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A Remark on Spot Rate Models Induced

by an Equilibrium Model

By Hidetoshi Nakagawa

Abstract. Cox-Ingersoll-Ross presented so-called CIR spot rate
model, which is explained by their equilibrium model. We set an econ-
omy model with a slight modification of their model in terms of semi-
martingale and show the existence of equilibrium in our model. Fur-
thermore, we discuss interest rate under equilibrium and show the gen-
eral form of spot rate dynamics induced from our equilibrium model.

1. Introduction

Cox, Ingersoll and Ross (CIR abbr.) studied pricing various assets based

on the equilibrium theory in their papers [2] [3]. In particular, It is well

known that they derived an equilibrium spot rate model such as

drt = (m− brt)dt + σ
√
rtdBt.

This model also has several good properties (mean-reverting, nonnegative,

and so on) and is useful for computing bond prices and prices of interest-rate

derivative securities.

Surveying real financial scene, besides CIR model, a lot of spot rate mod-

els are considered and used practically. Most of them, except CIR model,

however, have not been sufficiently explained in the framework of equilib-

rium theory. From the view of economics, it is considered that interest rate

should be determined by equilibrium relation between prices of two different

time-point consumption good. Therefore one is left with the question that

all the spot rate models should give us sort of explanation for its relation

to the equilibrium theory. From another point of view, some equilibrium

conditions may restrict the class of the spot rate models appropriate for an

economic scheme. Such a question motivates us to do this research.
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In general, since the research of CIR, it has been understood that it is

possible to form a spot rate model freely to a considerable degree, that is,

equilibrium models like CIR do not limit the class of admissible spot rate

models, though there have been only a few papers declaring this. One aim

of this research is to mention this fact by analyzing an semimartingale-based

equilibrium model, a slight refinement of original CIR model or some related

ones.

There have been many researches on equilibrium models under uncer-

tainty. Duffie and Duffie et al.( [4] [5] [6] [7] [8]) discussed the dynamic

equilibrium model from various interests and motivates us first. Karatzas,

Lehoczky and Shreve( [14] [15]) also researched the dynamic equilibrium in

a pure exchange setting with strong concern about solving optimal prob-

lems. Both of them skillfully use stochastic methods. In most cases pure

exchange models between agents are dealt with, though, the substance of

the problem is not much different from that of the cases with production

technology such as original CIR model. We begin with an equilibrium model

similar to CIR setting and use stochastic methods for analysis. Speaking

of semimartingale-based equilibrium model, Foldes ( [10] [11]) considers a

quite general case including jumps and shows the existence and uniqueness

of equilibrium under some conditions on the model similar to the above

ones, a little different from ours. Besides, Cvitanić and Karatzas( [1]),

Rogers( [18], [19]), Jin and Grasserman( [12]) mention that the existence of

a nonnegative local martingale, regarded as pricing kernel or state price, is

the key to equilibrium.

In this paper, we concentrate on discussion about an equilibrium model

considering “production” and “consumption” close to the original CIR, in

terms of continuous semimartingale. Although we only consider the case of

single production technology case, the extension to multi-technology case

or the case of technology with jumps is allowed to some extent after some

preliminaries. Our model is not so different from others, but the firm and

the representative agent are distinguished in point of the purpose of the

subject’s action. The existence of equilibrium is discussed and the sufficient

conditions on utility function and technology for equilibrium existing are

investigated. For example, utility functions such as u(x, t) = e−ρtx
α

α
, α ∈

(0, 1), ρ > 0 are supported.

Furthermore, we discuss spot rate processes under equilibrium. As done
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in general, we take notice of a positive semimartingale called state price pro-

cess or pricing kernel which plays an essential role. At last the author shows

lots of general spot rate models are induced from an equilibrium scheme in a

very simple setting (called LOG model). Ho-Lee model, Vasicek model, CIR

model and so on are included as examples. The result shown there may not

seem so important, but the significance is to make clear the connection be-

tween state variable model and spot rate process model within CIR scheme,

which has not been stated in the literature. The author remarks that this

illustrative result is close to that of Jin and Grasserman( [12]) who obtain

the result that every Heath-Jarrow-Morton model is supported by the CIR

production economy.

This paper is organized as follows. In Section 2, we give the definition of

production-consumption equilibrium and make it obvious that the existence

of a nonnegative local martingale has an important role in our setting too.

Section 3 gives the sufficient conditions on utility function and technology for

equilibrium existing. In section 4, the relation between equilibrium model

and spot rate models is discussed, especially for diffusion case.

The author thanks Prof. S. Kusuoka for a lot of useful advice and

discussions, especially on the existence of equilibrium.

2. Production - Consumption Equilibrium Model

We first consider the mathematical representation for our economy. The

interpretation for each element is given in Remark 2.4 later.

We consider time set as an interval [0, T ] with a finite time horizon T .

We denote by L the space of progressively measurable processes on [0, T ]

and by L+ its subset of nonnegative processes.

Let (Ω,F , (Ft)t∈[0,T ], P ) be a filtered probability space satisfying the

usual conditions and FT = F .

First we give our fundamental definitions.

Definition 2.1. The economy is the collection E =

{X; (U i, xi)i=1,···,m}, where X is a continuous semimartingale, U i : L+ → R

is a strictly increasing function and xi > 0 for each i (i = 1, · · · ,m, m is

a finite positive integer).
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We set x0 =
m∑
i=1

xi and E(X) = exp(X − 1

2
〈X,X〉), where 〈X,X〉 is the

quadratic variation process of X.

Definition 2.2. A production - consumption equilibrium for the econ-

omy E is a collection of processes [(S∗, π∗), δ∗, (ci∗, θi∗)i=1,···,m], where π∗ is

a strictly positive semimartingale, satisfying the following conditions:

(1) δ∗ solves the following problem:

maximize E[

∫ T

0
π∗
t δtdt] subject to δ ∈ L+ and

∫ T

0
E(X)−1

t δtdt ≤ x0

a.s.

(2) S∗
t =

1

π∗
t

E[

∫ T

t
π∗
sδ

∗
sds|Ft] t ∈ [0, T ]

(3) For each agent i (i = 1, · · · ,m), (ci∗, θi∗) solves the next problem:

maximize U i(c) subject to (i) c ∈ L+, θ ∈ L and

(ii) θtπ
∗
t S

∗
t ≤

∫ t

0
θu−(d(π∗

uS
∗
u)+π∗

uδ
∗
udu)−

∫ t

0
π∗
ucudu+π∗

0x
i t ∈ [0, T ]

a.s.

(4)
m∑
i=1

θi∗ = 1 ,
m∑
i=1

ci∗ = δ∗.

Remark 2.3. If we consider a process K (allowed to be regarded as

capital stock) which satisfies the following SDE

dKt = KtdXt − δtdt, K0 = x0,

the constraint inequality

∫ T

0
E(X)−1

t δtdt ≤ x0 in the above definition (1)

coincides with Kt ≥ 0.

Remark 2.4. We may roughly interpret the above mathematical set-

ting from an economic point of view. For more details of terminology, for

example, refer to Duffie [4] [5].

It is supposed that the market consists of one firm with one production

technology and m agents who play the role of consumer and investor. The
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firm is characterized by its technology and real output. Each agent is char-

acterized by their utility function and their initial good. There is a single

physical good which is produced by the firm and is used for consumption

or investment. The firm pays the holders of the firm’s share the product

as dividend according to the ratio they hold. X is thought to represent the

characteristics on the return of the technology. U i is the i-th agent’s utility

function (i = 1, · · · ,m) and xi > 0 is the amount of good which i-th agent

holds at the initial time.

As for Definition 2.2 of an equilibrium, the condition (1) means that δ∗

is the technology’s dividend-rate process that maximizes the initial share’s

price.

S∗ is the firm’s share price process. π∗ is called a state price process

owing to the condition (2). (See Duffie [5].)

Furthermore, (ci∗, θi∗) stands for i-th agent’s optimal consumption and

portfolio process. The constraint inequality of (3) means that the cost of

repurchasing the share at some time should be less than the total gain

acquired from trading it by the time minus the cumulative consumption.

We suppose hereafter that m = 1 (one agent) and a utility function U

is defined by the special form called the expected additive utility.

U(c) = E[

∫ T

0
u(ct, t)dt](2.1)

where u : (0,∞) × [0, T ] → R is continuous and u(·, t) : (0,∞) → R is

concave, strictly increasing, continuously differentiable for each t in [0, T ].

The hypothesis of m = 1 may seem a bit strange. However, the concept

of representative agent whose utility function, very roughly speaking, is

represented such as a suitably weighted sum of all agents’ utility functions)

is often considered in economics. For that reason, the hypothesis is not

necessarily unreasonable.

Theorem 2.5. Set ψ(x, t) be the inverse of ux(x, t) in x.

If there exists a strictly positive local martingale N such that

(1)

∫ T

0
E(X)−1

t ψ(NtE(X)−1
t , t)dt = x0, P -a.s.

and
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(2) {Nτn∧t}t∈[0,T ] is a martingale, where

τn = inf{t > 0;

∫ t

0
E(X)−1

s ψ(NsE(X)−1
s , s)ds > x0(1 − 1

n
)},(2.2)

then

[(K∗, NE(X)−1); δ∗; (c∗, 1)]

is a production-consumption equilibrium, where

δ∗t = c∗t = ψ(NtE(X)−1
t , t),

K∗
t = E(X)t

(
x0 −

∫ t

0
E(X)−1

s δ∗sds
)

for all t ∈ [0, T ].

Before the proof, we state the well-known result on concave functions as

lemma.

Lemma 2.6. If ϕ : (a, b) → R is continuously differentiable and con-

cave, then

(y − x)ϕ′(y) ≤ ϕ(y) − ϕ(x) ≤ (y − x)ϕ′(x), a < x, y < b

Proof of Theorem 2.5. First, we consider the condition (1) of Def-

inition 2.2.

Let C = {δ ∈ L+|
∫ T

0
E(X)−1

s δsds ≤ x0}. We see δ∗ ∈ C from the

condition (1).

It is obvious that τ1 < τ2 < τ3 < · · · , τn ↑ T, n → ∞. It follows from

the condition (2) that for all δ ∈ C

E[

∫ T

0
NtE(X)−1

t δtdt]

= lim
n→∞

E[

∫ τn

0
NtE(X)−1

t δtdt]

= lim
n→∞

E[Nτn

∫ τn

0
E(X)−1

t δtdt] ≤ lim
n→∞

E[Nτn

∫ T

0
E(X)−1

t δtdt]

≤ lim
n→∞

x0E[Nτn ] = x0E[N0].
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The second equality follows from a stochastic version of Fubini’s theorem

and the property of conditional expectation. The same method is used

several times hereafter without notice.

On the other hand, for δ∗, from (2.2),

E[

∫ T

0
NtE(X)−1

t c∗tdt]

= lim
n→∞

E[Nτn

∫ τn

0
E(X)−1

t δ∗t dt] = lim
n→∞

E[Nτnx0

(
1 − 1

n

)
]

= lim
n→∞

x0

(
1 − 1

n

)
E[Nτn ] = x0E[N0].

This result implies that δ∗ is an optimal solution of the first problem.

Second, we show NE(X)−1 is a state price process.

E[

∫ T

t
NsE(X)−1

s δ∗sds|Ft]

= lim
n→∞

E[

∫ τn

t
NsE(X)−1

s δ∗sds|Ft]

= lim
n→∞

E[Nτn

∫ τn

t
E(X)−1

s δ∗sds|Ft]

= lim
n→∞

E[Nτn

{
x0

(
1 − 1

n

)
−

∫ t

0
E(X)−1

s δ∗sds
}
|Ft]

= K∗
t E(X)−1

t Nt

Finally we show that c∗ solves the agent’s problem in (3) of Definition

2.2. Now the constraint inequality is reduced and equivalent to c ∈ C.

By Lemma 2.6, for any c ∈ C,

u(ct, t) ≤ u(c∗t , t) + ux(c
∗
t , t)(ct − c∗t ) = u(c∗t , t) + NtE(X)−1

t (ct − c∗t ).

So we have

E[

∫ T

0
u(ct, t)dt]

≤ E[

∫ T

0
u(c∗t , t)dt] + E[

∫ T

0
NtE(X)−1

t (ct − c∗t )dt]

= E[

∫ T

0
u(c∗t , t)dt] + E[

∫ T

0
NtE(X)−1

t ctdt] − E[

∫ T

0
NtE(X)−1

t c∗tdt]

≤ E[

∫ T

0
u(c∗t , t)dt]
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The last inequality is from the result about δ and δ∗ of the first step.

This proves our assertion. �

We consider the simple model called “LOG model” below. In this special

case, we can show the existence of production - consumption equilibrium

and get the components like a state price process explicitly. We will discuss

more concrete results on LOG model in Section 4.

Definition 2.7. We say the model is LOG model if the function U is

given by

U(c) = E[

∫ T

0
e−ρt log ctdt],

where ρ > 0 is a constant.

Corollary 2.8. For LOG model,

[(K∗, γ∗E(X)−1), δ∗, (c∗, 1)]

is a production-consumption equilibrium, where

γ∗ =
1 − e−ρT

ρx0
, δ∗t = c∗t =

e−ρt

γ∗ E(X)t for all t ∈ [0, T ],

K∗
t =

E(X)t(e
−ρt − e−ρT )

ρ
for all t ∈ [0, T ].

Proof. It is direct from Theorem 2.5 by taking N = γ∗. �

We will discuss what conditions on u and X are sufficient to assure the

existence of equilibrium in general in the following section.

3. Existence of Production-Consumption Equilibrium

We consider the additive utility (2.1) and suppose throughout this sec-

tion that u : [0,∞) × [0, T ] → R is continuous and for each t in [0, T ],

u(·, t) : (0,∞) → R is continuously differentiable on (0,∞) , concave and

strictly increasing.

Assumption 3.1. We assume the following conditions for u:



Spot Rate Models by Equilibrium 461

(A-1) lim
x→∞

u(x, t) = ∞, and lim
x→∞

u(x, t)

x
= 0.

(A-2) u(0, t) = 0, and lim
x↓0

ux(x, t) = ∞, where ux is a partial derivative in

x.

(A-3) There is some constant C1 > 0 such that max
t∈[0,T ]

u(x, t) ≤
C1 min

t∈[0,T ]
u(x, t) for all x ≥ 0.

(A-4) lim
x↓0

lim
y→∞

u(xy, t)

u(y, t)
= 0.

(A-5) lim
x↓0

max
t∈[0,T ]

ux(ax, t)x = 0 for all a > 0 and ux(x, t) is continuous in t

for all x > 0.

Besides, for X, we suppose

(A-6) E[ max
t∈[0,T ]

E(X)t] < ∞.

It is easily checked that u(x, t) = e−ρtx
α

α
, α ∈ (0, 1), ρ > 0 satisfies

the above assumptions (A-1) - (A-5).

Theorem 3.2. Under Assumption 3.1, there exists a local martingale

N such that

[(K∗, NE(X)−1); δ∗; (c∗, 1)]

is a production-consumption equilibrium, where

δ∗t = c∗t = ψ(NtE(X)−1
t , t), ψ(x, t)is the inverse of ux(x, t) in x,

K∗ = E(X)t
(
x0 −

∫ t

0
E(X)−1

s δ∗sds
)
.

The following two propositions are essential to prove the above theorem.

The first one states the existence of optimal consumption and its properties.

Proposition 3.3. Under Assumption 3.1,
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(1) U0 ≡ sup
c∈C

U(c) < ∞,

where C = {c ∈ L+|
∫ T

0
E(X)−1

t ctdt ≤ x0 a.s.}
(2) There is a c∗ ∈ C such that U(c∗) = U0

(3) c∗t > 0, a.e. t a.s.

(4)

∫ T

0
E(X)−1

t c∗tdt = x0 a.s.

Proof. (1) By Lemma 2.6,

u(x, t) ≤ (x− 1)ux(1, t) + u(1, t), t ∈ [0, T ], x ∈ R+.

So if c ∈ C, we have

U(c) ≤ E[

∫ T

0
(ctux(1, t) + u(1, t))dt]

≤
∫ T

0
u(1, t)dt + max

t∈[0,T ]
ux(1, t)E[

∫ T

0
E(X)−1

t ctE(X)tdt]

≤
∫ T

0
u(1, t)dt + max

t∈[0,T ]
ux(1, t)E[ max

t∈[0,T ]
E(X)t

∫ T

0
E(X)−1

t ctdt]

≤
∫ T

0
u(1, t)dt + max

t∈[0,T ]
ux(1, t)x0E[ max

t∈[0,T ]
E(X)t].

It follows from (A-6) that the last expression is finite and does not depend

on c, hence so is supc∈C U(c).

(2) Let f(y, t) = u(·, t)−1(y), y ∈ [0,∞). Then f(y, t) is increasing,

convex, continuously differentiable in y ∈ (0,∞), and it follows from (A-1)

lim
y→∞

f(y, t)

y
= ∞.

Let K = {ξ ∈ L+|
∫ T

0
E(X)−1

t f(ξt, t)dt ≤ x0 a.s.}. Then K is convex.

We also observe sup
ξ∈K

E[

∫ T

0
f(ξt, t)dt] < ∞.

Unless it holds, we can take a sequence {ξ(n)} in K such that

E[

∫ T

0
f(ξ

(n)
t , t)dt] > n.

On the other hand, since ξ(n) ∈ K for all n, we have

E[

∫ T

0
f(ξ

(n)
t , t)dt] = E[

∫ T

0
E(X)tE(X)−1

t f(ξ
(n)
t , t)dt]
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= E[( max
t∈[0,T ]

E(X)t)

∫ T

0
E(X)−1

t f(ξ
(n)
t , t)dt]

= x0E[( max
t∈[0,T ]

E(X)t)] < ∞.

This contradicts the choice of the sequence.

Since for all α > 0, there is a constant c > 0 such that
f(y, t)

y
> α, for

all y > c, we have

sup
ξ∈K

E[

∫ T

0
1{ξt>c}ξtdt] ≤ 1

α
sup
ξ∈K

E[

∫ T

0
1{ξt>c}f(ξt, t)dt]

≤ 1

α
sup
ξ∈K

E[

∫ T

0
f(ξt, t)dt] < ∞

Therefore, K is uniformly integrable with respect to dt⊗dP on [0, T ]×Ω.

Moreover, we have U0 = sup
ξ∈K

E[

∫ T

0
ξtdt].

These results imply that K is a weakly sequential compact set in

L1([0, T ] × Ω) and that there is a ξ∗ ∈ K such that U0 = E[

∫ T

0
ξ∗t dt].

Letting c∗t = f(ξ∗t , t), we have the claim.

(3) Let c
(n)
t = (1 − 1

n
)c∗t +

1

nT
x0E(X)t, n ≥ 1. Then it is obvious that

c(n) ∈ C.

Furthermore we have

n(U(c(n)) − U(c∗))

= E[

∫ T

0
n(u(c

(n)
t , t) − u(c∗t , t))dt]

≥ E[

∫ T

0
ux(c

(n)
t , t)(

1

T
x0E(X)t − c∗t )dt]

=

∫ T

0
E[ux(c

(n)
t , t)(

1

T
x0E(X)t − c∗t ) ;

1

T
x0E(X)t ≥ c∗t ]dt

+

∫ T

0
E[ux(c

(n)
t , t)(

1

T
x0E(X)t − c∗t ) ;

1

T
x0E(X)t < c∗t ]dt

≥
∫ T

0
E[ux(c

(n)
t , t)

1

T
x0E(X)t ; c∗t = 0]dt

−
∫ T

0
E[ux(

1

T
x0E(X)t, t)c

∗
t ;

1

T
x0E(X)t < c∗t ]dt
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≥ E[

∫ T

0
ux(c

(n)
t , t)

1

T
x0E(X)t1{0}(c

∗
t )dt] − E[

∫ T

0
ux(

1

T
x0E(X)t, t)c

∗
tdt].

For every a > 0, (A-5) implies that for all ε > 0, there exists a δ > 0

such that max
t∈[0,T ]

ux(ax, t)x < ε for 0 < x < δ.

Thus, from (A-5) and (A-6) it follows that for all a > 0,

E[ max
t∈[0,T ]

ux(aE(X)t, t)E(X)t]

= E[ max
t∈[0,T ]

ux(aE(X)t, t)E(X)t; E(X)t < δ]

+E[ max
t∈[0,T ]

ux(aE(X)t, t)E(X)t; E(X)t ≥ δ]

≤ ε + ( max
t∈[0,T ]

ux(aδ, t))E[ max
t∈[0,T ]

E(X)t] < ∞

Therefore, we note that

E[

∫ T

0
ux(

1

T
x0E(X)t, t)c

∗
tdt] ≤ x0E[ max

t∈[0,T ]
ux(

1

T
x0E(X)t, t)E(X)t] < ∞.

Therefore, if P (|t ∈ [0, T ]; c∗t = 0| > 0) > 0 ( where |A| means the

Lebesgue measure of a measurable set A ⊂ R), then, by using (A-2), we

have

n(U(c(n)) − U(c∗)) → ∞, n → ∞

This contradicts the assumption for c∗.

(4) Let c̃
(n)
t =




c∗t if t ∈ [0, T − 1

n
]

n
(
x0 −

∫ T− 1
n

0
E(X)−1

s c∗sds
)

if t ∈ (T − 1

n
, T ]

.

Then we have

n(U(c̃(n)) − U(c∗)) = E[

∫ T

T− 1
n

(u(c̃
(n)
t , t) − u(c∗t , t))dt].

Note that

u(y, t) ≥ yux(y, t), y > 0

and

u(y, t) ≤ u(x, t) + ux(x, t)(y − x) ≤ u(x, t) +
u(x, t)

x
y, x, y > 0.
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Let ε > 0. Then we have

E[

∫ T

T− 1
n

u(c∗t , t))dt]

≤ E[

∫ T

T− 1
n

(u(nε, t) +
u(nε, t)

nε
c∗t )dt]

≤
∫ T

T− 1
n

u(nε, t)dt +
1

nε
( max
t∈[0,T ]

u(nε, t))E[

∫ T

T− 1
n

c∗tdt]

≤
(
1 +

C1

ε
E[

∫ T

T− 1
n

c∗tdt]
) ∫ T

T− 1
n

u(nε, t)dt

The last inequality follows from (A-3).

Since E[

∫ T

0
c∗tdt] ≤ x0E[ max

t∈[0,T ]
E(X)t] < ∞, we observe that for any

ε > 0, if n is sufficiently large, then

E[

∫ T

T− 1
n

u(c∗t , t)dt] ≤ 2

∫ T

T− 1
n

u(nε, t)dt.

Now we suppose that P (

∫ T

0
E(X)−1

t c∗tdt < x0) > 0. Then we see that

there is a δ > 0 such that

P (x0 −
∫ T

0
E(X)−1

t c∗tdt ≥ δ) ≥ δ.

Then we have for any ε > 0, if n is sufficiently large,

n(U(c̃(n)) − U(c∗)) ≥ δ

∫ T

T− 1
n

u(nδ, t)dt− 2

∫ T

T− 1
n

u(nε, t)dt.

The right-hand side, however, is positive because of the assumption (A-

4) if ε is sufficiently small and n is sufficiently large. This is a contradiction

to the assumption for c∗. �

Next we show that the optimal consumption satisfying the properties in

the last proposition introduces a local martingale which meets the conditions

stated in Theorem 2.5.
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Proposition 3.4. Let c∗ ∈ C satisfy U(c∗) = sup
c∈C

U(c) < ∞ and

∫ T

0
E(X)−1

t c∗tdt = x0 a.s..

Moreover, suppose (A-5) and (A-6) in Assumption 3.1.

Then there is a strictly positive local martingale {Mt}t∈[0,T ] satisfying

the following:

(1) ux(c
∗
t , t)E(X)t = Mt a.e. t

(2) {Mτn∧t}t∈[0,T ] is a martingale, where

τn = inf{t > 0;

∫ t

0
E(X)−1

s c∗sds > x0(1 − 1

n
)}

Proof. Let us take an arbitrary progressively measurable function

ξ : Ω × [0, T ] → R with |ξt| ≤ 1 and fix it. Let η(t; s), t ∈ [0, T ], s ∈ [0, T ),

be given by

η(t; s) =




c∗t ξt if t ∈ [0, s)

−(x0 −
∫ s

0
E(X)−1

u c∗udu)−1(

∫ s

0
E(X)−1

u c∗uξudu)c∗t if t ∈ [s, T ].
.

Then we have
∫ T

0
E(X)−1

t η(t; s)dt = 0, s ∈ [0, T ), a.s.,

∫ T

0
E(X)−1

t η(t; τn)dt = 0,

and

|η(t; τn)| ≤ nc∗t .

So we observe that

U(c∗ + sη(·; τn)) ≤ U(c∗)

for any s ∈ (−1, 1) with (1 + n)|s| < 1. So we see that

d

ds
U(c∗ + sη(·; τn))|s=0 = 0.

Note |ux(c
∗
t + sη(t; τn), t)η(t; τn)| ≤ nux(

1

n + 1
c∗t , t)c

∗
t .
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Since we have E[
∫ T
0 ux(

1

n + 1
c∗t , t)c

∗
tdt] < ∞ owing to (A-5) and (A-

6) (analogous to the proof of (3) in the previous proposition), Lebesgue

convergence theorem enables us to interchange between differentiation and

integral.

So we have E[

∫ T

0
ux(c

∗
t , t)η(t; τn)dt] = 0. Then

E[

∫ τn

0
ux(c

∗
t , t)c

∗
t ξtdt]

= E[(x0 −
∫ τn

0
E(X)−1

u c∗udu)−1(

∫ τn

0
E(X)−1

u c∗uξudu)(

∫ T

τn
ux(c

∗
t , t)c

∗
tdt)].

Let Yn = (x0 −
∫ τn

0
E(X)−1

u c∗udu)−1(

∫ T

τn
ux(c

∗
u, u)c∗udu).

Then we have

E[

∫ τn

0
c∗t {ux(c

∗
t , t) − E[Yn|Ft]E(X)−1

t }ξtdt] = 0.

Since ξ is arbitrary, we have

(ux(c
∗
t , t)E(X)t − E[Yn|Ft])1[0,τn)(t) = 0, dt⊗ dP−a.e.

Since τn ↑ T , we see that {ux(c
∗
t , t)E(X)t}t∈[0,T ] has a right continuous

version M . Then we observe that

Mτn∧t = E[Yn+1|Fτn∧t] a.s., t ∈ [0, T ),

so Mτn∧t is a martingale and Mt is a local martingale and strict positivity

is apparent from the construction. �

Proof of Theorem 3.2. It is now clear since Proposition 3.3 and 3.4

guarantee the conditions in Theorem 2.5 are satisfied. �

4. Equilibrium Spot Rate Process in LOG Model

Definition 4.1. Let π be a state price process in an equilibrium and

have the decomposition πt = π0 +πM
t +πA

t , where πM is a local martingale

with πM
0 = 0 and πA is an adapted process of finite variation with πA

0 = 0.
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An equilibrium cumulative spot rate process is a process R with R0 = 0

satisfying

dRt = −dπA
t

πt
(4.1)

If dRt is absolutely continuous with respect to dt, we set rt =
dRt

dt
and call

r the equilibrium spot rate process.

We see a relation between an equilibrium spot rate and an equivalent

martingale measure ( EMM ). Here, we define an EMM Q in the following

sense.

Let (S∗, δ∗) be the pair of components of Definition 2.2 and P (t, s) be a

process defined by

P (t, s) =
1

πt
E[πs|Ft] for 0 ≤ t ≤ s ≤ T.

In most finance models, P (t, s) is interpreted by s-maturity zero-coupon-

bond price process with P (t, t) = 1 for all t ∈ [0, T ].

EMM Q is defined as a probability measure “equivalent” to the original

measure P under which

{βtS∗
t +

∫ t

0
βuδ

∗
udu}0≤t≤T , {βtP (t, s)}0≤t≤s for all s ∈ [0, T ]

are both martingale, where βt = exp(−Rt), and R is a cumulative spot rate

process.

We state below the relation between the density of EMM Q and a state

price process π.

Hereafter we denote by E (resp. EQ) the expectation with respect to P

(resp. Q).

Lemma 4.2. Under the above notations, set ξt = eRt
πt

π0
and define the

density process of an equivalent probability measure Q as E[
dQ

dP
|Ft] = ξt.

Suppose E[πT ] < ∞.

If ξ is a martingales under P , Q is an EMM.

Proof. We may suppose π0 = 1.
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Let 0 < u < t ≤ T . Note E[πT |Fu] = E[πtP (t, T )|Fu].

Since ξ−1 is a martingake under Q, by the Bayes rule,

E[πtP (t, T )|Fu] =
1

ξ−1
u

EQ[ξ−1
t πtP (t, T )|Fu] a.s..

This implies that {βtP (t, T )}0≤t≤T is a Q-martingale,.

It follows from the same argument that {βtS∗
t +

∫ t

0
βuδ

∗
udu}0≤t≤T is a

Q-martingale. �

Now we mention the procedure to induce the spot rate dynamics for

LOG model.

Proposition 4.3. For LOG model, suppose that X admits the decom-

position

Xt = X0 + Mt + At,

where M is a local martingale with M0 = 0 and A is an adapted process of

finite variation with A0 = 0.

Then an equilibrium cumulative spot rate R satisfies the relation

Rt = At − 〈M,M〉t.

Proof. It immediately follows from dE(X)−1
t = E(X)−1

t (−dMt −
dAt + d〈M,M〉t) and (4.1). �

From now on, we only consider LOG model (see Definition 2.7 and

Corollary 2.8). We also pay attention to general diffusion-type spot rate

models (including multi-dimensional case) and see that they can be induced

from our equilibrium setting (in LOG model).

For the purpose, we introduce an Ito process Y which connotes “ state

variables”, that is, some economic parameters. We assume that the firm’s

production technology X is influenced by the state variable Y in the sense

that the instantaneous change of Xt depends on the current value Yt. We

assume the followings:
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Assumption 4.4.

(0) B is a standard Brownian motion on the probability space (Ω,F , P )

and we also take the filtration (Ft)t∈[0,T ] as Brownian filtration gen-

erated by B.

(1) Let Y be R-valued Ito process defined by

dYt = µ(Yt, t)dt + σ(Yt, t)dBt, Y0 ∈ R,(4.2)

where µ, σ : R × [0, T ] → R, are functions which guarantee the exis-

tence of solution to this SDE.

(2) Let X satisfy

dXt = [ϕ(Yt, t) + φ(Yt, t)
2]dt + φ(Yt, t)dBt,(4.3)

where ϕ : R × [0, T ] → R is twice continuously partial differentiable

in the first argument x and once in t and φ : R × [0, T ] → R is

continuous.

(3)

E[exp
(
2

∫ T

0
φ(Ys, s)

2ds
)
] < ∞(4.4)

and

E[exp
(
−4

∫ T

0
ϕ(Ys, s)ds

)
] < ∞.(4.5)

Now, we state our main result upon the dynamics of spot rate process

under an equivalent martingale measure.

Theorem 4.5. Under Assumption 4.4, there exists a spot rate process

r such that under an equivalent martingale measure Q and for some func-

tions ν : R × [0, T ] → R, ρ : R × [0, T ] → R,

drt = ν(Yt, t)dt + ρ(Yt, t)dB̂t, r0 = ϕ(Y0, 0)

where Q has a density process given by

E[
dQ

dP
|Ft] = exp

(
−

∫ t

0
φ(Ys, s)dBs −

1

2

∫ t

0
φ(Ys, s)

2ds
)
,
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and B̂ is a standard Brownian motion under Q.

In particular, if ϕ is monotone in variable x, then we have

drt = ν ′(rt, t)dt + ρ′(rt, t)dB̂t

for some functions

ν ′ : R × [0, T ] → R, ρ′ : R × [0, T ] → R.

Proof. It is sufficient to prove in the case of X0 = 0. We have rt =

ϕ(Yt, t) from Proposition 4.3.

By using Ito’s formula, we compute

drt = ϕx(Yt, t)dYt + ϕt(Yt, t)dt +
1

2
ϕxx(Yt, t)d〈Y, Y 〉t

= {ϕx(Yt, t)µ(Yt, t) + ϕt(Yt, t) +
1

2
ϕxx(Yt, t)σ(Yt, t)

2}dt
+ϕx(Yt, t)σ(Yt, t)dBt.

We also have

E(X)−1
t = exp

(
−Xt +

1

2
〈X,X〉t

)

= exp
(
−

∫ t

0
[ϕ(Ys, s) + φ(Ys, s)

2]ds

−
∫ t

0
φ(Ys, s)dBs +

1

2

∫ t

0
φ(Ys, s)

2ds
)

= exp
(
−

∫ t

0
rsds

)
exp

(
−

∫ t

0
φ(Ys, s)dBs −

1

2

∫ t

0
φ(Ys, s)

2ds
)
.

Set

ξt = exp
(∫ t

0
rsds

)
E(X)−1

t = exp
(
−

∫ t

0
φ(Ys, s)dBs −

1

2

∫ t

0
φ(Ys, s)

2ds
)
.

Since we get the Novikov’s condition E[exp
(1

2

∫ T

0
φ(Ys, s)

2ds
)
] < ∞

from (4.4), it follows that ξ is a P -martingale, and so E[ξt] = 1. We also

see ξT > 0 a.s., that is, Q is equivalent to P .
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Besides, we observe that E[E(X)−1
T ] < ∞ immediately from Cauchy-

Schwartz inequality and (4.5).

Hence Q is an EMM by Lemma 4.2.

Therefore the spot rate r satisfies the following SDE under Q:

drt = {ϕx(Yt, t)[µ(Yt, t) − φ(Yt, t)σ(Yt, t)]

+ϕt(Yt, t) +
1

2
ϕxx(Yt, t)σ(Yt, t)

2}dt

+ϕx(Yt, t)σ(Yt, t)dB̂t

Setting

ϕx(x, t)σ(x, t) = ρ(x, t)

ϕx(x, t)[µ(x, t) − φ(x, t)σ(x, t)] + ϕt(x, t) +
1

2
ϕxx(x, t)σ(x, t)2 = ν(x, t),

completes the proof of the first part.

If ϕ is monotone in variable x, observing that Yt = ϕ−1(rt, t) implies

that ϕx(Yt, t) is regarded as ϕx(ϕ
−1(rt, t), t) and so forth. So we can get

an SDE representation for r without Y . Here ϕ−1 stands for the inverse

function of ϕ in the first variable. �

Corollary 4.6. Under Assumption 4.4, if ϕ(x, t) = ax (a �= 0 is

some constant), then

drt = a{µ(
rt
a
, t) − φ(

rt
a
, t)σ(

rt
a
, t)}dt + aσ(

rt
a
, t)dB̂t.

Next we want to consider primitive models which give some general-type

spot rate models, that is, the concrete descriptions of SDE (4.2), (4.3) that

the processes Y,X satisfy. For the purpose, we have to determine the proper

functions σ, ϕ which lead to the intended model.

We give some examples along Collorary 4.6.

Example 4.7. (Ho - Lee model)

dYt = (
σµ

θ
+ βσ)dt + σdBt, dXt =

( θ

σ
Yt + β2

)
dt + βdBt
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( where σ, µ, θ, β are all positive constants). Then

drt = µdt + θdB̂t.

Example 4.8. (Vasicek model)

dYt =
(
σ[

m

θ
+ β] − bYt

)
dt + σdBt, dXt =

( θ

σ
Yt + β2

)
dt + βdBt

( where σ,m, b, θ, β are all positive constants). Then

drt = (m− brt)dt + θdB̂t.

Example 4.9. (CIR model and the extension)

Let
1

2
≤ α < 1.

dYt =
1

c
(m− bcYt + θβcαY α

t )dt + θcα−1Y α
t dBt,

dXt = (cYt + β2)dt + βdBt

( where m, b, θ, c, β are all positive constants). Then

drt = (m− brt)dt + θrαt dB̂t.

Example 4.10. (another example of CIR model)

dYt =
1

c
(m− (bc− θσ

√
c)Yt)dt +

θ√
c

√
YtdBt,

dXt = (c + σ2)Ytdt + σ
√

YtdBt

( m, b, θ, c, σ be all proper positive constants). Then

drt = (m− brt)dt + θ
√
rtdB̂t
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Remark 4.11. Example 4.10 is almost the same as the original model

given in CIR [3]. They assume that the instantaneous expectation and

variance of X are proportional to the current value of the state variable Y .
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