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Preface

In this thesis we discuss two different topics — “Global solvability of the Navier-
Stokes equations in a rotating frame with spatially almost periodic data” (Part
I) and “The functional-differential equation of advanced type” (Part II). In
Part I, we consider global solvability of the Navier-Stokes equations in a rotat-
ing frame with spatially almost periodic data. Global solvability is proven by
means of techniques of fast singular oscillating limits and bootstrapping from
a global-in-time unique solution to the extended 2D-Navier-Stokes equations.
In Part II, we construct solutions to the equation f'(z) = af(\z), =z € R,
f(0) = 0 for constants A > 1 and a # 0. By our method, numerical computa-
tions can be made effectively. Although these topics look completely unrelated,
there is some common flavor. It is a substantial application of Fourier analysis
to the theory of differential equations. For this reason we put these two topics

into one thesis.
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Chapter 1

Global solvability of the |
Navier-Stokes equations in a
rotating frame with spatially
almost periodic data

abstract

We consider global solvability of the Navier-Stokes equations in a rotat-
ing frame with spatially almost periodic data. The Coriolis force appears
‘in almost all of the models of oceanography and meteorology dealing with
large-scale phenomena. To consider global solvability, we use F M, space, i.e.
Fourier preimage of the space of all finite Radon measures with no point mass
at the origin proposed by Giga, Inui, Mahalov and Matsui in 2005. Global
solvability is proven by means of techniques of fast singular oscillating lim-
its and bootstrapping from a global-in-time unique solution to the extended

2D-Navier-Stokes equations.

1.1 Introduction

One of the most important unresolved questions concerning the Navier-Stokes

equations is the global regularity and uniqueness of the solutions to the initial
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value problem. This question was posed in 1934 by Leray [30, 31] and is still
- left open for three dimensional flow. However if we pose some conditions on
initial velocity, the smooth solution exists globally-in-time. More precisely,
Kato [25], and Giga and Miyakawa [20] showed that if the initial velocity is
small enough in L™ norm, then the unique smooth solution exists globally-in-
time. This smallness condition is generalized by many authors (see [9, 21, 27,
35, 40]). In particular, by Planchon [35] and Cannone [9], this smallness of
initial data condition was interpreted by means of an oscillation property in
Besov spaces. For example, using a Besov norm instead of a Lebesgue norm is
that the condition of being small enough in a Besov space is satisfied by highly
oscillating data even if Lebesgue norm is large enough. »

- When an initial vector is close enough to a two-dimensional vector field,
the unique smooth solution exists globally-in-time (see [12, 24]).

Babin, Mahalov and Nicolaenko [4] considered global solvability of the
Navier-Stokes equations in a rotating frame with periodic initial data (see
also [3, 5, 6, 7, 32]). They proved existence on infinite intervals of regular
solutions to the 3D-Navier-Stokes equations with the Coriolis force. Chemin,
Desjardins, Gallagher and Grenier [11] derived dispersion estimates on a lin-
earized version of the 3D-Navier-Stokes equations with the Coriolis force. To
construct such estimate, they handled eigenvalues and eigenfunctions of the
Coriolis operator. Using the dispersive effect, they showed that there exists a
global-in-time unique solution to the 3D-Navier-Stokes equations with a large
Coriolis force with no smallness assumption on the initial data provided that
the initial data decays at space infinity. Although these two results resemble
each other, the mechanism is quite different. For periodic initial data there
expects no dispersive effect for regularization of the flow, although the flow

looks like two dimensional one for a large Coriolis force.

Problems concerning large-scale atmospheric and oceanic flows are known
to be dominated by rotational effects. The Coriolis force appears in almost
" all of the models of oceanography and meteorology dealing with large-scale

phenomena. For example, oceanic circulation featuring Tyhoon, Hurricane and
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Cyclone are caused by the large rotation. There is no doubt that other physical

effects are of similar significance like salinity, natural boundary conditions.

and so on. However the first step in the study of more complex model is
to understand the behavior of rotating fluids. This problem attracted many
physicists and mathematicians. See [34] for references.

Let us mention almost periodic functions. Giga, Mahalov and Nicolaenko
[19] proved existence of a local-in-time unique classical solution of the Navier-
Stokes equations (with or without the Coriolis force) when the initial velocity
is spatially almost periodic. They showed that the solutions is always spatially
almost periodic any time provided that the solution exists. This fact follows
from continuous dependence of the solution with respect to initial data in
uniform topology. Giga, Inui, Mahalov and Matsui [15] established unique
local existence for the Cauchy problem of the Navier-Stokes equations with
the Coriolis force when initial data is in F M, Fourier preimage of the space
of all finite Radon measures with no point mass at the 'origin. Some almost
periodic functions are in FM,. They also showed that the length of existence
-time-interval of mild solution is independent of the rotation speed. Giga,
Jo, Mahalov and the author [18] considered properties of the solution to the
Navier-Stokes equations with the Coriolis force in FM,. They showed that
when the initial data is almost periodic, the complex amplitude is analytic in
time. In particular, a new mode cannot be created at any positive time.

In this paper we discuss existence on long time intervals of regular solutions
to the 3D-Navier-Stokes equations in a rotating frame with spatially almost
periodic data. (It is equivalent to 3D-Navier-Stokes equations for fully three
dimensional initial data characterized by uniformly large vorticity. See [7, 23,
33] for example.) Since the initial data does not decay at space infinity, we are
unable to use dispersion estimate by [11]. '

The Cauchy problem for the 3D-Navier-Stokes equations with the Coriolis
force (NSC) are described as follows:

Q Q Q Q_ AN — o0
{&w + (v, V)u' + Qez x v™ — Av Vp*, (1.1.1)

Q __ Q —
V"U —‘07 v |t_—_0—’U0,

11



where v = v%(z,t) = (v%(z,t),v*?(,t),v*3(, t)) is the unknown velocity
vector field and p® = p®(z,t) is the unknown scalar pressure at the point
T = (71,72,73) € R® in space and time ¢ > 0 while vy = vo(z) is the given
initial velocity field. Here {2 € R is the Coriolis parameter, which is twice the
angular velocity of the rotation around the vertical unit vector es = (0,0, 1),
the kinematic viscosity coefficient in normalized by one. By x we denote the
“exterior product, and hence, the Coriolis term is represented by es X u = Ju

with the corresponding skew-symmetric 3 x 3 matrix J.
We shall give the main ideas of the proof. First, we analyze the nonlinear

term of NSC. We introduce operators

(F(o,o,o) : operator for pure two dimensional interactions,
F1,1) : skew-symmetric-catalytic operator,
F(1,1,0) : non-skew-symmetric-catalytic operator,
F(1,,1) : operator for strict three dimensional interactions,

\Fcﬂ’t : non-resonant operator,

and write NSC in the form

O = Au + Z F,(u,u) + F¥ (u,u),
pneD
where D = {((0,0,0),(1,0,1),(1,1,0), (1,1,1)}. If the term F®* is vanish-
ing, then the equations are similar to the 2D-Navier-Stokes equations. We
call such a system an extended 2D-Navier-Stokes equation (E2DNS). In fact,
the solution to E2DNS is independent of the Coriolis force. The key is to
prove global existence of a unique smooth solution to E2DNS. Babin, Mahalov
and Nlcolaenko [4] used energy inequality of E2DNS to show global unique
existence of a solution. However, a straightforward application of energy in-
equality is impossible if the initial data is almost periodic function. What
is worse, there is no good Hilbert space for almost periodic functions, so we
cannot use eigenvalues and eigenfunctions of the Coriolis operator as Chemin,
Desjardins, Gallagher and Grenier [11] did. To overcome these difficulties, we

use F'M, spaces (Fourier preimage of the space of all finite Radon measures
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with no point mass at the origin) proposed by Giga, Inui, Mahalov and Mat-
sui (see [15]). We instead employ mild solutions of E2DNS in FMj so that.
this equation turns into a linear one if we choose an appropriate frequency
set. Once the equation becomes linear, it is easy to show that the solution to
E2DNS exists globally-in-time.

Babin, Mahalov and Nicolaenko [4] handled periodic L? Sobolev spaces, and
Chemin, Desjardins, Gallagher and Grenier [11] handled L? Sobolev spaces in
R3. Thus our result is not included in such results since we use almost periodic
functions. Moreover we introduce useful decomposition to clarify the analysis
of the nonlinear term of NS, which have never been used before.

This paper is orgé,nized as follows. In section 1.2 we define function spaces
suitable for almost periodic functions and define Hélder spaces. We also define
several important operators (Riesz transforms, the Helmholtz projection and
Poincaré-Sobolev group). We recall the results in the Navier-Stokes equations
with the Coriolis force on local-in-time unique solvability and give uniqueness
result in Section 1.3. In section 1.4 we state long time solvability of the Navier-
Stokes equations with the Coriolis force. This is our main result. In Section 1.5
we state three key lemmas, extract the extended 2D-Navier-Stokes equations
from the Navier-Stokes equations with the Coriolis force, global solvability of

the extended 2D-Navier-Stokes equations and fast singular oscillating limits.

1.2 Function spaces, Riesz transforms,
the Helmholtz projection
and Poincaré-Sobolev group

In this section we shall give definition of function spaces suitable for almost
periodic functions included in BUC(R?) (Bounded uniformly continuous func-
tions) . Note that almost periodic functions in the sense of Bohr belonging to
BUC are already studied. See [8, 10] for example. To define such function
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spaces, we need the definition of frequency sets A and A(y). These sets are
different from one defined in [16, Definition 1.1.]

Definition 1.2.1. (Countable sum closed frequency set in R3.) We say that
A C R3 is countable sum closed frequency set in R3 if A is countable set in R3

and it satisfies the following equ'ality:».
A={a+b:a,be A}

Remark 1.2.2. 73, {elm1 + V2eams + eamg + esmy 1 my, -+ ,my € Z} and
{exmy + (e1 + e2v/2)ma + (ea + e3v/3)m3 : my, mg, mg € Z} are countable sum
closed frequency sets, where {e; }3_, is a standard orthogonal base in R3.

Definition 1.2.3. (Countable sum closed frequency set in R? (depending on

7).) Let
A(7) = {(n1,n9,n3) € R®: (ny,n9,n3/7) € A}

for v € R\ {0}.
‘Remark 1.2.4. Let v € R\ {0}. A(y) is a countable sum closed frequency set

in R3 if and only if A is also countable sum closed frequency set in R3.
First, we define scalar valued function spaces X0, X340 and xsAm),
Definition 1.2.5. (3D-scalar valued function spaces.) For s > 0, let
XA .= {g € BUC(R?) : g(z) = Z ane™, |lglls < oo},
- neA(y)

where

lglls == >~ (1 +In*)**|an|-

neA(y)
The infinite sum is understood in the sense of absolute uniform convergence.
The following function spaces are useful to treat Poincaré-Sobolev group which
is defined later. Let us define X’ A as follows:

XA .= {g € XA gy = 0},

Remark 1.2.6. XS’A(” is a closed subspace of X**() with the norm || - |,.
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Definition 1.2.7. (Homogeneous type spaces) Let us define homogeneous type

spaces of order s as follows:
XA = {g: (=A)*2g € XOAD | ||(=A)*?g|lp < o0} for seR.

Second, we define three-dimensional vector valued function spaces X*A()
and X0,

Definition 1.2.8. (3D-vector valued function spaces.) Let

oA {v= (vl,’U2,’U3) c (XS,A(’Y)(RS))3 :

[vlls := [lv*fls + lv?[ls + [lv?]ls < o0}

Let us define three-dimensional vector valued divergence free function spacés

as follows:

X;’A(’Y). = {’U = (’1)1”()2,\1}3) S XS’A(’Y) :
n'a; +n’a +ndad =0 for n=(n',n?n? cA(y)}.
We define x50, Xy A0 and X*A0) in the same way since the definitions
are similar to X2, X&’f,\(”) and X*=A0, Clearly, X*A0 = x> g C3

(topological direct sum).

Remark 1.2.9. XoAM x0A0) yaam ysh0) yped) - pod0) are Banach

Ned

spaces.

Let us consider the function space Xg A more precisely. It is easy to see
that this function space is a closed subspace of FM, (the Fourier preimage of
the space of all finite Radon measures with no point mass at the origin) which
is introduced in [15]. The space F M, is strictly smaller than Bgo’l as is proved
in [15, Appendix A]. Thus the space Xg AO) i strictly smaller than BUC.

Third, we define two-dimensional vector valued function spaces. To treat
the two-dimensional Navier-Stokes equations, it is convenient to set the fol-
lowing operators Qo, Q1 Of, Q3 and function spaces QhX;™, Ok X2,
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Definition 1.2.10. (Splitting vertically oscillating and non-oscillating parts. )
For u = (ul,u?,u?) € XA

Wiz)= Y de™ (j=1,2,3),

neA(y)

let Quu = (Qut, Qpu?, Qpu?) (£ =0,1) with
Quilem)= Y Al Qi)=Y e,
neA(y),n3=0 neA(y),n3#0
for j=1,2,3.
Remark 1.2.11. A direct calculation yields

. 1T
Qov’ (z1,22) = lim — ! (x4, T2, 23)dT3
. T—00 LT —_r

~and

Qv () = v () — Qou! (21, T2).

See [10] for example. |

Definition 1.2.12. (Splitting 2D-two vector and 2D-one vector parts.)
Let Qfw := (Qow!, Qow?,0) and Q3w = (Qow?, 0, 0).

" Remark 1.2.13. It is easy to see that u = (Qo+ Q1)u= (9 + Q3+ Qy)u and
that [[wlls = [|Qowlls + [[Quw]ls = [|QFwlls + | Qfwlls + | Quwlls.

Now we define two-dimensional vector valued function spaces Qf Xy, Qa5

as follows.

Definition 1.2.14. (2D-vector valued function spaces.) For s > 0, let

Qrxt = {u(z) = (v, v?) € (BUC(R?))?:

V= Y dem for =12 ol ot + ¥, < oo},
neA\{0},n3=0
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where

ls = D2 L+ nf?)ad).

nEA\{0},n3=0 ’

Let

Qb X = {v(z) = (v}, v?) € QpA -

niay +nga2 =0 for n€ A with ng=0}.

Forth, we define the inhomogeneous Holder spaces C*(R%) with order a.

Definition 1.2.15. (Inhomogeneous Hélder spaces.) For k € Z\ {0}, a €
R; \ Z4 with a < k, we define

C*(R%) = {f € BUC(RY) : |||z + || f = < oo},

1

Ifllon = sup oolGH (@)L

where
k
6@ = Y- (1) 1 sain,

Note that the norm of C* is independent of k.

Remark 1.2.16. By [29, Proposition 0.2.2], we see that

lullce = Y IV ullze + |[ullga-sss  for k= [a] + 1.
Im|<k—1

Moreover ||ul|ce = ||ul| Bg, ., Where B is the Besov scale.

y007

At the end of this section, we define discrete Riesz transforms, discrete

Helmholtz projection and discrete Poincaré-Sobolev group.
Definition 1.2.17. (Riesz transforms and the Helmholtz projection.) For
_ n-x s,A(7v) _ 1 2 3
v(z) = Z ane™* € Xy, an = (a,,a;,a;)
neA(y)\{0}
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and 1 < j,k,£ < 3, let us define R/* (Riesz transforms to the almost periodic

case) and P (The Helmholtz projection to the almost periodic case) as follows:
RIS = =3 enmnoy (W0 Inf?)aze™,
PvF =% + Z?=1 Rikyd,
Pv := (P!, Pv?, Pv?),
Remark 1.2.18. If v € X2 then Pv € X(i’;\(”.
Now we define discrete Poincaré-Sobolev group.

Definition 1.2.19. (Discrete Poincaré-Sobolev group.) Let e be a group
(called Poincaré-Sobolev group) generated by the bounded operator

—Q8 == —QPJP : )"0 - xPA0),

where J is a skew-symmetric 3 x 3 matrix giveﬂ by Ju 1= ez X u.
Remark 1.2.20. The function v, := e #*Sy; is a solution to the following lin-
earized equation: -
Owr + PJPvp =0
div v = O, Uthzo = 1p.
Definition 1.2.21. R, is the discrete vector Riesz operator defined as
Rnan = g X an for n € A(y)\ {0},
Ro(lo = 0. '

Proposition 1.2.22. ([14]). For v(z) = 33, criy\ o) €™ " € XM we can
express Poincaré-Sobolev group as follows:

e_tQS’U(.’B) — E : e;tQSaneznw’

neA()\{0}

where e %S is the discrete Poincaré-Sobolev group expressed as

Qt Ot
e ¥ 8, := cos (n_|3_|_) ay, + sin <ni—> Rl
n

" In|
Remark 1.2.23. For v € X AM the following estimate is easily obtained:

(1/3)llvlls < lle™*¥v]l, < 3Jlvlls forall ¢,QeR.
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1.3 A local-in-time unique solution to
the Navier-Stokes equations
with the Coriolis force

In this section we show existence of a local-in-time unique solution to the
Navier-Stokes equations with the Coriolis force and its properties. The exis-
tence of a local-in-time unique solution was already shown by [15, 18]. Thus
we only give a sketch of the proof. To show these results, we have to define a
mild solution and a weak solution. We also show uniqueness result in almost
periodic case. '

Applying the projection P onto solenoidal subspace to the equations (1.1.1) -
to annihilate the gradient terms Vp®, we deduce the integral equation corre-
sponding to (1.1.1):

t
v(t) = BBy 4 / et=)A=Py . (42(s) @ v(s))ds (1.3.1)

0 o
by Duhamel’s principle.

Definition 1.3.1. (A mild solution.) A solution v € C(]0, T}, X&f(7)) of (1.3.1)
is called a mild solution.

Definition 1.3.2. (A weak solution.) We call (v%,p%?) € L>(0,T :)q?, AY
S'(R? x (0,T)) a weak solution to the equations (1.1.1) on (0,7T) x R® with a
initial data vp if (v?,p%?) satisfies V - v = 0 in S’ for almost every ¢ € (0,T)

and
[ {070,000 + (96,806 + (1 07, v0(9)
¥Q<UQ(S)7€3 X ®(s)) + (p"(s), V - ‘I’(S)>}d5 = —(vo, ©(0)) (1.3.2)
for any @ € C1(]0, T] x R*)? such that (s, -) € (S(R?))? for all s & [0, T] and
®(T,-) = 0. Here (v?, ®) is the canonical pairing of v € &' and ® € S, and

(v? @ v, Vo) = z;kzl(vg’jvg’k, 0, k).
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Theorem 1.3.3. Assume that vy = ane™® € X220 Then there is
neAM\0)} 0.0

a local-in-time unique mild solution v satisfying

UQE C([0>Tvo]?x(?,f(7))> Tvo 2> sup NUQHO < 10“’00”0,

”UOHO, 0<t<Ty
0

~ where C is a positive constant independent of (2.

Moreover v = v}(z, t) is expressed as

v z,t) = Z al(t)e™®  a(t) = a, (t—0).

neA(v)\{0}

Assume that p® is a distribution in S'(R® x (0,T,,)) satisfying:

A <p9(3), V- @(s))ds =
_ /0 (W @ v®, V(s))ds + 0 /0 (V). €3 x B(s))ds.

Then the mild solution v and the distribution p® satisfy (1.3.2). Moreover
the functions 9,v?, Av?, ez x v?, (v2, V)v® and Vp® are in BUC(R®)?, and
therefore they satisfy (1.1.1) in classical sense. .

Next we state a uniqueness result. Let vy € Xg ’;\(7). If (v,p) exists and
in L*(0,T : ngm) x L=(0,T : X0A0 4 X1AM)  then the weak solution
(v, Vp?) to the equation (1.3.2) is uniquely determined and the gradient of
pressure is expressed as

3
o = Y RH*0;0M0™F + QRA2™ — R2)(1) (1.3.3)

J.k=1
in §'(R3) (for a.e. t).
Remark 1.3.4. It is easy to see that

X0 4 X1A) & {37 pee e S'(RP) :

n€A(v)
> Inllbal <o and Y || < oo}
neA(),|n|<1 neA();|n[21 ‘
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Remark 1.3.5. Since X0A0 ¢ (BUC(R?))3, any mild solution v is in
(C*((0,T,,) x R3))? for every a > 0 (see [28, Proposition 15.1] for example). -
More precisely, we have

[0 (caqrene (t) < Fa (0% zeys () ¢ > 0. (1.3.4)

for some continuous and increasing function F,, satisfying F,(0)=0.

If we impose conditions on the initial values, we can choose the pressure p
from suitable function spaces. Moreover, if we restrict the frequency set A to

73, the following remark is always satisfied without additional condition.

-Remark 1.3.6. If vy € Xg”;\(” N XA then p? € L*(0,T,, : X%™) and

p € C*((0,T,,) x R%) for any a > 0. Moreover if A = Z?, then X~1A0) ¢
XO)A(’V) '

0,0 .
Proof of Theorem 1.3.3. To prove Theorem 1.3.3 (existence of a mild solu-
tion), the following proposition is used. Its proof can be obtained by direct
calculation. Note that the case of F'M space is already obtained (see [15, 18]).
The proof is similar and therefore omitted.

Proposition 1.3.7. If v € A" then A=)y € X4 for t > 0. More
precisely, ||e2=S)y||y < ||lv|lo. Moreover, ||e!A=)y — gl — 0 (t — 0). If

v1,v2 € XOAO) | then A" WPV . (v, ® ) € X&f(v) for ¢t > 0, and

A= DPY .« (1) @ vy)l|o < 77z [villofluzlo-

By using the above proposition, we can find a local-in-time unique mild
solution to the equation (1.3.1) in C([0, T,] : X& 200). For the detail, see [15].
We can easily confirm that the mild solution v* and the distribution p® satisfy
(1.3.2) (for example, see [13, 38]). By Remark 1.3.5, we can ensure that the
functions 9,0, Av%, ez x v, (v, V)v®? and Vp? are in BUC(R?)3.

Next we show that the weak solution to the equation (1.3.2) is unique in
certain function spaces. The proof is quite similar to [26, Proof of Theorem

1]. However, for the convenience of the reader, we give the detail. According

21



to [26], Kato defined some approximated Riesz transforms. We do not need to
consider such approximation since treating Riesz transforms in X A g easy.

We first take a test function ® whose jth component is R%/@, where ¢ €
C'([0,T] x R3) is such that @(s,-) € S(R?) for 0 < s < T and @(T,-) = 0. We
have that '

/0 (O™ (5), $(s))ds =

T 3 :
/ (Z R 0,007 + Q((RA%P! — ROMWW2)(s), 3(s))ds.
0

i,j=1
Thus the expression for the pressure (1.3.3) holds and the functions v® and Vg

satisfy the following equation:
A{@%ﬂiﬂw+@W%Aﬂﬂ+ﬁwiw®fmﬁﬂw

— Q%(s), es x @(s)) + QZ:((RMUQ’1 — R50%?)(s), @e(s))_}ds
=1

= —(vo, ®(0)). (1.3.5)
Second, we take a test function of the following form: |

B(s,2) = n(s)(et=stNA+BE) L) (1) 0 < s < t+4,
0, t4+46<s<T

and - :
n(s) := / pe(s' —t)ds’,
where ¢ € (S(R%))® and p € C(R) with p > 0, suppp C (=1,1), [p =1 and

pe(s) = € 'p(s/e). ,
By using such test functions, the first term of the left hand side of (1.3.5)

is estimated as follows:
T
/ (v(s), 0,(s))ds =
0

— /T(vg(s), A®(s) + QPIPD(s)) + (v(s), et sHOEHBE) ) (5 — tjds.
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~ Since v? is in L=(0, T : Xy~) by assumption,
the function U(s) := (v%(s), et=s+)A+8) ) s in L°°([0,T]). Thus we have -

/T U(s)p(s — t)ds — (v2(1), 8B S0) (¢ - 0) a.e. t€l0,T]

by the Lebesgue differentiation theorem (see [39]). Moreover we have

T , T
/0 (v2(s), PTP®(s))ds = /O (PJ(s), B(s))ds =

(v(s), e3 x O(s)) + Z((Rmvle — R50%2)(s), ®(s))ds.

=1

Combining the above estimates, we have

» |
(W (t) — A Byy + / et=)A-PYT. (42 @ v (s)ds,p) =0 a.e. L.
0

Since ¢ € (S(R?))® can be taken arbitrarily, we have

¢
V4 (t) — By, 4 / etIA-WPY. (12 @) (s)ds=0 = (1.3.6)
o ,

for a.e. (t,z) € [0,T] x R3. We notice that v is identified with the A%AM)-
valued continuous function on (0,7 since v* € L=(0,T : X& A0)). Finally,

we shall confirm that the solution to (1.3.6) is unique. Assume that v; and vy

are solutions to the integral equation (1.3.6) in L®(0, T, X%*M) for the same

initial data and Coriolis parameter 2. Then we have

o = al®) < [ ==zl + lealolvs = valo(s)ds

< Ct2 sup (|[va(s)llo + lva(s)llo) sup flur — vallo(s),
0<s<t 0<s<t

which means that v; = vs. I
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1.4 Global solvability of the 3D Navier-Stokes
equations in a rotating frame with spa-
tially almost periodic data

In this section we state a result of global solvability of the 3D-Navier-Stokes
equations in a rotating frame with spatially almost periodic data. This is our
main result.

‘Theorem 1.4.1. Let A be a countable sum closed frequency set. There exists
aset ' CR\ {0} (depending on A) whose complement set is countable.

Let us impose the following two assumptions. ‘

(1) Take v € T.

(2) Take vy € X(g ’;\(7) such that the initial value problem for the 2D Navier-
Stokes equations admits a global-in-time unique solution in C([0, co) Q{)‘X& AG)Y
with a initial data Qhvy € Ok X} A, '

- Then for any T' > 0 there exists )y depending only on vy and T such that if
|Q| > o, then there exists a mild solution v® € c([0,T] : Xg A0 of equation
(1.1.1) with a initial data v € Xg A,

Remark 1.4.2. If QPv, is a periodic function, there exists a global-in-time
unique solution to the 2D Navier-Stokes equations in C([0, o) Qg‘Xg A00). See

Appendix.

Remark 1.4.3. If ||(—=A)~2Qhugl|o is small enough, there exists a global-in-
time unique solution to the 2D Navier-Stokes equations in C([0, c0) Q{,‘Xg, f(v)).
See [16, 17].

Proof. We use boot a strapping iargument. This technique is based on [4,
Theorem 8.2]. By key lemmas to be described in the next section, there is
w € C([0, 00) :YX(?, f(”) satisfying the following property (we call fast singular
oscillating limits):

For all € > 0, there is €y > 0 (depending only on ||vg]|o),
v () — e Bw(t)|o < e for t€[0,Th), 2> and w|—p = vy,

24



Q

where v is a local-in-time unique solution to the equation (1.1.1) described

in the previous section, and w|;—p = vy. Now let us take 7> 0.and p > 0
arbitrarily. Let M = M(||vo||,T") be such that supy.;cr |w|| = M/3. Since
lvoll < supgeier l|wl| = M/3 < M + p, there is T, such that supy;q. [|v]] <
10(M + p) by the local existence result. Note that we can improve this bound
by fast singular oscillating limits.

Now we estimate ||[v*%(T,,)]lo- There is Q) > 0,

|02 () — e®Sw(t)|o < p for 0<t<T,, Q>0

Since
[ (Tu)lo < I0%(Ton) = P00 (Tog) o + 3w(Tio)llo < M + p,
then we can extend the existencev time as follows:
v (2T ) lo < 2(M +p) for 0 <t < 2T,,.

Repeating this argument, we can say

sup [[v%(t)]lo < 2(M + p) for sufficiently large Q.

0<t<T

This is the desired estimate. il

1.5 Key lemmas

In this section we give key lemmas which are needed to prove the main result.
More precisely, we prove existence of the key function w described in the proof
of the main theorem. To show existence of the key function w, we have to
prove the following three key lemmas, extract the extended 2D-Navier-Stokes
equations(E2DNS) from the Navier-Stokes equations with the Coriolis force,
global solvability of the E2DNS and fast singular oscillating limits.
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1.5.1 Extract the extended 2D-Navier-Stokes equations
from the Navier-Stokes equations with the Corio-
lis force

To state the lemma, we need operators {F,} #6{6‘,1}3 and F2* satisfying appro-

priate conditions. The key lemma, is as follows.

Lemma 1.5.1. Let D := {(0,0,0),(1,0,1),(1,1,0),(1,1,1)}. There exist bi-
linear operators (see also Definition 1.5.13)

Fy: QX0 x g xst1AM QMX&’?('Y) for peD

and ‘
Fcﬂ,t C A 5 ystLAM X&é\(v)’
(F(o,o,o) : operator for pure two dimensional interactions,
F1,0,1) : skew-symmetric-catalytic operator,
S Flao) : ndn-skeW—symmetric—catalytic operator,
F1,1,1) : operator for strict three dimensional interactions, -
| F¥¥* : non-resonant operator,
satisfying

| | c | , ‘ ~
||et~AQmFu(Qu2U1, Qu3u2)”s < t17 (”QMUIHOHQ%W”S + ”Qﬂ?ulHSHQ/‘SUQHO) !
for p € D,
tA et ¢
e Fe™ (u, ug)lls < 75 (lunflolluzlls + [luaflslluzllo)

such that the function u := v € C([0,T,,] : Xg A0 satisfies the following

equation:

{atu == Au + ZMED QﬂlFﬂ(Ql‘Zu’ Q;L3u) + Fcﬂ’t(u7 u)? (1 5 1)

divu=0, u(0) == erp o) tne™" € Xpp "

if and only if v is a solution to the equation (1.1.1).
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Remark 1.5.2. The operator QyF(o,0,0)(Qo-, QO’) can be expressed as follows:

Q0F0,0,0)(Qou, Qou) = QP (Qou, V) Qou
= Q3P (Qu, V) Qpu + (Qpu, V) Qfu.

The operators F{y 1), F{1,01) and Fl1,1,1) can be also expressed by using explicit
formula (see Remark 1.5.12 and Remark 1.5.14 )

Remark 1.5.3. The key function w is the solution to the following equation

(see the next section):

atw = A’UJ + ZMGD\(I,LI) Qp,lF,u(Q;l,zw> Qus’U)), 1.5.2
. — S OvA(FY) : ( o )
divw =0, u(0)=1uv €&y, .

‘Remark 1.5.4. Fl1,0,1) is skew symmetric. However F{; ;o) is not skew symmet-
ric (see Appendix). Thus we cannot construct energy inequality of (1.5.2).

Proof of Lemma 1.5.1. For the sake of sirhplicity, we set v := v in the proof.
By an easy calculation, we can say that v is a solution to the equation (1.1.1)
with a initial data vy € Xg ’;\(7) if and only if the Fourier sum

D oneap\(y Cn(t)e™® = u(z,t) = e*Su(z,s)|,— satisfies the following in-

-finitely dimensional ordinary differential equations:

Oren(t) = —InfPen(t) + BR(c(t), (1)),
nicy(t) +nac(t) +nach(t) =0 for ne A(y)\ {0},
Cn(o) = Cn = Gp,

where

BY(c1,cp) := e 'SP, Z (el%¢) 1, im)ef S cy .

n=k+m

Let us now consider the nonlinear part BS} more precisely. To analyze the

nonlinear part, we need several definitions.
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Definition 1.5.5. For k,m,n € A(y) and 0,8 € {0,1}3, let
rQQ(Qt) = cos (IIZIQt) 0i(Qt) := sin (Ikl Qt)
5.
| aso =12, Y
i = (1P (1)l + (-1,
o (ct ) = R (REy (), im) R (1),

0, _ 1, _— _
\Rncn =cp, Rypcn=Rnpc,= lﬂn X Cn.

Remark 1.5.6. Since {cm(t)}men(y) is divergence free, RS and P,, are commu-

tative, we have
bikm(ck? Cm) = Panzl (Riz Cr (t)7 Zn)ngcm (t)
Since |P,|, |RS| < 1 for n € A(y) \ {0}, and Rocy = 0, we have

|bikm(ck)cm)| < In”Ck"cm' for 6€ {O’ 1}37 n’k>m € A(7)

Direct calculations yield

B (c(t), c(t)) Z Z 961052053bnkm(ck(t),cm(t))
n=k-+m §€{0,1}3
= > Y e bl (chlt), en(D))-

n=k+m §,0€{0,1}3

We now define the resonant frequency set K7 (the non-resonant frequency

set is its complementary set) and A(vy), which is applied to extract the ex-
tended 2D-Navier-Stokes equations. ’

Definition 1.5.7. (Resonant frequency set.) For o € {0,1}3, let
K7 = {(n,k,m) € (A()* : Wpm = 0}

Definition 1.5.8. (Splitting vertically oscillating and non-oscillating parts.)
For p € {0,1}3, let ‘

A = {(n,k,m) € (AM))® : (n1,n2,m3/7) € Ay,
| (K1, ko, k3 /) € Ay, (M, ma,ma/y) € Ay},
where Ag := {0} and A; := A\ {0}.
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Remark 1.5.9. It is easy to see that ‘
= U ruk)y= | Kkru U &nim)
o,ue{0,1}3 oe{0,1}3 o,u€{0,1}*
Moreover, the right hand side of each frequency set is disjoint.
Now we define operators {B,},c0.1}s and By, o
Definition 1.5.10. ( Bk and Bg g, ,.) For € {0,1}3, let
B’rl:(c]d 02) = Z Z aé,abf;km(cl,ka CQ,m):

8,0€{0,1}3 n=k+m,(n,k,m)eXLNA(Y)n

sz,ﬂ,t(cb CQ) =

| - ;
E E a5 € M mim bl (C1k, Com)-

8,0€{0,1}3 n=k+m,(n,k,m)e(K?)c
Remark 1.5.11. By Remark 1.5.6, we easily have

|Br(c1,¢2)| < > [nfleLkllca,m|

n=k+m,(n,k;m)ELNA(Y)u

< > InfleLkllczm]

n=k+m,(n,k,m)eA(Y)
for p € D and o € {0,1}3,"

|Braslcn, )| <C > nfles, k||02m| <C Z [nle, kIIle
n=k+m,(n,k,m)e(K)e n=k+m
Remark 1.5.12. The following explicit formula is important in the next section:

B,,(lLl’l) (¢17 02) = ‘ Z ‘ Z atg,o'bikm(cl,k7 CZ,m)'

é ae{O 1}3 n=k+m wnkm—O,ns,ka,m;ﬁéO‘

By the deﬁnition of B*, Bf o, and a direct calculation yields

B, )= 3 Y asee ™, (cu(t),cn(t)

n=k+m §,0€{0,1}3

— (Y B4 Bo et elt). (15.3)

pe{0,1}38
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Now we define the resonant operators F), (these are independent of 2), and

the non-resonant operator F{¢ (these are depending on ).
Definition 1.5.13. (F,, and F*.) For ui(2) := Y-, cppn oy CLn€™® and us(z) :=
2o neam\(0) Can€™ T let

u(ul,UQ) - QulF (Q,u,zuly QM3U2 Z B (01,0 )6"”0 ’

neA(y)

Q, t § :
F ul,u2 Bth Cl,CQ
n€A(y)

By (1.5.3), we can say that v is the solution to (1.1.1) with a initial data
v € Ay, A0 if and only if u(a: t) € C([0, Tvo] ng A0 satisfies the following

nonhnear equations:

Oyu = Au + Zue{0,1}3 Qm F#(Qu2u7 Qusu) + FcQ’t(u’ u)'>
divu =0, u(0)=uvp. ‘

By Remark 1.5.11, we have

C ' :
1€ Qs Fu(Qusr, Qusa)lls < 75 (1 Qs ol Qusizlls + 1| Qo | Quisizllo)
(1.5.4)
for p € {0,1}3 and
tA Ot - ¢ |
1€ Fe (un ua)lls < oz (luallolluzlls + [lualsluzllo) (1.5.5)

Recall that D := {(0,0,0),(1,0,1),(1,1,0),(1,1,1)}. To complete the
proof of the key lemma, it suffices to prove the following equality:

Y QuFiu(Quus Quew) = Y Qur Fu(Qu, Q).

ne{0,1}3 ueD

It means that it suffices to show the following four equalities:
BT(LO’l’l)(c, c) =0, B,(ll’o’o) (c,c) =0, B,(f'l’o)(c, c)=0, B,(zo’o’l)(c, c)=0
Indeed, for ¢ := {cr}reay)\{o}, the following three equalities
B,SI’O’O)(C, ¢)=0, BOY(cc)=0 and BOV(c,c)=0
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are clear. For example, if k3 = m3 = 0, n3 must be 0 since n = k+m. It

means that B7(11,0,0)(C’ ¢) = BLM(, c) and it is a contradiction. Thus our task
(0,1,1)

is to show Br"""(c,c) = 0. Since
61626% =0 for (n,k,m) € Agry and 6,05 € {0,1},

030,65, and 626767, do not have any resonant term for (n, k,m) € A1), we
see that

> > 00020t (i (£), Cm (1)) =

0€{0,1}3 n=k+m,(n,k,m)€L NA(Y)(0,1,1) ; ’
Z | Z aé,abfzkm(ck(t)a cn(t)) =0
7€{0,1}3 n=k-+m, (n,k,;m)€XTNA(Y)(0,1.1)
for 6 € {(1,0,0),(1,1,0),(1,0,1),(1,1,1),(0,1,0),(0,0,1)}. (Note that terms
65090 and 026;6}, have a resonant term and these coefficients are 1/2 and
—1/2 respectively.) A direct calculation yields Ko NA@,1,1) = 0 if ng = ks+ms,
o1 € {0,1} and (02, 03) € {(0,1),(1,0)}. Thus we have

BT(LO,l,l)(cl, o) = Z Z

g1 E{O,1},(0‘2,0‘3)6{(1,1),(0,0)} n=k+m,(n,k,m)eK°nA('y) (0,1,1)

@50 (i (t), Com(t)) + a5 ob G (c1p(t), cam (L))

1
=; X (98 v cam) — 825 et ) )
n=k+m,|k|=|m|#0,ks=—m3#0 .
Remark 1.5.14. By the similar calculation, we also have
1 .
B (er, ¢5) = 2 Z

n=k+m,|n|=|m|#0,n3=m3#0 .
(0,0,0) (1,0,1)
(bnkm (Cl,k’ Cg,m) + bnkm (cl,k'a CZ,m)

and

1
COLTSEE N

n=k-+m,|n|=|k|#0,n3=k3#0

(bg;;g;@(cl,k, eam) + B0 ¢ C2,m>).
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Now we show BY""Y) = 0. Direct calculations yield

_pOL)

nkm

(Cka Cm) = _Pn(chk: Z"’TL),Rfvn,cn’L =

+ Pr(Rick X (tm X Rmem)) — Po(im(Rick, Rmcm)) =
+ Po(cm % (ik X ) = Pp(im(Rick, Rmcm))-

On the other hand,

b (€ €m) = ~Palex X (im X ¢,)) + Po(im(c, cm)).

Since k and m are symmetric, we have

: Z »(Pn(C‘m X (ik x cg)) — Pr(ck X (im X ¢p,))) = 0,

2
n=k-+m,|k|=|m|#£0

> Pu(im(Reck, Rmcm)) =
n=k+m,|k|=|m|#0

Z P,.(i(n — k)(Rick, Rmcm)) =

n=km, [k|=m]0
- > P, (ik(RiCk, RmCm)) =
n=k-+m,[kl=|m|0 |
— Z v Pn(im(chk,Rmcm));O and also
n=k-+m,|k|=|m|0 .
> Pa(im(c,cm)) =0.
n=km, | |=|m|£0

Combining these estimates, we have the desired result.

1.5.2 Global solvability of extended 2D-Navier-Stokes
equations

i

In this subsection, we show global-in-time existence of the key function w
which is the solution to the following extended 2D-Navier-Stokes equations:
Oyw = Aw + ZpeD Qu Fu(Qupw, Quaw),
Vow=0, weo= v € g, (1.5.6)
D ={(0,0,0),(1,0,1),(1,1,0),(1,1,1)}.
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Unfortunately, we cannot construct the energy inequality of (156) To over-
come this difficulty, we choose appropriate ¥ € R and eliminate the term
F{1,1,1)- Then we can divide (1.5.6) into three good equations, the 2D-Navier-

Stokes equation and two linear equations.

Definition 1.5.15. (A set of v.) Assume that 73 = ns/, ky = ks/v, ms =
mg/’)/, n = (’I’Ll,nz,’ﬂg), ]5 - (kl,kg,iég) and m = (ml,mg,ﬁ’bg)‘ (Note that
fi,k,7 € A\ {0} and n, k,m € A(y).) Let us define

Paa(0) = nPlkPIm® T wfem
ce{0,1}3
and
I'i={yeR\{0}:Py;.(7)#0 forall @,k meA}.

Remark 1.5.16. By an easy calculation, P, (7) is a polynomlal of order 8 for
fixed 7i,k,7 € A\ {0}. Thus the complement set of I is countable (see [4,
Lemma 3.2.]).

Remark 1.5.17. If v € T, then U,¢(0,133K7 = 0 for (n, k,m) € A(v)@,1,1). Thus
Fu,1,1)(u,u) = 0 by Remark 1.5.12.

The key lemma is as follows.

Lemma 1.5.18. Let us impose the following two assumptions.

(1) Take v € T

(2) Take vy € &, A such that the initial value problem for the 2D Navier-
Stokes equations admits a global-in-time unique solution in C([0, 00) nggf A0y
with a initial data QPv, € QSX(S A,

Then there exist a global-in-time unique solution w to the equation (1.5.6)
such that ,

w € C([0,00) : Xg™).

Proof. Let v € I'. By Remark 1.5.2 and Remark 1.5.17, the equation (1.5.6)
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can be divided into three parts as follows:

8.Qfw = AQhw + OIP(Qhw, V) Q. s
V- Qfw =0, Qbwlio = Qhvy € QhAT, N
- o (1.5.8)
Qdwli=o = Qduo € Xy,
and :
01w = AQyw + Q1F(101)(Qow, Q1w) + Q1 F1.1,0) (1w, Qow), (1.5.9)
V- Qw=0, Quw|i= = Qg € X(?,f(w. -

By the assumption, there exists a global-in-time unique solution Qhw to
the equation (1.5.7). Since the equation (1.5.8) is linear and by (1.5.4), there
exists a global-in-time unique solution Qjw to the equation (1.5.8),

Q3w € C([0,00) : XTAM).

The equation (1.5.9) is linear and by (1.5.4), we can also obtain a global-in-time

unique solution Q;w to the equation (1.5.9),
Q;w € C([0, oo). : X(?’Q,A(v)).

Combining these estimates, we obtain global-in-time existence of the key func-
tion w. N

1.5.3 Fast singular oscillating limits

~ In this subsection, we show that the solution u® to the equation (2.2.2) is
close enough (in some topology) to the solution w to the equation (1.5.6) if
the Coriolis parameter €2 is large enough.

The key lemma is as follows.

Lemma 1.5.19. Let v% € Xg ’;\(7) be a local-in-time unique solution to the
equation (1.1.1), and w € Xg ’:(7) be a global-in-time unique solution to the
equation (1.5.6). For all € > 0, there is { s.t. ‘

[|v? — eBSwllo(t) <e for 0<t<T,, >0,

‘where T, is depending only on ||vgl|o, independent of 2.
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Proof. Let u := e ™y, The idea of the proof is based on [4, Theorem 4.2].
Let us define a frequency set P,A(7) consist of finite element. Forn=1,2,---,
let

PuA(Y) = {(n1,n2,n3) € R3: n1,ng € Py, ng/y € PyA},

where PyA = {nqy, -+ ,n, € A i # gk #0),|n;| <n(G=1,---,n)}
Let us define almost periodic functions consist of the frequency set P,A(7).

For u(z) = 3, cp(y) Cn€™, let

Pou(z) == uy(zx) = Z cne™?,
‘ n€PrA(v) v
Remark 1.5.20. Let s; > s >0, 51— so = 5. For u € X2 we easily have
lun = ulls, = 0 (7 — 00) and Jluylls, < A +77)luglls, < (1 +0%)?|[ulls,-

To prove Lemma 1.5.19, we need to define the following operators be,m
and F* derived from BS g, and F* respectively.
Definition 1.5.21. Let ,
Bioi= D > e,

1Quw
6,0€{0,1}3 n=k+m,(n,k,m)e(Ko)e ~  nkm

and

| F e Y Brge
' ; neA(y)

Remark 1.5.22. We see that

B (PaF (ug(t), up(£)) ) = Py F g (), (1))
o PoER Byt (t), (1)) + PyF (g (1), Betn(1),

B1(n)

(1472 ol

”PnFcQ’t(umun)”O <

and
Bi(n)

m”unﬂg

for 0 <t < Ty, where B1(n) := max{|w3,,|™* : n, k,m € P,A(v)}.

||etAPnFcQ’t(umun)||0 <
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Now we define the function y as follovvs:

y? = (u = w) = FPYug,uf), y(0) = F2M(ug(0),uy (0)).
By using Remaerk 1.5.22 and Lemma 1.5.23 which is given later, we have
lu® — wllo < 1Py(u® = w)lo + (T = Pp)(u® = w)lo
< NP (i, un)llo + lymllo + (= Py) (u® = w)lo
< 46:(n
B (1 1 8,2 ol

+C(&@gﬂﬁ+mwwu—ﬂwﬂ0

+20[|(Z = Py)vollo,

where [ is the identity operator and

Ba(n, @) = Bu(m)(1 +n*)*(1 + o).

First we take n sufficiently large (depending only on ||v||, independent of ),
and then we take Q) sufficiently large (depending on n and ||v0]|) we have the
desired result. il

Lemma 1.5.23. Let 3 := (u®? — w) — F&(uf,u) and By(n,z) := Bi(n)(1 +
n?)32(1 + z®). The following inequality holds:

195l < € (220000 4 ooz - 2l

for 0 <t < T,,,, where T, is depending only on ||vg||o-

Proof. Let F := )" ueD F),. Recall that the function u? and w is the solution
to the following equations:

Ouf? = Auf + F(us, uf) + FH(u® u®),
V-ult =0, ulmog =vp € Xg’f(v),

\ and

] Gw = Aw + F(w, w),
01\(7)

V-w=0, wl=o = vo € Ay,
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A direct calculation yields that the function y® satisfies the following equa-
tion:

6

Oy — Aysl — 2=>"Ej,
A

where )

L(u%))wﬂ)y?? = P’ﬂ (F< 'q)yﬂ) + F(yf?aw??))

Ey =Py (F(u?,u® — uf) + F(u® — ul, u®)),

Ey = _Pn( (wvw wﬂ) + F(w w777w77))

2 E; IZP (Fﬂt( Q uft — Q)+FQ,t( UQ uf‘ll))

E =P, (Fﬂt(atu,,, uf) + E2(y ,?,atun)),

E5 _AP FQt( 7?, ,’?)

kE6 = L(un’wﬂ)P ngt( 572’ 572

Note that by Remark 1.5.22, we see that

=00 (PoF 2 (ug(8), un(®)) ) + PoF (g (2), (1)) = B

and Ej includes P,F%t(uy(t), u,(t)). Moreover, these operators satisfy the
following estimates:

(lle L (g, wo)ugllo < (C/872) (1o + lwlo)lyalo

e Eyflo < (C/12)uo]lu® — u],,

e By lo < (C/2)wllollwn, — wllo,

e Eylly < (C/A72)[uof[u® — ullo,

e Eallo < (Bu(m)/(#/20)) (1 + 72 ([u? 3 + [u®3),
e Esllo < (B1(n)/(£/2)) (1 + 72)%/2||u®|2,

[l Egllo < (C/tY2)([u®llo + lwllo) 282 (1 + n2)/2 [u3

by (1.5.4), (1.5.5), Remark 1.5.20, Remark 1.5.22 and the following inequality:

100 llo < Augllo + P4V - (u® @ u?)]lo |
< (@40l + (1 + 1) [u®|3.

By the above estimates and the definition of (s, we have

S e, Io< 7 oz (2l s ool = Punl)

j=1
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for 0 <t < T,,. Thus by usual argument, we have the following estimate

pi(n
sup [u1o(6) < 22 1 4 5212 3+
0<t< Ty

/2 Pa(n, ||v
or sup {2lololloe) + 2L 1 3junfol 1 = 2ol .
) 0<t<Tx
where T, = (1/(4C|vl|o))? (depending only on ||vgllo). We set Ty, as minimal
value compare T}, with locally existence time described in Theorem 1.3.3. We

have

Il < 2( 2 g+ 2L a7 = P,y

for 0 <t < T,,. This is the desired estimate.

1.6 Appendix

1.6.1 A global-in-time unique solution to the 2D-Navier-
Stokes equations

In this section, we show global-in-time existence of a unique solution to the

following two dimensional Navier-Stokes equations with a periodic initial data:
0, Qfw = AQpw + QP (Qw, V) Qfw,
V- Qhw=0, '

0,A
Qfwli—o = Qvo(z) € A&y,
Qhuy(x) is a periodic function.

(1.6.1)

To show existence of a global-in-time unique solution, we need a priori estimate
described in [37] (see also [22, 36]). According to [37], they established a
priori estimate in BUC, bounded uniformly continuous functions. We use its

estimate, (1.3.4) and generalized Bernstein’s theorem.

Lemma 1.6.1. There is a global-in-time unique solution (Q}w, Vp) to the
equation (1.6.1) with Op = 8, Y5 ,_; R7*Qhw! Qfut,

Qrw € C([0, 00), Qb AD).
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Proof. Since the initial data is a periodic function, we can apply generalized
Bernstein’s theorem which is given at the end of this subsection. (For the
classical Bernstein’s theorem, see [2] for example. However it describes only

one-dimensional case. Thus we cannot apply its estimate.) By [37], we have
195w (t)l|z= < C1]| Qpw(e)l|z exp{Cat|lrot Qfuw(e)||z}

for t > € > 0. Note that the initial data is in X(;)”GAW) C (BUC)3. By (1.3.4)

and by generalized Bernstein’s theorem (see Lemma 1.6.2), we have

|Qbwlly < CllQulier < OF, (| Qu(®)lz=), >0

for « € Ry \ Z,, a > 1. By these estimates, we can easily obtain a global—ln—

time solution. N

Lemma 1.6.2. (Generalized Bernstein’s theorem.) Let D C R be a countable
set satisfying D3_ oo Do eeq 1134 |DF[MY? /5N < oo, where

DY i={reD:5" < |\ k| <5 MKy, -, Agka > 0}

for £ = (k1,--+,ka) € {=1,1}% Let f(2) 1= 3 \cp\(o) A€™7 be a almost
periodic function in C*(R?) (a > d/2). Then we have

> el < Cliflice,
AeD\{0} ’

where C is a positive constant depending only on a.

Remark. If D = Z¢, the condition D Ne—oo 2one{-11}d |D% |12 /5N < oo
is automatically satisfied.

Proof. Recall that

zkj( ) 1 f (@ + jh).

Jj=0

A direct calculation yields

GH(1)) = (20 (sin ™12 ) fo)
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We now set hy :=7/(6-5V).
By the Parseval’s equality for the almost periodic case (see [8, 10]), we have

2
i 5 / G () (@)

> 92k _hy(A- k) * 25 9% 1\ * 2
> Z sin ———— leal” > 3 Z leal?,
XeD%, AeD%
where B, := {z € R?: |z| < r}. Therefore we have
D lal= 2 > D el

AeD\{0} N=—o00 ke{—1,1}¢ AeD%;
1/2

Yo > | Xl DAY

N=—o00 ge{-1,1}¢ \AeD}

oo 1/2
> Y (tm gy [ iGha@ra) Dy
B N
N=—o00 re{-1,1}4
< C||Fce Z Y. DRIV
- N=—ooke{-1,1}4
Since |hy|* < C/5N*, we have 3o >0, o0 4 1y |hN| | D% |2 < oo
Thus we complete the proof. il ‘

1.6.2 Skew-symmetry of key operators

Let us consider the operators F{1,1) and F{; ;) more precisely. We point out

that Fiy0,1) is skew symmetric. However F ;) is not skew symmetric.

Lemma 1.6.3. There exists at least one periodic (almost periodic) function

w € C* with div w = 0 satisfying
<F(1y1)0) (w7 w)) w*> # 07 : (1‘6.2)

where w* is the conjugate function of w.
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Remark 1.6.4. For all w € ngm, it is easy to see that (Fi10,1)(w,w),w*) = 0.
See [4, Theorem 5.3] for example.

Proof. Let us set the function w as follows:
U}(CL’) — C/\lez)q'z + C}\zezkzw + C>\3ez)\3-z 4 C)\le—z)\l'z + Cize—zx\zfc + c)\se—z)\yz’
where

A = (—=dy, —da, —d3), Ay = (—dy, —dz,d3), A3 = (2dy,2d,,0),
ey = €y = (d2, —d1,0), cx, = (da +ida, —dy + ds + i(—dy + d3), do + id3)

for di,ds,ds € R\ {0}. Note that the function w satisfy divergence free
condition and |A;| = |A2| # |As]. Since ¢, = ¢, for n = A\, A3, Remark 1.5.14,

and (cy,,A3) = 0, we have

Z Z <b£3<;2;0) (Cks Cm), Cn) =

n€A(y) —n=k-+m,|n|=|k|£0,n3=m3#0
(C)\m i)\3)(C)\3, c)q) + (C)\l ’ 7')\3) (C>\37 C)\g)
- (0:27 7:)\3)(0)\3, C)\l) - (c)\m 7:)‘3)(C>\3 ) 632’)

= 2i(Im cy,, 1A3)(Crg, Cry) ='—4d2d3(d% + d%)

Since

1

(R—M@\s?CM) ()‘1 X C>\1,C)\1) = _W(CADAI X c>\1) = 07

_ 1
| A1l

we also have

oS (e em),ea) =

n€A(y) —n=k+m,|n|=|k|
(RasCag5 1A3) (R -2, Cx5, Ca1) + (RarCay, 1A3) (R_AyCa, €, )

- (R—Azciy Z.’\3)(7?0\1 Chs» C)\l) - (R'—)\l Ch1s i)‘3)(R>\26>\37 C:Q) |
= 27;(7?,)\10)\1,7:)\3)(7-\’,_)\20)\3, Im CAg)
= 4(dfd3 + dgdg)(dzdg + (d% + d3)dy).
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Thus we cah say that the function w satisfies (1.6.2) for some d;,d, and

ds. Tt means that the operator F{; 1) is not skew-symmetric. -
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equations
of advanced type.
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Chapter 2

The functional-differential
equation of advanced type

abstract

Solutions to the equation

{f’(m) —af(M\z), zE€R,
£(0) =0,

are constructed for constants A > 1 and a # 0. The solutions are infinitely dif-
ferentiable and have some symmetry. By our method, numerical computations

can be made effectively.

2.1 Introduction

The purpose of this chapter is to construct non-trivial solutions to the functional-

differential equation

f(0) =0,

for constants A > 1 and a # 0. Note that the equation (2.1.1) is of the
advanced type only if z > 0. Our solutions are infinitely differentiable on R.

{f'(x) =af(Ar), z€R=(-o0, +§°)’ (2.1.1)

L
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Moreover, if A > 2, then the solution f is bounded and has an infinite number
of intervals I such that f(z) =0for z € I.

In practical applications equation (2.1.1) arises in the study of electrical
transmission lines of electrical failway systems [3, 4]. Frederickson [1, 2] (1971)

investigated functional-differential equations of advanced type
fi(x) = af(Mz) + Af(z), >0, | (2.1.2)

for A > 1, and proved several properties of solutions. After his works, Kato |
and McLeod [5] (1971) and Kato [6] (1972) studied the asymptotic behavior
of solutions of (2.1.2) as z — oco. Unfortunately, the solutions obtained by
Theorem 2.2.3 in this paper do not decay at x — oo, therefore they do not
satisfy the asymptotic behavior expected in [5] (Theorem 10 (ii)).
Frederickson [1] obtained a global existence for the non-trivial solutions to

equations
f'@) =F(f(2z)), z€R,

where F is an odd, continuous function with F(s) > 0 for s > 0. His proof is
based on the Schauder fixed point theorem. He also showed that the absolute
value of the solution |f(x)| is periodic for > 0. In [2], he also considered the

equations ;
f'(z) = af(Az) + bf(2),

where a, b € C and A > 1, and derived a global existence theorem. Further-
more, solutions are given of the form of a Dirichlet series

0(,6) = 3 ce™™, R(B2) <0,

neEZ

with some parameter § € C. In the case of b = 0 and 8 = i, the solution is
analytic in the upper half plane {z;$z > 0} and continuous on {z; 3z > 0}.
From his result it follows that our solutions of (2.1.1) cannot be real analytic.

Heard [7] (1973) described solutions of (2.1.1) in the form of integrals ex-

plicitly. However, he did not give the original shapes of solutions.
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Augustynowicz, Leszczynski and Walter [8] (2003) considered the following
equations related to (2.1.1):

{f'<x>=<f<Aw>>”*, z € [0,+00) with A>1, (2.1.3)

f(o) = fo-

In the case f; = 0, there is at least one non-trivial positive solution. For some
A > 1 it can be analytic, moreover for the case A = 2 the equation (2.1.3)
admits infinitely many analytic solutions. |

Recently, in [9] the author constructed solutions of (2.1.1) with A = 2.
In this paper we construct solutions of (2.1.1) by another approach based on
the Fourier transform and special sequences of numbers given by (2.2.4) and
(2.2.5).

This paper is organized as follows. We state the main theorem (Theo-
rem 2.2.3) in Section 2.2 and illustrate the shape of solutions in Section 2.3.
We also clarify the importance of parameter A\. We prove lemmas in Section 2.4
and prove the main theorem in Section 2.5.

2.2 Main results

To overcome the difficulties in constructing the solutions to (2.1.1) we apply to
the relationship between the Fourier transform and the dilation. Furthermore,
this method allows us to demonstrate the shape of solutions by numerical
computation.

Let A > 1. If f is a solution of the equation

{f/(x) = \f(A\z), z€R, - (22.1)

£(0) =0,

then f(az/)?) is a solution of the equation (2.1.1). We now consider the
equation (2.2.1).
First, we state two lemmas, whose proofs will be given in Section 2.4. Before

stating lemmas, we recall the definitions of Fourier transform, its inverse and
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the sinc function:

f©) = 710 = [ f@e = ds, FUAE = o [ f@ea,

and

cincé = {jmwé)/(ws), ?fg

Lemma 2.2.1. The product
HS]HC (m , § eR
k=1

- converges pointwisely and in L*(R) for any A > 1.

Lemma 2.2.2. Let A > 1, and let

wi=FU), U(g) ‘= exp (_2(TZ§—T)) E[lsinc ( > /\iw> . (222

Then u has the following properties:

u € C*(R), ,
u(z) > 0 forz € (0,%) , u(x) =0 forz ¢ (0,%) ,
u(z) = u(l/( 1)~ 2),

/Ru(x) dzr =1,

W (z) = N2u(Az) for € [o min (i A(Al )>] . (2.2.3)

Secondly, we define sequences of numbers {n;}%2; and {yx}$2; as follows:

and

ny =0, ng=1, ,
Nok—-1 = ]., Nok = O,‘ if ng = 1 (k Z 2), (224)
Nok—1 = O, Nor = ]., if ng =0 (k > 2),
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and

ve=Y CeX7™', k=123, (2.2.5)
=1

where Cy,; € {0, 1}» (1=1,2,3,--) are coefficients of the binary system such
that

k—1=> Cu27™, k=1,23.
. 1=1 .

Then we have the following relations:

(~1yees = (1), gl
{<—1>-<—1>n2k=<—1>nk, F=LB3 e, (229

o
yak-1/A = Y, k=1,2,3,- (2.2.7)
Yor/ A =y + 1/,
and
e =N if k—1>2, j=0,1,2,---. ' (2.2.8)

Hence limy, .o, yx = 0o since A > 1. If X > 2, then y; is strictly increasing. For

example,
{ne}22, ={0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0--- },

{ye}22, ={0,1,2,3,4,5,6,7,8,9,10,11,12,- -+ } for A = 2,
{we}s2, = {0,1,4,5,16,17,20, 21,64, 65, 68, 69, 80, - - - } for \ = 4,

359 13 15 19 27 35 39 47 45
o Qg1 - S 2222 f —3/9.
{yk}k=1 {0,1,2,2’4’474,4,8’87878’8’ } or A 3/2
Our main result is the following:
"Theorem 2.2.3. Let A > 1. Then
fl@)=> (=)™ u(z — ) (2.2.9)
‘ k=1

satisfies (2.2.1), where u, {nx}2, and {yg},;“;l are as in (2.2.2), (2.2.4) and
(2.2.5), respectively. The solution f is in C*(R), non-decay at x — oo and
f(z) =0 for x < 0. Moreover, if A > 2, then f is bounded.
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Remark 2.2.1. (i) The function f is well-defined, sinc’e the support of u is
[0,1/(A —1)] and limy_,c yx, = 0o. Indeed, by (2.2.8) we have

27

flz) = Z(—l)”’“u(x —yg) for =z c [0,X], =0, 1-,2, o (2.2.10) |
k=1

(ii) If A = 2, then {z > 0: f(z) = 0} = {1,2,3,---}. If A\ > 2, then
{z >0: f(z) =0} = UX, [k + 1/(A = 1), yxs1] and its measure is infinite,
since 1/(A — 1) <1 <ypy1— Y, k=1,2,3,--- (see Fig. 2.2 and Fig. 2.3).

(iii) A constant times f is also a solution.

2.3 Examples

For A = 4,2,3/2, the graphs of the functions u(z) of Theorem 2.2.3 are in
Fig. 2.1. We get the numerical data of u(z) by using the operator T in (2.4.1)
or (2.4.2). For A =4,3,2,31/16,15/8,7/4,3/2,5/4, the graphs of the functions
f(z) of Theorem 2.2.3 are in Fig. 2.2 — 2.9, respectively.

4 2 1.5

4 R ‘ 1.25
3 1.5
1

2 1} 0.75
0.5

1 0.5
0.25

0.05 0.1 0.15 0.2 0.25 0.3 0.2 0.4 0.6 0.8 1 0.5 1 1.5 2

u(z) for A =4 u(z) for A\ =2 u(z) for \ = 3/2

Figure 2.1: u(x)

2.4 Proof of Lemmas

Proof of Lemma 2.2.1. Let
Pr(¢) = ﬁsinc ¢ .
¢ Pl 2k
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, Figure 2.2: f’(a:) = 42 f(4x)
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Figure 2.3: f'(z) = 3%f(3x)

Figure 2.4: f'(z) = 22f(2z)

)AL /\/\/\/\ M
S WF W WS VE VY

Figure 2.5: f’(x) = (31/16)2f(31x/16)
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Figure 2.6: f'(z) = (15/8)%f(15x/8)

Figure 2.7: f'(z) = (7/4)2f(7x/4)
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Figure 2.8: f'(z) = (3/2)2f(3z/2)
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-1} 2\/6w \J?

Figure 2.9: f'(z) = (5/4)%f (5x/4)
We note that there exist constants v > 0 and C > 0 such that

exp (—C|¢]) < sinc (%) <1 forall|¢| <n.

It follows that, for every £ and m,

[e%e) 1 m 1 . ’
exp (—Clél > ;7;) < exp (—Clél > F) SPPE) <1 forall €] <Xy
k=¢ k=¢

Since Pj*(§) is monotone decreasing with respect to m, P;"(§) converges as
m — oo for all |£] < A\Yy. Hence P/(€) converges as m — oo for all [£] < Ay,
¢=1,2,3,---. Let '

PP(¢) = lim P(¢) = [ sinc (2—5;) , £€R
) k=1

m—00

For m > 2, we have

|P1m(§)| = |sinc (%) sinc (2)\£27r) .. .sinc (2/\§”7r>‘
< max (1, 2%”222” ) € L'(R).
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- By Lebesgue’s convergence theorem, we have P® — P in L'(R).
To prove Lemma 2.2.2, we define an operator T : L'(R) — L!(R) as follows:

To(z) = A (X[o,1y * U) (Az),

where x(o1) be the characteristic function of the interval [0,1]. Then T is
bounded on L!(R). Let

X = {v € L'(R) : v(z) >0, suppv C [0,1/(A —1)],

Cu(@) =v(1/(A=1) — x),Av(x)dw _ 1}.

Then Tv € X for v € X and X is a closed subset of L!(R). Moreover, for
v € X we have that '

( Az 1
)\/ v(t) dt, x € [O, —] ,
0 A
L 11 ] |
A v(t) dt, z e |-, ,
Tv(z) = Jre1 ) <)\ AA-1) if 1<i<2,
~ 1/(A-1) | ] 1
)\/M_l v(t) dt, xe(A()\—l)’)\—l]’
L0 otherwise,

(2.4. 1)
and that

f/\/)”‘v(t)dt, z € [0, A(Al—l)]’

1/(A-1) , 1 1

1/(A-1) 1 1
)\/}\ U(t) dt, WS (X,m] y

z—1

L0 otherwise,

Therefore, if u € X and u = Tu, then u’satisﬁes'(2.2.3).
Proof of Lemma 2.2.2. We prove that u € X N C*®(R) and u = Tu. Let
w = Xo,- Then Tw(z) = Mw * v)(Az). Hence

FIT](€) = w(E/NE/N), (€)= e */*sinc(€/(2m)).
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From the equation
FITH)(€) = w(E/N)FIT*](E/N),

it follows that
FIT™)( (Hw £/ ) (/2™
= (H exp (—i€/(2)*)) sinc(¢/ (2>\’°7r))) 0(&/A™)
—exp ( 53 A,c) (ﬁ sinc(s/@w))) (/™).
From ||| < ||v||z: = #(0) = 1 and the continuity of 9, it follows that
exp ( Z )\k) (€/A™)

exp (——g-kﬁ;%)v E/A™) — ex’p( 2(;5 1)) as m — oo.

From Lemma 2.2.1 we have that, for all v € X,

FIT™(€) — exp <—2(—;§T)> PRE) = () as m—oo,  (243)

pointwise and in L*(R). Therefore, T™v — wu uniformly, and so in L'(R).
Since X is closed in L*(R) and T is bounded on L}(R), v is in X and u = Tu.
Moreover, we have that

€"0(6)] = ["PR()] < |E P (6)] € LU(R),  for every n =0,1,2, -

This establishes v € C*(R). If we assume that u(zy) = 0 for some z, €
(O, e 1)] then, using u = Tu, v > 0 and (2.4.1) or (2.4.2), we have u = 0
in contradiction to [;u(z)dr = 1. Therefore we have u(z) > 0 for z €

0,1/(A = 1)).
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2.5 Proof of the main result

Let u be as in (2.2.2). It is clear that u/(z) = Mu(Az) for z € (—00,0]. Since
u satisfies (2.2.3), it can be extended uniquely to the right (increasing value
of ) by using (2.2.1). This will be the solution f in Theorem 2.2.3. Actually,
we can prove that v

1
u(z) = f(x) for T € [O,min (%, m)] , (2.5.1)

and that .
fl(z) = f(A\x) for z€R. (2.5.2)
The equation (2.5.1) follows from (2.2.10) with j = 0. Let

27

fi(z) = Z(—l)"’“u(w —u), 7=0,1,2,-

k=1
Then we have by (2.2.10) that
flz)= fi(x) for z€[0,N], 7=0,1,2,---.
To prove (2.5.2) we show that v
| fi'(z) = Azfj+1()\ap) for z€eR, j=1,2,3---. (2.5.3)
Then we have that '

() = fi'(x) = X2 f1(0x) = A2 f(\z) for z €0, N, §=1,2,3,;-

Let - ' '
P (€) = [ [ sine (Ef’“—ﬂ) , 0=1,2.
k=t
Then |
PR(E/X) = P°().
From the equations
Flu(- — ye)(§) = (&) exp (—iyis)

~exp (‘TA%) P()exp (—z‘ék&i ,
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and

i€ sinc (%) =A <exp (%) fexp (—%) )-,

" it follows that

FL171(€) =i€ FI£;1(€)

< (1-ew (—f)) () é—n“k e (-
Chexp (—Z—A@Zf_—l)) PR(e)

x (Z(—l)n’“ exp (—igr€) = > _(=1)™ exp (—iyk§ - %)) :

By the relations (2.2.6) and (2.2.7) we have
AN =hexp (g0 ) PO

| el — 1Yor—1§ z ok 1Yoxé
X Z(—l) exp ( == + Z(—l) exp | ——
k=1

k=1

=Aexp <— 22(,\5/_Ai)> Pro(g/A) ;(—1)"’“ exp (—iyké/A)

=AF(fial(€/2)
=NFLfia(A)](€)-
- This establishes (2‘5.3)7
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