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Umbilical Points of the Graphs of Homogeneous

Polynomials of Degree 3

By Naoya Ando

Abstract. Let P 3
o be the set of the homogeneous polynomials

of degree 3 such that on their graphs, the origin o := (0, 0, 0) of R3

is isolated as an umbilical point, and P
3,1/2
o , P

3,−1/2
o the sets of the

elements of P 3
o such that on their graphs, the index of o is equal to

1/2,−1/2, respectively. In this paper, it is seen that P 3
o is divided into

P
3,1/2
o and P

3,−1/2
o by the cone obtained from a rectangular torus in

the vector space of the homogeneous polynomials of degree 3.

1. Introduction

Let P 3 be the set of the homogeneous polynomials in two real variables

x, y of degree 3. The set P 3 may be considered as a 4-dimensional vector

space. For two elements f, g ∈ P 3, set

〈f, g〉 :=
1

π

∫ 2π

0
f̃(θ)g̃(θ)dθ,

where

f̃(θ) := f(cos θ, sin θ), g̃(θ) := g(cos θ, sin θ).(1.1)

It is seen that 〈 , 〉 is an inner product on P 3. Let H1, H3 be the sets of the

spherical harmonic functions in two real variables of degree 1, 3, respectively.

Then H3 and the set

(x2 + y2)H1 := {(x2 + y2)h1 ; h1 ∈ H1}

may be considered as two-dimensional subspaces of P 3. For n = 1, 3, let

hnc, hns be the homogeneous polynomials of degree 3 defined by

hnc(x, y) := (x2 + y2)
3−n

2 Re(zn), hns(x, y) := (x2 + y2)
3−n

2 Im(zn),
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where z = x +
√
−1y. Then for n = 1, 3, it is seen that {hnc, hns} is

an orthonormal base of (x2 + y2)
3−n

2 Hn with the inner product 〈 , 〉, and

for h1 ∈ (x2 + y2)H1 and for h3 ∈ H3, 〈h1, h3〉 = 0 holds. Therefore

{h3c, h3s, h1c, h1s} is an orthonormal base of P 3. Set

S3 := {X1h3c + X2h3s + X3h1c + X4h1s

; X2
1 + X2

2 + X2
3 + X2

4 = 1 }.

Let P 3
o be the set of the homogeneous polynomials of degree 3 such that

on their graphs, the origin o := (0, 0, 0) of R3 is isolated as an umbilical

point, and P
3,1/2
o , P

3,−1/2
o the sets of the elements of P 3

o such that on their

graphs, the index of o(see [3, pp. 137]) is equal to 1/2,−1/2, respectively.

Then the following hold([1]):

P 3,1/2
o , P 3,−1/2

o �= ∅, P 3
o = P 3,1/2

o 
 P 3,−1/2
o .

In this paper, the following theorem is proved.

Theorem 1.1. The following hold:

(1) P
3,1/2
o ∩ S3 = {∑4

i=1 X
2
i = 1, 0�X2

1 + X2
2 < 1/10};

(2) P
3,−1/2
o ∩ S3 = {∑4

i=1 X
2
i = 1, 1/10�X2

1 + X2
2 � 1} \ C1/

√
10,3/

√
10,

where

C1/
√

10,3/
√

10 :=

{
X1 =

1√
10

cos 3ρ, X2 =
1√
10

sin 3ρ,

X3 =
3√
10

cos ρ, X4 =
3√
10

sin ρ, ρ ∈ [0, 2π)

}
.

Roughly speaking, the set P 3
o is divided into P

3,1/2
o and P

3,−1/2
o by the

cone obtained from the rectangular torus

{X2
1 + X2

2 = 1/10, X2
3 + X2

4 = 9/10}

in S3.

Remark 1.2. The set P 3 \ P 3
o is represented as

P 3 \ P 3
o = { c{(cos ρ)x + (sin ρ)y}3 ; c ∈ R, ρ ∈ [0, π) }
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(see [1]). The following holds:

{(cos ρ)x + (sin ρ)y}3 =
cos 3ρ

4
h3c(x, y) +

sin 3ρ

4
h3s(x, y)

+
3 cos ρ

4
h1c(x, y) +

3 sin ρ

4
h1s(x, y).

Therefore it is seen that S3∩(P 3\P 3
o ) is the simply closed curve C1/

√
10,3/

√
10

in (2) of Theorem 1.1. Then it follows that one of (1) and (2) in Theorem 1.1

implies the other.

This paper is organized as follows. Although Theorem 1.1 has already

been stated, our main theorem in this paper is stated in Section 2.. The-

orem 1.1 is a corollary of our main theorem, Theorem 2.1. After notation

and terms are prepared in Section 3., Theorem 2.1 is proved in Section 4..

The author is grateful to Professor T.Ochiai for helpful advices and for

constant encouragement.

2. Main Theorem

Let P k
o be the set of the homogeneous polynomials of degree k� 3 such

that on their graphs, the origin o of R3 is isolated as an umbilical point, and

f an element of P k
o and f̃ the function on R obtained from f as in (1.1). A

real number at which
df̃

dθ
= 0 is called a root of f and the set of the roots

of f is represented by Rf . For each root θ0 ∈ Rf , the straight line

L(θ0) := { (x, y) ∈ R2 ; x sin θ0 − y cos θ0 = 0 }

on R2 through o is called a root line of f . The natural coordinates (x, y) on

the xy-plane may be considered as coordinates on the graph Gf of f . Then

a root line is considered not only as a subset of R2 but also as a subset of

Gf . The set of the root lines of f is represented by R̃f . If
df̃

dθ
�≡ 0, then

�R̃f � k holds. Let Umb(Gf ) be the set of the umbilical points of Gf , and

for each L ∈ R̃f , let Umb(Gf ;L) be the set of the umbilical points of Gf on

L \ {o}. Then the following hold([2]):

(1) Umb(Gf ) = {o} 
⊔
L∈R̃f

Umb(Gf ;L);
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(2) �Umb(Gf ;L) = 0 or 2.

Therefore if
df̃

dθ
�≡ 0, then �Umb(Gf ) ∈ {2i + 1}ki=0 holds. Particularly, if

k = 3, then �Umb(Gf ) = 1, 3, 5 or 7 holds.

Let S3 be as in Section 1.. Then S3 may be considered as a Riemannian

manifold isometric to a unit 3-sphere {x2
1 + x2

2 + x2
3 + x2

4 = 1} in R4. Let

S3,1, S3,3 be the subsets of S3 defined by

S3,1 := S3 ∩ (x2 + y2)H1, S3,3 := S3 ∩H3.

It is seen that S3,1 and S3,3 are great circles of S3 with S3,1∩ S3,3 = ∅. For

a pair (h1, h3) ∈ S3,1× S3,3, there exists the only minimal geodesic segment

γh1h3 in S3 the ends of which are h1 and h3. Each element of γh1h3 is

represented as

fϕ,h1,h3 := (cosϕ)h1 + (sinϕ)h3, ϕ ∈ [0, π/2].(2.1)

Then it is seen that for any element f ∈ S3, there exists a triplet (ϕ, h1, h3) ∈
[0, π/2]×S3,1×S3,3 satisfying f = fϕ,h1,h3 .

The purpose of this paper is to describe the relation among the two

numbers �R̃fϕ,h1,h3
and �Umb (Gfϕ,h1,h3

), and the index indo (Gfϕ,h1,h3
) of o

for a triplet (ϕ, h1, h3) ∈ [0, π/2]×S3,1×S3,3 satisfying fϕ,h1,h3 ∈ P 3
o . Our

main theorem in this paper is the following.

Theorem 2.1. For a pair (h1, h3) ∈S3,1×S3,3, a case of just one of the

following types happens:

Type 1(General Type).

There exists the number ϕ1 ∈ (0, arctan 1/3) satisfying

(�R̃fϕ,h1,h3
, �Umb (Gfϕ,h1,h3

), indo (Gfϕ,h1,h3
))

=




(1, 3, 1/2) for ϕ ∈ [0, ϕ1),

(2, 5, 1/2) for ϕ = ϕ1,

(3, 7, 1/2) for ϕ ∈ (ϕ1, arctan 1/3),

(3, 1, −1/2) for ϕ ∈ [arctan 1/3, π/2].

Type 2(Exceptional Type).
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There exists the number ϕ2 ∈ (0, arctan 1/3) satisfying

(�R̃fϕ,h1,h3
, �Umb (Gfϕ,h1,h3

), indo (Gfϕ,h1,h3
))

=




(1, 3, 1/2) for ϕ ∈ [0, ϕ2],

(3, 7, 1/2) for ϕ ∈ (ϕ2, arctan 1/3),

(3, 1, −1/2) for ϕ ∈ [arctan 1/3, π/2].

Type 3(Singular Type).

An element farctan 1/3,h1,h3
does not belong to P 3

o , and the following holds:

(�R̃fϕ,h1,h3
, �Umb (Gfϕ,h1,h3

), indo (Gfϕ,h1,h3
))

=

{
(1, 3, 1/2) for ϕ ∈ [0, arctan 1/3),

(3, 1, −1/2) for ϕ ∈ (arctan 1/3, π/2].

Remark 2.2. Theorem 2.1 says

�Umb(Gf ) =

{
1, if f ∈ P

3,−1/2
o ,

3, 5 or 7, if f ∈ P
3,1/2
o ,

and that the number �Umb(Gf ) for f ∈ P
3,1/2
o may actually be equal to

each of the integers 3, 5, 7. Moreover Theorem 2.1 says that for any L ∈ R̃f ,

the following holds:

�Umb(Gf ;L) =

{
0, if f ∈ P

3,−1/2
o ,

2, if f ∈ P
3,1/2
o .

3. Preliminaries

Let f be an element of P k
o and r a positive constant such that on 0 <

x2 + y2 � r2, there exists no umbilical point of Gf , and r0 the supremum of

such numbers as r. For any θ0 ∈ Rf , there exists the continuous function

φr,θ0,θ0 on R such that

(1) φr,θ0,θ0(θ0) = θ0,

(2) for any θ ∈R, cosφr,θ0,θ0(θ)
∂

∂x
+ sinφr,θ0,θ0(θ)

∂

∂y
is in the principal

directions at (r cos θ, r sin θ)
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(see [1]). It is said that the sign of a root θ0 is positive(resp. negative) if

there exists a positive number ε > 0 such that for any r ∈ (0, r0) and for

any θ ∈ (θ0 − ε, θ0 + ε) \ {θ0},

{θ − φr,θ0,θ0(θ)}(θ − θ0) > 0(resp. < 0)

holds. A root θ0 is said to be related(resp. non-related) if the sign of θ0 is

either positive or negative(resp. neither positive nor negative). If θ0 ∈ Rf is

related, then the sign of θ0 is denoted by sign(θ0).

Suppose
df̃

dθ
�≡ 0. Then for a root θ0 ∈ Rf , there exists a positive

integer m satisfying
dm+1f̃

dθm+1
(θ0) �= 0. The minimum of such integers as

m is called the multiplicity of θ0 and denoted by µ(θ0). A root θ0 ∈ Rf

is related(resp. non-related) if and only if µ(θ0) is an odd(resp. even) in-

teger(see [1]). For a related root θ0, it is said that the c-sign of θ0 is

positive(resp. negative) if f̃(θ0)
dµ(θ0)+1f̃

dθµ(θ0)+1
(θ0)� 0(resp.> 0), and the c-sign

of θ0 is denoted by c − sign(θ0). The following hold.

Proposition 3.1 ([1], [2]). If a related root θ0 satisfies c − sign(θ0) =

+, then sign(θ0) = + holds.

Proposition 3.2 ([2]). For a related root θ0 with c − sign(θ0) = −,

sign(θ0) = +(resp.= −) is equivalent to �Umb(Gf ;L(θ0)) = 0(resp.= 2).

Let N+(resp.N−) be the number of the root lines determined by the

roots with positive(resp. negative) sign. Then indo(Gf ) is represented as

indo(Gf ) = 1 − N+ −N−
2

,

and moreover the following holds([1]):

N+ −N− ∈ {k − 2i}[k/2]
i=0 .

Particularly, if k = 3, then we obtain indo(Gf ) ∈ {1/2,−1/2}.
We want to construct a map D.Qf from Rf to R̃ :=R∪{∞}. Let θ0 be

a root at which f̃(θ0) �= 0. Then we set

D.Qf (θ0) :=
d2f̃

dθ2
(θ0)

/
f̃(θ0).
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Let θ0 be a root at which f̃(θ0) = 0. Then from f ∈ P k
o , we obtain

d2f̃

dθ2
(θ0) �=

0. Therefore we set D.Qf (θ0) := ∞. The value D.Qf (θ0) is called the

determinant quotient at θ0.

Proposition 3.3 ([2]). For θ0 ∈ Rf , Umb(Gf ;L(θ0)) �= ∅ is equiva-

lent to

D.Qf (θ0) ∈ (−k, k(k − 2)).(3.1)

In addition, if (3.1) holds, then �Umb(Gf ;L(θ0)) = 2 holds.

Particularly, if k = 3, then we see that Umb(Gf ;L(θ0)) �= ∅ is equivalent

to D.Qf (θ0) ∈ (−3, 3).

For (h1, h3) ∈S3,1×S3,3, there exists a pair of numbers (α, β) ∈
[0, 2π/3) × [0, 2π) satisfying

h3 = (sin 3α)h3c + (cos 3α)h3s, h1 = (sinβ)h1c + (cosβ)h1s.

Noticing h̃nc(θ) = cosnθ, h̃ns(θ) = sinnθ for n = 1, 3, we represent f̃ϕ,h1,h3

as

f̃ϕ,h1,h3(θ) = sinϕ sin 3(θ + α) + cosϕ sin(θ + β).

Choosing suitable orthogonal coordinates on R2, we may represent f̃ϕ,h1,h3

as

f̃ϕ,h1,h3(θ) = sinϕ sin 3(θ + α) + cosϕ sin θ,(3.2)

where α ∈ [0, π/3]. From now on, by fϕ,α we denote fϕ,h1,h3 . In addition,

by D.Qϕ,α(resp.Rϕ,α,Gϕ,α) we denote D.Qfϕ,α(resp.Rfϕ,α ,Gfϕ,α). The fol-

lowing hold:

df̃ϕ,α
dθ

(θ) = 3 sinϕ cos 3(θ + α) + cosϕ cos θ,(3.3)

d2f̃ϕ,α
dθ2

(θ) = −9 sinϕ sin 3(θ + α) − cosϕ sin θ.(3.4)

For a ∈R, b ∈R\{0} and for ∞ ∈ R̃, we promise that the following hold:

a + ∞ = ∞ + a = ∞,

a/∞ = 0, ∞/a = b×∞ = b/0 = ∞.
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Of course we respect addition and multiplication in R. Then by (3.2) and

by (3.4), we may represent D.Qϕ,α(θ0) at θ0 ∈ Rϕ,α as

D.Qϕ,α(θ0) = −1 − 8

1 + cotϕ
sin θ0

sin 3(θ0 + α)

.(3.5)

For x1, x2 ∈ R̃ with x1 �= x2, we define the generalized closed interval

[x1, x2] as follows:

(1) If x1, x2 ∈R with x1 < x2, then [x1, x2] represents the usual closed

interval determined by x1, x2;

(2) If x1, x2 ∈R with x1 > x2, then [x1, x2] represents the set R̃\ (x2, x1),

where (x2, x1) is the usual open interval determined by x2, x1;

(3) If x1 ∈R and if x2 = ∞, then [x1, x2] represents the set {x�x1}∪{∞};

(4) If x1 = ∞ and if x2 ∈R, then [x1, x2] represents the set {x�x2}∪{∞}.

We similarly define the generalized open interval (x1, x2) and the generalized

semi-closed intervals [x1, x2), (x1, x2] for x1, x2 ∈ R̃ with x1 �= x2. We

introduce into each generalized interval I the total order � as follows:

Total Order �.

If ∞ /∈ I, then the total order � corresponds with the usual total order

� in R. Suppose ∞ ∈ I. Then for any c ∈R \ I,

(1) if I ∩ {x > c} �= ∅, then for y1, y2 ∈ I with c < y1 � y2, the following

holds:

y1 � y2 � ∞;

(2) if I ∩ {x < c} �= ∅, then for y3, y4 ∈ I with y3 � y4 < c, the following

holds:

∞ � y3 � y4.

Let Φ be a map between two generalized intervals. Then Φ is said to be

increasing(resp. decreasing) if Φ preserves(resp. reverses) the order relation.
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4. Proof of Theorem 2.1

Type A. α = 0.

We obtain fϕ,0 ∈ P 3
o for any ϕ ∈ [0, π/2]. We see that

(1) if ϕ ∈ [0, arctan 1/9], then R̃ϕ,0 = {L(π/2)} holds;

(2) if ϕ ∈ (arctan 1/9, π/2], then the following holds:

R̃ϕ,0 = {L(π/2), L(θ
(2)
0 (ϕ)), L( − θ

(2)
0 (ϕ))},

where θ
(2)
0 is the decreasing map from (arctan 1/9, π/2] onto [π/6, π/2)

satisfying
df̃ϕ,0
dθ

(θ
(2)
0 (ϕ)) = 0 for any ϕ ∈ (arctan 1/9, π/2].

By (3.5), we obtain

D.Qϕ,0(π/2) = −1 − 8

1 − cotϕ
.

Then we see that the map ϕ �→ D.Qϕ,0(π/2) is increasing from [0, π/2] onto

the generalized interval [−1,−9] and we obtain

D.Qarctan 1/3,0(π/2) = 3.

Therefore by Proposition 3.3, we obtain

�Umb(Gϕ,0;L(π/2)) =

{
2 for ϕ ∈ [0, arctan 1/3),

0 for ϕ ∈ [arctan 1/3, π/2].

By Proposition 3.1 and by Proposition 3.2, we obtain

sign(π/2) =

{
+ for ϕ ∈ [0, arctan 1/9] ∪ [arctan 1/3, π/2],

− for ϕ ∈ (arctan 1/9, arctan 1/3).

The determinant quotients at ±θ
(2)
0 (ϕ) for ϕ ∈ (arctan 1/9, π/2] are

represented as

D.Qϕ,0( ± θ
(2)
0 (ϕ)) = −1 − 8

1 + d
(2)
0 (ϕ)

,(4.1)
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where

d
(2)
0 (ϕ) :=

cotϕ

4 cos2 θ
(2)
0 (ϕ) − 1

.(4.2)

From
df̃ϕ,0
dθ

(θ
(2)
0 (ϕ)) = 0 and from (4.2), we obtain

tanϕ = − 1

3(4 cos2 θ
(2)
0 (ϕ) − 3)

(4.3)

=
1

d
(2)
0 (ϕ)(4 cos2 θ

(2)
0 (ϕ) − 1)

.(4.4)

Therefore we obtain

d
(2)
0 (ϕ) = −3

4 cos2 θ
(2)
0 (ϕ) − 3

4 cos2 θ
(2)
0 (ϕ) − 1

.(4.5)

Then it is seen that d
(2)
0 is decreasing from (arctan 1/9, π/2] onto the gen-

eralized interval [0,−9). Therefore we see from (4.1) that the map ϕ �→
D.Qϕ,0(θ

(2)
0 (ϕ)) is decreasing from (arctan 1/9, π/2] onto [−9, 0). From

(4.1), (4.3) and from (4.5), we obtain

D.Qarctan 1/3,0( ± θ
(2)
0 (arctan 1/3)) = −3.

Therefore we obtain

�Umb (Gϕ,0;L( ± θ
(2)
0 (ϕ))) =

{
2 for ϕ ∈ (arctan 1/9, arctan 1/3),

0 for ϕ ∈ [arctan 1/3, π/2].

Since D.Qϕ,0( ± θ
(2)
0 (ϕ)) < 0, we obtain

sign (θ
(2)
0 (ϕ)) = sign ( − θ

(2)
0 (ϕ)) = +.

We see that the type α = 0 corresponds to Type 2 in Theorem 2.1 and

that ϕ2 in Type 2 is equal to arctan 1/9.

Type B. α = π/3.

It is seen that farctan 1/3,π/3(x, y) is equal to
2

5

√
10y3, which is not an

element of P 3
o . If ϕ ∈ [0, π/2] \ {arctan 1/3}, then fϕ,π/3 ∈ P 3

o holds. We

see that



Umbilical Points 81

(1) if ϕ ∈ [0, arctan 1/3), then R̃ϕ,π/3 = {L(π/2)} holds;

(2) if ϕ ∈ (arctan 1/3, π/2], then the following holds:

R̃ϕ,π/3 = {L(π/2), L(θ
(2)
π/3(ϕ)), L( − θ

(2)
π/3(ϕ))},

where θ
(2)
π/3 is the increasing map from (arctan 1/3, π/2] onto (0, π/6]

satisfying
df̃ϕ,π/3

dθ
(θ

(2)
π/3(ϕ)) = 0 for any ϕ ∈ (arctan 1/3, π/2].

The determinant quotient at π/2 is represented as

D.Qϕ,π/3(π/2) = −1 − 8

1 + cotϕ
.

Then we see that the map ϕ �→D.Qϕ,π/3(π/2) is decreasing from [0, π/2]

onto [−9,−1] and we obtain

D.Qarctan 1/3,π/3(π/2) = −3.

Therefore we obtain

�Umb(Gϕ,π/3;L(π/2)) =

{
2 for ϕ ∈ (0, arctan 1/3),

0 for ϕ ∈ [arctan 1/3, π/2].

Since D.Qϕ,π/3(π/2) < 0, we obtain sign(π/2) = +.

The determinant quotients at ±θ
(2)
π/3(ϕ) for ϕ ∈ (arctan 1/3, π/2] are

represented as

D.Qϕ,π/3( ± θ
(2)
π/3(ϕ)) = −1 − 8

1 − d
(2)
π/3(ϕ)

,

where

d
(2)
π/3(ϕ) :=

cotϕ

4 cos2 θ
(2)
π/3(ϕ) − 1

.

As in Type A, we obtain

d
(2)
π/3(ϕ) = 3

4 cos2 θ
(2)
π/3(ϕ) − 3

4 cos2 θ
(2)
π/3(ϕ) − 1

.
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Therefore we see that the map ϕ �→ D.Qϕ,π/3(θ
(2)
π/3(ϕ)) is increasing from

(arctan 1/3, π/2] onto (∞,−9], and this implies

sign ( ± θ
(2)
π/3(ϕ)) = +, Umb (Gϕ,π/3;L( ± θ

(2)
π/3(ϕ))) = ∅.

We see that the type α = π/3 corresponds to Type 3 in Theorem 2.1.

Type C. α ∈ (0, π/3).

We see that fϕ,α ∈ P 3
o holds for any ϕ ∈ [0, π/2] and for any α ∈

(0, π/3), and that for any α ∈ (0, π/3), there exists the increasing map

θ
(1)
α from [0, π/2] onto [π/2, 5π/6 − α] satisfying

df̃ϕ,α
dθ

(θ(1)
α (ϕ)) = 0 for any

ϕ ∈ [0, π/2]. In addition, we see that for any α ∈ (0, π/3), there exist the

number ϕ(α) ∈ (0, π/2) and the number θ(α) ∈ (π/3−α, π/2−α) satisfying

(1) R̃ϕ,α = {L(θ
(1)
α (ϕ))} for ϕ ∈ [0, ϕ(α));

(2) R̃ϕ(α),α = {L(θ
(1)
α (ϕ(α))), L(θ(α))};

(3) R̃ϕ,α = {L(θ
(i)
α (ϕ))}3

i=1 for ϕ ∈ (ϕ(α), π/2], where θ
(2)
α (resp. θ

(3)
α ) is

the increasing(resp. decreasing) map from [ϕ(α), π/2] onto [θ(α), π/2−

α](resp. [π/6 − α, θ(α)]) satisfying
df̃ϕ,α
dθ

(θ(i)
α (ϕ)) = 0 for any ϕ ∈

[ϕ(α), π/2] and for i = 2, 3.

Proposition 4.1. A root θ(α) of fϕ(α),α is non-related.

For α ∈ (0, π/3) and for ϕ ∈ [0, π/2], we set

∆(1)
α (ϕ) := D.Qϕ,α(θ(1)

α (ϕ)).

Firstly, we want to study the determinant quotient at θ
(1)
α (ϕ).

Lemma 4.2. The following hold:

(1) For α ∈ (0, π/6),

(a) for any ϕ ∈ [0, (θ
(1)
α )−1(2π/3 − α)], ∆

(1)
α (ϕ) ∈ [−1, 0) holds,

(b) ∆
(1)
α is decreasing from [(θ

(1)
α )−1(2π/3 − α), π/2] onto [−9,−1];
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(2) For α ∈ [π/6, π/3), ∆
(1)
α is decreasing from [0, π/2] onto [−9,−1].

Proof. For α ∈ (0, π/3) and for ϕ ∈ [0, π/2], we set

d(1)
α (ϕ) := cotϕ

sin θ
(1)
α (ϕ)

sin 3(θ
(1)
α (ϕ) + α)

.

The following holds:

∆(1)
α (ϕ) = −1 − 8

1 + d
(1)
α (ϕ)

.

If α ∈ [π/6, π/3), then d
(1)
α is decreasing from [0, π/2] onto the gener-

alized interval [0,∞], and therefore ∆
(1)
α is decreasing from [0, π/2] onto

[−9,−1]. Suppose α ∈ (0, π/6). Then noticing
d2f̃ϕ,α
dθ2

(θ(1)
α (ϕ)) �= 0, we ob-

tain d
(1)
α (ϕ) ∈ [∞,−9) and ∆

(1)
α (ϕ) ∈ [−1, 0) for ϕ ∈ [0, (θ

(1)
α )−1(2π/3−α)].

It is easily seen that d
(1)
α is decreasing from [(θ

(1)
α )−1(2π/3 − α), π/2] onto

[0,∞]. Hence we have proved Lemma 4.2. �

From Lemma 4.2, we obtain

Proposition 4.3. For α ∈ (0, π/3) and for ϕ ∈ [0, π/2],

sign (θ
(1)
α (ϕ)) = + holds.

We shall prove

Lemma 4.4. For any α ∈ (0, π/3), the following hold:

(1) ϕ(α) < arctan 1/3; (2) ∆
(1)
α (ϕ(α)) ∈ (−3, 0).

Proof. For α ∈ (0, π/3) and for ϕ ∈ [arctan 1/3, π/2], �R̃ϕ,α = 3

holds. Therefore we obtain ϕ(α) < arctan 1/3. The following hold:

∣∣∣∣∣ sin θ
(1)
α (ϕ(α))

sin 3(θ
(1)
α (ϕ(α)) + α)

∣∣∣∣∣ =

√
1 − cos2 θ

(1)
α (ϕ(α))√

1 − cos2 3(θ
(1)
α (ϕ(α)) + α)

=

√
1 − 9 tan2 ϕ(α) cos2 3(θ

(1)
α (ϕ(α)) + α)√

1 − cos2 3(θ
(1)
α (ϕ(α)) + α)

> 1.
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Therefore we obtain |d(1)
α (ϕ(α))| > 3. Then by Lemma 4.2, we obtain

∆
(1)
α (ϕ(α)) ∈ (−3, 0). Hence we have proved Lemma 4.4. �

From Lemma 4.2 and from Lemma 4.4, we obtain

Proposition 4.5. For ϕ ∈ [0, ϕ(α)), �Umb (Gϕ,α;L(θ
(1)
α (ϕ))) = 2

holds.

For α ∈ (0, π/3), ϕ ∈ [ϕ(α), π/2] and for i = 2, 3, we set

∆(i)
α (ϕ) := D.Qϕ,α(θ(i)

α (ϕ)).

We need to study the determinant quotient at a root θ
(i)
α (ϕ)(i = 2, 3).

Lemma 4.6. The following hold:

(1) The map ∆
(2)
α is increasing from [ϕ(α), π/2] onto the generalized in-

terval [0,−9];

(2) For α ∈ (0, π/6], ∆
(3)
α is decreasing from [ϕ(α), π/2] onto [−9, 0];

(3) For α ∈ (π/6, π/3),

(a) ∆
(3)
α is decreasing from [ϕ(α), (θ

(3)
α )−1(0)] onto [−9, 0],

(b) ∆
(3)
α (ϕ) ∈ (3,−9] holds for ϕ ∈ ((θ

(3)
α )−1(0), π/2].

Proof. For α ∈ (0, π/3), ϕ ∈ [ϕ(α), π/2] and for i = 2, 3, we set

d(i)
α (ϕ) := cotϕ

sin θ
(i)
α (ϕ)

sin 3(θ
(i)
α (ϕ) + α)

.

Then by
df̃ϕ,α
dθ

(θ(i)
α (ϕ)) = 0, we obtain

d(i)
α (ϕ) = − tan θ

(i)
α (ϕ)

tan 3(θ
(i)
α (ϕ) + α)

.

We set

δα(θ) = − tan θ

tan 3(θ + α)
.
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We see that δα is increasing from [π/3 − α, π/2 − α] onto [∞, 0]. Noticing

d
(i)
α (ϕ(α)) = −9 for i = 2, 3, we see that d

(2)
α is increasing from [ϕ(α), π/2]

onto [−9, 0] and that d
(3)
α is decreasing from [ϕ(α), (θ

(3)
α )−1(π/3 − α)] onto

[∞,−9]. Therefore ∆
(2)
α is increasing from [ϕ(α), π/2] onto the generalized

interval [0,−9] and ∆
(3)
α is decreasing from [ϕ(α), (θ

(3)
α )−1(π/3 − α)] onto

[−1, 0]. We have already proved (1) in Lemma 4.6.

If α ∈ (0, π/6], then δα is increasing from [π/6−α, π/3−α] onto [0,∞].

Therefore d
(3)
α is decreasing from [(θ

(3)
α )−1(π/3 − α), π/2] onto [0,∞] and

∆
(3)
α is decreasing from [(θ

(3)
α )−1(π/3 − α), π/2] onto [−9,−1]. We have

already proved (2) in Lemma 4.6.

If α ∈ (π/6, π/3), then δα is increasing from [0, π/3 − α] onto [0,∞].

Therefore d
(3)
α is decreasing from [(θ

(3)
α )−1(π/3−α), (θ

(3)
α )−1(0)] onto [0,∞]

and ∆
(3)
α is decreasing from [(θ

(3)
α )−1(π/3 − α), (θ

(3)
α )−1(0)] onto [−9,−1].

There exists the negative number c
(3)
α < 0 such that δα is a map from

[π/6 − α, 0] onto [c
(3)
α , 0]. Suppose c

(3)
α �−3. Then there exists a number

θ0 ∈ (π/6 − α, 0) satisfying

tan θ0 = 3 tan 3(θ0 + α).(4.6)

If we set

F1(θ) := tan θ, F2(θ) := 3 tan 3(θ + α),

then we obtain

F1(0) = 0, F2(0) = 3 tan 3α,(4.7)

F ′
1(θ) =

1

cos2 θ
, F ′

2(θ) =
9

cos2 3(θ + α)
.(4.8)

From (4.8), we obtain

F ′
1(θ) < F ′

2(θ)(4.9)

for θ ∈ (π/6−α, 0]. From (4.7) and from (4.9), we obtain F1(θ) > F2(θ) for

any θ ∈ (π/6−α, 0], which contradicts (4.6). Therefore we obtain c
(3)
α > −3,

d
(3)
α (ϕ) ∈ (−3, 0] and ∆

(3)
α (ϕ) ∈ (3,−9] for ϕ ∈ [(θ

(3)
α )−1(0), π/2]. Hence we

have proved (3) in Lemma 4.6. �

Lemma 4.4 says ϕ(α) < arctan 1/3 for α ∈ (0, π/3). We shall compute

the value ∆
(i)
α (arctan 1/3) for α ∈ (0, π/3). By (3.3), we obtain

cos 3(θ(i)
α (arctan 1/3) + α) = − cos θ(i)

α (arctan 1/3).
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Therefore we obtain ∣∣∣∣∣ sin θ
(i)
α (arctan 1/3)

sin 3(θ
(i)
α (arctan 1/3) + α)

∣∣∣∣∣ = 1.

By (3.5), we obtain |∆(i)
α (arctan 1/3)| = 3. Therefore by Lemma 4.2 and by

Lemma 4.6, we obtain

Lemma 4.7. For any α ∈ (0, π/3), the following hold:

(1) ∆
(1)
α (arctan 1/3) = ∆

(3)
α (arctan 1/3) = −3;

(2) ∆
(2)
α (arctan 1/3) = 3.

From Lemma 4.2, Lemma 4.6 and from Lemma 4.7, we obtain

Proposition 4.8. Let ϕ(α) be as above.

(1) For ϕ ∈ [ϕ(α), arctan 1/3) and for L ∈ R̃ϕ,α, �Umb(Gϕ,α;L) = 2

holds;

(2) For ϕ ∈ [arctan 1/3, π/2], Umb(Gϕ,α) = {o} holds.

From Lemma 4.6, Lemma 4.7 and from Proposition 4.8, we obtain

Proposition 4.9. For any α ∈ (0, π/3), the following holds:

( sign (θ(2)
α (ϕ)), sign (θ(3)

α (ϕ))) =

{
(+,+) for ϕ ∈ [arctan 1/3, π/2],

(−,+) for ϕ ∈ (ϕ(α), arctan 1/3).

From Proposition 4.1, Proposition 4.3, Proposition 4.5, Proposition 4.8

and from Proposition 4.9, we see that the type α ∈ (0, π/3) corresponds to

Type 1 in Theorem 2.1 and that ϕ1 in Type 1 is equal to ϕ(α).

Hence we have proved Theorem 2.1.
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