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The Generalized Whittaker Functions for SU(2, 1)

and the Fourier Expansion of Automorphic Forms

By Yoshi-hiro Ishikawa

Abstract. Explicit form of Fourier expansion of automorphic
forms plays an important role in the theory. Here we investigate the
case of SU(2, 1) and give an explicit formula of generalized Whittaker
functions for the standard representations of the group. Together with
a result of [K-O], we obtain a form of fully developed Fourier expansion
of automorphic forms belonging to arbitrary standard representations.

Introduction

In the theory of automorphic forms, Fourier expansion of modular forms

is a fundamental tool for investigation. For example, coefficients of the

expansion can be used for construction of L-functions. In spite of this

importance, the theory of Fourier expansion of automorphic forms seems

still in very primitive state.

Our concern in this paper is to have a theory of fully developed Fourier

expansion of modular forms on SU(2, 1), the real special unitary group of

signature (2+, 1−). To have such a theory we need Whittaker functions and

generalized Whittaker functions of the standard representations of SU(2, 1).

A quite explicit result is obtained by Koseki-Oda [K-O] for Whittaker func-

tions. The remaining problem for our purpose is to consider the generalized

Whittaker functions. This is the theme of the present paper.

The peculiarity of the case of SU(2, 1), different from the case of SL2(R),

is that the maximal unipotent subgroup N is not abelian. It is isomorphic

to the Heisenberg group of dimension three, and has infinite-dimensional

irreducible unitary representations σ, which are called Stone von Neumann

representations. Together with unitary characters they constitute the uni-

tary dual of N . The Fourier expansion of automorphic forms on SU(2, 1) is
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to consider irreducible decomposition of the restriction π|N of automorphic

representations π with respect to N . Therefore we have to handle those

terms which corresponds to the Stone von Neumann representations.

Naive formulation of the problem is to investigate intertwiners in

HomN (π|N , σ) which is isomorphic to HomG(π, IndGNσ) by Frobenius reci-

procity. But this fails in general, since the intertwining space in question

is infinite-dimensional. The right formulation of the problem is given by

introducing a larger group R containing N .

Here is the formulation of our main result. Let P be the minimal para-

bolic subgroup of SU(2, 1) with a Levi decomposition L � N . Let S be the

maximal closed subgroup of L which acts trivially on the center Z(N) of N .

The group R is the semidirect product S and N . We want to investigate

the intertwining space HomG(π, IndGRη) for certain unitary irreducible rep-

resentations η of R, and the images of intertwiners: these are the space of

generalized Whittaker functionals and the space of generalized Whittaker

functions, respectively.

Our main result is to obtain an explicit formula for the radial part of

such generalized Whittaker functions with special K-type. Simultaneously

we have the archimedean local multiplicity one theorem for the intertwin-

ing space, which generalizes that of Shalika [Sha] to the setting above.

As a bonus, we obtain a sufficient condition for one-dimensionality of the

intertwining space in terms of the parameters of representations (Theorem

3.3.5, Theorem 4.2.4). Consequently we have an explicit form of the Fourier

expansion of automorphic forms, which separates the finite part (i.e. the

coefficients) and the archimedean part (i.e. the generalized Whittaker func-

tions) in each term of the expansion (Theorem 5.3.1).

We should remark that Piatetski-Shapiro announced the multiplicity

one theorem of “Heisenberg model” for the irreducible representations of

U(3) over local fields more than two decades ago ([PS] p.589). Gelbart and

Rogawski used this result as a crucial step to investigate automorphic L-

functions obtained from Fourier-Jacobi expansion ([Ge-Ro] p.452). Over the

real field, this result is a part of our Thorems (3.3.5) and (4.2.4). However,

up to the present, any of these authors did not publish their proof.

The difficult part of our investigation is the case where π is of the

large discrete series representation of SU(2, 1). For such representations

our method of proof uses fundamental results of Yamashita [Ya2].
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Though the author needs the result of this paper for investigation of

automorphic forms, he also believes that it is interesting for the problem of

realization in generalized Gelfand-Graev representations.

Let us explain the contents of this paper more in detail. Firstly in §1,

after recalling some basic results about generalized Gelfand-Graev represen-

tations, we define generalized Whittaker functions with given K-type for

irreducible admissible representations π of a real semisimple Lie group G. In

§§2.1 we fix some notation for the structure of the group G = SU(2, 1) and

its Lie algebra. In §§2.2 we shortly summarize necessary facts on parameter-

ization of irreducible K-module τλ in K̂ and Clebsch-Gordan decomposition

of τλ ⊗AdpC
. In §§2.3 we construct irreducible unitary representation ηµ,ψ

of R concretely on L2(R) by using the theory of Weil representations. We

calculate explicitly the η-action of n = LieN on a basis of L2(R) consist-

ing of Hermite functions for the computation of the A-radial part of shift

operators in later sections. In §§2.4 we briefly recall Harish-Chandra ’s pa-

rameterization of the discrete series representations and the principal series

representations of SU(2, 1). The core of this paper is the section §3, which

treats the case of a discrete series representation. Here we use a fundamen-

tal result of Yamashita which characterizes the A-radial part of generalized

Whittaker functions of discrete series representations by means of Schmid

operators [Ya2]. We recall in §§3.1 the definition of the Schmid operators

and a result of Yamashita as Proposition 3.1.1. The first half of §§3.2 is

devoted to explicit calculation of the A-radial part of Schmid operators in

terms of the coefficient functions ck’s of a generalized Whittaker function for

discrete series representation with minimal K-type. We obtain a system of

difference-differential equations satisfied by ck’s (Proposition 3.2.4, Propo-

sition 3.2.5, Proposition 3.2.6). Finally in §§3.3 we give an explicit formula

for ck’s (Theorem 3.3.2, Theorem 3.3.4) by solving the differential equa-

tions in Proposition 3.3.1, Proposition 3.3.3. As an immediate corollary we

have the multiplicity one theorem for the generalized Whittaker model for

the discrete series representations (Theorem 3.3.5). The case of a principal

series representation is treated in §4. We also obtain an explicit formula

of the generalized Whittaker functions and the multiplicity one theorem in

this case (Theorem 4.2.4). The rest of this paper §5 is an application of

the explicit formula obtained in previous sections to the theory of Fourier

expansion of automorphic forms on SU(2, 1). Among others we can define
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normalized Fourier coefficients of automorphic forms in Theorem 5.3.1.
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1. Generalized Whittaker Models

1.1. The space of the generalized Whittaker functionals

Firstly in this subsection, we define the space of the generalized Whit-

taker functionals for an irreducible admissible representation (π,Hπ) of a

real semisimple group.

Let G be a connected real semisimple Lie group with finite center and

K its maximal compact subgroup. We denote by θ the Cartan involution

associated to K. Take a minimal parabolic subgroup P of G with a Levi

decomposition: P = L � N, where N is the unipotent radical of P and L is

the θ-invariant reductive part of P (i.e. the Levi subgroup). The action of L

on N by conjugation induces its action on the unitary dual N̂ of N . Hence

putting Sξ the stabilizer of the class of a unitary representation (ξ,S) of N

in L, we can extend (ξ,S) to a unique projective representation (ξ,S) of

Sξ � N .

Under some condition, we can get (ξ,S) as a representation of Sξ � N ,

not a projective representation. Let n be the Lie algebra of N . Assume ξ

corresponds to the coadjoint orbit of X∗ ∈ n∗ in the Kirillov theory (cf [Co-

Gr]). Let X be the element of g = LieG determined by 〈X∗, Z〉 = B(θX, Z).

Here Z ∈ n and B is the Killing form of g. Denote by H the semisimple

element of the sl2-triple containing X.

Proposition 1.1.1 ([Ya] Prop 2.2). When the subspace g(1) := {X ∈
g | [H, X] = X} of Lie algebra g admits an Ad(Sξ)-invariant complex struc-

ture, (ξ,S) is extendable to a unitary representation ξ̃ of Sξ � N acting on

the same representation space with ξ.

We remark that the assertion in the proposition above is valid in the

case of G = SU(2, 1).
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We assume the condition of Proposition 1.1.1 is satisfied throughout this

section. Denote the group Sξ � N by Rξ. Let η be a unitary representation

of Rξ defined by c′⊗ ξ̃. Here, c′ := c⊗ 1N is the extension of an irreducible

representation c of Sξ trivially on N .

Consider a space

C∞
η (Rξ\G) := {f : G→ S∞ | f is a C∞-function satisfying,

f(rg) = η(r).f(g), ∀r ∈ Rξ ,∀g ∈ G}

on which G acts via right translation. We call this C∞-induced represen-

tation IndGRξη of G the reduced generalized Gelfand-Graev representation.

Here, we used the standard notation that S∞ means the subspace consisting

of all smooth vectors in S.

We can now define the space of the generalized Whittaker functionals as

the space of intertwining operators.

Definition. For an irreducible admissible representation (π,Hπ) of

G, we denote the underlining (gC, K)-module of π by the same symbol π.

We call the space of intertwiners

Iπ,η := Hom(gC,K)(π
∗, IndGRξη)

of (gC, K)-modules the space of the algebraic generalized Whittaker func-

tionals. Here gC is the complexification of the Lie algebra g of G and π∗

denotes the contragredient (gC, K)-module of π.

1.2. Generalized Whittaker functions with fixed K-type

In order to investigate algebraic generalized Whittaker functionals l ∈
Iπ,η, we study the functions l(v∗) ∈ IndGRξη : the image of vectors v∗ be-

longing to (π∗,Hπ∗) by l. To describe these functions explicitly, we specify

a K-type of π and consider vectors v∗ belonging to this K-type.

Let (τ, Vτ ) be a K-type of π, that is, τ occurs in the decomposition of

π as K-module: π|K = ⊕
τ∈K̂ [π : τ ]τ. Choose a K-equivariant injection

ιτ : τ ↪→ π, and pullback a generalized Whittaker functional l by this

injection ιτ :

Hom(gC,K)(π
∗, IndGRξη) � l �→ ι∗τ (l) ∈ HomK(τ∗, IndGRξη|K).
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Here we note the isomorphism

HomK(τ∗, IndGRξη|K) ∼= (IndGRξη|K ⊗ τ)K .

The latter space is defined by(
C∞
η (Rξ\G)⊗C Vτ

)K ∼= C∞
η,τ (Rξ\G/K)

:=

{
ϕ : G→ S∞ ⊗C Vλ

∣∣∣∣∣
ϕ is a C∞-function satisfying

ϕ(rgk) = η(r)τλ(k)−1.ϕ(g),

∀r ∈ R ,∀g ∈ G ,∀k ∈ K

}
.

We study functions F ∈ C∞
η,τ (Rξ\G/K) representing ι∗τ (l). By definition,

l(v∗)(g) = 〈v∗, F (g)〉K ,

v∗ ∈ V ∗
τ . Here 〈 , 〉K means the canonical pairing of K-modules V ∗

τ and

Vτ .

Definition. We call the above function F corresponding to ι∗τ (l),
l ∈ Iπ,η the algebraic generalized Whittaker function associated to repre-

sentation π with K-type τ . Moreover if we impose the slowly increasing

condition for the A-radial part F |A of F , such a function is called the

generalized Whittaker function(see subsection 3.3). Here A is the vector

subgroup of G of which Lie algebra is the maximal abelian subalgebra of g.

We investigate these functions in the following setting

G = SU(2, 1)

ξ : an infinite-dimensional irreducible unitary representation of N

π : a discrete series representation of G (resp.

a principal series representation of G)

τ : the minimal K-type of π (resp.

the corner K-type of π)

and give an explicit formula for F and the multiplicity one property of Iπ,η
simultaneously by constructing F .
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2. The Structure of Lie Groups and Parameterization of

Representations

In this section we give a glossary on the group structure of SU(2, 1)

and representations for later use. We first fix realizations and give explicit

coordinates of various subgroups and their Lie algebras. It is crucial for

our explicit calculation of generalized Whittaker functions. We also recall

parameterization of representations of these groups.

2.1. Subgroups, subalgebras and root space decomposition

Subgroups and their realizations. We denote by diag(X1, X2, X3)

a diagonal matrix of degree 3 with (i, i)-entry Xi for each i (1 � i �
3). Put I2,1 := diag(1, 1,−1). Then we realize the identity component of

the stabilizer group SU(2, 1) of the Hermitian form of three variables with

signature (2+, 1−) as

{g ∈ SL(3, C)|tḡI2,1g = I2,1}.

Here tg is the transpose of g, and ḡ the complex conjugate of g. We denote

the group by G. Let

G = NAK

be the Iwasawa decomposition of G. Then in this realization, a maximal

compact subgroup K of G can be written as

K = {
(

k1 0

0 k2

)
∈ G | k1 ∈ U(2), k2 ∈ U(1), k2 det k1 = 1}.

Here U(n) is the unitary group of degree n. The Euclidean subgroup A is

A = {ar :=

 r+r−1

2
r−r−1

2

1
r−r−1

2
r+r−1

2

 | r ∈ R>0}.

The maximal unipotent subgroup N is isomorphic to the Heisenberg group

H(R2) of dimension 3. Here H(R2) is the set {(x, y; t) ∈ R
3} with a group

law (x, y; t)(x′, y′; t′) = (x+x′, y +y′; t+ t′+xy′−yx′). Note that the group

law above is different from usual one. See (2.1.1).
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Lie algebras and root space decompositions. Let g = k⊕p be the

Cartan decomposition of the Lie algebra g of G corresponding to a Cartan

involution θ : X �→ I2,1XI−1
2,1 , X ∈ g. Then

k = {
(

X1 0

0 X3

) ∣∣∣∣∣X1 ∈ u(2), X3 ∈ u(1),

trX1 + X3 = 0
},

p = {
(

0 X2
tX̄2 0

)
| X2 ∈M2,1(C)}.

Since G/K is Hermitian, we have a decomposition pC = p+⊕p− such that

p+ is identified with the holomorphic tangent space at the origin 1 · K ∈
G/K, corresponding to the complex structure of G/K. In our realization

we have

p+ = {
(

0 X2

0 0

)
| X2 ∈M2,1(C)}, p− = {

(
0 0

tY2 0

)
| Y2 ∈M2,1(C)}.

We fix a compact Cartan subalgebra t in k by

t = {diag(
√
−1h1,

√
−1h2,

√
−1h3) | hi ∈ R,

3∑
i=1

hi = 0}

and take a basis {H ′
12, H ′

13} of a compact Cartan subalgebra t as

H ′
12 = diag(1,−1, 0), H ′

13 = diag(1, 0,−1).

Define linear forms βij on tC(i �= j, 1 ≤ i, j ≤ 3) by

βij : tC � diag(t1, t2, t3) �→ ti − tj ∈ C.

Then the root system Σ associated to (gC, tC) is given by {βij | i �= j, 1 ≤
i, j ≤ 3}. We fix a positive system Σ+ as {βij | i < j}.

Let gβ be the root space associated to β ∈ Σ: gβ := {X ∈ g | [H, X] =

β(H)X, ∀H ∈ tC}. We denote Σc and Σn the sets of compact and noncom-

pact roots, respectively. In our choice of coordinates,

Σc = {β12, β21}, Σn = {β13, β23, β31, β32},
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and matrix element Eij (1 ≤ i, j ≤ 3) generates the root space gβij . We

put

Xβij =

{
Eij when(i, j) �= (2, 1);

−Eij when(i, j) = (2, 1),

and take it as a root vector in gβij . This choice is natural, since the com-

plex conjugation with respect to our real form of sl(3, C) converts two root

vectors Xβij and Xβji mutually. Put Σc,+ := Σc∩Σ+ and Σn,+ := Σn∩Σ+.

A maximal abelian subspace a of p is given by

a = RH with H :=

 0 0 1

0 0 0

1 0 0

 .

The restricted root system Ψ associated to (gC, aC) is given by Ψ :=

{±e,±2e}, where e is an R-linear form on a defined by e : aH �→ a. We

fix a positive root system Ψ+ as {e, 2e}. Then
∑

α∈Ψ+
gα is a maximal

nilpotent subalgebra n = Lie N of g. We get the Iwasawa decomposition

g = k⊕ a⊕ n.

We choose root vectors for gα, α ∈ Ψ+ as follows,

g2e = RE1, ge = RE2,+ ⊕ RE2,−,

E1 := i

 1 −1

0

1 −1

 , E2,+ :=

 −1

1 −1

−1

 ,

E2,− :=

 −i

−i i

−i

 ,

where the symbol i means the imaginary unit
√
−1. Then according to the

Iwasawa decomposition gC = kC⊕ aC⊕nC, the root vectors Xβ associated

to noncompact roots β ∈ Σn decompose as

Xβ13 =
1

2
H ′

13 +
1

2
H +

i

2
E1; Xβ31 =

−1

2
H ′

13 +
1

2
H − i

2
E1;
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Xβ23 = −Xβ21 −
1

2
E2,+ −

i

2
E2,−; Xβ32 = −Xβ12 −

1

2
E2,+ +

i

2
E2,−.

This will be used to calculate the action of Schmid operators, defined in

subsection 3.1, on the A-radial part of generalized Whittaker functions.

The exponential coordinate of N . We prepare the exponential co-

ordinate of N = expn which will be used for description of generalized

theta functions in subsection 5.2. As is well-known, for a connected simply

connected nilpotent Lie group the exponential map gives a diffeomorphism

between the group and its Lie algebra (cf. [Co-Gr] p.13). Therefore we can

take the basis {E2,±, E1} of n as a coordinate of N . The group law of N is

translated into

Y ∗X := log
(
(exp Y )(exp X)

)
.

The Campbell-Baker-Hausdorff formula says that

Y ∗X = Y + X + 1
2 [Y, X] + 1

12 [Y, [Y, X]]− 1
12 [X, [Y, X]] + · · ·

= Y + X + 1
2 [Y, X].

The second equality follows from the 2-step nilpotency of n. If Y = mE2,++

nE2,− + kE1, X = xE2,+ + yE2,− + zE1, then

Y ∗X = Y + X + 1
22(my − nx)E1(2.1.1)

= (m + x)E2,+ + (n + y)E2,− + (k + z + (my − nx))E1,

because of the relation [E2,+, E2,−] = 2E1. We abbreviate the element

exp(xE2,+ + yE2,− + zE1) of N as (x, y; z). This is utilized for solving the

differential equations for generalized theta functions (Theorem 5.2.1).

2.2. Representations of maximal compact subgroup K

Here we summarize necessary facts on representations of K from [K-O].

Parameterization of irreducible K-modules. The set L+
T of Σc,+-

dominant T -integral weights is given by L+
T = {(m, n) ∈ Z

⊕2|m ≥ n}. For

each µ = (µ1, µ2) ∈ L+
T , the vector space Vµ spanned by {vµk | 0 ≤ k ≤ dµ}

with kC-action as

τµ(Z)vµk = (µ1 + µ2)v
µ
k ,

τµ(H
′
12)v

µ
k = (2k − dµ)v

µ
k , τµ(H

′
13)v

µ
k = (k + µ2)v

µ
k ,

τµ(Xβ12 )v
µ
k = (k + 1)vµk+1, τµ(Xβ21 )v

µ
k = (k − dµ − 1)vµk−1
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gives an irreducible K-module (τµ, Vµ) via the highest weight theory. Here

Z denotes a generator 2H ′
13 −H ′

12 of the center.

Tensor products with pC. We regard the 4-dimensional vector space

pC as a kC-module via the adjoint representation ad. Then p+ and p− are

invariant subspaces, and

p+ = CXβ13 ⊕ CXβ23
∼= Vβ13 , p− = CXβ32 ⊕ CXβ31

∼= Vβ32 .

Given an irreducible K-module Vµ we have Vµ ⊗ pC = (Vµ ⊗ p+) ⊕ (Vµ ⊗
p−), and Clebsch-Gordan’s theorem tells us the following decomposition of

Vµ ⊗ p±:

Vµ ⊗ p+
∼= Vµ+β13 ⊕ Vµ+β23 , Vµ ⊗ p− ∼= Vµ+β32 ⊕ Vµ+β31

Here we understand Vν = (0) if ν ∈ LT is not dominant. We hence have

Vµ ⊗ pC
∼= V +

µ ⊕ V −
µ ;

V +
µ := Vµ+β13 ⊕ Vµ+β32 , V −

µ := Vµ−β13 ⊕ Vµ−β32 ,

under the above convention.

The decompositions of Vµ ⊗ pC induce the following projectors:

p+
β13

(µ) : Vµ ⊗ pC → Vµ+β13 , p+
β23

(µ) : Vµ ⊗ pC → Vµ−β32 ,

p−β23
(µ) : Vµ ⊗ pC → Vµ+β32 , p−β13

(µ) : Vµ ⊗ pC → Vµ−β13 .

In terms of {vµk}, they are expressed as follows:

Proposition 2.2.1 ([K-O] Prop 2.3).

p+
β13

(µ)(vµk ⊗Xβ13 ) = (k + 1)vµ+β
k+1

13, p+
β23

(µ)(vµk ⊗Xβ13 ) = −vµ−β
k

32,

p+
β13

(µ)(vµk ⊗Xβ23 ) = (dµ − k + 1)vµ+β
k

13, p+
β23

(µ)(vµk ⊗Xβ23 ) = vµ−β
k−1

32,

p−β23
(µ)(vµk ⊗Xβ32 ) = −(k + 1)vµ+β

k+1
32, p−β13

(µ)(vµk ⊗Xβ32 ) = vµ−β
k

13,

p−β23
(µ)(vµk ⊗Xβ31 ) = (dµ − k + 1)vµ+β

k
32, p−β13

(µ)(vµk ⊗Xβ31 ) = vµ−β
k−1

13,

for k = 1, . . . , dλ. Here one should note that dµ±β13 = dµ±β32 = dµ ± 1.
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2.3. Representation theory of the group R

We construct the unitary representations of R with nontrivial central

characters, which are necessary for our purpose.

The stabilizer Sξ of representation with nontrivial central char-

acter. Here we give an explicit form of the stabilizing group Sξ of the class

of ξ when ξ is an infinite-dimensional irreducible unitary representation of

N in order to construct concretely the unitary representation η explained

in subsection 1.1.

Note that the maximal unipotent subgroup N of G is the Heisenberg

group H(R2) of dimension 3. Recall that the unitary dual N̂ of N consists

of unitary characters and infinite-dimensional irreducible unitary represen-

tations by the Stone-von Neumann theorem:

Proposition 2.3.1. Every irreducible unitary representation σ of

H(R2) is either of two cases:

a) If the central character ψ of σ is trivial, σ is a one-dimensional repre-

sentation i.e. a unitary character.

b) If the central character ψ of σ is non-trivial, σ is a unique infinite-

dimensional irreducible unitary representation, up to unitary equivalence.

We call σ in the case(b) a Stone von Neumann representation. Let σ be

a Stone von Neumann representation of N . The equivalence class of σ in

N̂ is completely determined by its central character ψ. Let L be the Levi

subgroup of P , and Z(N) the center of N . Then L acts both on N̂ and

Z(N) by conjugation. Hence the stabilizer S of σ in L is the centralizer of

Z(N). In particular S is independent of σ and of the following form

S = {diag(α, β, ᾱ−1) ∈ G′ | α, β ∈ U(1), αβᾱ−1 = 1}.

Since the action of S on N by conjugation is faithful, S can be regarded

as a subgroup of the automorphism group of N . Passing to the abelianized

subgroup Nab = N/[N : N ] of N , we have

S ↪→ Aut N → Aut Nab.

Since Nab is identified with R
⊕2, Aut Nab ∼= GL2(R). Composing all these

identifications, we get an isomorphism between S and SO(2)

S

diag(α, β, ᾱ−1)

↪→ AutN →
�→

GL2(R) ⊃ SO(2),

R(3θ)
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by putting α = eiθ, β = e−2iθ, θ ∈ [0, 2π), where R(3θ) means the rotation

of angle −3θ.

Representations of R with nontrivial central characters. Here

we fix a model of a Stone von Neumann representation σ. By L2(R) we

denote the space of square integrable functions on R. For each element

(x, y; t) ∈ H(R2) and a function Φ ∈ L2(R), define

(2.3.1) ρψ

(
(x, y; t)

)
.Φ(ξ) = ψ(t + 2ξy + xy)Φ(ξ + x).

Then ρψ : H(R2) → Aut(L2(R)) is an infinite-dimensional irreducible uni-

tary representation with central character ψ, called the Shrödinger model

of a Stone von Neumann representation. Our model differs from usual one.

Since the commutation relation [E2,+, E2,−] = 2E1 between the basis of n

is different from the Heisenberg commutation relation by 2.

We extend the representation ρψ of N to the representation of R by

using the theory of Weil representation. As is well-known, the two-fold

covering S̃L2(R) of SL2(R) has a unitary representation (ωψ, L2(R)). This

is obtained as the intertwiner of representations ρψ and ρgψ of the Heisenberg

group H(R2) whose central characters are the same, by virtue of Proposition

2.3.1(b). Here the representation ρgψ is given by

ρgψ : H(R2) � (x, y; t) �→ ρψ((x, y)g; t) ∈ Aut(L2(R)).

From the construction above, we have the canonical extension

ωψ × ρψ : S̃L2(R) � H(R2)→ Aut(L2(R)).

Identifying S, N with SO(2), H(R2) respectively, the semidirect product

R = S � N is regarded as a subgroup of S̃L2(R) � H(R2). Let R̃ denote

the pullback S̃ � N ∼= S̃O(2) � H(R2) of R by the covering

pr × id : S̃L2(R) � H(R2) � SL2(R) � H(R2).

Then tensoring an odd character χ̃ of S̃O(2) to (ωψ × ρψ)|
R̃
, we have a

representation of R

χ̃⊗ (ωψ × ρψ)|
R̃

: R = S � N → Aut(L2(R)).
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We denote this representation by (η, L2(R)). A character of S̃O(2) is called

odd, if it does not factor through the covering S̃O(2) � SO(2).

Now we fix a description of odd characters. The covering S̃O(2) �
SO(2) is identified with the twice homomorphism SO(2)→ SO(2); R(θ) �→
R(2θ). Hence the characters of S̃O(2) is identified with 1

2Z, if we identify

these of SO(2) with Z. Therefore odd characters χ̃µ of S̃O(2) is parame-

terized by some elements µ = m + 1
2 in 1

2Z\Z (m ∈ Z).

Here is a diagram explaining the above construction

R̃ = S̃ � N S̃L2(R) � H(R2)
ωψ×ρψ−−−−→ Aut(L2(R))� pr×id

�
R = S � N −−−→ SL2(R) � H(R2).

The representations of R with non-trivial central characters are ex-

hausted by these representations constructed above.

Lemma 2.3.2. The unitary induced representation IndRNρψ of R has a

direct sum decomposition:

IndRNρψ ∼=
⊕

µ∈ 1
2

Z\Z

χ̃µ ⊗ (ωψ × ρψ).

Proof. The induced representation IndR̃Nρψ of R̃ = S̃ � N is isomor-

phic to RegS̃ ⊗ (ωψ × ρψ), where RegS̃ is the regular representation of S̃

(cf. [Ya] p.399, Lemma 2.5). Since S̃ ∼= S̃O(2), RegS̃ decomposes as a direct

sum of characters:

RegS̃
∼=

⊕
µ∈ 1

2
Z

χ̃µ.

Therefore IndRNρψ, which is identified with Ker(R̃ → R)-invariant part of

IndR̃Nρψ, has the decomposition stated above. �

A basis of η and the action of LieN . It is well known that Hermite

functions

hj(ξ) := (−1)jeξ
2/2 dj

dξj
e−ξ2 ,
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j = 0, 1, 2, . . . form an orthogonal Hilbert basis of L2(R).

Lemma 2.3.3. The subspace of smooth vectors in L2(R) is the Schwartz

space S(R), and the action of root vectors E1, E2,+, E2,− on S(R) through

the underlining Harish-Chandra module of ηµ,ψs = χ̃µ ⊗ (ωψ × ρψ)|
R̃

are as

follows:

η(E1).hj =
√
−1shj ,

η(E2,+).hj =
−1

2
hj+1 + jhj−1, η(E2,−).hj =

√
−1shj+1 + 2

√
−1sjhj−1,

where ψs is an additive character R � t �→ eist ∈ U(1) of R with parameter

s ∈ R\{0}.

Proof. Differentiate Schödinger model (2.3.1) in the exponential co-

ordinate. Then we have

ρψs(E1).Φ(ξ) =
√
−1sΦ(ξ),

ρψs(E2,+).Φ(ξ) =
d

dξ
Φ(ξ), ρψs(E2,−).Φ(ξ) = 2

√
−1sξ · Φ(ξ),

where Φ ∈ S(R). The well-known recurrence relations on Hermite polyno-

mials:

H ′
j(ξ) = 2j ·Hj−1(ξ),

Hj+1(ξ)− 2ξ ·Hj(ξ) + 2j ·Hj−1(ξ) = 0

(cf. [Er] p.193) tell us the assertion of Lemma. �

These formulae will be used in calculation of the radial parts of the

Schmid operators and the Casimir operator (Proposition 3.2.3, Proposition

4.2.1).

2.4. The standard representations of G

Since G is of real rank one, the standard representations of G consist

of discrete series representations and principal series representations. We

briefly recall Harish-Chandra’s parameterization of the discrete series, and

the K-type decomposition of the standard representations.

The discrete series representations. Let Ξ denote the set of all Σ-

regular Σc,+-dominant T -integral weights Λ ∈ LT of tC and let Ĝd denote
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the set of all equivalence classes of discrete series representations of G.

By a result of Harish-Chandra, there is a bijection between Ξ and Ĝd. A

member belonging to the class corresponding to Λ ∈ Ξ is said to have the

Harish-Chandra parameter Λ and denoted by πΛ.

Under identification of the weight lattice LT with Z
⊕2, we have

Ξ = {Λ = (Λ1, Λ2) ∈ Z
⊕2 | Λ1 > Λ2, Λ1Λ2 �= 0}.

This set decomposes into three disjoint subsets ΞJ = {Λ ∈ Ξ | 〈Λ, β〉 >

0, ∀β ∈ Σ+
J } correspond to positive root systems Σ+

J (J = I, II, III) com-

patible with the positive compact root system Σc,+ fixed before as {β12}.
We fix Σ+

J ’s as follows

Σ+
I := {β12, β13, β23},

Σ+
II := {β12, β32, β13},

Σ+
III := {β12, β32, β31}.

Note these three are translate into each other by the action of the Weyl

group W (g, t)/W (k, t). Then by the inner product on LT induced from the

Killing form we can see easily

Ξ+
I = {(Λ1, Λ2) ∈ Z

⊕2| Λ1 > Λ2 > 0 },
Ξ+
II = {(Λ1, Λ2) ∈ Z

⊕2| Λ1 > 0 > Λ2 },
Ξ+
III = {(Λ1, Λ2) ∈ Z

⊕2| 0 > Λ1 > Λ2 }.

Representations parameterized by Ξ+
I (resp.Ξ+

III) are called the holomor-

phic discrete series representations (resp. the antiholomorphic discrete se-

ries representations). In the remaining case, discrete series representations

whose Harish-Chandra parameters Λ’s belong to Ξ+
II are the large discrete

series representations in the sense of Vogan [Vo].

The Blattner formula tells us the K-type decomposition of the discrete

series representation πΛ as follows.

πΛ|K = ⊕µ∈L+
T (Λ)[πΛ : τµ]τµ
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where the set L+
T (Λ) of parameters of the K-types of πΛ is given by

L+
T (Λ) =


{λ + m1β13 + m2β23 | m1, m2 ≥ 0 ∈ Z} when Λ ∈ Ξ+

I ,

{λ + m1β13 + m2β32 | m1, m2 ≥ 0 ∈ Z} when Λ ∈ Ξ+
II ,

{λ + m1β31 + m2β32 | m1, m2 ≥ 0 ∈ Z} when Λ ∈ Ξ+
III .

When Λ ∈ ΞJ , λ in the formula above is described as

λ = Λ− ρc + ρJn


(Λ1 + 1, Λ2 + 2) when J = I,

(Λ1, Λ2) when J = II,

(Λ1 − 2, Λ2 − 1) when J = III,

where ρc is the half-sum of the compact positive roots and ρJn of the non-

compact ones in Σ+
J . This λ is the highest weight of the minimal K-type

of πΛ which is called the Blattner parameter. About the multiplicity we

remark that all [πΛ : τµ] is one for G = SU(2, 1). That is the multiplicity

free property for K-types is valid.

The principal series representations. Let

P = NAM

be the Langlands decomposition of P . We note M is isomorphic to U(1).

For characters eν : ar �→ rν+2 (ν ∈ C) of A and χλ0 : diag(eiθ, e−2iθ, eiθ) �→
eiλ0θ (λ0 ∈ Z) of M , the induced representation πλ0,ν = IndGP (1N⊗eν⊗χλ0)

is called the principal series representation of G. The representation space

of πλ0,ν is given by

{f : G→ C | f is a C∞-function satisfying,

f(narmg) = rν+2χλ0(m)f(g), ∀narm ∈ P ,∀g ∈ G}.

By the Frobenius reciprocity, we have the K-type decomposition:

πλ0,ν |K = ⊕µ∈L+
T (λ0)[πλ0,ν : τµ]τµ

with multiplicities [πλ0,ν : τµ] = 1, where the set L+
T (λ0) of parameters of

the K-types of πλ0,ν is given by

L+
T (λ0) = {(−λ0,−λ0) + m1β13 + m2β32 | m1, m2 ≥ 0 ∈ Z}.

The principal series representation πλ0,ν has only one K-type τ(−λ0,−λ0)

whose dimension is one. We call it the corner K-type of πλ0,ν .
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3. The Case of Discrete Series Representations

Here we treat discrete series representations and have the multiplicity

one theorem for such representations. Our method is to solve the system

of partial differential equations which characterize generalized Whittaker

functions and to give an explicit form of these functions.

3.1. Yamashita’s characterization

In this subsection we give a variant of a result of Yamashita, in a suitable

form for our use, which characterizes the space of the algebraic minimal K-

type generalized Whittaker functionals for discrete series representations.

This is fundamental for our purpose.

We denote the space of Vλ-valued functions on G with the τλ-equi-

variance by

C∞
τλ

(G/K) := {ϕ : G→ Vλ | ϕ is a C∞-function satisfying

ϕ(gk) = τλ(k)−1.ϕ(g) ,∀g ∈ G ,∀k ∈ K}.

We can regard pC as a K-module through the adjoint representation AdpC
.

The differential operator

∇τλ : C∞
τλ

(G/K)→ C∞
τλ⊗AdpC

(G/K)

defined by

∇τλϕ :=
4∑

i=1

RXiϕ⊗Xi,

is a K-homomorphism. Here {Xi (i = 1, . . . , 4)} is an orthonormal basis of

p with respect to the Killing form on g and RXϕ means the right differential

of function ϕ by X ∈ g : RXϕ(g) = d
dtϕ(g exp tX)|t=0. The operator ∇τλ

is called the Schmid operator . We take C(Xβ +X−β), C
√
−1(Xβ−X−β) as

orthonormal basis of pC, where β is β13 or β23 and C is a positive constant

depending on the normalization of the fixed Killing form. Then, using this

basis, the Schmid operator ∇τλ can be written as

∇τλϕ = 2C2
∑

β=β13,β23

RX−βϕ⊗Xβ + 2C2
∑

β=β13,β23

RXβϕ⊗X−β.
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Here we note that {Xβ13 , Xβ23} is the set of root vectors corresponding

to positive noncompact roots. The above description of ∇τλ in two terms

corresponds to the decomposition of pC = p+ ⊕ p−.

Now we define two differential operators

∇±
τλ

: C∞
τλ

(G/K)→ C∞
τλ⊗Adp±

(G/K)

as

∇+
τλ

ϕ := RX−β13
ϕ⊗Xβ13 + RX−β23

ϕ⊗Xβ23 ,

∇−
τλ

ϕ := RXβ13
ϕ⊗X−β13 + RXβ23

ϕ⊗X−β23 .

For later use, we prepare the ±β-shift operators for every positive noncom-

pact root β ∈ Σn,+ and λ ∈ L+
T .

D±β
τλ

: C∞
τλ

(G/K)→ C∞
τλ±β (G/K)

D±β
τλ

ϕ(g) := p±β
(
∇±

τλ
ϕ(g)

)
.

Here p±β are the projectors τλ ⊗Adp± � τλ±β defined in subsection 2.2.

All the operators constructed above can be defined similarly for the space

C∞
η,τλ

(R\G/K) :=

{
ϕ : G→ S(R)⊗C Vλ

∣∣∣∣∣
ϕ is a C∞-function satisfying

ϕ(rgk) = η(r)τλ(k)−1.ϕ(g),

∀r ∈ R ,∀g ∈ G ,∀k ∈ K

}
.

We denote these by the same symbols:

∇η,τλ : C∞
η,τλ

(R\G/K) → C∞
η,τλ⊗AdpC

(R\G/K),

∇±
η,τλ

: C∞
η,τλ

(R\G/K) → C∞
η,τλ⊗Adp±

(R\G/K),

D±β
η,τλ

: C∞
η,τλ

(R\G/K) → C∞
η,τλ±β (R\G/K).

Choose a K-homomorphism ιτλ : Vλ ↪→ HπΛ and consider the restriction

map

Hom(gC,K)(H∗
πΛ

, C∞
η (R\G))→ HomK(V ∗

λ , C∞
η (R\G)),

induced from ιτλ . By the canonical isomorphism

HomK(V ∗
λ , C∞

η (R\G)) ∼=
(
C∞
η (R\G)⊗C Vλ

)K
,
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where ( )K means the subspace fixed by K, the restriction homomorphism

induces

Hom(gC,K)(H∗
πΛ

, C∞
η (R\G))→ C∞

η,τλ
(R\G/K).

Proposition 3.1.1 ([Ya2] Theorem 2.4). Let πΛ be a discrete series

representation of G of the Harish-Chandra parameter Λ ∈ ΞJ , the Blat-

tner parameter λ = Λ+ρJ −2ρc. Let η be the representation constructed in

subsection 2.3. Assume Λ is far from walls, then the image of

Hom(gC,K)(π
∗
Λ, IndGRη) in C∞

η,τλ
(R\G/K) by the correspondence above is

characterized by

(D) : D−β
η,τλ

.F = 0 (∀β ∈ Σ+
J ∩ Σn).

In short

IτλπΛ,η
∼=

⋂
β∈Σ+

J ∩Σn

Ker D−β
η,τλ

,

where IτλπΛ,η
is the intertwining space Hom(gC,K)(τ

∗
λ , IndGRη).

Naturally our generalized Whittaker functions satisfies the above system

of differential equations (D).

3.2. Difference-differential equations for coefficients

Radial part of Schmid operators. For the representation (η, L2(R))

constructed in subsection 2.3 and for any finite dimensional K-module W ,

we denote the space of the smooth S(R)⊗C W -valued functions on A by

C∞(A ; S(R)⊗C W ) := {φ : A→ S(R)⊗C W | C∞-function}.

Let

resA : C∞
η,τλ

(R\G/K) → C∞(A ; S(R)⊗C Vλ),

resA,± : C∞
η,τλ⊗Adp±

(R\G/K) → C∞(A;S(R)⊗C Vλ ⊗C p±)

be the restriction maps to A. Then we define the radial part R(∇±
η,τλ

) of

∇±
η,τλ

on the image of resA by

R(∇±
η,τλ

).(resAϕ) = resA,±(∇±
η,τλ

.ϕ).
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Let us denote by φ and ∂ the restriction to A of ϕ ∈ C∞
η,τλ

(R\G/K) and of

the generator H of a, respectively; ∂φ = (H.ϕ)|A. We remark ∂ = r d
dr : the

Euler operator in the variable r.

Proposition 3.2.1 ([K-O] Prop 4.1). Let φ be the above element in

C∞(A ; S(R)⊗C Vλ). Then the radial part R(∇+
η,τλ

) of ∇+
η,τλ

is given by

(i) R(∇+
η,τλ

).φ

=
1

2
{∂ −

√
−1r2η(E1)− 4}.(φ⊗Xβ13) +

1

2
(τλ ⊗Adp+)(H ′

13).(φ⊗Xβ13)

− 1

2
r{η(E2,+)−

√
−1η(E2,−)}.(φ⊗Xβ23) + (τλ ⊗Adp+)(Xβ12).(φ⊗Xβ23).

Similarly for the radial part R(∇−
η,τλ

) of ∇−
η,τλ

, we have†

(ii) R(∇−
η,τλ

).φ

=
1

2
{∂ +

√
−1r2η(E1)− 4}.(φ⊗Xβ31)−

1

2
(τλ ⊗Adp−)(H ′

13).(φ⊗Xβ31)

− 1

2
r{η(E2,+) +

√
−1η(E2,−)}.(φ⊗Xβ32)+(τλ ⊗Adp−)(Xβ21).(φ⊗Xβ32).

Compatibility of S-type and K-type. Here we investigate the com-

patibility of the action of S from left hand side and the action of K or M

from right hand side for the function φ = resAϕ, ϕ ∈ C∞
η,τλ

(R\G/K).

If we write φ = ϕ|A ∈ C∞(A ; S(R)⊗C Vλ) as

φ(a) =

∞∑
j=0

dλ∑
k=0

cjk(a)
(
hj ⊗ vλk

)
in terms of bases {hj |j ∈ N} and {vλk |k = 0, . . . , dλ} of S(R) and Vλ respec-

tively, the compatibility of S-action and K-action implies the vanishing of

many coefficients cjk. Here is the precise statement.

Recall the representation (η,S(R)) of R is of the form χ̃µ⊗ (ωψ×ρψ)|
R̃
.

Here χ̃µ is an odd character of S̃ ∼= S̃O(2) parameterized by a half integer

µ.

†In [K-O], there is a misprint in the formula (ii). The sign − after ∂ is + correctly.
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Lemma 3.2.2. (1) The image of resA in C∞(A ; S(R) ⊗C Vλ) is zero

unless
−λ1 + 2λ2

3
∈ Z and

−λ1 + 2λ2

3
≤ 1

2
− µ.

(2) Assume the condition above in (1) holds, then the A-radial part φ of

ϕ ∈ C∞
η,τλ

(R\G/K) is written as

φ(ar) =

dλ∑
k=0

ck(ar)
(
hj ⊗ vλk

)
,

where ck(ar)’s are C∞-functions on A and the index j is given by

(3.2.1) j = k − 2λ1 − λ2

3
− 1

2
− µ.

Proof. We calculate φ(mam−1), m ∈ S = M, a ∈ A in two different

ways.

First, M = ZK(A), mam−1 = a for any a ∈ A and m ∈M , therefore

φ(mam−1) = φ(a).

Second, since M = S ⊂ R and φ is a function which comes from ϕ ∈
C∞
η,τλ

(R\G/K),

φ(mam−1) = η(m)τλ(m
−1)−1.φ(a)

=

∞∑
j=0

dλ∑
k=0

cjk(a)
{(

η(m).hj

)
⊗
(
τλ(m).vλk

)}
.

Here we note the action η decomposes into two parts: η = χ̃µ⊗(ωψ×ρψ)|
R̃

,

where
χ̃µ : S̃

diag(eiθ, e−2iθ, eiθ)

∼= S̃O(2)

�→ R(3θ)

→ U(1)

�→ e−iµ3θ

and

(ωψ × ρψ)
(
R(3θ)

)
.hj = e−i3θ(j+ 1

2
)hj .
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For the τλ-action on vλk , noting m = exp iθ(2H ′
12 −H ′

13), we know

τλ(m).vλk = ei(3k−2λ1+λ2)θvλk .

Hence we have

φ(mam−1) =
∞∑
j=0

dλ∑
k=0

cjk(a)ei(−3µ−3j− 3
2
+3k−2λ1+λ2)θ

(
hj ⊗ vλk

)
.

Since this is equal to φ(a),

cjk(a) = cjk(a)ei(−3µ−3j− 3
2
+3k−2λ1+λ2)θ

for all θ ∈ R. Therefore the function cjk is identically zero unless the

equality

j = k − 2λ1−λ2
3 − 1

2 − µ

holds. Here we note j, k ∈ N, 0 ≤ k ≤ dλ, µ ∈ 3
2Z\Z, above linear relation

between j and k tells the assertion of Lemma. �

Difference-differential equations for coefficients. As we saw

before, Yamashita’s characterization tells that the function F in

C∞
η,τλ

(R\G/K), which comes from l ∈ IπΛ,η, satisfies the system of dif-

ferential equations (D) in Proposition 3.1.1. Since F is determined by the

A-radial part φ = F |A, and φ is determined by the dλ + 1 coefficient func-

tions ck(ar) (k = 0, . . . , dλ) in Lemma 3.2.2, we first write down the A-radial

part R(D−β
η,τλ) of the β-shift operators D−β

η,τλ in terms of coefficient functions

ck(ar)’s of φ.

Proposition 3.2.3. Let φ be any function in C∞(A ; S(R) ⊗C Vλ)

which is the A-radial part of ϕ ∈ C∞
η,τλ

(R\G/K). By using Lemma 3.2.2,

we can express φ as

φ(ar) =

dλ∑
k=0

ck(ar)
(
hjµ,λ(k) ⊗ vλk

)
,
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where we denote k − 2λ1−λ2
3 − 1

2 − µ by jµ,λ(k). Then for an arbitrary

noncompact root β, the action of the A-radial part R(D−β
η,τλ) of the β-shift

operator is given in terms of ck’s as follows:

R(D−β
η,τλ

)φ(ar) =

dλ−β∑
k=0

c−β
k (ar)

(
hjµ,λ(k) ⊗ vλ−β

k

)
with

c−β23

k (ar) =
1

2
{(dλ − k + 1)(∂ + k − λ2 − sr2).ck(ar)(3.2.2)

− k
1 + 2s

2
r · ck−1(ar)},

c−β13

k (ar) =
1

2
{(∂ + k − 2dλ − λ2 − 1− sr2).ck+1(ar)(3.2.3)

+
1 + 2s

2
r · ck(ar)},

c−β32

k (ar) =
−1

2
{(∂ − k + λ2 − 2 + sr2).ck(ar)(3.2.4)

+ (1 + 2s)(jµ,λ(k) + 1)r · ck+1(ar)},

c−β31

k (ar) =
1

2
{k(∂ − k + λ2 + 2dλ + 1 + sr2).ck−1(ar)(3.2.5)

− (dλ − k + 1)(1 + 2s)(jµ,λ(k) + 1)r · ck(ar)}.

Proof. We show here calculation only for c−β32

k (ar), since others are

exactly similar.

R(D−β32
η,τλ

).φ(ar) = (1S(R) ⊗ p+
β23

(λ))(R(∇+
η,τλ

).φ)

=
1

2
{∂ −

√
−1r2η(E1)− 4}.

dλ∑
k=0

ck(ar)hjµ,λ(k) ⊗ p+
β23

(λ).(vλk ⊗Xβ13)

+
1

2
p+
β23

(λ)(τλ+β13 ⊕ τλ−β32)(H
′
13)

.

dλ∑
k=0

ck(ar)hjµ,λ(k) ⊗ p+
β23

(λ).(vλk ⊗Xβ13)
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− 1

2
r{η(E2,+)−

√
−1η(E2,−)}.

dλ∑
k=0

ck(ar)hjµ,λ(k) ⊗ p+
β23

(λ).(vλk ⊗Xβ23)

+ p+
β23

(λ)(τλ+β13 ⊕ τλ−β32)(Xβ12)

.

dλ∑
k=0

ck(ar)hjµ,λ(k) ⊗ p+
β23

(λ).(vλk ⊗Xβ23)

=− 1

2
{∂ −

√
−1r2η(E1)− 4}.

dλ−1∑
k=0

ck(ar)
(
hjµ,λ(k) ⊗ vλ−β32

k

)
− 1

2
τλ−β32(H

′
13).

dλ−1∑
k=0

ck(ar)
(
hjµ,λ(k) ⊗ vλ−β32

k

)
− 1

2
r{η(E2,+)−

√
−1η(E2,−)}.

dλ∑
k=1

ck(ar)
(
hjµ,λ(k) ⊗ vλ−β32

k−1

)
+ τλ−β12(Xβ12).

dλ∑
k=1

ck(ar)
(
hjµ,λ(k) ⊗ vλ−β32

k−1

)
.

Abbreviate λ− β32 as ν. Then, noting dν = dλ − 1,

R(D−β32
η,τλ

).φ(ar)(3.2.6)

= − 1

2

dν∑
k=0

(∂ − 4).ck(ar)
(
hjµ,λ(k) ⊗ vνk

)
+

1

2

dν∑
k=0

√
−1r2 · ck(ar)

(
η(E1).hjµ,λ(k) ⊗ vνk

)
− 1

2

dν∑
k=0

ck(ar)
(
hjµ,λ(k) ⊗ τν(

H ′
12 + Z

2
).vνk

)
− 1

2

dν∑
k′=0

r · ck′+1(ar)
(
{η(E2,+)−

√
−1η(E2,−)}.hjµ,λ(k′+1) ⊗ vνk′

)
+

dν+1∑
k=1

ck(ar)
(
hjµ,λ(k) ⊗ τν(Xβ12).v

ν
k−1

)
.
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Here we recall the τλ-action on standard basis in subsection 2.2

τν(H
′
12).v

ν
k = (2k − (dλ − 1)) · vνk

τν(Z).vνk = (ν1 + ν2) · vνk = (dλ + 2λ2 + 3) · vνk
τν(Xβ12).v

ν
k−1 = k · vνk .

Put these into the above formula (3.2.6), then we complete the calculation

for k. The result is

R(D−β32
η,τλ

).φ(ar)

= − 1

2

dν∑
k=0

{(∂ − 4) + (k + λ2 + 2)− 2k}.ck(ar)
(
hjµ,λ(k) ⊗ vνk

)
+

1

2

dν∑
k=0

√
−1r2 · ck(ar)

(
η(E1).hjµ,λ(k) ⊗ vνk

)
− 1

2

dν∑
k′=0

r · ck′+1(ar)
(
{η(E2,+)−

√
−1η(E2,−)}.hjµ,λ(k′+1) ⊗ vνk′

)
.

Next we use the η-action on the basis {hj} of S(R) prepared in Lemma

2.3.3. Then

R(D−β32
η,τλ

).φ(ar)

= − 1

2

dν∑
k=0

(∂ − k + λ2 − 2).ck(ar)
(
hjµ,λ(k) ⊗ vνk

)
+

1

2

dν∑
k=0

√
−1r2 · ck(ar)

(√
−1shjµ,λ(k) ⊗ vνk

)
− 1

2

dν∑
k=0

r · ck+1(ar)

{
−1− 2s

2
hjµ,λ(k+1)+1 ⊗ vνk

}

− 1

2

dν∑
k=0

r · ck+1(ar)
{

+(1 + 2s)jµ,λ(k + 1)hjµ,λ(k+1)−1 ⊗ vνk

}

= − 1

2

dν∑
k=0

(∂ − k + λ2 − 2 + sr2).ck(ar)
(
hjµ,λ(k) ⊗ vνk

)
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− 1

2

dν∑
k=0

−1− 2s

2
r · ck+1(ar)

(
hjµ,λ(k)+2 ⊗ vνk

)
− 1

2

dν∑
k=0

(1 + 2s)r jµ,λ(k + 1) · ck+1(ar)
(
hjµ,λ(k) ⊗ vνk

)
= − 1

2

dν∑
k=0

{
(∂ − k + λ2 − 2 + sr2).ck(ar)

+ (1 + 2s)(jµ,λ(k) + 1)r · ck+1(ar)
}(

hjµ,λ(k) ⊗ vνk
)
.

In the last equality, we use the fact that unless the indices of bases hj and vk
satisfy the linear relation (3.2.1) of Lemma 3.2.2, the coefficient ck of hj⊗vk
is identically zero. Now we accomplished the calculation of the action of

the radial part R(D−β32
η,τλ ) of β32-shift operator D−β32

η,τλ . Rewrite it by the

coefficient functions, then we have (3.2.4) described in Proposition. �

Using the above Proposition 3.2.3, we can write the differential equa-

tions (D) in Proposition 3.1.1 in terms of the coefficient functions ck of

the A-radial part φ of the algebraic generalized Whittaker function F ∈
C∞
η,τλ

(R\G/K), which comes from l ∈ IπΛ,η.

First we investigate the case of the large discrete series representation

which is most interesting for us among the discrete series. The Fourier-

Jacobi expansion of automorphic forms belonging to the representations

was not classically unknown, whereas holomorphic ones are investigated in

[PS2].

Proposition 3.2.4. Assume that the Harish-Chandra parameter Λ of

π belongs to ΞII and let F ∈ C∞
η,τλ

(R\G/K) be in the image of an element

l of the intertwining space IπΛ,η by the correspondence of subsection 1.2.

Then the system of differential equations in Proposition 3.1.1 is equivalent

to the following system of difference-differential equations for the coefficient

functions ck’s of the A-radial part of F .

(A+
µ,λ)k :

(
∂ + A+

λk(r)
)
.cjµλ(k),k(ar)

= −(1 + 2s)(jµ,λ(k) + 1)r · cjµλ(k+1),k+1(ar),

(B−
µ,λ)k :

(
∂ + B−

λk(r)
)
.cjµλ(k),k+1(ar) = −1 + 2s

2
r · cjµλ(k−1),k(ar),
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where

A+
λk(r) = sr2 + (λ2 − 2− k)

B−
λk(r) = −sr2 − (λ2 + 2dλ − k)− 1.

Proof. Recall that we fixed Σ+
II as {β12, β32, β13}, so Σ+

II ∩ Σn =

{β32, β13}. Hence combining the investigation of subsection 3.2, the system

(D) is equivalent to two differential equations

R(D−β32
η,τλ

).φ = 0,

R(D−β13
η,τλ

).φ = 0,

where φ is the A-radial part of F . These are equivalent to the fact that all

coefficient functions c−β
k (β = β32, β13) in the recurrence relations (3.2.3),

(3.2.4) are zero, which is the statement of Proposition. �

In the same manner we can derive the system of difference-differential

equations satisfied by the coefficient functions of the A-radial part of ele-

ments F ’s of C∞
η,τλ

(R\G/K) when πΛ is a holomorphic or an antiholomor-

phic discrete series representation (i.e.Λ ∈ ΞI or ∈ ΞIII).

Proposition 3.2.5. Assume that the Harish-Chandra parameter Λ of

π belongs to ΞI , then the system of differential equation in Proposition

3.1.1 for F which is in the image of an element of IπΛ,η is equivalent to the

following system for the coefficient functions ck’s of F |A.

(A−
µ,λ)k : (dλ − k + 1)

(
∂ + A−

λk(r)
)
.cjµλ(k),k(ar)

= k
1 + 2s

2
r · cjµλ(k−1),k−1(ar),

(B−
µ,λ)k :

(
∂ + B−

λk(r)
)
.cjµλ(k),k+1(ar) = −1 + 2s

2
r · cjµλ(k−1),k(ar),

where

A−
λk(r) = −sr2 − (λ2 − k)
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B−
λk(r) = −sr2 − (λ2 + 2dλ − k)− 1.

Proposition 3.2.6. When the Harish-Chandra parameter Λ of π be-

longs to ΞIII , the system of differential equations in Proposition 3.1.1 is

equivalent to the following system of difference-differential equations for

the coefficient functions ck’s of F |A.

(A+
µ,λ)k :

(
∂ + A+

λk(r)
)
.cjµλ(k),k(ar)

= −(1 + 2s)(jµ,λ(k) + 1)r · cjµλ(k+1),k+1(ar),

(B+
µ,λ)k : k

(
∂ + B+

λk(r)
)
.cjµλ(k),k−1(ar)

= (dλ − k + 1)(1 + 2s)(jµ,λ(k) + 1)r · cjµλ(k+1),k(ar),

where

A+
λk(r) = sr2 + (λ2 − 2− k)

B+
λk(r) = sr2 + (λ2 + 2dλ − k + 1).

The details of computations of the above two proposition are omitted.

They are direct consequence of Proposition 3.2.3.

3.3. An explicit formula and the multiplicity one theorem

In the previous subsection we obtain the system of difference-differential

equations satisfied by the coefficient functions ck’s of the algebraic general-

ized Whittaker function F ∈ C∞
η,τλ

(R\G/K) which comes from l ∈ IπΛ,η. In

this subsection we solve this. Firstly we eliminate the difference term from

the system and get the differential equation for each coefficient function

ck. After some calculation, we find that differential equations in question is

equivalent to the classical Whittaker equations. The moderate growth con-

dition for F transfered to the moderate growth condition for the classical

Whittaker function. Hence we have an explicit formula of the generalized

Whittaker functions and the multiplicity one theorem for the discrete series

representation of SU(2, 1).

An explicit formula for coefficients. Now we are in a position to

formulate the generalized Whittaker functions with analytic condition. Let
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us define the generalized Whittaker model for the representation π of G with

K-type τ as follow

Whτ
η(π)

:= {F ∈ C∞
η,τ (R\G/K) | F |A(ar) is of moderate growth when r →∞,

l(v∗) = 〈v∗, F (·)〉K , l ∈ Iπ,η, v∗ ∈ V ∗
τ }.

We call the elements in the space above the generalized Whittaker functions

associated to the representation π with K-type τ . Here moderate growth

means that the coefficient functions ck’s of F |A satisfy |ck(ar)| < CrN for

some constants C, N > 0.

We first work in the case of the large discrete series representation for

the same reason with previous subsection.

Proposition 3.3.1. Let φ = F |A be a function in C∞(A ; S(R)⊗C Vλ)

which comes from l ∈ Hom(gC,K)(πΛ, IndGRη), Λ ∈ ΣII . Functions ck’s are

the coefficient functions of φ expanded with respect to the bases {hj} and

{vλk}. Then each ck (0 ≤ k ≤ dλ − 1) satisfies the following differential

equation.

(Γµλ)
II
k : {∂2 − (2dλ + 4)∂ + Gk(r)}.ck(ar) = 0,

where

Gk(r) = − s2r4 − {2(λ2 − k + dλ − 1)s + (jk + 1)(1 + 2s)2/2}r2

− (k − 2dλ − λ2 − 2)(k − λ2 + 2).

Here we abbreviated jµλ(k) as jk.

Proof. The task is elimination of the difference term from the system

of difference-differential equations (A+
µλ)k and (B−

µλ)k (k = 0, . . . , dλ − 1)

obtained in Proposition 3.2.4. We neglect the suffix jµλ(k) since it does

not contribute to this proof. Differentiate the equation (A+
µλ)k by the Euler

operator ∂, then we get

(3.3.1) ∂2.ck + ∂.A+
k · ck + A+

k · ∂ck = −(1 + 2s)(jk + 1)r(ck+1 + ∂.ck+1).
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In order to cancel the term containing ck+1, we add (A+
µλ)k multiplied by

(B−
k − 1) and (B−

µλ)k multiplied by −(1+2s)(jk +1)r to the above formula

(3.3.1). Then we have a differential equation for ck of second order:

∂2.ck+(A+
k +B−

k −1)∂.ck+(∂.A+
k −A+

k +A+
k B−

k −(1+2s)2(jk+1)r2/2)ck = 0.

Compute the coefficient of ∂.ck and ck using the form of A+
k and B−

k de-

scribed in Proposition 3.2.4, we have the differential equation of Proposi-

tion. �

As a result, we obtain an explicit formula of the coefficient functions

ck’s of the minimal K-type generalized Whittaker functions for the large

discrete series representations.

Theorem 3.3.2. The coefficient functions ck’s of the A-radial part of

the minimal K-type generalized Whittaker functions F ’s ∈ Whτλ
η (πΛ) for

the large discrete series representations πΛ’s (Λ ∈ ΣII) of SU(2, 1) are of

the form

ck(ar) = γII
k × rdλ+1W

κ,
k−λ1

2

(|s|r2)

with parameters

κ = {−(λ2 − k + dλ − 1)s− (jk + 1)(2s + 1)2/4}/2|s|,

k = 0, . . . , dλ. Here variable ar is an element of A, γII
k is a constant,

λ = (λ1, λ2) is the Blattner parameter which coincides with Harish-Chandra

parameter Λ ∈ ΣII = {(λ1, λ2) ∈ Z
⊕2 | λ1 > 0 > λ2} in this case. For jk =

jµλ(k), see Proposition 3.2.3. Wκ,m(x) is the classical Whittaker function

which can be expressed by the integral

Wκ,m(x) =
e−

x
2 xκ

Γ(m− κ + 1
2)

∫ ∞

0
tm−κ+ 1

2 (1 +
t

x
)m+κ− 1

2 e−tdt

t

when Re(m− κ + 1
2) > 0 and x > 0.

Proof. Change the variable r by
√

x/|s|, and set

ck(ar) =

{
x

|s|

} dλ+1

2

uk(x),
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k = 0, . . . , dλ, then noting ∂ = r d
dr , we find that the differential equations

(Γµλ)
II
k turn into the classical Whittaker differential equations{

d2

dx2
+

(
−1

4
+
{−(λ2 − k + dλ − 1)s− (jk + 1)(2s + 1)2/4}/2|s|

x

+
1
4 − {(dλ + 2)2/4 + (k − 2dλ − λ2 − 2)(k − λ2 + 2)/4}

x2

)}
uk(x) = 0.

Calculation shows that the coefficient of x−2 equals to 1
4 −m2 with m =

(k − λ1)/2. We obtain the unique solution Wκ,m(x) of moderate growth

and the claimed formula for ck(ar). �

Here we normalize the constant multiples of ck’s. By the recurrence

formula (B−
µλ)k , we have

−1 + 2s

2γII
k+1

ck =

(
d

dr
− sr − λ2 + dλ − k + 1

r

)
.rd+1Wκ,µ(|s|r2)

= 2srd+2W ′
κ,µ(|s|r2)− srd+2Wκ,µ(|s|r2) + 2µrdWκ,µ(|s|r2).

Here µ = k−λ1
2 . The differentiation formula

d

dz

[
e−z/2zµ−

1
2 Wκ,µ(|s|r2)

]
= −e−z/2zµ−1Wκ+ 1

2
,µ− 1

2
(|s|r2)

is satisfied by Wκ,µ(z) in general (cf. [M-O-S] p.302, l.1). From this we have

−1 + 2s

2γII
k+1

ck = −2
√

s
ck
γII
k

.

Normalize the constants γII
k ’s by γII

d = 1, then we get

γII
k =

(
4
√

s

1 + 2s

)dλ−k

.

By using (A+
µλ)k, we can get the same result after a little bit more compli-

cated calculation.
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Now let us discuss the cases of the holomorphic and the antiholomorphic

discrete series representations. In these cases the differential equations sat-

isfied by the coefficient functions are of the first order. Consequently the

solutions are essentially exponential functions.

Proposition 3.3.3. Let φ = F |A be a function in C∞(A ; S(R) ⊗C

Vλ) which comes from l ∈ Hom(gC,K)(πΛ, IndGRη). Functions ck’s are the

coefficient functions of φ expanded with respect to the bases {hn} and {vλk}.
Then each ck (0 ≤ k ≤ dλ + 1) satisfies the following differential equation

(Γµλ)
J
k : {∂ + Gk(r)}.ck(ar) = 0 (J = I or II),

where

Gk(r) =

{ −sr2 − (λ2 + k) when Λ ∈ ΣI ;

sr2 + (λ2 + k) when Λ ∈ ΣIII .

Hence we have an explicit formula of ck’s.

Theorem 3.3.4. The coefficient functions ck’s of the A-radial part

of the minimal K-type generalized Whittaker functions F ’s ∈ Whτλ
η (πΛ)

for the holomorphic (resp. antiholomorphic) discrete series representations

πΛ’s (Λ ∈ ΣI(resp.ΣIII)) of SU(2, 1) are of the form

ck(ar) = γI
k × rλ2+kesr

2/2,

k = 0, . . . , dλ with s < 0, (resp.

ck(ar) = γIII
k × r−λ2−ke−sr2/2,

k = 0, . . . , dλ with s > 0). Here variable ar is an element of A and γI
k, γIII

k

are constants.

By the same procedure in the large discrete series case, we have normal-

ized constant multiples

γI
k =

(
4

1 + 2s

)dλ−k

(dλ − k)!,



510 Yoshi-hiro Ishikawa

γIII
k =

(
2

1 + 2s

)k−1 k∏
l=1

l

jl + 1
,

k = 0, . . . , dλ.

Remark. These explicit formulae of generalized Whittaker functions

for the holomorphic and the antiholomolphic discrete series representations

are compatible with the classical theory of Fourier-Jacobi expansion of holo-

morphic modular forms on SU(2, 1), or on the associated symmetric domain

SU(2, 1)/K. Since these results are well-known, we omitted the details of

these cases in this paper. We just remark here that the conditions on the

parameter s of the central character of ρψs in Theorem 3.3.4 are the conse-

quence of the moderate growth condition on Whτλ
η (πΛ).

The multiplicity one theorem for the discrete series. Assemble

the parts prepared in previous subsections, then we obtain simultaneously

the multiplicity one theorem and an explicit form of elements in the min-

imal K-type generalized Whittaker model Whτλ
η (π) for the discrete series

representations π’s of SU(2, 1).

In order to formulate the multiplicity one theorem we have to introduce

a (gC, K)-submodule Aη(R\G) of C∞
η (R\G).

Aη(R\G) :=

{
f ∈ C∞

η (R\G)

∣∣∣∣∣
cf,h is right K-finite and

cf,h|A(ar) is of moderate growth

when r →∞, ∀h ∈ (η,S(R))

}
,

where cf,h is a C-valued function on G defined as cf,h(g) := (f(g), h)η and

cf,h|A is the A-radial part of cf,h. Here ( , )η means the inner product on

L2(R). It is easy to see that Aη(R\G) is a (gC, K)-submodule of C∞
η (R\G).

In fact, clearly it is a continuous K-submodule, hence stable under the

action of k = LieK. The action of any element of a also stabilizes this

submodule. The action of X ∈ n is given by

cf,h(ar exp tX) = cf,h(ar exp tXa−1
r · ar) = η(Ad(ar)X).cf,h(ar).

Recall

R(E1).cf,h|A(ar) = r2(η(E1).cf,h)|A(ar),
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R(E2,±).cf,h|A(ar) = r(η(E2,±).cf,h)|A(ar).

Therefore the action of generators E1, E2,± of n also stabilizes this submod-

ule. Hence it is stable under the action of the whole g.

Theorem 3.3.5. The discrete series representation πΛ of SU(2, 1) of

the Harish-Chandra parameter Λ ∈ Ξ and the Blattner parameter λ =

(λ1, λ2) ∈ L+
T has the multiplicity one property i.e.

dimCHom(gC,K)(H∗
πΛ

,Aηµ,ψ(R\G)) = 1

if and only if

−λ1 + 2λ2

3
∈ Z,

−λ1 + 2λ2

3
≤ 1

2
− µ.

Under this condition, the minimal K-type generalized Whittaker model

Whτλ
η (πΛ) of πΛ has a basis F τλ

η whose A-radial part is given as follows.

1) When Λ ∈ ΞII (i.e. πΛ is a large discrete series representation ),

F τλ
η (ar) =

dλ∑
k=0

γII
k rdλ+1W

κ,
k−λ1

2

(|s|r2) ·
(

hjµλ(k) ⊗ vλk

)
,

where

κ = {−(λ2 − k + dλ − 1)s− (jµλ(k) + 1)(2s + 1)2/4}/2|s|.

2) When Λ ∈ ΞI (i.e. πΛ is a holomorphic discrete series representa-

tion ),

F τλ
η (ar) =

dλ∑
k=0

γI
krλ2+kesr

2/2 ·
(

hjµλ(k) ⊗ vλk

)
,

where s < 0.

3) When Λ ∈ ΞIII (i.e. πΛ is an antiholomorphic discrete series repre-

sentation ),

F τλ
η (ar) =

dλ∑
k=0

γIII
k r−λ2−ke−sr2/2 ·

(
hjµλ(k) ⊗ vλk

)
,
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where s > 0.

Here r ∈ R>0, and the index of each basis hj of η is

jµλ(k) = k − 2λ1 − λ2

3
− 1

2
− µ.

Proof. The generalized Whittaker functions F ∈ Whτλ
η (πΛ) corre-

spond to the generalized Whittaker functionals l ∈ Hom(gC,K)(H∗
πΛ

,

Aηµ,ψ(R\G)) are characterized as the solutions of (D) in Proposition 3.1.1

which satisfy the moderate growth condition. As we saw before the sys-

tem of differential equations (D) turn into differential equations (Γµλ)
J
k

(J = I, II, III) for coefficient functions ck’s of F in Proposition 3.3.1

and Proposition 3.3.3. The moderate growth condition on F is translated

into that the coefficient functions are of moderate growth when r tends to

infinity. Recalling that the coefficient function is not a trivial function if

and only if

(3.3.2)
−λ1 + 2λ2

3
∈ Z,

−λ1 + 2λ2

3
≤ 1

2
− µ,

we know that differential equation (Γµλ)
J
k has a non-trivial moderate growth

solution exactly when (3.3.2) holds. Hence we have the first half of the

assertion of Theorem. The rest is obvious. Indeed it is a direct consequence

of Theorem 3.3.2 and Theorem 3.3.4. Just arrange ck’s into

F (ar) =

dλ∑
k=0

γJ
k ck(ar)

(
hj ⊗ vλk

)
,

we have a basis of Whτλ
η (πΛ) of the form above. �

4. The Case of Principal Series Representations

The preceding section was devoted to the discrete series case. We now

study in this section the principal series case and give an explicit formula

of the corner K-type generalized Whittaker functions. In this case, we

can obtain the differential equation satisfied by the generalized Whittaker

function in a much simpler way than the case of the discrete series rep-

resentations. We have only to calculate the A-radial part of the Casimir

operator explicitly in terms of coefficient functions.
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4.1. Radial part of the Casimir operator

In this subsection we give the A-radial part of the Casimir operator.

Take

{θ(E1), θ(E2,+), θ(E2,−), H, M1, E1, E2,+, E2,−}
as a basis of g where M1 =

√
−1(H ′

13 −H ′
23). Then the Casimir operator

can be defined by

Ω =
1

2
H2 − 1

6
M2

1 −
1

2
{E1θ(E1) + E2,+θ(E2,+) + E2,−θ(E2,−)} − 2H1

with appropriate normalization of the Killing form. The eigen-value of Ω

can be calculated as 1
2ν2 + 1

6λ0
2 − 2 (cf. [K-O] 7.3 p.997).

The Casimir operator Ω ∈ U(gC) defines a unique differential operator R(Ω)

on the image of the restriction map resA : C∞
η,τ (R\G/K)→ C∞(A ; S(R)⊗C

Vτ ) by

R(Ω).φ = (Ω.ϕ)|A.

Here we used the notation in subsection 3.2; φ means the restriction of

ϕ ∈ C∞
η,τ (R\G/K) to A. We call R(Ω) the A-radial part of the Casimir

operator Ω, which is given as follows.

Proposition 4.1.1. Let φ ∈ C∞(A ; S(R)⊗C Vτ ) be the A-radial part

of ϕ ∈ C∞
η,τ (R\G/K). Then the radial part R(Ω) of Ω is given by

R(Ω).φ =
1

2
{∂2 − 4∂ +

1

3
λ0

2 + r4η(E1)
2

− 2
√
−1r2η(E1)τ(H ′

13) + r2(η(E2,+)2 + η(E2,−)2)

+ 2rη(E2+)τ(Xβ12 + Xβ21) + 2
√
−1rη(E2−)τ(Xβ12 −Xβ21)}φ.

Proof. Decompose the opposite θ(E) of E as

θ(E) = (θ(E) + E)− E.

Here the symbol E represents either E1 or E2,±. Noting θ(E)+E ∈ k, E ∈
n, we have

R(θ(E)).φ(ar) = τ(θ(E) + E).φ(ar)−R(E).φ(ar).
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The action of k can be computed directly

θ(E1) + E1 = 2iH ′
13,

θ(E2,+) + E2,+ = −2Xβ12 − 2Xβ21 ,

θ(E2,−) + E2,− = −2iXβ12 + 2iXβ21 .

Recall that the A-radial parts of E, H and M1 are given as

R(E1).φ(ar) = r2(η(E1).ϕ)|A(ar), R(E2,±).φ(ar) = r(η(E2,±).ϕ)|A(ar),

R(H).φ(ar) = ∂.φ|A(ar), R(M1).φ(ar) =
√
−1λ0 · φ|A(ar),

respectively. Then we get the assertion of Proposition. �

4.2. An explicit formula and the multiplicity one theorem

Let F be the generalized Whittaker function associated to the principal

series representation πλ0,ν with the corner K-type τ(−λ0,−λ0) corresponding

to the generalized Whittaker functional l ∈ I
τ(−λ0,−λ0)
πλ0,ν

,η . Since the func-

tion l(v∗) = 〈v∗, F ( )〉K ∈ IndGRη, v∗ ∈ τ∗
(−λ0,−λ0) is an eigen-vector for

the Casimir operator Ω with eigen-value 1
2ν2 + 1

6λ0
2 − 2, F satisfies the

differential equation

(4.2.1) Ω.F = (
1

2
ν2 +

1

6
λ0

2 − 2)F

accordingly.

Because of the one-dimensionality of the corner K-type of πλ0,ν , a func-

tion F which comes from l ∈ Hom(gC,K)(πλ0,ν , IndGRη) can be expanded as

F (g) = c0(g)
(
hj0 ⊗ v0

)
,

where v0 is a fixed generator of Vτ(−λ0,−λ0)
and hj0 is the basis of S(R)

with j0 = −λ0
3 − 1

2 − µ (cf. subsection 3.2). Then we have the differential

equation for the A-radial part of c0.

Proposition 4.2.1. Let c0 be the coefficient function of the A-radial

part of F which comes from l ∈ Hom(gC,K)(τ(−λ0,−λ0), IndGRη). Then c0

satisfies the differential equation

(Γν)
PS
0 : {∂2 − 4∂ + G(r)}.c0(ar) = 0
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with

G(r) = −s2r4 − {2λ0s + (2j0 + 1)(1 + 4s2)/2}r2 − (ν2 − 4).

Proof. The assertion of Proposition is an immediate consequence of

(4.2.1) and Proposition 4.1.1. Indeed we first remark that the third line of

the expression of R(Ω) in Proposition 4.1.1 does not contribute to the action

on c0, since τ(−λ0,−λ0)(Xβ12) = τ(−λ0,−λ0)(Xβ21) = 0 for one dimensional

representation τ(−λ0,−λ0). We need only

τ(H ′
13).v0 = −λ0v0.

Secondly using Lemma 2.3.3, we can see

η(E1)
2.hj = −s2hj ,

η(E2,+)2.hj =
1

4
hj+2 −

2j + 1

2
hj + j(j − 1)hj−2,(4.2.2)

η(E2,−)2.hj = −s2hj+2 − 2(2j + 1)s2hj − 4j(j − 1)s2hj−2,(4.2.3)

by direct computation. Again the one-dimensionality of the corner K-type

makes the η-action above much simpler. It forces all the terms but the

middle ones of the right hand side of (4.2.2), (4.2.3) vanish. Therefore we

have (Γν)
PS
0 . �

We solve (Γν)
PS
0 and obtain an explicit form of the coefficient function

of the corner K-type generalized Whittaker function.

Theorem 4.2.2. The coefficient functions c0 of the A-radial part of the

corner K-type generalized Whittaker functions F ’s ∈ Wh
τ(−λ0,−λ0)
η (πλ0,ν)

for the principal series representations πλ0,ν ’s of SU(2, 1) are of the form

c0(ar) = (const.)× rWκ, ν
2
(|s|r2)

with parameters

κ = {−λ0s− (2j0 + 1)(4s2 + 1)/4}/2|s|.
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Here ar is an element of A, ν is the infinitesimal character of πλ0,ν , j0 =

−λ0
3 − 1

2 − µ, and Wκ,m(x) is the classical Whittaker function.

Proof. The procedure is quite similar to the case of the large discrete

series representation (Theorem 3.3.2). We just change the variable r by√
x/|s|, and set

c0(ar) =

{
x

|s|

} 1
2

u0(x)

in order to transform (Γν)
PS
0 into the standard form{

d2

dx2
+

(
−1

4
+
{−λ0s− (2j0 + 1)(4s2 + 1)/4}/2|s|

x

+
1
4 − (ν2 )2

x2

)}
u0(x) = 0. �

Here is a variant of the recent result of Tsuzuki which can be considered

to be an analogue of Proposition 3.1.1.

Proposition 4.2.3 ([Tsu] Theorem 9.2.1). Let πλ0,ν be an irreducible

principal series representation of G with the corner K-type τ(−λ0,−λ0), the

infinitesimal character ν and η be the representation in subsection 2.3. Then

the image of Hom(gC,K)(π
∗
λ0,ν

, IndGRη) by the correspondence of subsection

1.2 in C∞
η,τ(−λ0,−λ0)

(R\G/K) is characterized by

R(Ω).F = (
1

2
ν2 +

1

6
λ0

2 − 2) · F.

In short

I
τ(−λ0,−λ0)
πλ0,ν

∼= Ker (R(Ω)− 1

2
ν2 − 1

6
λ0

2 + 2),

where I
τ(−λ0,−λ0)
πλ0,ν

is the intertwining space Hom(gC,K)(τ
∗
(−λ0,−λ0), IndGRη).

The multiplicity one theorem for the principal series. By virtue

of Proposition 4.2.3, we have the next multiplicity one result for the prin-

cipal series representations.
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Theorem 4.2.4. The irreducible principal series representation πλ0,ν

of SU(2, 1) has the multiplicity one property i.e.

dimCHom(gC,K)(π
∗
λ0,ν ,Aηµ,ψ(R\G)) = 1

if and only if

(4.2.4) −λ0

3
− 1

2
− µ ∈ Z≥0.

Under this condition, the corner K-type generalized Whittaker model

Wh
τ(−λ0,−λ0)
η (πλ0,ν) has a basis F

τ(−λ0,−λ0)
η whose A-radial part is given by

F
τ(−λ0,−λ0)
η (ar) = rWκ, ν

2
(|s|r2) ·

(
hj0 ⊗ v0

)
,

where

κ = {−λ0s− (2j0 + 1)(4s2 + 1)/4}/2|s|.
Here r ∈ R>0, and the index of the basis hj0 of η is

(4.2.5) j0 = −λ0

3
− 1

2
− µ.

Proof. The linear relation (3.2.1) of indices j and k turns into (4.2.5).

From the fact that j0 ∈ Z≥0, we have (4.2.4) as the necessary condition.

Conversely when (4.2.5) is valid, we can built up F of Proposition 4.2.3 by

defining its A-radial part via

F (ar) = rWκ,m(|s|r2) ·
(

hj0 ⊗ v0

)
,

which satisfies the moderate growth condition. �

5. The Fourier Expansion

Having explicit formulae of Whittaker and generalized Whittaker func-

tions for the standard representations of SU(2, 1) at our disposal, we are

ready to develop the theory of Fourier expansion of automorphic forms on

SU(2, 1) belonging to arbitrary standard representations.
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5.1. The formulation of the Fourier expansion

We first formulate the Fourier expansion of automorphic forms by using

the spectral decomposition theory. The following argument works for an

arbitrary non-cocompact discrete subgroup Γ of G. But, for the sake of

simplicity, we assume that Γ is a congruence subgroup such that NΓ =

N ∩Γ contains (1, 0; 0) and (0, 1; 0) in the exponential coordinate of N . For

example group Γ = G ∩ SL3(Z[i]) satisfies the condition. In fact, for this

Γ, NΓ contains elements

(x, y; z) =

 1− 1
2 |w|2 + (xy + z)i −w 1

2 |w|2 − (xy + z)i

w 1 −w

−1
2 |w|2 + (xy + z)i −w 1 + 1

2 |w|2 − (xy + z)i

 ,

w = x + yi ∈ (1 + i)Z[i], z ∈ Z. Here i means
√
−1 and |w|2 = x2 + y2.

Let Φ be an automorphic form on G with respect to Γ belonging to π with

K-type τ .

As NΓ\N is compact, the irreducible decomposition of the right regular

representation RegN of N on L2(NΓ\N) is given by

L2(NΓ\N) = ⊕
σ∈N̂

mσ · Sσ,

where (σ,Sσ) is an NΓ-invariant unitary representation of N and mσ is

the multiplicity of the representation σ in RegN . This reads that a naive

Fourier expansion of Φ along N should be

Φ(ng) =
∑
σ∈N̂

mσ∑
i=1

F π,τ
σ,(i)(ng),

where σ runs through the NΓ-invariant unitary representations of N . Here

F π,τ
σ,(i) is a smooth function in n ∈ N belonging to the i-th copy S(i)

σ of Sσ
(i = 1, . . . , mσ). As we saw in Proposition 2.3.1, the unitary dual N̂ of N

is exhausted by unitary characters ψu,v’s parameterized by (u, v) ∈ R
2 and

infinite-dimensional irreducible unitary representations ρψs ’s determined by

their nontrivial central characters ψs’s: Stone von Neumann representa-

tions. When σ is a unitary character, its multiplicity mψu,v is one. Hence

we have

Φ(ng) =
∑
ψu,v

F π,τ
ψu,v

(ng) +
∑
ρψs

mρ∑
i=1

F π,τ
ρψs ,(i)

(ng).
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Expanding this with respect to the standard basis {vτk} dτ
k=0 of Vτ , we have

Φ(ng) =
∑
(u,v)

( dτ∑
k=0

fπ,τ ;k
ψu,v

(ng)vτk

)
+
∑
s

mρ∑
i=1

( dτ∑
k=0

f π,τ ;k
ρψs ,(i)

(ng)vτk

)
.

Parameters (u, v) and s run through discrete subsets of R
2 and R\{0} re-

spectively, which are determined by NΓ-invariantness.

But this formulation fails in general as we mentioned in introduction.

When σ is a Stone von Neumann representation ρψs , the generalized

Gelfant-Graev representation IndGNρψs , where the function f π,τ ;k
ρψs ,(i)

belongs,

is huge in the meaning below. To investigate the function f π,τ ;k
ρψs ,(i)

is to study

the intertwining space HomN (π∗|N , ρψs) which is isomorphic to

HomG(π∗, IndGNρψs) by Frobenius reciprocity. However this space is infinite-

dimensional and uncontrollable.

Now we remove the difficulty above and give a correct formulation of the

Fourier expansion of automorphic forms. Because of the next identifications

(see Lemma 2.3.2)

IndGNρψs
∼= IndGR

(
IndR̃Nρψs

)ker(R̃→R)

∼= IndGR

(
RegS̃ ⊗ (ωψs × ρψs)|R̃

)ker(R̃→R)

∼= IndGR

(
⊕

µ∈ 1
2

Z\Z

χ̃µ ⊗ (ωψs × ρψs)|R̃
)

∼=
⊕

µ∈ 1
2

Z\Z

IndGR

(
χ̃µ ⊗ (ωψs × ρψs)|R̃

)
,

the intertwining space in question decomposes as

HomG(π∗, IndGNρψs)
∼=

⊕
µ∈ 1

2
Z\Z

HomG(π∗, IndGRηχ̃µψs).

We abbreviated χ̃µ ⊗ (ωψs × ρψs)|R̃ as ηχ̃µψs . Accordingly, the function

fπ,τ ;k
ρψs ,(i)

can be expressed as

fπ,τ ;k
ρψs ,(i)

=
∑

µ∈ 1
2

Z\Z

f π, τ ;k
ηχ̃µψs ,(i)

,
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where f π, τ ;k
ηχ̃µψs ,(i)

’s are functions in the space of IndGRηχ̃µ,ψs . Note that the

space

HomG(π∗, IndGRηχ̃µ,ψs)

is the space of the generalized Whittaker functionals and the dimension of

it is always at most one. Hence we have a fine expansion:

Φ(ng) =
∑
(u,v)

( dτ∑
k=0

fπ,τ ;k
ψu,v

(ng)vτk

)
+
∑
s

mρ∑
i=1

( dτ∑
k=0

∑
µ∈ 1

2
Z\Z

f π, τ ;k
ηχ̃µψs ,(i)

(ng)vτk

)
.

Here is the Fourier expansion of a Vτ -valued automorphic form Φ on G

along N :

Φ(ng) =
∑
(u,v)

( dτ∑
k=0

c Φ,τ ;k
ψu,v

(g) · ψu,v(n)vτk

)

+
∑
s

mρ∑
i=1

( dτ∑
k=0

∑
µ∈ 1

2
Z\Z

∑
j∈N

c Φ , τ ; k
ηχ̃µψs (i) ; j(g) · θρψs (i)

j (n)vτk

)
,

where {θρψs (i)
j }j∈N is a basis of the i-th copy S(i)

ρψs ⊂ L2(NΓ\N) of Sρψs .

5.2. Generalized theta functions

In the explicit formulae of generalized Whittaker functions obtained in

subsection 3.3 and subsection 4.2, the Hermitian functions hj appeared, as

the consequence of our choice of a basis of the Shrödinger model (ρψs ,S(R))

of a Stone von Neumann representation σ of N . In this subsection, we

construct θ
ρψs (i)
j in L2(NΓ\N) as the image of hj by an N -intertwiner

T : S(R)→ L2(NΓ\N).

In other word, we realize a Stone von Neumann representation σ in

L2(NΓ\N). For the purpose, we write down the Hermite descending op-

erator by elements of U(n) and translate it by T . Then we have the dif-

ferential equation which is satisfied by the image θ
ρψs (i)
0 = T (h0) of h0.

Using quasi-periodicity of θ
ρψs (i)
0 , which comes from NΓ-invariantness, we
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can solve the differential equation and obtain an explicit form of θ
ρψs (i)
0 .

Finally, by using the raising operator recursively, we obtain the following

form of θ
ρψs (i)
j = T (hj). Essentially the same argument can be found in

[Mum].

Theorem 5.2.1. (1) The image of N -intertwiner T in L2(NΓ\N) is

zero unless the central character’s parameter s of the Schrödinger model

ρψs is of the form

s = 2πM,

where M is a non-zero integer.

(2) Assume s = 2πM (M ∈ Z\{0}), then there are 2|M| non-trivial N -inter-

twiners T (i) : S(R) → L2(NΓ\N), where i = 1, . . . , 2|M|. Moreover we can

take

(5.2.1) θ
5, (i)
0 (x, y; z) =

∑
k∈Z

e−(x+ i+2|�|k
2�

)2/2 · e[(i + 2|M|k)y + Mxy + Mz]

as the image θ
5, (i)
0 of h0 by T (i). As for the image θ

5, (i)
j of hj by T (i),

(5.2.2) θ
5, (i)
j (x, y; z) =

∑
k∈Z

hj

(
x +

i + 2|M|k
2M

)
· e[(i + 2|M|k)y + Mxy + Mz]

can be taken. Here we denote e2π
√
−1X by e[X] and exp(xE2,++yE2,−+zE1)

by (x, y; z) (the exponential coordinate on N ; see subsection 2.1).

Proof. The generator E1 of the center of n acts on θ ∈ L2(NΓ\N) by

multiplying
√
−1s; the derivative of ψs at 0. By the relation (2.1.1),(

RegN (exp tE2,+).θ
)(

exp(xE2,+ + yE2,− + zE1)
)

= θ
(

exp((x + t)E2,+ + yE2,− + (z − yt)E1)
)

,

hence we have

RegN (E2,+) =
∂

∂x
−
√
−1sy.

Similarly

RegN (E2,−) =
∂

∂y
+
√
−1sx.
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Note that the zero-th Hermite function h0(ξ) is annihilated by the descend-

ing operator a = ξ + d
dξ . This operator is written as

a =
1

2
√
−1s

ρψs(E2,−) + ρψs(E2,+)

on the Srödinger model (ρψs ,S(R)), accordingly

a =
1

2
√
−1s

(
∂

∂y
+
√
−1sx) + (

∂

∂x
−
√
−1sy)

on the realization of σ in L2(NΓ\N). Therefore θ
ρψs , (i)
0 satisfies the differ-

ential equation

(5.2.3)
{

(
∂

∂x
−
√
−1sy) +

1

2
√
−1s

(
∂

∂y
+
√
−1sx)

}
.θ
ρψs , (i)
0

)
(x, y; z) = 0.

On the coordinate E1, we can separate the variable z as

θ
ρψs , (i)
0 (x, y; z) = G0(x, y) · e

√
−1sz.

The NΓ-invariantness of θ
ρψs , (i)
0 requires that the parameter s should be

of the form s = 2πM, M ∈ Z, and that the function G0 should satisfy a

quasi-periodicity;

(5.2.4) G0(x + m, y + n) = G0(x, y) · e
√
−1s(nx−my),

for n, m ∈ Z (cf. 2.1.1). Set G̃0(x, y)e2π
√
−15xy = G0(x, y), then the differ-

ential equation (5.2.3) and the quasi-periodicity (5.2.4) turn into

{ ∂

∂x
+ x +

1

2
√
−1s

∂

∂y

}
G̃0(x, y) = 0,(5.2.5)

G̃0(x + m, y + n) = G̃0(x, y) · e−4π
√
−15my,(5.2.6)

for n, m ∈ Z. By the assumption on Γ, G̃0(x, y) is periodic in variable y

with period 1. Partial Fourier expansion of G̃0 in y tells

G̃0(x, y) =
∑
k′∈Z

g0,k′(x)e2π
√
−1k′y.
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In terms of g0,k′ , (5.2.5) and (5.2.6) fall into

{ d

dx
+ x +

k′

2M

}
g0,k′(x) = 0,

g0,k′(x + m) = g0,k′+25m(x),

for all m ∈ Z. By taking m = 1, which is possible because of our choice of

Γ, we know that the solution space for (5.2.5) is of dimension 2|M| and has

a basis consisting of

∑
k∈Z

e−(x+ i+2|�|k
2�

)2/2 · e[(i + 2|M|k)y],

i = 1, . . . , 2|M|. This gives (5.2.1) and the claim that there are 2|M| non-trivial

N -intertwiners T (i)’s.

The raising operator a† = ξ − d
dξ is written as

a† =
1

2
√
−1s

(
∂

∂y
+
√
−1sx)− (

∂

∂x
−
√
−1sy).

The action of a† on the k′-th term (k′ = i + 2|M|k)

e−
(x+k′/2�)2

2 · e[k′y + Mxy + Mz]

of θ
5, (i)
0 becomes the action on e−

(x+k′/2�)2
2 = h0(x + k′/2M):

a†.h0(ξ) = − d

dξ
h0(ξ) + ξ · h0(ξ),

where ξ = x + k′/2M. This is equal to h1(ξ) = h1(x + k′/2M) by definition of

the Hermite function. Recursively, we have the expression (5.2.2) of θ
5, (i)
j . �

Proposition 5.2.2. Theta functions constructed above satisfy the or-

thogonality;

(θ
5, (i)
j , θ

5, (i′)
j′ )L2 = 2jj!

√
πδjj′δii′ .
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Here δmn denotes the Kronecker symbol and ( , )L2 means the inner product

on L2(NΓ\N) normalized as

(f, g)L2 :=

∫
N

f(n)g(n)dn,

where f, g ∈ L2(NΓ\N), dn is the NΓ-invariant Haar measure on N carried

from the Lebesgue measure on R
3.

Proof. Easily seen by the orthogonality of the Hermite functions. �

5.3. An explicit form of the Fourier expansion

Now we can give an explicit form of the Fourier expansion of an auto-

morphic form belonging to an arbitrary standard representation π with a

special K-type.

Theorem 5.3.1. Let Φ be an automorphic form on SU(2, 1) belonging

to π with K-type τ . Then the Fourier expansion of Φ is given as follows.

i) When π is a discrete series representation πΛ with Blattner parameter

λ = (λ1, λ2) ∈ Z
⊕2, put jk = k − 2λ1−λ2

3 − 1
2 − µ and take the minimal

K-type τλ as τ .

i-1) The case of large discrete series i.e. π = πΛ, Λ ∈ Ξ+
II

Φ(nar) = C Φ
0,0 · rdλ+2 · 1N (n)vλλ1

+
∑

(5,5′)∈Z2\(0,0)

CΦ
5,5′

( dλ∑
k=0

γkrdλ+ 3
2 W0,k−λ1(4π

√
M2 + M′2r)

· ψ2π5,2π5′(n)vλk

)
+

∑
5∈Z\{0}

2|5|∑
i=1

∑
µ∈ 1

2
Z\Z

C Φ
µ,5, (i)

( dλ∑
k=0

γII
k rdλ+1W

κ,
k−λ1

2

(2π|M|r2)

· θ5, (i)jk
(n)vλk

)
,

where

κ = {−(λ2 − k + dλ − 1)2πM− (jk + 1)(4πM + 1)2/4}/4π|M|.
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i-2) The case of holomorphic discrete series i.e. π = πΛ, Λ ∈ Ξ+
I

Φ(nar) =
∞∑

−5=0

2|5|∑
i=1

∑
µ∈ 1

2
Z\Z

C Φ
µ,5, (i)

( dλ∑
k=0

γI
krλ2+keπ5r

2 · θ5, (i)jk
(n)vλk

)
.

i-3) The case of antiholomorphic discrete series i.e. π = πΛ, Λ ∈ Ξ+
III

Φ(nar) =
∞∑
5=0

25∑
i=1

∑
µ∈ 1

2
Z\Z

C Φ
µ,5, (i)

( dλ∑
k=0

γIII
k r−λ2−ke−π5r2 · θ5, (i)jk

(n)vλk

)
.

In these cases, the index µ runs over half integers which satisfy jk ≥ 0.

ii) When π is a principal series representation πλ0,ν = IndGP (1N ⊗eν⊗χλ0),

put j0 = −λ0
3 − 1

2 − µ and take the corner K-type τ(−λ0,−λ0) as τ .

Φ(nar) = C Φ
0,0 · rν+2 · 1N (n)v0

+
∑

(5,5′)∈Z2\(0,0)

C Φ
5,5′ · r

3
2 W0,ν(4π

√
M2 + M′2r) · ψ2π5,2π5′(n)v0

+
∑

5∈Z\{0}

2|5|∑
i=1

∑
µ∈ 1

2
Z\Z

C Φ
µ,5, (i) · rWκ, ν

2
(2π|M|r2) · θ5, (i)j0

(n)v0,

where

κ = {−λ02πM− (2j0 + 1)(16π2M2 + 1)/4}/4π|M|.

In this case, the index µ runs over half integers such that −µ ≥ λ0
3 + 1

2 .

Generalized theta functions θ
5, (i)
j ’s are given in (5.2.1), (5, 2, 2). We call

C Φ
5,5′’s, C Φ

µ,5, (i)’s the Fourier coefficients of Φ.

Proof. This is an immediate consequence of our previous argument.

Here we just note that parameters appearing in explicit formulae (Theorem

3.3.5, Theorem 4.2.4 and [K-O] Theorem 4.5, l.12 p.998) s and η+η− should

be of the form 2πM, M ∈ Z\{0} and −4π2(M2 + M′2), (M, M′) ∈ Z
2\{(0, 0)} by

the same reason in proof of Theorem 5.2.1. �
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