R(A,Q,To,I'1,T2), w € Fy
and WFa(w) N Ty = (. Therefore, we can define the operator a(x, D):
C(TY) — C(IY) by a(z, D)u = (a’*(Dy,y, Dy)v )]Fo for R > 1, and the oper-
ator a(x, D): C(I'%) — C(I'Y). Moreover, it follows from Lemma 2.2 that

a(x, D)(w|y) = (a(z, D)w)|y for w e C(V),

where U and V are open subsets of R” x S"~! satisfying 4 ¢ V c I'Y. So
we can define a(x, D): Cro — Cro, which is a sheaf homomorphism. Let
X be an open subset of R, and assume that a(z,&) € PST(X; Ry, A).
Similarly, taking I' = X x (R™\ {0}), we can define the operator a(x, D):
B(U) — B(U)/A(U) and the operator a(z, D): B(U)/A(U) — B(U)/A(U),
where U is a bounded open subset of X and A(U) denotes the space of
all real analytic functions defined in U ( see, also, §2.7 of [12]). In doing
so, we may choose ®%(¢,y,n) € SY900(R, C,, C(I'1,T3),C(I'1,T'2)) so that
®E(, y,n) =1 for (§,y,m) € R" x X1 x R, where I'; = X; x (R"\ {0}).
Moreover, we can define the operator a(z,D): Bx — Bx/Ax and the
operator a(z,D): Bx/Ax — Bx/Ax, which are sheaf homomorphisms.
Here Ax denotes the sheaf ( of germs) of real analytic functions on X.

Assume that a(x, D) is a differential operator in X. Let K be a com-
pact subset of X. Then, by duality we can define a(z, D)w € A'(K) for
w € A(K). From Proposition 1.2.6 of [12] and the definition of analytic
functionals we have supp a(x, D)w C supp w for w € A'(K). Therefore, we
can define a(x, D): Bx — Bx, which is a sheaf homomorphism. From The-
orem 2.7.1 of [12] and Lemma 2.5 it follows that two definitions of a(x, D):
Bx — Bx/Ax are consistent.

Next we assume that a(z,§) = >72a;(2,§) € FST(T;Co, A). Choose
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{67(6)}jez, € C(R") so that 0 < ¢7F(€) <1,

95 (8) = {1 if (¢£) > 3Ry,

97071 ()] < Cia (C/R)°E) it fa] <24,

where the éw‘ and C' do not depend on j and R ( see §2.2 of [12]). Then it
follows from Lemma 2.2.4 of [12] that

a(x,€) ==Y o1 (€)a;(z,€) € PST(I; R, 24+ 3C, A)

Jj=0

if R > Cp. So we can define a(z, D)u € C(I'°) by a(x, D)u = a(z, D)u.
Indeed, applying the same argument as in §3.7 of [12] we can see that
a(z,D)u € C(I'°) does not depend on the choice of {qbf’(f)}. Similarly,
a(x, D) defines a sheaf homomorphism a(z, D): Cro — Cro.

To state our main results we need the following

DEFINITION 1.4. Let I" be an open subset of R" x (R™ \ {0}), and let
p(z,&) € PST(T; Ry, A) ( or p(z,£) € FST(T';Cp, A)), where Ry > 1 and
A,Cy > 0.

(i) For 2° = (20, ¢%) € T we say that p(z, D) is analytic microhypoelliptic
at 20 if there is an open neighborhood U of (x°,£%/|€%]) in T' N (R™ x S*~1)
satisfying supp u = supp p(z, D)u for any u € C(U), i.e., the sheaf homo-
morphism p(x, D) : Cy — Cyy is injective.

(ii) For 20 = (29,£°%) € T we say that p(x, D) is microlocally solvable
at 20 if there is a open neighborhood U of (z°,£9/]€%)) in ' N (R™ x S~ 1)
satisfying the following; for any f € C(U) there is u € C(U) such that
p(z,D)u = f in C(U), i.e., p(x,D): C(U) — C(U) is surjective.

(iii) Assume that I' = X x (R™ \ {0}), i.e., p(x,&) € PST(X; Ry, A)
(or p(z,&) € FST(X;Cy, A)), where X is an open subset of R™. Let
¥ € X. We say that p(z, D) is analytic hypoelliptic at z° if there is an
open neighborhood U of 2° in X satisfying supp u = supp p(z, D)u for any
u € B(U)/AU), i.e., the sheaf homomorphism p(z, D): By /Ay — By /Au
is injective. Similarly, we say that p(z, D) is locally solvable at 2" modulo
analytic functions if there is an open neighborhood U of ¥ in X satisfying
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the following; for any f € B(U)/A(U) there is u € B(U)/A(U) such that
p(z,D)u = f in B(U)/A(U), i.e., p(x,D): BU)/AU) — B(U)/AU) is
surjective. Assume that p(z, ) is a polynomial of £ whose coefficients are
real analytic functions of z defined in X. Then we say that p(x, D) is
locally solvable at ¥ if there is an open neighborhood U of z° in X such
that p(x, D): B(U) — B(U) is surjective.

THEOREM 1.5. Let ' be an open conic subset of R™ x (R™\ {0}) and
20 = (29,€%) e I. Let p(x,&) € FST(I';Cy, A), where A,Cq > 0. Then
(*p)(x, D) is microlocally solvable at (x°, —£°) if p(x, D) is analytic micro-
hypoelliptic at 2°.

THEOREM 1.6. Let X be an open subset of R® and 2° € X. Let
p(z, &) € FST(X;Cy, A), where A,Cy > 0. Then (*p)(z, D) is locally solv-
able at z° modulo analytic functions if p(x, D) is analytic hypoelliptic at z°.

In §2 we shall give preliminary lemmas. Theorems 1.5 and 1.6 will be
proved in §3.

The author would like to thank Professor P. Schapira for informing him
about the paper [2] of Cordaro and Trépreau.

2. Preliminaries

In this section we shall prepare a series of lemmas for the proofs of
Theorems 1.5 and 1.6.

Let T" be an open conic subset of R™ x (R™\{0}). We write I'; = {(z,¢) €
R x (R {0}); [(z,£/I€]) — (g, n/ || < = for some (y,7) € I} for = > 0.
For a subset U of R™ and ¢ > 0 we write U. = {z € R"; |z — y| < ¢ for
some y € U}. We also write 7. = {£ € R"\ {0}; [£/|¢] —n/|n|| < € for some
n € v} for a conic subset v of R™ \ {0} and € > 0.

LEMMA 2.1. Let p(¢,y,m) € ST(Ro, A). Assume that p(&,y,m) = 0 if
(y,m) € T, |€/1€] —n/Inl| < e/4 and (§) > Ry, where e > 0. Then there is
Ro(e) > 0 such that

WFA(p(DJv?yaDy)u) NI'= @ fO’/’ u € fo

if Ro > Ro(e)A.



Analytic Hypoellipticity and Local Solvability 99

Proor. It follows from Proposition 1.2 that p(D.,y, Dy)u € Fy if
u € Fo and Ry > 2ey/nA. Let (2°,£%) €T, and let U x v be an open conic
neighborhood of (20, ¢0) satisfying U x v C I'. We choose {g%(¢)}r>r so
that supp ¢" C 7.4, g%(€) =1 in yN{(§) > R} and

08+ g"(€)] < Clay(e)(Cle) /R) N (e) 71

if (¢) > Rlal, where the Cj(e) and C(e) are positive constants depending
on €. Put

P y.m) = g™ (Op(& v, ) (€ ST(R,RA/Ry + C(e), RA/Ry, RA/Ry))

for R > Ro. Then we have pf(&,y,n) = 0if y € Uy, [£/1€] — n/Inll <
e/4 and (§) > Ro. Applying Corollary 2.6.3 of [12] we see that there
are positive constants R;j(¢) ( j = 1,2) such that pf(D,,y, Dy)u ( =
g®(D)(p(Dz,y, Dy)u)) is analytic in U for u € Fy if R > Ry(e)(RA/Ry +
C(g))+ Ra(e) and R > Ry. From the definition of W F4(+) the lemma easily
follows. [

LEMMA 2.2. Let p(&,y,n) € ST(Ry, A), and let Ty be an open conic
subset of T' such that T'y € T'. Then there is Ro(I'1,I') > 0 such that
WFEA(p(Dg,y,Dy)u) NT1 = 0 if u € Fo, WFA(u)NT = 0 and Ry >
Ry(T'1,T)A.

Proor. By Proposition 1.2 we have p(D,,y, Dy)u € Fp if v € Fy
and Ry > 2ey/nA. Let u € Fy, and assume that WFy(u) N T = (. Let
(2°,£%) € Ty, and let U x v be an open conic neighborhood of (2°,¢°)
satisfying U x v C I'1. Then there is ¢ > 0 such that Uy, X v3. € I'. We
choose {gJR(E)}RzRO (7 = 1,2) so that supp ¢f¥ C 7., supp g&¥ C 7se,
gR(&) = Lin 701 {(€) > R}, gf(€) = 1 in 72 N {(§) = R} and

08491 (€)] < Cjal(e)(Cle)/R) (€)1
if (¢) > R|a] and j = 1,2, where the C} (¢) and C(¢) are positive constants.
Then it follows from Proposition 3.1.2 (i) and (ii) of [12] that there is R(g) >
0 such that ¢g&*(D)u is analytic in U, if R > R(g). Put
i€ y,m) = g1 (€)p(€, y.mgs'(n) (€ ST(R, RA/Ro + C(e)))
PE(E, ) = gFOp(E 1, m) (1 — gF(m) (€ §F(R, RA/Ro + C(e))
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for R > Ry. Note that gf*(D)(p(Dz,y, Dy)u) = pi*(Dy,y, Dy)u + p¥(D, v,
Dy)u. By Corollary 2.6.6 of [12] there are positive constants Ri(e) and
Ry(e) such that pf(Dy,y, Dy)u is analytic in U if R > Ry(e)(RA/Ro +
C(g)) 4+ Rz2(e) and R > Ry > 2ey/nA. On the other hand, we have

p5(&y.m) =0 if[£/|¢€] —n/Inl| <e and () > R.

Therefore, it follows from Lemma 2.1 ( or Corollary 2.6.3 of [12]) that
p¥(Dz,y, Dy)u is analytic in R™ if R > R{(e)(RA/Ry + C(¢)), where
R)(¢) > 0. Indeed, one can apply Lemma 2.1 to pZ(¢,y,n)¢%(n). Propo-
sition 1.2 implies that pf(D,,y, D,)(1 — ¢¥(D))u is analytic. This proves
the lemma. O

LEMMA 2.3. Let q(&,y,n) be a symbol in C*°(R™ x R™ x R™) such that
05 D0, 1,m)| < Ol oA/ Bo) 11 )l

if (£) > Rolal, (n) > Ro|B| and 6 > 0, where A >0 and Ry > 1. Let U be an
open subset of R™, and assume that q(§,y,n) = 0 for (§,y,n) € R"xU. xR",
where ¢ > 0. Then there is R(e) > 0 such that ¢(Dy,y, Dy)u is analytic in
U ifue Fo and Ry > R(e)A.

Proor. It follows from Proposition 1.2 that ¢(D,,y, Dy) is a continu-
ous linear operator on Fy if Ry > 2e4/nA. In order to prove the lemma we
shall apply the same argument as in the proof of Proposition 3.2.1 of [12].
We may assume that U is bounded. We can write

<D>V€_p<D> ( l‘ay7 U_ZZ _6 ’EL 56"77 ($7U7P)>n
k=1 j=1

forue Fo,v=0,1,0< p<land 0 < <1, where M € Z, satisfies
M >n/2, R > Ro, (€)== ¢F 1 (€) — ¢5(€) (j € N) and
gl p) = (2m) 2 [ el erivmsot
x P (n)(@ — y) M (D) M ((€) e P p R () q (€, y,m)) dédy.

Here the qbf(f) are symbols as in §1. Since Re (1+ (z —y) - (z —y)) =
1+|Re z—y|?>—|Im x| for x € C" and y € R™, ff&j’k(x,n; p) is analytic
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in z if [Im x| < 1. Let us first consider the case where j,k € N and
2R(k — 1) —1 > 6Rj. Then we have |n| > 2|¢| if ij(g)@bf(n) # 0. Let K
be a differential operator defined by

'K =16=n2) (e — &) Dy,
=1
A simple calculation gives
|08 0 K {ul () ()" e POt (€)a(€, y.m)}
< Claf o (16n4/ Ro)F ()71 () Dl €148
if 8 > 0. Here we have used the facts given in §2.1 of [12]. Taking M >
(|7l +n)/2, we can write

()" D 1l ) = (2m) 20 [ ooty

x{z— gy M)t 3 (j) bay (. 1) D (DM K

v <y

X LU (€)™ (€ al€, v m)} dedy,
where t5.,(y,n) = e~ D) i n+8M) - Therefore, we have
| D) £ w(@mi )| < Cos e r 32k 2 (Re )]
x expl(6 + 6"+ (p1 +8')/2 = 1/(3R))(n)]

ifleZy,ye(Zy), 8 >0,2€C |Im z| < p; <1/2and Ry > 32enA.
Moreover, (e~ (n), fflsjk_(m, 1; p))y is analytic in = and

(2.1) e a(n), £l (@, 0))al < Co ()i 2k

ifueFy,z€C” |Re z| <7, |Im z| < p1 <1/2, R > Ry > 32enA and
0+p1/2 < 1/(3R). Next consider the case where j, k € Nand 2R(k—1)—1 <
6Rj. Then we have 2(n) < 9(&)(1 4+ 27R/(§)) if @bﬁ({’)w,?(n) # 0. Let L be
a differential operator defined by

'L=lz—y[™*) (@ — y)De,
=1
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for x € C" with Re z € U and y ¢ R™ \ U.. Then we have

Oy LML () (€) e PO (€)a (€, y,m)}
< Clyparsr m(Vi(A/Ro + (C +6(1+v2))/R) /e)’
x |z — y| M (g)r—M ()=l (€)+6"(m

if >0, 2z € C" and Re x € U. Taking M > |y| + n, we have

[(m)ED] £1Es 5 (2,1 )| < Co 1,00, r(U) 22

ifleZy,ve(Zy)", 2 €C" Re x €U, |Im z| < p; and

22) {Ro > dey/nAje, R >4dey/n(C +6(1+ v?2))/e,

96 + p1 < 1/(3R).

Moreover, (e~ q(n), ff&j,k(a:, n; p))n is analytic in  and

(2.3) (e a(n), £37s (w15 0))g| < Coe (U u)j 2k
ifueFo,z€C* Re z €U, |Im x| <p; <1/2 and (2.2) is valid. We put
V(2 2p41) = H(q(Dz, y, Dy)u) (T, Tnt1)

and assume that

Ry > max{32enA,de\/nA/e},
0 < p1 <min{1/2,1/(3Ry),e/(12ev/n(C + 6(1 + v2))}.
Then it follows from (2.1) and (2.3) that (D,)*V(z,p) (v = 0,1) can be

continued analytically to {x € C"; Re « € U and |Im z| < p;}. Applying
Lemma 1.2.4 of [12] to the Cauchy problem

{(1 - A$,$n+1)v(x>wn+1) = 07
U(CL‘,,O) = V(x,p), (81}/8xn+1)(x,p) = _<D90>V(x7p)’

we can show that V' (z, x,+1) can be continued analytically from R™ x (0, co)
to U x (p — p1,00). This implies that ¢(D,,y, Dy)u is analytic in U. O
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LEMMA 2.4. Let a(x,€) be a symbol satisfying

la (ﬁ+m(‘” ) < Clayr1.5(A/Ro) PP

if (€) > RolfB| and 6 > 0, where Ry >0 and A > 0. Let U be an open subset
of R™, and assume that

a3 (2, €)| < Clo BBt e

for x € U., where B, ¢ and € are positive constants. Then there is C > 0,
which is independent of A, Ry, B, ¢ and e, such that a(x, D)u is analytic
inU ifu e Fy and Ry > CA.

PrOOF. Choose symbols ¢ (z,¢) € S°(R,C,,C(e)) ( R > 4) so that
0 < f(x, &) <1, supp ¢ C U. x R™ and pf(z,&) =1 for x € Use/3- We
put

af(x,6) = (2, &)a(z,£), ay(z,€) = (1 - ¢ (z,6)a(z,£).
Then we have
!a (fc Ol < Clajsiplee ),
]a (3: & < Cla |B|5|\ﬁ\'e &) forx e Use /3-

Since e=°€)/24(¢) € S and
af (z, Dyu(x) = (2m) ™" (e~ “/%a(€), e+ 2ati (@, )

for u € Fo, af(x, D)u(z) is analytic in Use /3. Moreover, we have supp a¥n
Ucs x R™ =) and

R(«a
g ) 5 @ O] < Cloyya6(A/Ro + Cle)/R)P (€)@
if R > Ry, (¢) > R|A| and 6 > 0. It follows from Theorem 2.6.1 of [12]
that there are C' > 0 and R(e) > 0 such that supp af(z,D)uNU = 0 if
Ry > CA, R> R(¢) and u € Fy. This proves the lemma. [

Let T" be an open conic subset of R™ x (R™ \ {0}), and assume that
a(z,§) € PST(T; Ry, A), where A > 0 and Ry > 4. Let I'; ( j = 1,2)
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be open conic subsets of I' such that I'y € I'y € I'. Moreover, let ¢ > 0,
and let X x v be an open conic subset of I'y such that Xs. x vo. C I'y.
We choose symbols ®7(¢,y,n) € SO%00(R C,, C(T'1,Ty),C(I'1,I's)) and
oB(z,€) € SR, C,,C(e)) and g¥(¢) € S*O(R,C(e)) ( R > 4) so that 0 <
of(¢,y,m), (2, €),9"(¢) < 1, supp ®F C R" x Ty, supp ¢ C X x R",
supp g € v. n{l¢| > R}, ®R(&,y,m) = 1 for (&,y,m) € R™ x T'y with
(n) > R, pf(x, &) =1 for (z,&) € X, /o xR™ and gi¢) =1for€ e Ye/2 With
|€] > 2R ( see Proposition 2.2.3 in [12]). Put a®(¢,y,n) = ®7(¢&,y,n)a(y, n)
and AR(x,¢&) = oB(x,)g"(&)a(x,£). We denote 4° = v N S"~ 1. Then we
have the following

LEMMA 2.5. There is R1(A,T'1,T2,¢€) > 4 such that
(Af (2, D)u)|xxp0 = (a"(Da, y, D)) x40 in C(X x 27,
1.e.,
(AP (2, D)u) | x xr0 = a(2, D)(ulxxp0) i C(X x 7Y),
if R > max{Ry, R1(A,I'1,T'2,e)} and u € Fy.
PRrOOF. It suffices to show that there is Ry(A,T'1,'2,€) > 4 such that
W Fs(a®(Dy,y, Dy)u — A%z, D)u) N X x v =10
if R > max{Ry, R1(A,T'1,T2,¢)} and u € Fy. Write
a,R(DI, y, Dy) — AR(x, D) = a{%(Dx, y, Dy) + af(Dz, y,Dy) on Fo,
where

aff(&,y.n) = (@& y.m)g"(n) — " (. n)g"(n))aly,n),
af (&, y,m) = @& y.n)(1 — g% (n))aly. ).

We note that

92+ D05 aft (€. y.m)
< Clafsin) (Co/R)N(A + (T, T3) + C(e))/R) ) b0
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if (¢) > R|al, (n) > R|B| and § > 0, and that af(&,y,n) = 0ify € X /2.
By Lemma 2.3 there is Rj(A,I'1,T'2,e) > 4 such that a{%(Dw,y,Dy)u is
analytic in X if u € Fp and R > R1(A,T'1,'9,e). It is easy to see that
af(é,y,n) S S+(R, Cy,2A + C(Fl,rg),A + C(Fl,Fg) + 0(6)) if R > Ry,
and that a(&,y,m) = 0 if € Ye/2 and [n| > 2R. Therefore, from Lemma
2.1 there is Ro(A,T'1,T'9,e) > 4 such that

WFA(a2(Dy,y, Dy)u) "R x v =0 for u € Fy

if R > max{Ry, R2(A,T'1,T,¢)}, which proves the lemma. [J
Next assume that a(z,§) = Y72 a;(z,§) € FST(I';Co, A). We put
i(w,€) = 3020 612 (€)a;(x,€) (€ PST(I; R, 24+3C, A)) and aP(€, y, 1) =

(DR(’S?yv 77)&<y7 77) ( € S+(R7 C*a 2A + C(Fla F2)7 2A + 36 + C(Fla FQ))) for
R > Cy.

LEMMA 2.6. There is R(A,T'1,T9,e) > 4 such that
(*@"(Da,y, Dy)u)|xx(—yp0 = (‘@) (@, D) (ulxx(—pp0) in C(X x (=7)°)
if R> R(A,T'1,Ty,¢) and u € Fy, where —y = {&; —€ € v}.

PrROOF. Note that ‘a®(D,,y, D,)u = BE(D,,y, Dy)u for u € Fo,
where BE(¢,y,n) = af(—n,y, —¢£). It follows from Corollary 2.4.7 in [12]
that there are symbols ¢;(z, &) (j = 1,2) and R(Co, A1) > max{4, Cy} such
that tELR(Dm,y,Dy) = q1(z, D) + q2(x, D) on Seo, q1(x,€) € ST(4R,C, +
10A;) and

1652}, (@, 6)] < Claf,r(4R + D|lte= O/
if R > R(Cy, A1), where A} = max{C,,2A + 3C + C(T'1,T2)} and C,is a
positive constant. There is R(Cy, A1,¢) > R(Cp, A1) such that

108 DI a1 (,€) — a2, )} < Clap.r(R + DI|p|te /7
if (x,—¢) € X. x 7. and R > R(Cy, A1, €), where

bi(2,6) = > (~D)lai() (@, ~&)/al (j€Zy),

k+|al=j

=3 Gt (©)bj(w, &) for (z,—€) €T.
j=0
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Write
%Dy, y, Dy) = @(x, D) + Gz, D) + B%(Dy,y,Dy)  on S,

where §j(2,€) = ¢j(2,&)g%(=¢) (j = 1,2) and BE(&,y,n) = al(—n,y,
—&)(1—gR(—¢)). Proposition 1.2 implies that gz (2, D)u is analytic if u € Fp.
It follows from Lemma 2.1 that there is R1(Co, A1,€) > 4 such that

W F4(BR(D,,y, Dy)u) NR" x (=y) =0 forue Fy

if R > R1(Cy, A1,¢). We note that b;(z,€&) € FST(T;Ch,24), where C) =
max{Cp, 4nA?}. Put

Z¢R/2 £) (€ PST(I; R, 4A + 3C,24)),

(x7€):()0 (IE,f)g (_f) (1'75)
(€ ST(R,C\ +4A+3C + C(e),24 + C(e))),

where R > C}. Then we can see that ¢ (z,&) — b%(x, &) € ST(4R, As) and
@24)  [EDH@(@,8) ~ " (@,0}] < ClarAy ||t O/

if € X./5 and R > max{R1(Cp, A1,¢),eCy/2}, where Ay = max{a* +
10A; +4C(e),4C, +16A+12C +4C(e)} and Ap = max{R+1,2A}. Indeed,

we have

bz, €) — q(x, €)™ (¢ —6) Y (@2(€) — ¢17(€))bj (2, €)

Jj=0

for z € X, 9,
supp (6172 — ¢1) € {& Rj < (€) < 12Rj},
08 DE{b (=, ) — qlz, ) g™ (=)}

[e.9]

< Clajre OG0 (1+ 59))(Co/R)Y x; () (24) 171 818/ (24R)

j=0
< Oy pe2A)P|Ble C/CHR) i 2 € X and R > eCy,
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where x;(§) = The estimates (2.4) and Lemma

0 otherwise.

{1 if Rj < (&) < 12Ryj,

2.4 implies that there is C' > 0 such that G (x, D)u — bf(x, D)u is analytic
in X if u € Fyp and R > C'Ay. This gives

WFA('a®(Dy,y, Dy)u — b%(z, D)u) N X x (=) =0 for u € Fo

if R > max{R;1(Cy, A1,¢),CAs}. So the lemma easily follows from Lemma
2.5. 0

For ¢,v € R we can define
L%, ={f eS8 ()P f(x) € L*(R™)}.

Indeed, e*{P) f(z) € &' and (z)"e5P) f(x) is well-defined in &' if f € S’_.
Lg,y is a Hilbert space in which the scalar product is given by

(fi9)rz, = (@) P f (@) e Plg) o,
where (-, )72 denotes the scalar product of L?*(R").
LEMMA 2.7. Let a(&,y,n) be a symbol satisfying

108 DETB (¢, y, )|
< Clapa 311 (A/Ro) &) T Pl iy =Dl explsy (€) — 82(n)]

fOT any aa67377 € (Z+)n and (&:%"7) € R" x R" x R™ with <§> > Rﬂ‘ﬁ’;
where A >0, Ry > 1 and 61,69 € R.

(i) a(Dgy,y, Dy) is well-defined on Lgmy and maps continuously L2, , to
Lgl’y if Ry > 25ey/nA, 2(e1+61)4 < ea+062 and 3(e1+61) +2(e2+82)— <
1/Ry.

(i) If e1 < €2 and v1 < va, then L2 C L2

9 9 €2,V2 £€1,V1
L€27V2 duruc L€17V1

and the inclusion map
18 compact.

REMARK. The assertion (i) is given in Lemma 5.1.6 of [12] when v = 0.
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ProOOF. (i) Choose a symbol g(§,n) so that \8?83g(§,n)| <

Clajt (71N m) =P, g(&,m) = 1 if |¢] < 3[n|/2 or [¢] < 1, and g(&,7) = 0 if
€] > 2|n| and [¢] > 2. We put

ar(&y,m) = g(&mal& y.n), a2 y,m) = (1—g(&n)al&,y,m).
Let €1,e9 € R satisfy 2(e1 + 61)+ < €2 + 62. Then we have
|0¢ D)oy {expler (&) — ea(m]ar (&, v, M H < Clajsig ()~ () 1.
Therefore, there is b1 (x,€) € S7 such that
exple1(D)]a1(Dy,y, Dy) exp|—e2(D)] = bi(xz, D) on S.
Moreover, we have

|08 D05 {exp[=6(€) + d2(m)]az (€, y, m)}|
< Claf g+ (€)1 m) ™M expl— (6 — 61)(6) /2]

if 6 > ¢1. This gives as(Dy,y, Dy)v € S—5 and Y 72, wa(D)ag(Dw,y,
Dy)v = az2(Dy,y,Dy)v in S_s if v € S and 6 > 61, where @b]R(f) =
¢t 1(€) — ¢f1(€). Put

(&, y,m) = IO K az(€,y,m),
j=1

where K = |€ — 0|72 372, (& — mk) Dy, Then we have

a2(Daz,y, Dy) = a2(Da,y, Dy)  on S,
|08 D7 {exple1 (€) — e2(m)]az (€, y, m)}|
< Clof+18/+ expl(61 — 1/(3Ro) + &1 + 2(e2 + 62) - /3)(§)]
if Ry > 25ey/nA, where ¢ = max{—c,0} ( see the proof of Lemma 5.1.6 of

[12]). Now assume that Ry > 25ey/nA and 3(e1 +61) +2(e2+ 62)— < 1/Ro.
Then there is by(z,&) € S7°° ( C S ) such that

exple1(D)]az(Ds,y, Dy) exp|—e2(D)] = ba(x, D) on Sx.
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Putting b(z,&) = by (z,§) + ba(x,&) ( € S?,O), we have
explei(D)]a(Dz, y, Dy) exp[—e2(D)] = b(z, D) on Sec.

Let v € R, and put
by(2,€) = (21) " Os- / YN ()b, €+ )l + ) dyd,

where Os- [ denotes an oscillatory integral. Then we have I;V(a:,f) € S?,o
and

(z)"b(x, D)((z)"v) = b,(z, D)v on S.

Let x(§) be a function in C§°(R™) such that x(£) = 1 if [{] < 1. Then
we have (x)"x(D/j)({(z)""f(x)) — f(z) in S as j — oo for f € S. This
implies that {(z)Vf(z); f € 8w} is dense in L%*(R"). Therefore,
(x)” exple1(D)]a(Dgy, y, Dy) exp[—e2(D)](x)™¥ can be extended to a
bounded operator on L?(R"), i.e., a(Dy,y, D,) maps continuously L2

g9,V
2
to Lg, .

(ii) Assume that €1 < e2 and v; < vo. Then there is ¢(x,§) € Sié
such that (z)"2 exp[(e1 — e2)(D)]((z) "2u) = ¢(x, D)u for u € S. Therefore,
the operator: L?(R™) 3 u — (x)"! expl(e1 — 2)(D)]((x)2u) € L*(R") is

compact ( see, e.g., Theorem 5.14 of [5]). This proves the assertion (ii). [J

LEMMA 2.8. Let X and X1 be bounded open subsets of R™ satisfying
X1 € X, and let a(§,y,n) be a symbol such that supp a C R™ x X; x R™
and

(2.5) 0¢ D07 a(g, y,m)]
< Clap s (A/ Ro) PP gy =lett B gyl explé (&) + 8 ()]

if (§) > Ro|B| and (n) > Ro|v|, where A >0, Ry > 1 and my,mg, 61,062 € R.
Put e = dis(X1,R™"\ X), and assume that u € Fy and that u is analytic in a
neighborhood of X, where dis(Y1,Ys) := inf{|z —y|; x € Y1 and y € Y2} for
Y1,Ys C R™. Then there are positive constants 6 (e, u) and 6;(e,u) (j =1,2)
such that a(Dy,y, Dy)u € Ss if Ry > 4ey/nmax{1,2/c}A, 261 + (62)4 <
1/Ry, 6; < 6(e,u) (j=1,2) and 6 <min{1/(2Ry),6(e,u)}.
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Proor. We shall prove the lemma in the same way as Theorem 2.6.7
of [12]. Put u,(x) = e~ PPlu(x) for p > 0. Then we have u,(z) € C=(R")
for p > 0 and
(2.6) | DPu,(z)] < Cu)Aw)?|B|! forz e X and 0 < p <1,

lup(z)| < Cp(1+ |x])¢ for z € R™ and p > 0,
where C(u), A(u) and C, are positive constants and ¢ € Z . Let X5 be an
open subset of X satisfying X; € Xo € X and dis(X1,R™ \ X2) =¢/2. We

choose a family {x;};jen of C§°(X) so that x;(z) = 1 in X and |DPy;(x)] <
C(Cyj/e)P! for |B] < j. Then (2.6) yields

IFDu) ()] < C'(w)(1 + v/r(Cufe + Au))5) (€)
for 0 < p < 1. Note that
08 Fla(Dz, y, D)5 (D)e”P) (xju,))(€)
—en Y i [ e (6 e

11,21
[67R10
alta?2=a

x e Fy ju,) () dndy,

where aq102(€,y,m) = (—iy)* 02 a(&,y,n).  Replacing p(&,y,n) by
an1 o2(§,y,m) in the proof of Theorem 2.6.7 of [12], we have

(2.7) 108 Fla(Da, y, Dy) b E(D)eP P (xju,))(€)]
< ORpya(w)j™ 277 (™00

if p>0, R >2e(1+/n(Cs/e+ Au))), Ro 2 2ev/nA, p+62+2(61+6)4 <
1/(3R), 61 < 1/(2Rp) and 6§ < 1/(2Ry). Similarly, we have

|08 Fla(Dz, y, Dy (D) PN (1 = x5)u,)(€))]
< Cpa RoRoau)j 2E) ™60 E)

if p >0, R > 8ey/n(Cy +C +6(1++2)/e, Ry > dey/nmax{1,2/e}A,
6 < 1/(2R0), 261 + (p—|—62)+ < 1/R0, p—l—(SQ < 1/(3R> and 6 < 1/(12R) —
61 — (p + 62)/4. This, together with (2.7), yields

108 Fla(Dayy, Dy)u)(€)] < Cryalusa)(€)™ e
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if Ry > 4ey/nmax{1,2/e}A, 69+2(61+6)+ < c(e,u)/3, 261+ (62)+ < 1/Ry,
6 <1/(2Ro) and 6 + 61 + 62/4 < (e, u) /12, where c(g,u) = min{1/(2e(1 +
Vn(Ci/e + A(u)))),e/(8ey/n(Cyx + C + 6(1 + +/2)))}, which proves the

lemma. [

LEMMA 2.9. LetT be an open conic subset of R™ x (R™\{0}) satisfying
I' e R"x (R"\{0}), and let a(§,y,n) be a symbol such that supp a C R" xT'
and a(&,y,n) satisfies the estimates (2.5) if (§) > Ro|B| and (n) > Rol|~yl.
Let ¢ > 0, and assume that u € Fy and that WFx(u) N Te = 0. Then
there are positive constants Ro(e), 6(e,u) and 6;(e,u) ( j = 1,2) such that
a(Dx,y,Dy)u e Ss if Ry > R0(€)A, 261 + (62)+ < 1/R0, 5]' < 6j(5,u)
(j=1,2) and 6 < min{1/(2Ryp),6(e,u)}.

PROOF. One can prove the lemma in the same way as in the proof of
Lemma 4.1.1 of [12], using Lemma 2.8 instead of Theorem 2.6.7 of [12]. OJ

It follows from Lemma 2.7(ii) that {L7 /ia /j}jeN is a compact injective
sequence of Hilbert spaces, i.e., the inclusion maps: L% sy 2 U u €
L%/(j+1),1/(j+1) ( j € N) are compact. We denote by X the inductive limit

lim L7 /iy, of the sequence {L7 Jin /j} ( as a locally convex space). Then X
is a separable complete bornologic (DF) Montel space and for any bounded
subset B of X there is j € N such that B C L%/j’l/j and B is bounded
in L? /i) ( see, e.g., Theorems 6 and 6’ in [4]). For terminology we refer
to Schaefer [7]. Moreover, S is open ( resp. closed) in X if and only if
SN L%/j?l/j is open ( resp. closed) in L%/Ll/j for each 5 € N, i.e., the
topology of X is the inductive limit topology of {L% /in /j} as a topological
space ( see Theorem 6 in [4]). By Theorem 9 of [4] we have

(2.8) L*(R") x X x X =lim (L*(R") x LY ;1 ); % LT );1/5),

where the inductive limit on the right-hand side is the inductive limit as a
locally convex space.

LEMMA 2.10. Let F be a closed subspace of L>(R") x X x X, and put
2 2 2
Fy=F 0 (LARY) < L5 % Layjags)-

Then we have F' = lim F; ( as a locally convex space).
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ProOOF. By Proposition 8.6.8(i) of [6] it suffices to show that S is
open in L?(R") x X x X if SN L?(R") x Ll/j 1/ % %/j,l/j is open in
L?(R™) XL%/j 1] fo/] 1/ for each j € N, i.e., the topology of L?(R")x X x X
is the inductive limit topology of a sequence {L?(R™) x L%/] 1/j % L%/j 1/3}

of topological spaces. We note that (2.8) is also valid if the inductive limits
lim L1/] 1; (= &) and lim (L2(R™) x L%/] 15 % %/j,l/j) are replaced by t.he
1nduct1ve limits as topologlcal spaces. Recall that the topology of X coin-
cides with the inductive limit topology of {L% /il /j} as a topological space.

Therefore, the topology of L?(R") x X x X coincides with the inductive
limit topology of { L?(R") x L%/j,l/j X L?/J}l/j} as a topological space, which
proves the lemma. [J

3. Proof of Theorems 1.5 and 1.6

First we shall prove Theorem 1.5. Assume that p(x, D) is analytic mi-
crohypoelliptic at 2°. Let I'; (0 < j <2) be open conic subsets of I' such
that 20 € 'y € I'y € 'y € I'. By assumption we may assume that

(3.1) supp p(x, D)u =supp u for u € C(T}),

where T = [yN(R™ x $"~1). Choose ®%(¢,y,n) € S%909(R, C,,C(T1,Ty),
C(T1,T2)) ( R > 4) so that 0 < ®f(¢,y,n) < 1, supp ®F C R” x 'y and
®f(¢,y,m) =1 for (&,y,m7) € R" x 'y with () > R. We put

PR ym) = (& ym) S o ()ps(y.m),
7=0

where R > max{4,Cp}. Then we have
P& y.n) € ST(R,C 24+ C(I',T2), 24 + 3C + C(I'1,T2)).
By definition there is R(A,To,T'1,T2) > max{4,Cp} such that

(P (Dz»y, Dy)v)lpg = p(z, D)(v|pg) in C(TY),
(3.2) W F4(p®(Dy,y, Dy)v) N Ty = WFa(v) N Ty

if R > R(A,T'g,I'1,T'2) and v € Fy. Let Q; ( j = 1,2) be open conic
neighborhoods of 2% satisfying Qs € Q1 € I'g, and let WFE(£,y,m) €
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S0000(R Oy, C(02,01),C(Q2,21)) ( R > 4) satisfy supp ¥F C R® x (4
and U (¢, y,m) = 1 for (£,y,1) € R x Qp with (n) > R. We assume that
R > max{R(A,Ty,I'1,I),25ey/nmax{24+ C(I'1,T2),C(Q2,21)}}. Let X
be the locally convex space defined in §2, i.e., X = h_rr)lL% Jin/i We define
an operator T : L2(R") — X x X as follows;

(i) the domain D(T') of T' is given by
D(T) ={f € L*(R"); (1=¥"(Da,y,Dy))f € X and p""(Day, D) f € X},

(i) Tf = (1 — *(Da,y. Dy)) f.p"(Da,y. Dy) f) for f € D(T).

It follows from Lemma 2.9 and the analytic microhypoellipticity of p that
X =D(T)if R > R(Q9,Q1,T), where R(Q2,1,) is a positive constant
depending on s, Q1 and Ty. Indeed, let u € D(T). Then u € L*(R")
and there is 5 € N such that (1 — ¥B(D,,y, Dy))u € L%/j,l/j' Since
p®(Dy,y, Dy)u is analytic in R?, (3.2) gives WFa(u) N Ty = . It fol-
lows from Lemma 2.9 that there are R(Q2,Q;,T) > 0 and 6(u,Q;,Tg) >
0 such that VE(D,,y,D,)u € L2 if R > R(Q2,M,Ty), v € R, § <
min{1/(2R), 6(u,21,T0)}. This imf)lies that u € X.

We next show that T is a closed operator. Assume that R >
R(2,91,T0). Let A be a directed set, and let {wg }q4ca be a directed family
of points in L?(R") x X’ x X satisfying w, — w = (f, g,h) in L>(R") x X x X,
where wy = (fa, (1 — VE(Dy,y, Dy)) fa, 2 (Dayy, Dy) fa) € graph(T). De-
fine Z = @Lg_l Jj—1/;- Then Z is a reflexive Fréchet space and Z =X
with obvious identification ( see, e.g., Theorems 1 and 11 of [4]). More-
over, we have also X C Z C Fy with obvious identification and the in-
clusion map ¢ : X > v — v € Z is continuous. Indeed, let B be a
bounded subset of X. Then there is j € N such that B is bounded in
L3 /i) ( see Theorem 6 of [4]). This implies that there is Cp > 0 such

that ||(x)/7elP/iy|| < Cp for v € B, where |f|| denotes the L?-norm
of f € L?>(R"). Therefore, B is bounded in Z. Since X is bornologic,
the inclusion map ¢ is continuous ( see Theorem 6 in [4]). Noting that
Z and L%*(R") are metric spaces and that (1 — WE(D,,y, D,))f. — g in
Z and f, — f in L*(R"), we have (1 — E¥(D,,y,D,))f = g (in 2).
Similarly, we have p®(D.,y, D,)f = h. This implies that f € D(T) and
Tf=(1-Y%Dyy,Dy)f,p"(Dy,y, Dy)f). Therefore, T is a closed op-
erator.
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Let {p;}icr be a fundamental system of semi-norms on X, i.e., for any
continuous semi-norm g on X there are ¢ € I and C' > 0 satisfying ¢(f) <
Cpi(f) for f € X. graph(T) is a closed subspace of L%(R") x X x X and
its topology ( the induced topology) is generated by a family of semi-norms
{4i}ier, where

forw = (f, 1=Y"(Dy,y, Dy)) f,p"(Dz,y, Dy)f) € graph(T). From Lemma
2.10 we have

graph(T') = lim (graph(7) N (L*(R™) x L%/j’l/j X L%/j,l/j))'

It is obvious that the projection: graph(T) 3 (f,(1 — VE(D,,y, D)) f,
p®(Dy,y,Dy)f) — f € X is closed. Since the injective limit of ( weakly)
compact sequence of locally convex spaces is barreled, the strong dual of

a reflexive Fréchet space and B-complete, it follows from the closed graph
theorem that for any i € I there are j € I and C' > 0 such that

(33)  pilf) = Cgj(w)
for w=(f, (1 - \I’R(vaya Dy))f,pR(Dx,y, Dy)f) € graph(T).

For terminology and the closed graph theorem we refer to §8 of chapter IV
in [7].

LEmMMA 3.1. For any i € I there are j € I and C' > 0 such that

pi(f) <C(p; (1 — R (Dy,y, Dy)) f) + p; (0™ (Dayy, Dy) f)
+le= P E) for f e X

PROOF. The inclusion map ¢ : X > f — f € H'(R") is continu-
ous, where H!(R"™) denotes the Sobolev space of order 1. Indeed, let B
be a bounded subset of X. Then there are ;7 € N and Cp > 0 such
that ||(z)/7ePVif| < Cp for f € B. It is obvious that |[(D)f| <
G/e)||(x)/iePVif| for f e L? So B is bounded in H'(R") and ¢

1/5,1/5
is continuous. Thus there are ig € I and Cy > 0 satisfying

(3-4) IKD) I < Copig () for f e X.
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On the other hand, for any € > 0 there is C; > 0 such that
(3.5) I£1| < el(D)fI| + Celle™ P f|| - for £ € H'(R™).

Therefore, from (3.3) with ¢ = ig, (3.4) and (3.5) there are jo € I and C; > 0
such that

[ £1I < Copio(f)

< Ci(pjo(1 = ¥ (Da,y, DY) ) + o 0™ (D v, Dy) f) + ™ £1))

for f € X. This, together with (3.3), proves the lemma. [

Let f € A'(R™). We shall show that there are an open neighborhood U
of (z2,£9/|€°]) in R® x S"~!, which is independent of f, and u € X’ such that
(*p)(z, D)(uly) = flu in C(U). We note that f € A'(R") C X' C Fy C S}
and Sy, C S5 C X for 6 > 0. Moreover, we have

(g, V)1 x = (g,v>52755 for 6 >0, g€ X' and v € S,
(9,v)s1.5. = <g,v>3373§ fore > 6, g€ Ssand v € S,
where (-, )arx ( resp. (-, -)s;s,) denotes the duality between X" and X
( resp. Sy and Ss). Therefore, we denote simply by (-,-) these dualities.
Define
M:=1% x X x X,
N ={(v,(1 - \IJR(Dx,y,Dy))v,pR(Dx,y,Dy)v) € M; ve Sy},
where L2 = L2,. Let F be a linear functional on N defined by F(w) =
(f,v1) for w = (vy,v9,v3) € N. Note that there are iy € I and Cy > 0

satisfying |(f,v1)| < Cap;, (v1) for v € X. By Lemma 3.1 there are j; € I
and C3 > 0 such that

[ (w)| < Cs(pjy (v2) + pjy (v3) + lle”Phonl]) - for w = (v1,v2,v3) € N.

Therefore, it follows from the Hahn-Banach th~eorem that there is F =
(=, —p,u) € M’ (= L2 x X' x X') such that F|y = F), i.e.,

(f,v) == (¥, v) = (@, (1 = W (Dy,y, Dy))v)
+ (u, pT*(Dg, v, Dy)v) for v € Sx.
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This yields

('p"(Da,y, Dy)u,v) = (f + ¢ + (1 = "O(Dy,y, D)), v)
for v € Sqo, i.€.,

t, R _ ta R :

p (DzayaDy)u_f_l_w_‘_(l_ v (Dﬁmvay))SD mn fO-

Note that ¢ € A(R™). Let Q3 be an open conic neighborhood of (2°, —¢Y)
satisfying Q3 € Qa, where Qo = {(z,£); (x,—&) € Q3}. From Lemma 2.1
there is Ry (€3, Q2,1) > 0 such that

WFA((1 = "0 (Dy,y, Dy))p) N Q3 =0 if R > Ri(Q3, 22, ).
Therefore, Lemma 2.6 gives
('p)(@, D)(ulgg) = flog in C(),

where Q9 = Q3 N (R™ x S"~1), which proves Theorem 1.5.
Similarly, one can prove Theorem 1.6 if one choose I' = X x (R™\ {0}).
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