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A Limat Theorem for Weyl Transformation in
Infinite- Dimensional Torus and Central Limit

Theorem for Correlated Multiple Wiener Integrals

By Hiroshi SuciTA and Satoshi TAKANOBU

Abstract. We show that under many of the probabilities on T,
infinite-dimensional torus, a random system (1/vN Zf;l flzi+pay))
converges to a centered Gaussian system whose covariance is deter-
mined only by the distribution of (c;)$2, over T. Moreover we show
the convergence of a system of symmetric statistics to that of corre-
lated multiple Wiener integrals defined by the Gaussian system.

Also we study the central limit theorem for a sequence of the cor-
related multiple Wiener integrals.

0. Introduction and Notation

We study a limit theorem for a random system of Weyl transformation
in infinite-dimensional torus T.

In the previous paper [16], taking infinite-dimensional Lebesgue proba-
bility P*° as underlying probability on T*, we showed that on (T, P)

=z

<\/_1N ; flai + 10041‘)>]D€Z’f€cﬁ2

f.d.
1 =& (1@ N
(0.1) ( (f))pez,fe% as N — oo,

if and only if o = (a1, ,...) € TS, ie., a is uniformly distributed over
T. (We expressed this phenomenon by saying that the disappearance of
dependency happens.) Here CLy is the totality of square integrable real
functions on T with [ f(z)dz =0, ¢ L 2 means the convergence in finite
dimensional distribution, I (7’)( f) is the Wiener integral of f with respect
to B®) and {B® = (B®)(t))o<i<1}pez is a sequence of independent 1-
dimensional Brownian motions starting at 0. Moreover this was generalized
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to the convergence of a system of symmetric statistics to that of multiple
Wiener integrals, i.e.,

(K" X bl +poi, ., +pai,)

1<i1 < <in <N

0.2) <% (

pEZhECSLY

L@ (p

= N .
arli”( ))pez,hecszg as T eo

Here I )(h) is the n-ple Wiener integral of h € CSLy (for which see (0.7)
below) with respect to B®).

In the present paper we take, as underlying probability, product proba-
bility and generally absolutely continuous one relative to it. When a product
probability g is mostly dominated by P, i.e., the singular part of g with
respect to P is small in a certain sense, we show that on any absolutely
continuous probability space relative to pu,

N
(ﬁ ; flai + pai))peZ,feC(']I')ﬂCEQ

(0.3) fd

as N — oo,

(p)
(I (f))peZ,feC(’]T)ﬂC[lg

if and only if o € Ty, and that for general o € T, chosen a subsequence
{Nm}5°_; of {1,2,3,...} and a probability u on T so that a € T n
(for which see (0.8) below), the convergence (0.3) holds by replacing {N i
and (I®)(f)) by {N,,} and (I®)(f; 1)), respectively, where (I%)(f;p)) is a
centered, correlated Gaussian system (cf. (1.1)). For details, see Theorem

1.2. For this reason one may say that under many of the probabilities on T

N
a random system (ﬁ > f(xi+pai))pez, rec(Tnce, converges to a centered
i=1

Gaussian system whose covariance is determined only by the distribution of
(a1,a9,...) over T.

We further improve the convergence (0.2) in the following way: In case
the p above satisfies some additional conditions and « € T;’;’{ Ny, }» OD any
absolutely continuous probability space relative to u

1 n . . . .
((ﬁ) ‘ Z h(szl + PGy TG, + paln))pGZ,hECSL‘,g
1<i1 <+ <in <N,

£.d,
04) == (iﬂf’) h; ) — 00,
(0-4) il (i 1) peZhecscy o
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where I,(lp )(-;,u) is the m-ple multiple Wiener integral with respect to
I®)(.; ). See Theorem 2.1.

Next we study the central limit theorem (abbr. CLT) for a sequence
{L(f )( ;i 1) }p2q- For general yu(dx), the sequence is correlated in p, but when
u(dx) is the Lebesgue measure dzx, it is independent. So it is expected
that if p(dz) is not very far from dz in some sense, then the dependence of

{L(lp)(-; 1)} 21 will be not very large, so that the CLT for {L(lp)(-; ) }py must
hold. Indeed, when u(dz) is absolutely continuous relative to dz, and its

density is continuous and positive, we show that for any non-zero h € CSLY,
P

# Zl I )(h; p) converges to a nondegenerate Gaussian as P — oo. See
P

Theorem 3.3.

In Section 4, combining this with the convergence (0.4), we present a jus-
tification of the claim of Sobol’ et al, by which our study in [16] was inspired.
In the last section, related topics on the disappearance of dependency are
introduced.

Let us here explain the notation used in this paper.

Let T 2 [0,1) be the 1-dimensional torus and P(dx) = dx the Lebesgue
measure on it. For m =1,2,..., 00 let T be the m-dimensional torus, i.e.,
T = Tx---xT. Let F be a o-algebra on T generated by cylindrical

—_——

m

sets and P> the Lebesgue measure on (T, JF), ie., P®(dxidze---) =

[] dz;. The addition and scalar multiplication on T™ are always considered
i=1
coordinatewise in the sense of modulo 1.

Let
(0.5) Ly = Lo(T"; dxy -+ - dxy,),

h is symmetric in each two variables, i.e.,

(0.6) SL; =<hely; ; j i j ;
h(...,z,...,¥,...)=h(...,Y,....,2,...)

h(z1,...,2p_1,y)dy =0
(0.7) CSLy = heSﬁg;/qr(l n—1,4)dy

a.a. (z1,...,2,1) € TP!

When n = 1, £ = S£} and CSL} are simply written as Lo and CLs,
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respectively. The norm and inner product on £3 are denoted by ||-||zp and
(+,%)cp, respectively. In some cases, they may be written in dropping the
subscript £5. For f1,...,fn € L2, fi®---® f, € LY is defined by

i@ fu(x1, .. xn) = fi(z1) X -+ X fulx,).

If fi =--- = f, = f, this is denoted by f®". Note that f®" € CSLY if
fecCL,.

Functions on T are identified with 1-periodic functions on R in an ob-
vious way. By this identification a continuous function on T is regarded as
a continuous 1-periodic function on R. Let C(T) be the space of all such
functions with the supremum norm ||-||cc.

For f € Ly(T;dz) and generally a finite measure v(dz) on T, f(n)
and ﬁ(n) are the n-th Fourier Coefﬁcients of f and v, respectively, i.e.,
Fl = Jpf( e~ V12 g and ( = Jre —vV=12nmay, (). For a proba-
blhty measure ,u on T and a subsequence {Nm}o_y of {1,2,3,...}, let

a=(a1,ag,...) €T

m—00

lim Nim Z 0, (dz) = p(dx) weakly

If Ny, = m, this is simply written as T;?.
1. Convergence to a Centered Gaussian System

In this section underlying probability space (T, F, p) is a product prob-
ability space, i.e., for a sequence {P;}°, of probability measures on T,
un= H P;. Set F, := o(Xy,...,X,), where X; is the coordinate function,
ie., X ( ) =z, T (xj)?; € T*°. Note that F = o(|JF,). For a probabil-

n

ity measure p on T let (I®)(f; 1))peZ fecr, be a centered Gaussian system

on a probability space (2, F, P) such that

(L) BIOE0I g w| = 0 F@56 At - p),

li]>1
Vf'?g € C£27vp7q € Z.
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THEOREM 1.1. Let o € T™ and let {Ny,}3°_; be a subsequence of
{1,2,3,...}. The following (A) and (B) are equivalent:

Nim
A —— i i
(A) (m ;f(x tpa )>peZ,f€C(T)ﬁC£2 under pu

f.d,
7@ (£ _
— ( (f; 'u))pGZ,fEC(T) NCLo asim T 00

N 2
B) (B1) lim NLMZ(/Tf(Hpai)Pi(dx)) _ o,
=1

m—00

VfeC(TYNCLy,"pEZ

®2) g 3 [ st i) = o
VfeO(T)NCLy,"peZ

Nm
B3) Jim 3 | @+ podg(e + go,)Pu(a

m—00

= E[ )(f; )19 (g; #)}

Vf,g€ C(T)NCLs,"p,q € Z;p # q.

To prove the theorem we present a lemma:

LEMMA 1.1. Leta € T®. Letpp € Z, K € N and fi,..., fr € C(T)N
CLs. For (apk)lgpgk' S SKL—l, i.€., (apk) 1<p<K € REL with Z a}%k =

1<k<L 1<k<L 1<p<K
1<k<L
1, set
1 .
CNi = Ty > apfelai+ (p+po)ai), 1<i<N,
1<p<K
1<k<L
N

Tn(t) = JJA+V-1t{n), teR.

=1

Let X be a probability measure on (T, F). Then, for v > 0 and ¥ sub-
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sequence {N;}32, of {1,2,3,...}

Nj 2
lim sup E)‘ |:|€\/_71tZ i:J1 CNji . TNj (t)ei%v|:|

j—oo

< (1—1—62]{25 1”ka°°>hf(r)lthUPAOZCNz v| > 8)

j—oo
Proor. Using an expression
z2
(1.2) ¢ = (14+2)ez 73 Rez> -1
where
12
(1.3) r(z) = 23/ ds,
0 1 + zs
we write for 0 <e <land v >0
eV -ItE N i
— eﬁtz ?;1 (Niq

maxj<;<nN |CN1">E
V=1ts N (N
e =1 11
+ {maxi <;<n [Cvil<e, | = L, (%, —v[>e}
2

— Tn(t)e 2Vl

{maxi<i<n [Cnil>e or |Z ) (%, —v]>e}
2 2
+ TN(t) (e_% z i\;l CJQW_Z i\;l m(vV—1t¢ns) — e_%v>
X Linaxy cian [Cnil<e, | 5 2 GBymvl<e}
12

+ Tn(t)e 2"
Then

2

eV TR v — Ty ()7

< 1max1<z<N [Cnil>e + 1| 2 pl Z1CR—vl>e

+ [T ()1

{maxi<;<n [Cnil>e or [T L) (%, —v[>e}

o ol < (5 + 15 ) +), }

+ [T (t)|supy |€* — e“|;
T e) {’ | 2 —w| < e(& +‘” (1+v))
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Hence, noting that

(1.4) ITn ()] < 62KZ£1||ka2

L
< 1 2
(1.5) 121;?](V|CNZ| > \/ﬁHKkz::lekHooy

we have the conclusion. O

Proor orF “ (B) = (A) 7. We suppose (B). Let K,L € N be fixed

arbitrarily. Let po € Z, fi1,..., fr € C(T)NCLy and (apkr) 1<p<k € SEL-1
1<k<L
By the Cramér-Wold device (cf. [1]) it suffices to show that for "t € R

lim EH [e\/jlt T ho A A= SN (it (p+po)ai>]

m—00

= e [(ZK T 1apk1(p+p0)(fkﬂ))]

Let (n; and Tv(t) be as in Lemma 1.1. From (B.2) note that

Nm

lim g3 Elf(-+pa)] = E[f], "feC(T),pel
i=1

We write

N
2 _

DG = DL D amag

i=1

1<p<K 1<¢<K
1<k<L 1<I<L

N
<% Z(fk(wi + (p + po)ai) fi(xi + (¢ + po) )
=1

— Ei[fr(- + (0 + po)as) fi(- + (¢ + po)ow)])
N
# & LB+ o)+ (a+po)as)])-

By the note above and (B.3)
N'"L

lim 5 3 Bilfi(+ pan)fil- +qa)] = E[19 (fi )19 (fis ).

m—o0 ¢
=1
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and also by the strong law of large numbers (abbr. SLLN)

N
A}iinoo + z;(fk(xi + pa;) fi(zi + qa;)

— Ei[fi(- +pai) fi(- +qai)]) = 0 pas.

N,
Hence substituting these into the expression of »_ §J2sz" we have
i=1

N
(16)  lim > (R, = E|( ¥ apkﬂwo)(fk;u))?] p-as.
m—>ooi:1 1<p<K
1<k<L

Next let us check
(1.7) lim E*[Ty, (t);A] = wp(A), "teR"AcT

m—00

To do so, for m > n > 1 we divide E#[Ty, (t); A] as
B [T, (1); A] = B [T, ()((A] Fy,,) — p(4]Fy,))]
+ B | T, (DA | F, )|
By (1.4)
[the first term| < egKZ e Il g [|H(A | Fn,,) — (4] H’Nn)|].
Since p(A|Fy) — 14 in Ly as N — oo,
limsup |the first term| < e%KZ it Il pm [|1A — (A ’J"Nn)|]

m—00

— 0 as n — 00.
By the independence of Fy,, and o((n,,i; Nn + 1 <1i < Np,,) and by (1.2),

the second term

n

= B [[[(1+ 58 S afulm+ 0+ po)a)) (A T, )]

i=1 1<p<K
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o VTS por Xk apk A= X e,y Bl (- (p+po) )]
2 2
% 7 M Z i1 (Z 551 T Eey apBilfe (4 (ppo)an)])
S TR S S ) apkBalfi (4 (ppo)ai)])

—1t
X e VNm = .

Clearly
the first product — E# {N(A | ?Nn)] = p(A) asm — oo.

By (B.2) and (B.1), the second and third products — 1. By the fact

Ir(v—1z)| < @ (cf. (1.3)), the fourth product — 1. Hence, putting
the above we have (1.7).
By (1.6) and (1.7), Lemma 1.1 gives us the desired conclusion. O

PRrROOF OF “ (A) = (B) 7. We suppose (A). The proof is done in three
steps.

1° For"f € C(T) and "p € Z
Nm

lim - f(zi+pe) = E[f] p-as.
i=1

m—00

PrOOF. Let p € Z and f € C(T) NCLy. By the assumption

N,
A=Y flaitpa) = IP(fip)  asm— oo,
i=1
and so
Nm
Jim - f(aitpe) = 0 inp
i=1

N 00
But, since {% > fx + pai)}N is uniformly bounded, and hence uni-
i=1

formly integrable, this convergence also holds in L (). Therefore, by taking
expectation

lim -
m—0o0 Nm

M

Ei[f(-+pai)] = 0.
1

<.
I
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On the other hand, by the SLLN

Combining these we have

m—00

lim N—lmif(xﬁ—pai) = 0 p-as.
From this the assertion for general f € C(T) will be clear. O
2° (B.1) and (B.2) hold.
PROOF. Letp € Zand f € C(T)NCLy. We may suppose that E[f?] =

Jr f( r)%dr = 1. For simplicity set (y; = \/Lﬁf(gcZ +pa;), 1 <i < N. By

N,
the assumption Z CNyi = TP () ~ 9(0,1), and by 1° 5 i — 1
. i=1

p-a.s. Therefore We apply Lemma 1.1 to have

N
lim EH [H(l + \/—Tthmi)} = 1, YteR
=1

m—0o0

Since, by (1.2)

ek v ilf (-+pou)]
Nm
= B {[J0+ V=Tt
=1
« o= w D (Bl o)) = 2 I R (4pe)])
and hence

6% ﬁ T i (Ei[f('+pai)])2

N
’E“[ (1 -l—\/—_ltCNmi)]

=1

o Z i r(UE Bl f (- pai)))

)
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letting m — oo in the second expression yields
Nm

tim S (RS pai)]) = 0,

m—o0 ‘
=1

which says (B.1), and next putting this into the first expression yields

lim ¥ TtvAm D Bl Gl o e g
m—0o0
ie.,
N,
ngnmﬁ;mf(-wm = 0,

which says (B.2). O
3° (B.3) holds.

PrROOF. Let f,g € C(T)NCLy and p # q. We may suppose that
Jpf(x)?de = [pg(x)?de = 1. Set

CNi = T%(%f(wz + pa) + %g(ﬂci + qoéz‘)), 1<i<N.

By the assumption

(L8) D v = L1+ 1D(g ) as m— 0.

Since we have (B.1) and (B.2), in the same way as in the proof of (1.7)

N, m

lim EH [H(1+\/—_1tCNmi)} = 1, VYteR

m— 00 J
1=1
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N,

. 2 .

To view the convergence of 231 (N, i We write
1=
m m Nm
2 _ 1.1 111 , A2
E Nwi = 28 E (i + pai)® +aw; Q2 9(@i + qai)
i =1 =1

m

+ 3t 2 (@i + pag(i + g0

—Ei[f(- +poi)g(- + qaz’)])
Nom

+ 5 Z E;[f(- + pai)g(- + qai)].

By 1°, the first and second terms — % p-a.s. By the SLLN, the third term
— 0 p-a.s. The fourth term is bounded in m, and so for ¥ subsequence {m'}
we can take a further subsequence {m”} of {m’} and ¢ € R such that

N "

v D Bilf(+paig(- +aa)] — c
=1

N,
Then putting these into the expression of Z ¢2 i yields that E ¢2 N, i

1+c p-as.
A\
Now Lemma 1.1 tells us that »_ (n ,i = (0,1 + ¢). Combined with
i=1
(1.8) this implies that
c = [ IP(f: )19 (g; u)]

Therefore, since the convergence above holds with this value for Y sub-
sequence {m'}, we must have

lim o ZE -+ pai)g(- + qaq)] = E[I(”)(f;u)l(q)(g;u)],

which says (B.3). O
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CramM 1.1. Let a € T* and {Np}2°_, be as in Theorem 1.1. Suppose
the conditions (B.1) and (B.2). The convergence of (A) holds under some
absolutely continuous probability relative to w, if and only if the condition
(B.3) holds. In this case the convergence of (A) remains valid under any
absolutely continuous one.

PROOF. Suppose the convergence of (A) under an absolutely continu-
ous probability v relative to . Let (n; be as in 3° above. By the assumption

N,
(1.9) ECNM under v — %(I(p)(f;,u) +I(q)(g;u)) as m — oo.
1=

By virtue of the conditions (B.1) and (B.2)

Np,
lim EY [Hu vV thmi)] = 1, VteR,

which is easily seen from (1.7). In the same way as in 3°, for any subsequence
N, .1
{m'} we take a further subsequence {m”} such that lim Y (% . =1+c
m!’ = m!!

in v, where

N,
c = hm N - Z E;[f(- + pai)g(- + qa;)].
i=1

Then, by Lemma 1.1 and (1.9), ¢ [I(p (f; 1) I9(g; u)]. This implies the
condition (B.3).

Conversely suppose the condition (B.3). This time let (n; be as in
Lemma 1.1. It suffices to show that for YZ € Li(T*, F, u) and "t € R

lim BA[ZeV TS ] = B [g]e 7 IS S S e a0 ()]
m—00
Since elements in L1(T>, F, u) are approximated by F-simple functions, we
may assume the Z above to be a defining function.
Let A € F and t € R be fixed arbitrarily. Then by (1.6) and (1.7),
Lemma 1.1 implies that

lim B4 [eV/ TS i a] = p(A)e 7 PLUE S T ot @0 ()]

m—00

)
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which is just the desired conclusion. [

Cram 1.2.  The condition (B.1) + (B.3) is equivalent to that (C)y
(k=1 o0r2)+ (M):

N,
Ok lim_ = [Pi(n)|* =0, YneZ\{0},
=1

(M) aeTy .

PrROOF. The implications (B.1) = (C)2 = (C); = (B.1) are easily
seen. Indeed, the first implication follows from an equality

(/IF cos 2nm(x —i—pai)Pi(daz))2 + (/Esin 2nm(x —f—pai)Pi(dl‘))Q
= [Pi(Fn);

the second does from an inequality |a| < %(82 + |Z—|22), e > 0; the third does
from the Weierstrass approximation theorem.

Next we show the implication (C); + (M) = (B.3). Let f,g € C(T) N
CLy and let p,q € Z be such that p # q. By virtue of the Weierstrass
approximation theorem we may assume the f and g to be real trigonometric
polynomials. Letting

fla) = 3 e’ IR gy = Y deV T

1<[k|<N 1<[II<N

where ¢; = c_j, and d; = d_;, we write

N
o D Bl (- + pai)g(- + ga)]

Z de—kNL sz e\/—_12ﬂk(1’—11)04i

1<|k|<N i=1
Nm

+ Z delﬁ Z eVl 27r(kp—lq)aiPi(l — k‘)
I<|KLII<N; =1

k£l
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By (M), the first term — > erdpfi(k(q — p)) = E[I® (f; 1) 1D (g; )],
1<[k|<N

and by (C)i, the second term — 0. Hence we have (B.3).

Finally we show the implication (B.3) + (C); = (M). Let {m'} be
any subsequence. Because of the compactness of T there exist a further
subsequence {m”} and a probability measure v on T so that « € ’]Tgf{ N}
From what we have shown above and our assumption

> Fi)g6) B(i(q — p))

li[>1

= Z F@ 30 ai(q—p)), "f.geC(T)NCL, p,q € L.
i >1

This easily implies v = p, so that we have o € T?{Nm}v which is just (M). O

We present a sufficient condition for {P;}°, to satisfy the conditions
(B.1) and (B.2).

THEOREM 1.2. Suppose that a sequence {P;}3°, of probability mea-
sures on T satisfies the following: For some Ny C N,

(i) Py(dr) < dr (i € No) and [ [p1/ %5k (x)dz > 0,

’LGNO
(i) #(N\No)n{1,...,N} =O(V/N) as N — 0o and
Gm S Bl = 0. Ynzo

ie(M\Np)n{1,...,N}

Then, for Yo € T, (B.1) and (B.2) hold with the whole sequence

{1,2,3,...}. Thus, the convergence of (A) holds under some / any absolutely
o0

continuous probability relative to p = [ Py, if and only if o € ’]I‘ZO{N p-
i=1 e

In particular the disappearance of dependency happens as N — oo in the

sense that on some /any absolutely continuous probability space relative to

o0
p= ~H1Pi

N
(ﬁZf i pe ) peZ, feC(T)NCL:

=1
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f.d <I(p) ) as N — o0,
peZ,feC(T)NCL:

if and only if « € TS. Here {(B(p) (t))()<t<1} . is a sequence of inde-
stsif o

pendent 1-dimensional Brownian motions starting at 0, and I(p)(f) s the
Wiener integral of f € Lo with respect to BW, e, IP(f) =

Ji f(s)dB®)(s).

Proor. It suffices to check (C)2 and (B.2) with N,,, = m. First of all
note that for a sequence {a;}3°, with 0 < aj <1 (k)

o0 oo
Hak>0 = Z(l—ak)<oo.
k=1 k=1

Set pi(z) :== Pi(z), i € Nyg. By the assumption (i) and the note above

dx
Z(l—/qrx/pi(x)dx) < o0.

iENQ

Also, by the fact [ p;(x)dz =1

/ 1@ Pde = 2(1- / Vo) dz),
T T

[n-p@la < 2\//\1—¢pi<m>|2dx.
T T

Therefore
(1.10) Z/|1—\/pi(x)|2da: < oo,
ieNy T
— 0\ X 2 .
(1.11) iGZNJ/Tu pi(w)ldz)? <

Now we show (C)a2. Let n € Z\ {0}. Then, by (1.11) and the assumption
(ii) we have

N
—~ 2
SOOI D DI R e L

=1

i€eNon{1,...,.N'}
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> [ Tra]

ie(N\No)N{1,....N}

< 1Y /|1—pz ldz)’

ZENoﬂ{l

z|-

_|_

+\/—Nﬁ#(N\No)ﬂ{l,...,N}

— 0 as N — oo,

which is just (C),.
Next we show (B.2). Let f € C(T) NCLy and p € Z. We divide

N
L ST E;[f(- + pa;)] into two terms as
\/N,L::l (2 (2

N
=1 i€Non{1,...,N}
+\/LN' E[f('+paz)]

As for the first term, noting that

Bi(f(- + pay)] = /T F (& + o) (Vor(@ + V(@) — V)i,

we have by (1.10)
|the first term|

- D Ef(-+pw)

N
ieNon{1,...,M}

DR /fﬂ:+pozz i) + 1)(/pi(a) — 1)
1€NoN{M+1,...,

Z /f:v—}—paz \/r+12dx)2

1eNoN{M+1,...,

x( Z /|1—\/pl—|dx)

i€eNoN{M+1,...,

< 2l + Fy (

— 0.

first N—oo
second M —o0
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As for the second term, for Ve > 0 we take a trigonometric polynomial

Pzx)= Y cpeV =12 guch that ||f — P.ljos < &. Then we have by the
1<[k[<n
assumption (ii)

|the second term|

= ‘ Z /f P.)(z + poy)P;(dx)

ie(M\Ny)n{1,...,N}

+ Z Ck%ﬁ Z e\/_12k:7rpai/e\/_12k:7rxPi(d:L,)
1<[k|<n ie(M\Ny)N{L,...,N} T

El

< el #MN\No)N{L...,N)
T SRIE D SR (]
1<|k|<n ie(N\Np)n{1,...,N}
— 0.

first N—oo

second e—0

These convergences clearly imply (B.2). O

2. Convergence to a System of Correlated Multiple Wiener In-
tegrals

In this section we study the convergence of a system of symmetric statis-
tics to that of correlated multiple Wiener integrals. As in the previous sec-
tion let (IP)(f; 1))pez fece, be a centered Gaussian system with covariance

oo
(1.1), and let us denote by p a product probability [] P;.

i=1
We begin with the following definition:

DEFINITION 2.1. For k € [0,00), we define a real Hilbert space
(Hm (‘7*)H»«b) by

hn € CSLE (n=1,2,...),
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Clearly
{Wf = (Fo"0Lif €CLey © Hy,
and moreover the following holds (cf. Lemma 1 of [16]):
(2.1) cls{hf;fecCLy} = H,.
Also it holds that (cf. Lemma 3 of [16])
(2.2) Ih = B¥llg, < const(s, 6]l v 916 — vl

for V¢, € CL,y, where

o
const(k,t) = > (% +
n=1

ﬁ
it

1 242(n—1)
o (n_r)!)nt .

DEFINITION 2.2. We define symmetric statistics oY (-;h) (h € SLY)
and Yn(-;h) (h = (hy) € Ho) by

> hi,-w) n<N

o (y;h) = 1<iy < <in <N
0 n> N,
. — S 1 \" N,
YN(y’h) T Z(W) On (ya hn)
n=1

As a CONS of CLs, we take

{or}iz: = {\/icos 2mnx, V2sin 27rmm}

n,mGN.

R

CLAM 2.1. For ¢ € CLy and R € N, set () .= S~ (4, dp)bi. Sup-
k=1

pose that a sequence {P;}°, satisfies the conditions (i) and (ii) in Theorem
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1.2. Then, for “a € T;T{Nm} and v < p

(R)
14+ Yy (-+pa;h? ) under v
( Nl P ) pEZPYECLy

pEZPECLs

PRrROOF. Let a € TZO{Nm} and v < p. By Theorem 1.2

Ny,
1 . 4
( = ; or(x; —l—pozz))pGZ’kEN under v
f.d.
2.3 AT .
(23) s (1V@um) . asme— oo

Also, by 1° in the proof of the implication “(A) = (B)”

Nm
(2.4) lim ﬁ Z or(xi + pag)di(x; + pay) = b6 inw.
i=1

R
For fixed (c1,...,cr) € RE set zy; = \/LN > ez + pay). Let N >
k=1

R
(2v2 3 |ex])?. Then |2n;| < 1, and so, by (1.2)
k=1

142y = ezNi_%ZIZ\/i"F"'Ni’
Irvel = reve)l < 3laml
This tells us that
N 2
H(l + ZNi) _ ez fvzl ZNi_% > f\f:1 Z12Vz
i=1

N N 2v2 1 R N 2
< ezizlzm—%zizlz?\” (e 3 ﬁzk:1 ekl 22321 28 _1)

By (2.3) and (2.4), the inequality above yields that

N R
(H(l + ﬁ > eror(zi + paﬁ)) under v
i=1 k=1 peZ(cy,...cr)ERR
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fdg (eﬂm(z oy ckdrin)— 311 S ﬁ_lcmkP) a8 M — 00,
PEZ (c1,....cR)ERR

But

L+ V(s ™) = H(1+ e 3 (000,

=1

From this together with the above the assertion follows immediately. [
We state a main theorem in this section.

THEOREM 2.1.  Suppose that a sequence {P;}:°, satisfies the following:
(a) Pi(dzr) < dz (Vi €N).
(b) There exists a subset Ny of {1,2,3,...} such that

(b.) H Jor/Ri(z)dx > 0,

€Ny

(b.ii) E%%TN#(N\NO)H{L...,N} =: C < oo,

(b.il) lim —= S
N=00 VN e (NN ,N}‘

(b.iv) sup Vf’JI‘ Ydo =1 M < co.

'LE

P n)‘ =0 for Yn € Z\ {0},

Then, for o € Tu,{Nm} and v < p

Y; . :
( N, ( +pa’h)>peZh:(hn)eHCM under v

fdg (Zn,f (hn; )) as m — oo.

pEZ,hZ(hn)EHC]M

Here I}Lp)(hn;u) is an n-ple Wiener integral of h, € CSLy with respect to
1P p).

COROLLARY 1. For ¥(h,)%%, such that h, € CSLY (n > 1)

n

-5 Np, . f.d. 1 .
(V2o tpaih)) S (P (i) s m— oo,
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REMARK 2.1. (i) The conditions on {P;}°; in Theorem 2.1 are

stronger than those in Theorem 1.2.

(il) When Ny = N, we can regard the conditions (b.ii), (b.iii) and (b.iv)

as satisfied, and we understand as C' = M = 0. In this case, by Kakutani
o0

dichotomy theorem, the condition (b.i) is equivalent to that [[ P; < P.

=1

For the proof of Theorem 2.1, we present two propositions:

PropPOSITION 1. (i) ForVf € CLy

I,gp)(f‘@";ﬂ) = n!HanH”(I(p)(H_jj”W))-

Here (Hy)o2, are Hermite polynomials, i.e., Hy(&)
(ii) For Yh € CSLY and "k € CSLY"

Il
—
|
—
=
3
(@)
w"“w
sy
b
—~
<.h|
w"“w
N———

E[Ir(f)(h; u)} = 0,

B[P (hs i) 10 ()] = S (k) .

For the proof see [8].

PROPOSITION 2. Suppose the conditions (a) and (b) in Theorem 2.1.
Then there exists an increasing function & : [0,00) — [0,00) with £(0+) =
€(0) = 0 such that

H(’YN(- +pash)| > 77) < g(HhH%)

for "N eN,"peZ, Ya e T, Yh € Hoy and 'n > 0. Here C' and M are
constants in (b.ii) and (b.iv), respectively.

PRrROOF. For simplicity set N; := N\ Ny and p; := d;;i (1 € N). Let
N e Nand h = (hy)52, € Hop. We rewrite

N
YN(?JS h) = Z(ﬁ) % Z hn(yil""7yin)
n=1 i1, in €NoN{1,...,N };

i1,...,0n are distinct
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N n
1 \" 1
+ Z(\/_ﬁ> Z rl(n—r)!
n=1 r=1
X Z hn(yip-"vyinfﬂyjla‘"7yjr)‘

il7"'7in77‘€N0m{17"'7N}7
‘717"'7]7'EN10{17"'7N};
i1,...,in—r are distinct,
J1,-.-,Jr aredistinct

Let & € T*, p € N and n > 0. Then, by Fubini’s theorem

l‘(‘YN(' + pa; h)| > 77)

< (I1») (1

k‘ENU

( ) o

VN n!

il,...,inENoﬂ{l,...,N};
i1,...,in, are distinct

n
>§)

1\~ 1
() T %
r=1 7/17"'77'77477‘EN00{17"'7N}7
Ji,-gr€NIN{L,.. ,N};
@1,...,0n—r are distinct,
J1,--+,Jr are distinct

X hp(Tiy + paiyy ..., i, + pa,)

e3>

keN;

X hn(le + b&syy -y Ty + bag, .,
n

First we estimate the first term. By Chebyshev’s inequality

Lj +paj17 s T +pajr)

=: the first term + the second term.

N n
1)1 Z
VN n!
1 i1,ein€NoN{1,...,N };
i1,...,in are distinct

X hn(iy + paiy s - - T, + pai,,)

n
>§>
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> (%) (&)
1<n,m<N
X arm > >

7417717L€N0ﬂ{177N}7 ]177JMEN00{177N}7
11,...,in, aredistinct J1,-..,Jm aredistinct

< 2 (EH keNy dxy
- n

X hp(xiy + patiy, ..., xi, + poy, )
3
X b (25, + POy, .5 T, +pajm)] ) .

By the fact [phy(@1,...,2n—1,y)dy = 0, the right hand side equals

v ;
2
() X ame)
n=1 1, €ENoN{1,...,N};
01,...,0n are distinct

N 1
and this is dominated by %(Zl %thHQ) ? < %HhHHCM. Hence it turns

n—=
out that

(2.5) the first term < sup{(kerl[N Pk> (A): (kgN dxk> (4) < %HhHHCM}.

Next we estimate the second term. To do so, we temporarily denote by
® the integrand in expectation ETreno Pr Since 0 < @ < 1,

(2.6) the second term < 6 + (H Pk)(fb > 0)
keNy

for Y6 > 0. In the following we treat the right hand side.
By Chebyshev’s inequality and then by Schwarz inequality

N n
2 1 1
¢ < nZ(ﬁ) D= >
n=1 r=1 J15edr€NIN{1,....N};
J1,-.-,Jr aredistinct

X / ‘ z hn(‘rll +pai17""xin—r+pain—r7
T, )
i1 yeeeyin—r€ENoN{1,...,.N};
1,eer,in—r are distinct Tj + Py Tj, + pajr)
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X pjr (@) X - X pj(xj,)dwj, - - dxj,

N n "
() Yy X
- 7 VN rl(n—r)!
n=1 r=1 J177]TEN10{177N}7
J1,---,jr aredistinct

X

> ho(Tiy + Dy, -5 Ty + D)

il,...,inerN()m{l,...,N}; C;
91 ,.eyin—r are distinct

X lpjull > - > {lpj,

<y e (1)

X Z hn(Tiy + Py, Tipy + PG, )
il,4..,in7T€Noﬁ{1,...,N}; [:5
01,..eyin—r are distinct
Here we have used the conditions (b.ii) and (b.iv) in the last line. By this
estimate, and then by Chebyshev’s inequality and Schwarz one again

i1,...7in7T€Noﬂ{17...,N};
©1,...,in—r are distinct

X hn(le + P&y oy Tg, + pos, .,
1

2 2
dys -+~ dy,

N n o
_ 12 2: M (1 - Z 2
- &7 rln—r)! \ VN (n—r)'thH
’L'ly--~ain—7‘€N0ﬂ{1""7N};
01 ,..0,in—p are distinct

y17"'ayr)

1
2
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IA
=
I I
WE
™
Q
s
3
U

00
< %%(60M —-1) Z L ||hHHCM'

Hence, combining this with (2.6) yields that

the second term

(2.7) < 54 sup{(keN Pk>(A); ( I dack>(A)

keNy
<12 1) S Bl e
=% mzom Heowa (-

Now, letting 6 = (2||h]| s, )* i (27), and then putting (2.5) and (2.7)
we have
h
N(|YN(- + pa; h)| > 7]) < g(””%)’
where

§(t) = sup{( TT Py ) (A); ( IT dae)(4) < 2t

keNy keNy

+ V2t +sup{ (T Pi) (A); ( TT dey ) (4)

keNy keNy
cM — 1 NG

Since our condition (b.i) is equivalent to that [] Pr < ][] dxj by Kaku-
keNy keNy

tani dichotomy theorem, ¢ satisfies £(0+) = £(0) = 0, and thus this is the
desired function. The proof is complete. []

PROOF OF THEOREM 2.1. Let a € T?° N }andl/<<u Set Z := du

Note that Z > 0 and E#[Z] = 1. The proof is done in two steps.
1° <1+Y -+ a;h¢> under v
Wul ¥ P ) pELAECLy
fd, (eﬂm(w;u)—%nwn?) as m — co.
pEZﬂbGC[,Q
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PrROOF. By Proposition 2 and (2.2),

(R)
n(1Yn (- +pas h?) = V(4 pas 7)) > n)

(2.8) < 5<const<0M,uw||>% )

Clearly

(29)  EB[IP@win) - 1P 0P = 3 (w602
k=R+1

Let pg € Z, ¢n1,...,9 € CLy and (apl)lgpgK € REL For Ve > 0
1<I<L

‘EI/ [e\/jZ 5:1 > lL:1 apl(l—l—YNm(.+(p+po)a;h7,/1l))i|

E [eﬁz T ap el(p+p0)<wz;u)*%”¢l”2]

< ‘E“ [Z (ev—l Y0 Ty ap(14Y Ny, (-+(ptpo)ash 1))
VIS E L a4, (ot Aot
—e p=1 1=1 %pl Nm, p pO)C%, ))):H
e I » B
I ‘Ev [ewlzpzlzl:l apt (1Y Ny, (-+(pp0 )01 ))}
- F [GJTIZ ;17(:1 by lL:1 apy el(p+p0)(wl(R)?“>*%Wl(R> HQ]

@ +20) () — Ll )12

s B[y e o

VAT T 0yl PO w31 “2}

IN

2 sup EH[Z;B]+e¢
w(B)<6r(e)

(R)
+ ‘EV |:€\/j12 117{:1 b zL:1 apz(1+YNm(.+(p+pO)a;hwl )):|

R R
— E[e*/jlz K S B ay el PO w04 ’|2]

125
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1@F20) () ) - 1 ()12

‘E{ \/_Z Eiliape

VIS K S E 0y 1<p+1’0)<wl;u)—%||wl||2}
—e .

Here 6r(¢) in the first term is

(R)
sup M(’ > ap(Yn(-+ (p+po)a; h¥) = Yn (- + (p+ po)a; k¥t )| > 5>‘
NeN N 1<p<K
1<I<L
By (2.8) this converges to 0 as R — oco. Also, by (2.9) the fourth term — 0
as R — oo, and by Claim 2.1 the third term — 0 as m — oo. Hence we
have

lmsup [ [T 350 oy o (140, (01000

m—0o0

E [e\/j ST L ay !PT Wbl HT

which implies the assertion. []

2° Take hV, ... hL) € Hgyy arbitrarily. By virtue of (2.1), for Ve > 0 and
1 < V1 < L there exist ¢, ... i, € CLy and tyq,..., %, € R such that

ky
|0 — S t;h%% | g, < €. By Propositions 2 and 1(ii)

=1

ki
u([¥n(+pash®) = ST tYn( +pash?)| > VE) < €2

i=1

E[|3 41y (ztm ) -

On the other hand, by Proposition 1(i

> LIPOD ] < e

n=1

B CTO 1 ] L R Z P) (™ 1), Yip € CLo,

and hence

(0.0}
(®)( i|I2
Zt GRS T R ST (Ztm/)h ).

n=1
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Therefore, collecting these we have that for v(apl) 1<p<K € REL

1<I<L
‘EV [e‘ SRR oy aplYNm(‘+(p+po)ash(l))]
E[ VA I S a0, H IO (D >”
‘E”[ ( VI K S ap Yy, (~+(p+po)ashD)

NS S, aplZ1'11tliYNm(""‘(p"‘pO)a?hw”))}‘

+ |E¥ [e VLR T apltlz‘YNm(-+(p+170)a;h¢“)}
E [e\/jZ REPINRDY iy apiti; (61(p+p0)(w”;”)_%”w””2*1)} }
/—1 k n
+ [ I Y a2 02, ivl(erpO)(z ily ;" 5h)

S Z Zl 1aplz n! (P+P0)(h )iH

< 2 sup E*[Z;B] + max lapi| K L\/e
u(B)<KLE(Ve) 1_512§L
+ ‘E" [ev IS 1 S 2 apitis Yo, (++(p+po)as h“’h)}
E {e —IN S B S apit (€I(p+p0)<¢”;“)7%”WHQ_U} ‘
+ Z |apl|5
1<p<K
1<I<L
— 0,

first m—oo
second e—0

which implies the conclusion of the theorem. []

3. Central Limit Theorem for Correlated Multiple Wiener Inte-
grals
In this section we study the CLT for a sequence {I ( 1)}y -

We begin with the following. The system <I ®)(f )> in Theorem
pEZ,fECL

1.2 is nondegenerate in the sense that for "linearly independent fi,..., fr, €
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CLy, "pp € Z and YK € N, a random vector (I(pﬂoo)(fi)) is
1<p<K,1<i<L

nondegenerate Gaussian. This nondegeneracy is completely determined for

eneral Gaussian syste (I(p) ; ) :
gener ussian system (f; ) Doz fects

THEOREM 3.1. The Gaussian system (I(p)(f;u)) is monde-
pEZ,fECLo

generate in the sense above, i.e., it holds that for "linearly independent
fioo.sft € CLy, Ypo € Z and YK € N, a random wvector

I(p+p0)~) ' d te Gaussian, if and only i
( (fis ) \epeKiicL is nondegenerate Gaussian, if and only if

#supp p = 0.

ProOOF. First as for the “ if 7 part. We suppose #suppp = oo and

how the nond £ (140 (f0)) h
show the nondegeneracy o (fis ) LepeK1cicl where f1,...,fL €
CLs are linearly independent, po € Z and K € N. For this let

K L
(fpi)lSpSK,lgigL c RKL be such that Z Z gpiI(erpo)(fi; ,u,) = 0. Then
p=1i=1

~

K
0 = B[( S &u ™ (fism))?]

p=11

,_.
Il
—

)

K

L
= 3 [P gufitme T

17T p=1 i=1

2
p(dz),

and hence
u({x € T;eV—12m™7 ¢ Z(n)}) = 1, n > 1,

where

K L
Z(n) = {z eC; Z(prifi(n))zp = O}.

p=1 i=1
Since {x € T;eV~12™2 ¢ Z(n)} is closed in T, this implies

suppp C {x € T;eV "1™ ¢ Z(n)},
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so from the assumption
#{x € T; eV ~12m ¢ Z(n)} = oo.

But, by the fundamental theorem of algebra we observe that

L ~

<Z fpifi(n)) # 0 implies #Z(n) < K. Consequently
i=1 I<p<K
L L

(L &fim) =0 (n =1, ie. ¥ &fi =01 <% < K). By
i=1 1<p<K i=1

the linear independence of fi,..., fr, this implies (&pi)1<p<i,i<i<r = 0,
d the nond £ (1) (f is obtained.

and the nondegeneracy o (fi; ) LepeKacicl is obtaine

Next as for the “ only if 7 part. We suppose # supp u < oo. Then there
m

exist 0 < 0; < -+ < 6, < 1and ay,...,an, > 0 such that > a; = 1 and

=1
m

=3 a;by,. For N € N we define (8o, ..., Banm) € RZV™ 1 as
i=1
2Nm N m
Z ﬂpzp — HH(Z_B\/*_l%TnGi)(Z_e*\/7_127rn0i)
p=0 n=1i=1

= H ﬁ(22 — 2(cos2mnb;)z + 1).

n=11i=1

By definition, for f € CLy such that f(n) =0 ("n|>N+1)

2Nm+1

(3 Bl (fim)?]

SIS 32

1<|n|<N

= 0,

Z \/_ 127mnb; )

and also (0o, ..., B2nm) # 0 because By = Banm = 1. These say the degen-

eracy of (I(p+p0)(f; M)>1<p<2Nm+l7 so that #supp pu = oo is necessary. [
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For hy € CSLE (1 <k <L), {(I{p)(hl), e ,Iép)(hL))} ’ is a sequence
pe
ofi.i.d. random vectors with mean zero and finite covariance. The Lindeberg
CLT says

P L[|ha® 0
LX), 1P () = m(o[ : D

= P—oo 0 LA |?

For a sequence {L(f )(-; 1) 1oy of general multiple Wiener integrals this is

also valid when p is a “ good ” probability measure on T. To see this, in the
following we suppose that u(dr) < dz, i.e., u(dz) is absolutely continuous

relative to dx, and let m := %.

PROPOSITION 3. For "h,, € CSLY, Yk € CSL, and ¥p,q € Z

E [LS’”) (o 1) I\ (e u)]

o~ —

n' Z hn(’il,...,in)kn(il,...,in)

i, lin|>1
— x p1(ir(g —p)) - 1in(g — p))
if n=1,
0 if n#l.
Here
E(ila s 7ZYL) = /Tn e_\/?l2W(i1w1+...+inmn)hn(x1, e ,l’n)dxl s dwn

PrRoOOF. The proof is done in three steps.

1° ForVp,q € Z, "n,l € N and " f, g € CLy such that || f|| = ||lg]| =1

BH(IV(f: ) H(ID(giw)] = 6y (B[1P (1 19(g5)] )"

PROOF. Incase p=gqand |(f,g)| =1 (i.e., f = %g), we have
2
. _ n 1 R
the left hand side = (£1) /RHn(:c)Hl(:z:)—me 2 dx

= (£1)"6,4 = the right hand side.
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In case p # ¢ or |(f,g)] < 1, by Theorem 3.1 (I®)(f;p), I (g; ) is
nondegenerate Gaussian and its density is as follows:

1_1

P(IW(f;), 1D(gs ) € dady) = e 3220 gy

1—c2

where ¢ := F [I(p)(f; )1 (g; ,u)} . Without loss of generality let n < [. By
the expression above

the left hand side

2

2
= % 7ﬁ L Y2
/R 27r(1_02)6 20-3%) dg /RHz(y)Hn(a: + cy)me > dy.

To compute the y-integral, note that

_ﬁ —1) qi _ﬁ .
Hiye > = S %(e 2 ) j=0,
Hi(y) = Hjay), j>1

By integrating by parts n-times it turns out that

n

2
1 —% _ c
/RHl(y)Hn(x—l—cy)me Tdy = buS.

Hence substituting this into the above we have the desired identity. []

2° ForVn,l € N and Vp,q € Z

E|IP( Y affmIfC Y digthu)

i:finite sum j:finite sum
~ L ®
n
nt > ik k)
|k1lye.s|kn|>1 i:finite sum
—_—

X Z djg;@n(k‘l,,kn)

j:finite sum
x i(ki(qg —p))---Blka(g—p)  if n=1,
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ProOOF. Combining Proposition 1 and 1° we have that for Vp,q € Z,
Yn,l e Nand Vf,g € CLy

E [L(f) (£ w1 (g% u)}

= 6nzn!(E[I(p)(f;u)f(q)(g;u)})n

= Sunl > (kL. ka)g® (ks Kn)
|k1|7"'7|k'ﬂ|21

X ji(k1(g = p) - - i(kn(g = p))-
From this the assertion follows immediately. []
3° Let hy, ky, € CSLY. From (2.1) we take, for e >0, Y. fP" =
i:finite sum
hpe and > djg?” =: kpe such that ||k, — hnel, ||kn — knel| < €. By

j:finite sum
Proposition 1 this implies

B [19 (o 1) 180 (ki 1)| = B [10) (s ) 1S9 G )|
< nl([hnll + (K]l + €)e.
On the other hand

| B (it -« i) (i, - i) Ti(i1(g — D)) - -~ Tilin(q — D))
|i1 ,...,|in|21

- Z hns(ily--'ain)kns(ila--win) ﬁ(il(q_p))”'ﬁ(in(q_p))
|i1|7-~~7‘in|21

< e[l + knll + €)-

Combining these with 2° we have
’E [IT(lp)(hn; W (ks u)]
—nl 30 ha(in, .y in)ka(in, ..o in) (i (g — p) - 1i(in(g — p))
[i1],-slin]>1
< onte(lhnll + [lkall +) — 0,
which is the conclusion of the proposition for n = [. The conclusion for
n # | will follow from the first part and 2°. [J
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CrLAamM 3.1.  Suppose m € C(T) and let hy, € CSLY.
P
2 71'2 n
Bl(& Y10 hm) | < Snllimllibal?, VP =1,
p=1

P

.o . 2
o g ol S )
9(0) if n=1,
= ettt

-2 = tn—latn—l)dtl U dtn—l lf n > 2.

Here

g(x1,. . we) =Y ST fhaletka, - enka)?
Jkn

k1, kn>1eq,....ene{—1,1}

s1m1+]1— 1;1 Y xm Enntin—5H

Jj1=1 Jn=1

ProoF. Let h,, € CSL5. By Proposition 3
P

P[(S 10 tus)
p=1
LD DN

P
. . 2
X/ ‘Ze\/—12ﬂp(11x1+---+znwn) m
T =1
= > S© 0 |hneri Enin)|?
- . n\€1tl, .-, cnin

11500yt >1 51,...,5716{71,1}

P
. . 2
X/ ‘E e\/fl27rp(5111:vl+---+5nzna:n) m
Tn =1

(x1) - -m(zp)dxy - - - day,

(x1) - -m(zp)dzy - - dxy,.
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The (z1,...

P . . 2
/ Z e\/—l27rp(511111+~~+8nln96n) m
T

so that

From
ZTp)dxy -

(3.1)
(3.2)

Hiroshi SuGIiTA and Satoshi TAKANOBU

, T, )-integral in the last line can be further computed as

(1) m(xy)dxy - - dxy,

p=1

i p )
= E / ../ln Ze\/_127rp(51i1$1+"'+5nin$n)
J Jn—11""
1<]1<11 Tin p=1
1§]n§ln

x m(xy)---m(xy)dey - - dy,

o [

1<j1 <1
1§]n§7/n

Z 6\/_27rp(8111$1+ “I’Enlnxn)

x m(xy + %) cem(x, + j*;—;l)dxyuda:n

- Z /‘Ze\/_%p(xﬂr ) |2
Tn

1<j1<’Ll
1§Jn§7fn
eqt1 . e+l
€121+J1— EnTntin——"5—
Xm(%>m(% dey ... don
n n
P

E[(L 1 twin)

=1

2
= n! / )Z e\/—7127rp(x1_|_..,+$n) g(l’l, Ce ,.fl?n)dilfl s dIL’n
=

the definition of ¢ it is easily seen that g > 0, an g(x,. ..

~dzy, = ||hn]|? < o0, and
gz, .. xp+ 1, .,mn) = g(x1,.. Ty, Tp),
g(—z1,...,—xpn) = g(x1,..., 7).

By (3.1) we can check that

P
2
/ ’Z e\/jl2ﬂp(m1+"'+$n) g(l‘lv e ,Sﬂn)dl‘l e dxn
™!
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P12
= /SHT”T x) k(z)dz,
Tl sinmz
where
g(x) if n=1,
K(x) = / g(m—tl,tl—tg,...,
Trn—1

tng —tn_1,tp_1)dty -~ dtn_y if n>2.

Consequently, combining two expressions above we have

E[(#éfﬁp)(hn;u)ﬂ - n!%/T

Now let m € C(T). Then g € C(T") with [|g|lec < [|m||%]|hnl/?, and
hence k € C(T) with ||k]lec < [|m||%||hnl*>. Also, by (3.1) and (3.2),

sin wPx |2

‘ k(z)dx.

sin Tx

k(—z) = k(x). From these facts

1
sin T Px |2 2 |sinwPx |2
& - ’Ii(:l?)d:l? = 2 - ‘/{(:c)dx
Tl sinmz o | sinmx
00 Y
5 |2|sinTy
= 2 K(B)1,_r|- Py‘ (d
0 YSzlsinmT 5

X sinmy |2
< el [T
< 23 [y

2
< = mll% A

By putting the above the assertion (i) is obtained immediately. Also, by
letting P — oo the assertion (ii) follows from the Lebesgue convergence
theorem. [J

THEOREM 3.2. Suppose m € C(T). Then {I®)(-; ) oy satisfies the
CLT in the sense that for Vfl, ooy fr, €CLy

P
Ui, AP i) = N(0D(f o ).
p=1
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Here X(f1,..., fr) is a nonnegative symmetric matriz whose (i,7)-com-
ponent s
In|
~ = e
Yij(frseoifo) = |Z fi(n)fj(n)wl‘ ;m(lTl)
n|>1 =1

= Y 2Re(fi(n)f;(n) LD m(EL).

Moreover, if m is positive, i.e., minm(z) > 0, then the limiting Gaussian

zeT
9?(0,2(]‘1, .. .,fL)> is nondegenerate in the sense that a matric
Y(f1,..., fr) is nonsingular whenever fi,..., fr € CLy are linearly inde-

pendent.

PROOF. Since, for £ = (&1,...,£1) € RE

[x/_zfléz\/—zp i (fi?ﬂ)}

= eo{-45[(p 1S esi) ]}

p=1

Claim 3.1(ii) says

lim Fle

P—oo

= oo{-} X [Sedon] i Smti),

nf>1 =1

[ VIS 6T, 1<P>(fi;u)}

which implies the first part of the theorem. The second part will be clear

n
from 2 3" m(EL) > minm(z). O
k=1 zeT

Let us proceed to the CLT for {I p)( 1)}ply. For this we define the
following:
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DEFINITION 3.1. For a stationary sequence {(I(p)(f; M))feCﬁg} z Ve
pE

define the a-mixing coefficients (a(N))n>1 by
a(N)

= sup{\P(Am B)— P(A)P(B)|: 4 € o(IW)(f;p); f € CLy,p < 0) }

"Beo(IP)(fipu); f €CLyp >N +1)

Cram 3.2.  Suppose m € C(T) and positive. Then

o EN(m)
(N) < mingerm(z)’

Here

En(m) := m(z) — Z aneY 12

inf marﬁg ‘
cC2N+1 g€
(@n)nj<N In|<N

Proor. The proof is done in exactly the same way as in Th.17.3.3 of
[7]. We set

Fo = o(IP(f;p);f€CLya<p<b)
for a,b € ZU{£o0}, a < b, and

|cov (X, Y)]
Vvar(X)y/var(Y)

p(N) = Sup{ P X € Lo(32), Y € Lo( ZOVO+1)}'

From [9] this equals

|IEIXY]| X els{IP(f;u);f €CLap<0},#0
P\ VEXAVENE' Y €Lls{I®(fip): f € CLap > N +1},#0

and satisfies a(N) < p(N) < 2ma(N). In the following we treat p(INV).
We take arbitrarily X and Y from the linear spans above, respectively.
Let

X = Z Cka(p) (f/ﬁ/’c):
p<0,k>1:finite sum
Y = > A I (gi; ).

q>N+1,[>1:finite sum



138 Hiroshi SuGIiTA and Satoshi TAKANOBU

For ¥ trigonometric polynomial Py(z) = . ajem%jx of degree N we
l7|<N
observe

[EIXY]] =

SIS e

li|>1 p<0,k>1:finite sum

A 712m0  in) de

“
q>N+1,l>1:finite sum

Z /Jr( > cpkﬁ(i)eﬁ2nipm)

li[>1 p<0,k>1:finite sum

(O E agme )

q>N+1,l>1:finite sum

x (m(x) — Py(z))dx

dx

IN

—~ 2
=Pl S0 ]S e
T'p<0,k>1:finite sum

ji>1

- 2
Ly eyl
T'g>N+1,I>1:finite sum

[m — Pyl

minyer m(y)

X

IN

m(x)dx

2
X /‘ > Cpkfk( JeV/—T2mipe
T'p<0,k>

li|>1 1:finite sum

/

2
AX ] s g s
T!g>N+1,1>

li|>1 >1:finite sum

S PN”OOWW

mingem(y
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This implies

I — Pr|loo

o) minyerm(y)’

and the assertion follows at once. O

Now we state the CLT for {1 p)( )y

THEOREM 3.3. Suppose m € C(T) and positive. Then for
Y(hi,hg,...,hy) € CLy x CSL3 x --- x CSLE,

P U1 0
75 2 (), TP (i) = m(o [ g ])
UL

Here

w o= o) = m B[(5 S P )]

P—oo
p=1

k
REMARK 3.1. Since, by Claim 3.1(ii), v(hy) > k!(minxeqrm(z)) X
|he||?, the limiting Gaussian is nondegenerate when hy # 0, ..., hy, # 0.

PROOF. Let (h1,ha,...,hr) € CLy x CSL3 x -+ x CSLY. The proof is
done in three steps.

1° Let ¢ > 0 be fixed arbitrarily. By (2.1), for each hy we take ty1,...,tg,, €

Nk
R and fkh .. -afknk € C£2 with kalH = 1 such that ”hk - Z tklfgkn
i=1

e. For simplicity write h Z trifoF. Claim 3.1(i) tells us that for
Y(&,..., &) €RE

‘E|: \/7214 151@\/‘21) I(p)(hkvu‘)i| _E|: rzL 151@ ZP I(P)(h(€) ):H

L k
(3 lenltrh 2 lm3) 3e,
k=1
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‘e—% S i o) _ o= T ko o(n?)

< (O gumlt 2l + ) e

k=1
2° Let (&1,...,&1) € RL be fixed and set

L
S arP (i), pez
k=1

{Xp}pez is a stationary sequence, and it satisfies
o(Xpa<p<b) C o(IP(f;p)if€CLoa<p<b),

because by Proposition 1

ny,
(33) 1”(h:p) Ztkﬂ(p ) = >tk He (I (fii; ).
i=1

By Claim 3.2 the o-mixing coefficients (a(N)) of {X,},cz are estimated as

I
< M’ N > 1.
~  mingerm(x) =

Consequently {X},cz is a-mixing (or strongly mixing in terms of [7]).
Let us apply Th. 18 4.2 of [7] for {X,}pez. To do so we need to check

that a sequence {( Z X ) } 51 is uniformly integrable. But, by Lemma
3.4 of [17]

Tim E[(#im(ﬂm(ﬁu))ﬂ = 302

P—oo

P

where f € CLy with ||f|| = 1 and vy = v(£f®%) = lim E[(% > Hy
’ P—oo Pp:l

(I®(f:1)))?] > 0. This together with (3.3) clearly implies the Ly-bounded-

P
ness of % Z Xp, P €N, so the uniform integrability above is valid.
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Now, as mentioned earlier, we can apply Th.18.4.2 of [7] to have
lim B[eYT R b ST I BTET] b e,
P—oo
3° Collecting 1° and 2° yields
lim E[eﬁzfﬁfk#Zf;lfi”)(hk%“)] _ e gt
P—oo

which is just the conclusion of the theorem. [J

4. A Justification of the Claim of Sobol’ et al

First let us state the claim of Sobol” et al ([13], [14]).

There are several kinds of deterministic sequences {z, =
(T1py -+ TNp)}poy ON T¥, which are called low discrepancy sequences ([2]),
having the following property: For VF : TN — R of finite variation

P
% ZF(xp) = /TN F(z)dz + O(%) as P—oo (Ye>0).

This convergence can be used for numerical integrations in T, which is

called the quasi Monte Carlo method. Since the usual Monte Carlo method
1
VP . :

However many authors have reported that practically the quasi Monte
Carlo method does not converge so fast as it is expected, if the dimension

N is very high. Among others there is the following claim of Sobol’ et al:

converges at the rate of O(—=), this method is theoretically more effective.

CLAM. In high dimensions, the quasi Monte Carlo method seems to
converge at the rate of eractly O(#), if the integrands F depend equally
on each coordinate.

We try to give a probabilistic explanation to this claim. From Theorems
2.1 and 3.3 let us view the following generously.

Let (hi,...,hy) € CLy X --- x CSLE be such that hy # 0 (1 < k < L).
Corollary to Theorem 2.1 says that for a = (a1, ag,...) € T}®

<\/Lﬁ Y e +pai),

1<i1 <N

. LY )L Z hr(zi, —i—pozil,...,xiL—i-paiL))

1<ip<--<ip <N

-

peN
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f.d,
= <I;Ep)(h1;,u), . .,Iép)(hL;,u)>peN as N — oo.

Consequently, for sufficiently large N we think that

(ﬁ Z ha (i, + pag,),

1<i1 <N

..,L!(\/_lﬁ)[’ Z hL(l‘il+pai17---7$iL+paiL)>

1<i1 <<, <N

“__» (p) . (p) .
_ (11 (haspa), ..., 10 (hL,M))peN.

On the other hand, Theorem 3.3 says that

peN

\/1]3 ( h17 7"' (p)(hL :U’)>
(h1) 0
= | 0, (nondegenerate Gaussian) as P — oo
O Q)(hL)

provided m = Z—g is continuous and positive. Hence combining these yields

\/IF ( Z hl le +p0411)

=1 1<i1 <N

..,L!(\/LN)L Z hL(.ril —|—pai1,...,xiL —i—pO&iL))
1<iy<-<ip <N

(h1) 0

= N0, (nondegenerate Gaussian) as P — oo,
0 v(hr)

so that for k=1,...,L

P
12
P

Z hk($i1 + pag,, .. - Liy, +paik)
1<i <-<ix <N

()

O
# O(Hm) (>0

%\H

as P — oo.
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[43

This observation tells us that when o = (g, a9,...) is “ regularly ” dis-
tributed over the whole T (it need not be uniformly distributed), the claim

of Sobol’ et al “ holds ” for a low discrepancy sequence {(z1 +paq, ..., TN+
pan)}pe, and an integrand F(yi,...,yn) = (\/Lﬁ)k >

1<i1 <<, <N
hk(yila o 7yik)'

5. Concluding Remarks

Our interest in this paper is when the disappearance of dependency
happens, in other words, how the distribution of o = (aj,a9,...) in T
influences the dependency. For this subject there are two works close to
ours. We briefly introduce them to conclude this paper.

5.1. Fukuyama’s work ([5], [6])
Let 0 € (1,00). We define ¢y : T — T by

wole) = ({077'a}) ",

where {y} denotes the fractional part of y € R. Let p be a probability
measure on T° induced by ¢y, ie., p = Pocpe_l. Clearly p is singular
relative to P*°, and not a product probability measure. So it is not in a
class of probability measures considered above. Also, for Ya € T

u({x € Tz + py(a) € *}) = p(*).

Let us state a result of Fukuyama. To do so, for f € CLs we set

D(f) = ) F)l2.

k=0 \/ 2k<|n|<2k+1

By definition || f|| < D(f), but D(f) € [0,00] (i.e., D(f) is not necessarily
convergent). Let p be a probability measure on T, { N, }2°_; a subsequence
of N and o € T for which ¢g(a) € TN,y e

N, m

Nim Zé{eifla}(dll?) = pu(dzr) as m — oc.
i=1
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Then the following holds: For Y f € CLsy with D(f) < oo

Np,
<\/#—m Z [z + jsoe(a)i))jez = MN0,%(f)) asm — .
i=1

Here 3(f) is an infinite nonnegative symmetric matrix whose (i, j)-compo-
nent is given by the following manner: In case 8" ¢ Q for Vr € N,

Sulh) = [ utdo) [ @7 +1i= o)

in case 0" € Q for some r € N, by letting s = min{n € N;6" € Q} and
writing 0° = % to be irreducible

Su(f) = 3 /T (da) /T S (g (¢ + gk i — jla) e,

keZ

— >
where sgn(k) := { 1_1 Z ; 8 Putting p(dx) = dx in the expression above,

we readily see
Ezj(f) = 07 ’L#]a

and hence we have the disappearance of dependency whenever @y(a) €
T%. This is valid at least for f € CLy with D(f) < oo. For § = 2,
Fukuyama remarks that the condition D(f) < oo is necessary for the CLT:

N
\/—lﬁ S f(zi) = M(0,02) as N — oo (under p = Pogpy,'). For this reason,
i=1
when @ is in the second case above, this condition is the best possible for
the disappearance of dependency. On the other hand, when 6 is in the first

case, is this really necessary? For, in this case, X;;(f) = 6;||f||>. Anyway
this question remains open.

5.2. Sugita’s work ([15])

We first note that our and Fukuyama’s works originate in [15].

Let p = Pogogl. For N € N, we define a random variable X(™) on
(T, F, ) by

N
XM (z) = 21[%,1)(:@-) (mod 2).
=1
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Clearly for "a € T,"N > 1and Vj € Z

p(XM(+jpa(a) =1) = w(XV(+jgs(a) =0) = L.

We have a question whether the disappearance of dependency happens as
N — oo for a stationary sequence <X(N)(- + jcpg(a))) - For this Sugita
gives an affirmative answer: If, at least ¢py(a) € T;‘;,E in other words «
is a dyadic normal number, a sequence (X M+ j(pg(Oz)))jeZ converges

to the {0,1}-valued fair Bernoulli random variables in finite dimensional

distribution as N — oo, i.e., for ¥j; < --- < j, and Yeq,...,e; € {0,1}
J\}Enoo“(X(N)(- +j1pa(a)) =e1,.. ., XN+ jrepa() = gk) = (3"

He says that this assumption on « is technical, and in fact the statement
above will hold for every irrational number o. However, this is still open.
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