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The Mellin Transformation of

Strongly Increasing Functions

By Grzegorz Lysik

Abstract. The definition of the Mellin transformation is modi-
fied in a way suitable for the study of some classes of functions with
exponential growth at zero.

Introduction

The (local) Mellin transform of a continuous function f on I = (0,¢],¢ >
0 can be defined by

Mof(2) = / F@)z*Lda.
0

To make the integral convergent it is required usually that f has polyno-
mial growth at zero i.e. |f(z)| < Cz¥ with some v € R. Then M,f is
a holomorphic function on {Rez < wv}. If we further assume that f is
a generalized analytic function, i.e. a function representable in the form
f(z) = S[x’], where S is a Laplace distribution supported by Z C v + Ry,
then M f extends holomorphically to a function on C\ Z and M f deter-
mines uniquelly the S ([SZ]). For a generalized analytic function f the set
supp S can be interpreted as the set of those exponents a € R which enter
into decomposition of f into powers z® and (Inz)¥2%, 0 < k < m with some
m € Np. It appears that generalized analytic functions are defined on the
universal covering space B(p) of the punctured disc B(p) \ {0},p > 0 and
the information about S is also carried by a pair of functions

MEf(2) = / F@)z*da,
yE()

1991 Mathematics Subject Classification. 30D15, 44A10, 46F12.
Key words: Laplace, Taylor and Mellin transformations, Laplace ultradistributions.
Supported by KBN grant no. 2 PO3A 006 08.

49



50 Grzegorz LYSIK

where v%(t) = {z € B(p) : Targz > 0,|z| = t},t < p. Now Mif e
O({£Imz > 0}) and the definition of M7 f requires only some estimation
of f on~y*(t) (e.g. polynomial growth in arg ) and not on the interval (0, ¢].
Using this observation we extend the definition of the Mellin transformation
to some classes of holomorphic functions on B(p;r) = B(p) \E (r) with r <
p. In fact we study the Mellin transforms of functions f € O )( (p; r))

where OW) (B )( (p; 7‘)) is the image under the Taylor transformation of the
(Np)!

(lnrf,vlnp
feoW) (B(p; T)) if and only if f is representable in the form

space L )(R) of Laplace ultradistributions on R, (see Section 2) i. e.

f(z) = S[x] forr < |z| <p

with some S € Lglnr)lnp)( ). Then M f € O({#Imz > 0}), has the growth

of type t~R°%exp{N*(L/|Im z|) } near the real axis (N* is the growth func-
tion of the sequence (N,)) and the difference of the boundary values of
M f and M; f is equal to 27i - S.

A special attention is paid on the study of the space OEM)*)( (p)) of
holomorphic functions on B (p) bounded by

Cexp{M™*(K/|z|) + N(L|Inz|)}

for |x| close to zero. To justify our interest in this space let us recall that
solutions of differential equations of type P(kaD) f =0, where P is a
polynomial and & > 0, have the above growth with M*(p) = p*. More
generally - as will be proved in the subsequent paper ([L3]) - the same
remains true for solutions of linear differential equations with analytic co-
efficients at zero. On the other hand, if f(z) = S[z’] with S € Lgé\jﬁz;) (Ry)
and J(D) = Y7, arD¥ is an ultradifferential operator of class (M) then
uw=JD )f € (’)(N [(B(p). Since Mf € O(C\ Ry) and My(Df)(z) =
(z+DMif(z+ 1) + f( )t=*~! we can also define the Mellin transform of u
by

k
Mu(z Zak Z+ + >./\/ltf(z+k) mod O%P(C).
It appears that the series on the r1ght hand side of the above formula is

locally uniformly convergent on C\R and the definition of Myu is consistent
with the previous one.
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In the final section we compute some explicit examples of Taylor and
Mellin tranforms. In particular, we compute the Mellin transform of
f(z) = exp{1/2*},k > 0. Since M;f is the Laplace transform of g(y) =
f(exp{—y}) this is equivalent to the computation of the Laplace transform
of g(y) = exp{exp{y*}}. In the case k = 1 similar result was obtained by
Deakin in [D] by means of asymptotic expansions. Let us also point out here
that Komatsu defined in [K2] the Laplace transformation for functions with
arbitrary growth but he has not given any explicitly evaluated transforms
of functions with superexponential growth.

Finally let us remark that throughout the paper one can omit the sym-
bols (N) and (IV,) working with the spaces of Laplace distributions and

replacing exp{N (K - p(z))} and exp{N* (K - p(z))} by (p(z))K
1. Preliminaries

Throughout the paper (My),cN,, (Vp)yeN, are sequences of positive
numbers with My = Ny = 0. We assume that both sequences satisfy the
conditions

(M.1) Mg < My_1My,iq for p € N;
(M.2) M, < HPM M,_, for p e N, 0 < ¢ < p with some H < o0;

o~ M, M,
P 1§Aqu for ¢ € N with some A < co.

M.3
(M.3) M, ~

p=q

We refer to [K1] or [M] for the significance of these conditions. We associate
with the sequence (M,,) the weight function

(1) M(p) = sup nee, p>0
peNg Mp

and the growth function
|

(2) M*(p) = sup ln@, p>0.
peNy M,

The weight function M is an increasing, convex function in Inp, which
vanishes for p € (0, 1] and satisfies ([K1], [BMT], Remark 8.9)

(3) M(2p) < C(M(p) +1) for p > 0;
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(5) / dt<C( (p) +1) for p> 0.
0

By (3) it follows that ([BMT], Lemma 1.2)
(6) M(p1 + p2) < C(M(p1) + M(p2) + 1) for p1,p2 > 0.

The growth function M* is also increasing and vanishing near zero. Fur-
thermore by (2) and (M.2) we get

(7) pexp{M*(p)} < Cexp{M*(Hp)} for p >0

where H is the constant in (M.2). We also have

(8) Z

(2p)} for p >0

'

(8 Z ]\Z— 2exp{M(2p)} for p > 0.

Put m, = M, /M, for p € N and

m(p) = {p € N:my < p}f, m*(p) = [{p € N2 myp/p < p}| for p > 0.

Then ([R], p.65)

P
A) m*(\)

m d/\ M*(p

(9)

dX for p > 0.

O\b
>/ /—\
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LEMMA 1. For every ¢ > 0 one can find H(c) < oo such that

(10) M*(p) < cM*(rp) for r > H(c), p> 0.

PROOF. Put N, = ming<g<p MyM,_4 for p € Ng. Then ([R], p. 55)
Nop—1 = Ngp = My, p € N. So 2m*(A) < n*(A) for A > 0. By (9) and (M.2)
we get

Hp)Pp!
2M*(p) < N*(p) < sup In P!
peNg D

= M*(Hp) for p > 0.
Fix ¢ > 0 and take N € Ny such that 2V > ¢~!. Iterating the above
inequality N times we get (10) with H(c) = HV. O

We say that functions f and g defined in a neighbourhood of oo are

equivalent, and we write f(p) ~ g(p) as p — oo, if there are positive
constants C' and L such that

(11) C7LF(L71p) < g(p) < Cf(Lp) for p big enough.

In a similar way we define f(p) ~ g(p) as p — 0.
The Young conjugate of the weight function M is defined by

(12) wr(t) = suI(:)) (M (p) — pt) for t > 0.
p>

It follows by the Stirling formula that ([PV], Lemma 5.6)
w*(1/p) ~ M*(p) as p — o0
and by (5) we get

LeEMMA 2 ([F], Lemma 2.3). For every L < oo there exists C, < oo
such that

(13) M*(Lp) < C(M*(p) 4+ 1) for p > 0.
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The most important example of a sequence (M),) satisfying (M.1) — (M.3)
is the Gevrey sequence M, = (p!)® for p € Ny where s > 1. Then M (p) ~
p'/* and M*(p) ~ p/=1 as p — .

An entire function P(z) = Y32, ax2” is called a symbol of class (M,)
if it satisfies one of the following equivalent conditions ([K1], Propositions
4.5 and 4.6)

(i) There are constants L < oo and C' < oo such that

lax| < CL* /M, for k € No;
(ii) There are constants L < oo and C' < oo such that
|P(2)| < Cexp{M(L|z|)} for z € C;

(iii) P has Hadamard’s factorization

o0
z
- 1 1-2)
(z) =az H ”
k=vp+1

and there are constants L < oo and C' < oo such that

P
/ww < M(Lp) + C for p > 0,
0

where v(A) = [{k € No : |cx| < A}

DerFINITION ([L2]). Let (Np),cN, be a sequence of positive numbers
satisfying the conditions (M.1) — (M.3) and Ny = 1. Let v € RU {—o0}

and w € RU {oo}. The space LEIJ,VZ))/(R) of Laplace ultradistributions on R

is defined as the dual space of

N, . N,
LGI(®) = lim LG (R)
a>v,b<w
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where for any a,b € R

N,
Lévbp)( R) = th((zb}z( R)
h>0
with
& D%p(x Ra,b\T
(149) Ly (®) = {p € C®(®) : [l = sup sup | }(Lozilf @) oy
zGRaENO [e%
and
(15) () e forx <0,
K €Tr) =
o0 e for z > 0.

The space Lgévz ))/(@+) of Laplace ultradistributions on R, is defined in

an analogous way replacing L%”g(]&) by

(16) Ly (®y)

N D —bx
— (o e Co@) - ollfy) = sup sup PPENTT oy
T IER+ QGNO @

We have topological inclusion
LE@ w)) (Ry) — LEZJ/VZ))/(R) for any v € RU {—o0}.
Immediately by the definition we get

LEMMA 3. A linear functional S on LE ( ) (resp. L(@ w)(R+)) be-

(
longs to LEN”))( ) (resp. LE@ w)) (Ry.)) iff for every a > v,b < w one can find

h > 0 such that

(17) 1S[¢]l < Cllell(y for ¢ € L (R)

(resp. Slell < Cllglliyy for ¢ € Ly (&) ).
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Let P(2) = Y 2, arz”® be a symbol of class (N,). Then an ultradiffer-
ential operator P(D) of class (N,) defines linear continuous mappings

P(D) . L(Np) (R) N L(Np) (R), L(NP)I(R) - L(NP)I(R)

(v,w) (v,w) (vyw)

where for S € L(

(vw)

M), o € L) (R)

(vw)

P(D)S[g] % S[P*(D)¢] with P*(D) = i(—l)kaka.
k=0

The space of Laplace ultradistributions can be characterized as follows.

THEOREM 1 (Structure theorem, [L2], Theorem 7). In order that an
ultradistribution S € DWWV (R) belong to Ly

(vw)
sufficient that for any a > v,b < w there are ultradifferential operators
Jo(D), Jy(D) of class (Np) and functions S,, Sy € C°(R) such that
supp S, C R, [S,(2)| < Ce™ for x < 0, supp Sy, C Ry, |Sp(x)| < Ce™b®

for x >0 and

(R) it is necessary and

S = Ja(D)Sa + Jy(D)Sy in L{03)(R).

DEFINITION ([L2]). Let W be a tubular neighbourhood of R i.e. W =
R + i where © is a neighbourhood of zero. Put W* = W N {+Imz > 0}.
Let H € O(W#) and let v € RU {—oc},w € RU {oc}. Assume that for

any a > v,b < w, H(-tiy) € L(]\gp),(R) for 0 < £y small enough. If for any

a

p € L) (R) there exists the limit limy, .o H(- %+ iy)[ep] def bt H[yp)| then,

(vw)

by the Banach-Steinhaus theorem, b*H ¢ LEinJ )/(IR) and we say that H has
the boundary value b* H from above (below) in L(N”)/(]R).

(vw)
In the sequel we shall assume that v < w. Let z € C. Denote by exp,
the function

R >z — exp,(z) Lef goz,
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(Np)
(vw

and for any v < a < b < w,h > 0 we have

Then exp, is an L; ") (R)-valued holomorphic function on {r < Rez < w}

lexp, |N7) = exp{N(|2|/R)} for a < Rez < b.

(Np)

Thus, the Laplace transform of S € L(V v ) (R) defined by

LS(z) = Slexp,] for v <Rez < w

is a holomorphic function on ¥ < Rez < w and by Lemma 3 it satisfies for
any v <a<b<w

(18) |L£S(2)] < Cexp{N(K,p|z|)} for a <Rez <b

with some K,j < 0o and C < oo.

Conversely assume that F' € O({v < Rez < w}) satisfies (18) with F
in place of £S. Then for any ¥ < a < b < w one can find a symbol F,; of
class (N,) not vanishing on {Rez < b+ 1} such that

exp{N (Kqp|2])} < 1
[Pap(2)] 7 (1+1]2])?

fora <Rez<b

([L1], Lemma 3). Thus, modifying the proof of Theorem 3.6.1 of [Z] we find
that there exists an S € L(N”)/(R) such that F'(z) = LS(z) forv < Rez < w.

(vw)

Let S e L )I(R). We define the Taylor transform of S by

(v,w)
TS(z) = S[z] for x € B(e¥; €").

(Np)!
(

(R) under the Taylor transformation we
VW)

To describe the image of L
introduce the space

oW (E(e‘“;e”)) = {u € C’)(E(e“’;e”)) :
(19) for every € < r <t < e there exist K and C' < oo such that

lu(z)] < Cexp{N (K|inz|)} for r < |z| < t}.
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Since
TS(x) = LS(Inx) for x € B(e”;€e")

we have

THEOREM 2. The Taylor transformation is an isomorphism of
(Np)/(R) onto the space OW) (B(ew;eu)).

(vw)

L
Analogously we have

THEOREM 3 ([L1], Theorem 6). The Taylor transformation is an iso-

morphism of Lng};(KQ onto the space (’)(N)(E(e“, 0)), where

oW (B(e*,0)) = {u € (’)(E(ew)) . for every t < e”

there exist K and C' < 0o such that (19) holds for |z| < t}.

The elements of OW) (E(e“’, 0)) are called generalized analytic functions.
2. The Mellin Transformation

Let u € OW) (E(e“’, 0)) and ¢t < e¥. Then the (local) Mellin transform
of u is defined by

(20) Mu(z) = /u(x)m_z_ldx.
0

Since |u(x)| < Cexp{N (K|lnz|)} < C.x7¢ for 0 < z <t with any € > 0 the
integral converges for Re z < 0. Let Rez < 0 with +£Im z > 0. Then by the
Cauchy formula we have

/tu(:n)x_z_ldxz /u(a:)x_z_ldsc
0

yE(#)
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where 7% (t) = {z € B(e¥;¢”) : Fargz > 0,|z| = t} and the orientation of
+~% () is positive. Since the right hand side of above equality converges
locally uniformly on {+Imz > 0} we get Mu € O(C\ Ry).

Now let v € OW) (E(e‘”; e”)) with v < w. Inspired by the above consid-
erations we define the Mellin transforms MFu by

(21) MEu(z) = / u(z)z™* tdx for £Imz >0

yE(#)

with v*(t) as above.
To study properties of M?Eu observe that

o0
(22) MEu(z) = +it™ z/u (teT)eF P2 dyp
0

and since |u(te¥?)| < Cexp{N (K (|Int| + ¢))} < C.e*® for any € > 0, the
integral converges locally uniformly in {z € C: £Imz > 0}. So MFu €
O({£Imz > 0}). To estimate the integral in (22) write z = o + 3. Then
by the definition of N(p) we derive for 0 < 3 < 1 with K = K max(1, |Int|)

!/U(tew)ei“’zdwl < C/exp{N(f((l +¢)) — B}y
0

oo

/Sup 1+s0) e=9B/2 . ¢=9B2dp < C sup 5(2_29) o822
0 pGNo pENo /8
since sup{(1 + ¢p)Pe” 905/2} — (Qp)Pg—Pe—p-Fﬂ/?‘

»>0

Similary if § > 1 writing e %7 = e=% . e=#(6~1) we obtain

00

. 1
‘/u —ip upzdso‘ < C sup ppe p+1 )
0 PGNO ’8 -1
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Thus, by the Stirling formula, the definition of N*(p) and (7) we get with
some L < oo

Ct‘RezeXp{N*(L/’ImZD} for 0 < £Imz <1,

23)  |Mifu(z)] <
(23) M ()|—{CtRez/ImZ| for +Imz > 1.

Our next aim is to compute the boundary value of MFu. To this end
fix ¥ <r <t < e and take K such that (19) is true. By Lemma 3 of [L1]
there exists a symbol P of class (N,) not vanishing on {z : Rez < Int 4+ 1}
such that

1 < exp{—N(K|lnz|)}

24) ’P(lnx)‘ - (1 + |lnx|)? for [2] < 2.
Put
(25) v(z) =u(z)/P(lnz) for |z| < t.

Then |v(z)| < C(1+ |Inz|)~2 for r < |z| < t. Soforr <7 < t, MFv €
O({£Imz > 0})NC%({Imz > 0}) and the function

1
(26) Ro>a—gla)= %(ij(a) - M;v(a))

does not depend on the choise of 7. Observe that

00
1

@) = 5= [ ulre®)re?) gy

—00

= / u(eC)Q*C(aHB)dClﬁ:O_
InT+iR

Thus, by Lemma 3.6.1 of [Z], g € LNy )(R) and

(Inr,lnt
Tg(z) = Lg(Inz) = v(e™®) = v(z) for r < |z| < t.

(Np)!

Finally put S = P*(D)g € L(lm,lnt

) (R). Then

T7S(x) = P(lnz)T g(z) = P(lnz)v(z) = u(z) for r < |z| < t.
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Since the above holds for any e¥ < r < t < €¥, by the uniqueness theorem
([Z], Theorem 5.3.2) we get S € L(N”)/(R) and 7S(z) = u(zx) for e < |z| <

(vw)
e“. Thus, we have proved

THEOREM 4. Let u € OW) (E(ew;e”)) with v < w. Then for any
e’ <t<e’, Mfue O{£Imz > 0}) satisfies (23) with some L < oo and

C < o0. Furthermore the difference of boundary values g % ﬁ (b+ (M u)—
b~ (Mju)) € LEIZYZ))/(R) is independent of t and TS = u.

REMARK 1. For e¥ <r <t < e“ the difference M u — MFu extends
holomorphically to an entire function G, ; which satisfies

Kint,Inr (Re Z)

<(——=.

with Kine e given by (15).

PRrRoOOF. Indeed

t
MEu(z) = MEu(z) = /u(x)x_z_ldx for +Imz >0

T
and the integral converges for z € C. Now since

¢ ¢
z/u(x)xZ1dm =u(r)r 7 —u(t)t 7+ /Du(z)xzdx, zeC

T T
and Du is bounded on [r,t] we get (27). O

THEOREM 5. Letv < w and let W be a bounded tubular neighbourhood
of R. Let{Hi}yc(ev vy e a family of functions Hy € O(W \ R) satisfying:
for every e > 0 there exists L < co such that for any closed tubular set
Wccw

(28) |Hi(z)] < Cexp{N* (L/\ Imz|)} - Kint+e,Int—e (Re z) for z € W\]R
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Assume that for any e” <r <t <ev, HltjE — H;t extends holomorphically to
a function H,; € O(V) with some tubular neighbourhood V- of R such that

foranye>0andV CCV

|Hy4(2)] < Chingemr—e(Re 2) for z € V.
Then one can find a unique v € OW) (E(e“’;e”)) such that for any e” <
t < e, Mfu— HE extends to a function F; holomorphic on a tubular

neighbourhood V' of R satisfying with anye >0 and V CCV

(29) |Fi(2)] < Chipiemr—e(Rez) for z € V.

Proor. It follows by Proposition 2 of [L2] that H; admits boundary

values S def bE(HE) € Lgﬁz)llnt) (R). Since for any e” <r <t < e

S =57 =b"(H)—b"(H; ) =b"(H+H,)—b (H +H,;)=S55—-5.,

the difference S = S; —S; does not depend on ¢ and thus defines an element

of LEZJ/VZ))/(R) Put v = 27i7S. Then by Theorem 2, u € ow) (B(ew; 6”))-
Let S = bt (M;u) — b~ (M; u). It follows by Theorem 4 that S c LEZ}VZ))/(R)

and 2miT S = u. So by Theorem 2, S = S and bt (M u—H;") = b~ (M; u—
H;). Thus, it follows by the proof of Theorem 9 of [L2] that My — H
extends to a function F; holomorphic on a tubular neighbourhood V' of R
satisfying (29) with any ¢ > 0 and V cC V. To show the uniqueness of u
assume that u € OW) (E(e“’; e”)) is another function such that M u — H;"
extends to Fy, € O(V) and satisfying (29). Since MF(u —u) = F, — F},
MZE(u — W) is an entire function which satisfies by Theorem 4 and the
Phragmén-Lindel6f theorem ([B])

t— Rez

+ _ 7 < -
|IM5(u—u)(2)] < C’1+ Tl for z € C.

Hence by the Liouville theorem M (u — %) = 0 and so u = u. O
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N) (7
3. The Space C’)(M*)(B(p))

DEFINITION. Let p > 0.

O (B(p)) = {u € O(B(p)) :
(30) for every r < p one can find H < oo and K < oo such that
lu(z)| < Cexp{M*(H/|z|) + N(K|Inz|)} for |z| < r}.

Let u € (’)E]]\\?*) (E(e“’)). Since Ogﬁ)*)(lé(ew)) c oW) (E(e“’; 0)) it follows

by Theorem 4 that for any t < ¢, Miu € O({£Imz > 0}) satisfies (23)
and with =51 (b7 (M u) — b~ (M;u)) € LE]_VZZW)(R) we have 7S5 = u.
This time however we have a little more information. Namely repeating the

computations leading to (23) we find that the constant C' in (23) can be
choosen as C' = Cexp{M*(H/t)} where C does not depend on 0 < t < r
with any r < e“.

To compute the difference b (M u) — b~ (M; u) let us define

(31) M. (r) = sulg (rp — M*(e”)) for r > 0.
p=

ProposiTION 1. Lett > 0. Then for every ¢ > 0 one can find H =
H(c)t < oo such that

(32)  t %exp{ — (1/c)Mi(—ca)} < H%ft exp{M*(H/7)}7~% for « <0,

and for every H < 0o one can find ¢ = c¢(H/t) > 0 such that

(33) il;ftexp{M* (H/7)}77* < Ct %exp{ — (1/c)Mi(—ca)} for a < 0.

PrROOF. Fix ¢ > 0 and note that

(1/e)My(—ca) = il;}g{ —ap— (1/e)M*(e”)} for a < 0.
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Thus applying Lemma 1 we derive for o < 0

t~%exp{ — (1/¢)M.(—ca)} <exp{ — [alnt + il;}g (—ap— M*(H(c)e))]}

"L oxp{ — sup (alnr — M*(H/7))}

T<t

= ;r%f; exp{ M*(H/7)}7~* where H = H(c)t.

To prove the second part fix H < oo and observe that by Lemma 2 we
can find Cy = C(H/t) < oo such that

M*(He"/t) < Cy(M*(e”) +1) for p > 0.
So we estimate for o < 0
inf exp{M*(H/7)}7* = exp{ — sup (alnt — M*(H/7))}
< exp{ — alnt + Cy — sup (—ap—CuM*(e”))}
= Ct “exp{ — Cx sup (—ap— M*(e“r))}
= Ct “exp{ — CHM_*(fa/CH)} where C' = 7%
Thus we get (33) with ¢ = (Cy)~ 1. O

Now fix t < e¥ and define g by (26) with v given by (25) and P by (24).
Since g does not depend on the choise of 0 < 7 <t we get by (33)

|9(a)| <C inf exp{M*(H/7)}m~"
<Ct %exp{ — (1/c)My(—ca)} for a <0
with some ¢ = ¢(H/t) > 0. So we have

THEOREM 6. Letu € OE]]\V/[)*) (E(ew)) and firt < e“. Then one can find

H < o00,L <00 and C < oo such that for 0 <1 <t

(34)  |MEu(z)| < Cexp{M*(H/7)}r~ Rez
{exp{N*(L/| Imz|)} for0<+Imz <1,

1/|Im z| for £Imz > 1.



The Mellin Transformation 65

Furthermore there exists a symbol P of class (N,) and a function g € C°(R)
satisfying

(35) lg(a)| < C - {t_aexp{ - (1/C)M*(_Ca)} for av < 0,

t@ for a >0

with some ¢ > 0 and M, given by (31) such that u(x) = 7 S(x) for |z| <t
with S = P*(D)g.

REMARK 2. If M, = (p!)® with s > 1 then expM,(p) ~ pl*~1)F as
p — 0.

Now we shall give converse statements to those in Theorem 6.

THEOREM 7. Let S € LE]_VZZW) (R). Assume that for every t < e there
exist a symbol P; of class (N,) and g € C°(R) such that for any & > 0

(36) lge(a)] < C. - { (tes)—aexp{ — (1/c)M*(—ca)} for a < 0,
m L) or >0

with some ¢ > 0 independent of € > 0 and

S =Py (D)gr in L) (R).

Thenu =TS € OEM)*)( (e¥))

Proor. Fix r < e¥ and choose r < t < e“. Put v (z) =
f gi(a)xda, vT(z) = fgt Jz%do and v = v~ + vT. Then choosing
e=1/2 m1n(ln2 lnt/r) in (36) we get for |z| <r

T 8
>~ L.
0
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Now, by (32) and the Fatou lemma we derive for || < r

0
v @] < C. [ it exp(M (/7 e fol/7) " do

—00

: * . o1
SCg}rréftexp{M (H/7)}(In|z| — InT — ¢)

T=l|x|/2
<" Crexp{M* (2H] |o))}.

So |v(z)| < Cexp{M*(2H/|z|)} for |z| < r. Since for |z| <r
u(z) =T (P} (D)g)(x) = Py(Ina)Tgi(z) = Py(Inz)v(z)

and
|P;(Inz)| < Cexp{N(K|lnz|)} with some K < oo

we get the conclusion. [J

THEOREM 8. Let {H;}r<ew be a family of functions H. € O(C \ R)
satisfying for any t < e and 0 <7 <t

(34) |H,(2)| < Cexp{M*(H/1)}r~ Re*
{GXP{N*(L/\ Imz|)} for 0<+Imz <1,

1/|Im 2| for £Imz>1

with some C, H and L independent of 0 < 1 < t. If for any 0 <r <t < e,
HtlL — HF extends holomorphically to an entire function Gy satisfying (27)
then one can find a unique u € OE]]\\TA,)*)(E(ew)) such that H, = M, u for

T < e¥.

PROOF. As in the proof of Theorem 5, H, admits boundary values
bE(H,) € L& )(R) and S = b*(H;) — b~ (H;) does not depend on 0 <

(In7,In7

T < e*. Hence S € LE]_V;’ZW) (R). Now, since C, H and L does not depend
on 0 < 7 < t following the proof of Proposition 2 of [L2] we find by (33)
that for any ¢t < e there exist a symbol P; of class (N,) and ¢ € C°(R)

satisfying (36) such that S = P (D)g; in Lgivcx)yllnt) (R). Hence by Theorem
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7, W omiTS e Ogﬁ)*)(é(ew)). Put F; = M,u— H,. Then F- is an entire

function satisfying

|Fr(z) cexp{M*(H/7)}7~ R for z € C

| <
1+ |Imz|

and the Liouville theorem implies F- = 0. The uniqueness of u follows by
Theorem 4. [J

. = N) (%
4. Relations between O (B(p,0)) and OEM)*)(B(/)))

Obviously OW) (B(p, ) c OEJ\A/[[)*)(E(/))) for any growth function M*.

The theorem below implies that applying an ultradifferential operator P of
~ N =
class (M) to f € ON)(B(p,0)) we get an element of OgM)*)(B(p)).
THEOREM 9. Letu € O(E(p)) Assume that for every t < p one can

find an ultradifferential operator P, of class (My) and f; € OEAN/Il)(E(t))
such that

(37) u(x) = Py(D) fi(x) for |z| < t.

Then u € (’)EJ]\\?*)(B(p)).

PROOF. Fix r < t and choose 7 < r' < t < p. Take z € B(t) with
|z| < r and write for n € Ny

n n! f(¢
D" fi(x) = %/#d@
Yz

where v, = {¢ € B(t) : |¢ — 2| = |z|/R} with R = max (2,7/(r" —r)). Since
for ¢ € v,

/(O] < Cexp{M"(H/|C[) + N(K|In¢])}
< Cexp{M*(2H/|z|) + N (K (|lnz| + In2 + 7 /6)) }
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we get by (6)

[ D" fe(w)] < nl(R/[x])" - sup |fi(C)|

(€Y
< Cinl(R/|x|)"exp{ M*(2H/|z|) + N(K|Inz|)}.

Now let P,(D) = > a,D" with |a,| < CL"™/M,. Then for |x| < r we get
n=0
by (8)

)l < €Y 3 (1) exp{M° 21 lel) + N (K Ina )}
n=0 n
< 2Cexp{M"(a]) + N (K|nz])}

where H = max(2H,2LR). Since r < p was arbitrary this implies that
N) (B
u € O(M*)(B(p)). O
COROLLARY 1. Letu € O(E(p)) If for every t < p one can find an
ultradifferential operator P; of class (M) and f; € OW) (E(t, 0)) such that

(37) holds then u € OEJ]\V/I)*) (E(p))

We would like to show a converse result to that of Corollary 1. Namely
that for every u € Ogﬁ)*) (B(p)) and t < p there exist an ultradifferential

operator P; of class (M),) and f; € O(N)(E(t)) such that (37) holds. How-
ever we are not able to prove this conjecture in general, we have only a
weaker result.

THEOREM 10. Letu € Oéjj\?*) (E(p)) and assume that M*(r) ~ r1/(s=1)

asr — oo with s > 1. Then for every t < p one can find an ultradifferential
operator J(D) of class (p!)® and a sequence of functions
v, € O({z € B(t) : |argz — 2uvm| < 3r/2}), vEL

satisfying with some 6 > 0 and C, K < oo not depending on v € Z

(38) |uu(z)| < Cexp{N(IN(\yD} for x € E(t) with |argz — 2vm| < 7w+ 6
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and
J(D)v, = u on B(t) N {|argz — 2um| < 3m/2}.

Furthermore for any 3 > 0 one can find f[, K and C < oo such that
(39) o, ()| < Cexp{M*(H/|z|) + N (K|v|)}
for © € B(t) with |argz — (2v + | < /2 — S.

We procede the proof of Theorem 10 by two lemmas

LEMMA 4. Let my, ~ p® with s > 1. Put

P(g):H(Hmi) for ¢ € C.
p=1

P

Then there exist ¥ > 0 and ¢ > 0 such that

| P(C)] > cl¢'* for ¢ € Ay ={C e C: |arg(| < v +/2}.

Hence

(40) 11/P(Q)] < Cexp{—M(k|(])}
for ¢ € Ay with some C' < oo and k > 0.

Furthermore for any 6§ > 0 we can find Ks < oo such that

(41) ‘%‘ < Cexp{ M (Ks|¢|)} for |arg¢| < 7 — 6.

Proor. Take 0 < ¢ < m/2min(1,s — 1). Since P does not vanish on
Ay it is sufficient to show that RelnP(¢) > ¢|¢|'/* for ¢ € Ay with || big
enough. To this end recall that ([R])

= mip)
mp@%—i{p@+<ﬂm
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where m(p) & {p € N:m, < p}| and write

00 ICl [¢]/sine 0o
m(p) m(p) ¢
dp = P _S g
Tt [T ] e
def

= 11(¢) + 12(¢) + I3(Q)-

Since m,, ~ p* we can find C' < oo such that 1/Cp'/* < m(p)
p>myg. If0<p§|C]then|arg( )|<7r/4+1/1/2and|%|

Re (&) > @ cos(m/2 +1/2) dewa > 0 and
ICIC o
s— S s s
Re I1(¢) > /%’pl/ tp = =5 (I —mg).
mo

Now observe that Re I2(¢) > 0 and Rel5(¢) > 0 if Re¢ > 0. Finally, if
¢ € Ay with Re( < 0 and p > |¢|/sin® then

¢ : <l .
—Re (P+C> < }p_i_g’smzb < Fsmw.
So
—Rel3(¢) < / Cpt/*72|¢| sinpdp = M(smw)Q—l/S\ql/S.
I¢1/ sine

Hence chosing ¥ > 0 and ¢ > 0 small enough we get the desired estimation
of RelnP.

To show (41) we repeat the estimations of — Re I3 with 1 replaced by
w/2—6.0

The next lemma improves Lemma 11.4 of [K1].

LEMMA 5. Let my ~ p® with s > 1 and L < co. Put

(42) J(¢) = (1+<)2ﬁ(1+;—<) for ( €C

p=1 P
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and define the Green kernel for J

(43) Glz) = % / %dg‘ for Rez < 0.

Then G € O({Rez < 0}) can be holomorphically continued to the Riemann
domain {z € C: —7/2 < argz < 5w /2} on which we have

J(D)G(z) = —— L.

21t z

For any 0 < ¢ < /2 there exist K, < oo and Cy, < 0o such that
« (Ko
(44) G(2)| < Cpesp {017 (7))
for z € By, {zE(C —p <argz <27+ p}.

Furthermore, one can find 0 < ¢ < w/2 such that G is bounded on By and

(45) 2)] < C/|zlexp{ — M*( )} for |arg z| <
with some k > 0, where
g(2) = G1(2) — G_(e*™2) for Rez > 0,

with G4+ being the branch of G on {—7/2 < argz < 7/2} and G_ that on
{37/2 < argz < bm/2}.

PrOOF. We have only to prove the estimations of G and g. To this
end observe that

1 e
(46) G(z) = oy / md{ for {—a+7/2 < argz < 37/2 —a}

@

where la ={¢eC:arg( = a} with —7 < a < 7. Since by Lemma 4 there
exists 1) > 0 such that 1/J is bounded on {|arg¢| < ¢ + 7/2} we get the
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boundedness of G on By, with any 1 < . Now to show (44) it is sufficient
to estimate G on {—p < argz <0} and on {27 < argz < 27 + ¢}. On the
first set G is defined by (46) with 7/2 4+ ¢ < a < 7. So by (41)

|G(2)| < Cy | exp{r|z|cos(arg z + ) + M (K,r)}dr

< Cy | exp{—ba,,r|z| + M(Kyr)}dr

[
[

with some 6, > 0. Now using the definitions of M and M™* we conclude
that G satisfies (44). The estimation on the second set is derived in an
analogous way.

Now we shall prove (45). To this way fix 0 < ¢ < 7/2 and observe that

2¢
RN Y PR

Ly

where 711, déf{{ € C: |arg(| = v+ m/2}. Now by Lemma 4 if ¢ is small
enough we can replace 71/, under the integral sign by r +7¢ with any r > 0.
Note that if ¢ € 7“—!—%, and | arg z| <1 than |[(| > rcos®y and Re(2() < |z|r.
We also have

dg] w42 2

1+¢2 (1+7r)cosyp ~ (1+7)costp’
7‘+Z¢,

Thus, emploing estimate (40) we derive

.1 B
o) < s [ 3

T+l¢,

, |d¢]
< inf —M(kL
< %I;OC /N T <|2exp{ (kLrcost) + |z|r}

T+l,¢,
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< inf My
inf ——+———
= o8V r>0,peN, /7 (kLr cos )P

|z|r

Finally, putting » = p/|z|, by the Stirling formula we arrive at (45). O

REMARK 3. If m, = p®, s > 1 then (40) holds for ( € A, with any
0 < <m/2min(1l,s —1) ([B], Theorem 4.1.1). Hence also in (45) one can
choose any 0 < ¢ < 7/2min(1,s — 1).

Proor or THEOREM 10. Fix ¢t < p and choose t < g < p. Let H
and K be such that (30) holds for |z| < z¢. Let G be the Green kernel for

[e.9]

JQ) =+ I (1+L¢/v)

p=1

where L will be chosen later. For v € Z put =, = x0e?*™ Then for z € B (o)
with |argz — 2vmr| < 37/2 one can find a closed curve v, C B(zg) with
endpoints at x,, encircling x once in the positive direction and such that
—m/2 < arg(y — x) < 57/2 for y € 7,. Define

/G — 2)u(y)dy for z € B(xo) with |argz — 2vr| < 37/2.

Then v, € O({z € Bl(xo) : |argz — 2un| < 37/2}), v, does not depend
on the choise of ~, satisfying the above properties and J(D)v, = u on
B(t) N {|arg x — 2vm| < 37 /2}. Hence we only need to show (38) and (39).
First we shall show (38) for z € S5 def{ €B(t):0<argz—2vr < T— 6}
where 0 < 6 < m/2. To this end take a convenient curve v, = yruyZund.
To define ~,, j = 1,2,,3 denote by 7 a point of C with |Z| = x¢ such that
T = x+T79 with some 79 € Ry. Set vl = {y € B( )i lyl = xo, 2vm < argy <
argT}; 75 = —vL; v2 - a curve from T to T encircling once the interval [z, ]
and close to that interval. Define

/G —z)u(y)dy, j=1,2,3.
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Note that for z € S5" and y € 7L U~? we have —p < arg(y — ) < 27 + ¢
with some ¢ < 7/2, |y — x| > 29 — t, |y| = o and |argy — 2vn| < 7/2. So
by estimations of the Green kernel G and of u we conclude that on SS’+,
v} and v are bounded by Cexp{N (IN( lv|)} with C' and K independent of
v € Z. Now

0
2}12,(3:) = /g(T)u(x + 7)dT
0
Observe that for x € S,‘,S’Jr and 0 <7 < 19 we have 0 < arg(z + 7) — 2um <
m—6 and |x + 7| > Tsind. Since for any € > 0
(47) N (K|lnp|) + M*(H/p) < CM*((H +¢)/p) for 0 < p < 1
and by (45)
lg(T)| < Cv/Texp{—M*(kL/7)} for 7 > 0

with some k > 0, choosing L > H/(ksin6) in the definition of J we obtain
by (6)

o2z |<C/kfmm:kﬁam) Aﬁ“£fﬂ>+NUﬂm@+TMhh

< Cexp{N(K‘VD}

with C and K = (2m + 1)K independent of v € Z. Analogously (38) holds

for x € Sfj’ def{ € B( ):—m+ 6 <argx —2vm <0} with 0 < 6 < /2.

Next we estimate v, on {|argz — (2v + 1)7| < 6} where 0 < § < ¢
with ¢ > 0 as in Lemma 5. To this end find a curve v such that —y <
arg(y — ) < 2w+, |y| > |x|sin(¢p — 6) for y € 4. Then

vy () = /g(T)u(x + T1)dT

v

where 7 is a curve connecting 0 to x, —x such that |arg 7| < and |z+7| >
|7]sin(yp — 6) for 7 € 7. So taking L > H/(ksin(¢ —§)) in the definition of
J, where k > 0 is a constant in (45) we get by (6)

e |_\/ u(z + 7)dr|
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< Csug \/HBXP{—M* (k_L> + M (kv%

&5 7] 7|

)+ N(Kn(z + 7))}

< Cexp{N(K|v|)}

for |argz — (2v + 1)m| < 6 which ends the proof of (38).

To show (39) fix # > 0 and observe that if € B(t) with |arga —
(2v + 1)w| < 7/2 — 3 than we can choose a curve 7, in such a way that
Aly) > [z]/ sin B, 4]y — o] > |2l sin B, | arg y| < 1+|arg | and —r/2+5/4 <
arg(y —x) < 2w +7/2— (/4 for y € 7,. Thus by (44) and (47) we estimate

lvy(x)] < Cg sup exp{M*Q&) + M*(£> + N(K]lny\)}

YEYL y_33| |y|
4K AK +1
< M*( ) M*(i N(K(1
< Csexp{M\ 25 \msing)+ (K1 + |arg2])}

and we get (39) with H = C(s) max(4Kg,4H +1)/sin j3, K=(@2r+1)K.O

5. Relation between Mg and M(J(D)g)

[e.°]

Let J(D) = 3" a;D* be an ultradifferential operator of class (M,). Let
k=0
S e Lgé)vz))/(RJr) and g =7S. Put

u(z) = J(D)g(z) for 0 < |z| < .
Then by Corollary 1, u € OE]]\\Z)(E(e“’)). So Mu, t < ¢ defined by (21)
satisfies the estimation in Theorem 6. In this section we define the Mellin
transform of xu, x — a (smooth) cut-off function, by means of the Mellin
transform of xg. First of all we shall study properties of My and M (xg).

LEMMA 6. Let x be a cut-off function of class (M) equal to one on

(0,7] and zero on [t,00) where 0 < r <t. Then ¥ = My € O(C\ {0}) has
stmple pole at zero with residuum —1 and satisfies for any L < oo

(48) | (z)| < Cr/|zlexp{—M(L|z|) }Kint,nr(Re 2) for z # 0.
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Furthermore for a fived = € C\ Ry the function

(49) U, (x) déf\ll(z —x) for v € Ry

belongs to Ll()Np)(@Jr) with b >t and for any h >0, L < o0

N, ./ 2H

(50) 2.5} < C(L)exp{N <Wz)) — M(Ld(2))}Kint tar (Re 2)

for z € C\ R4
where d(z) e dist(z,Ry) and H is the constant in (M.2).

PRrROOF. Since
/ d
2¥(z) = / d_i;x_de € O(C)

and 2V¥(z)|;,—9 = —1 the first assertion is clear. To show the second one put

d
p(y) = efyﬁ(efy) for y € R.

Since the function Ry > # — —Inzx is analytic on Ry it follows by the
Roumieu theorem ([R], Théoreme 13) that p € DM»)(R) with suppu C
[—Int, —Inr]. We also have

t —Inr
- Z—Xw‘de = / uly)e*dy = Lu(z) for z € C
i

r —Int

and for any k € Ny
2K Lu(z) = L(D*p)(2) for z € C.

So for any L < oo we can find Cf, < oo such that

|20 (2)] < CL Kint,Inr (Re z) for z # 0.

M;,
Lk‘z|k
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Taking the infimum over k € Ny we arrive at (48).
To show the last statement fix 2 € C\R, and take p = d(z)/2if d(z) < 2
and p = 1 otherwise. Then

2

! : . _
DYV, (x) = % / U, (z+ pe'?)p e ¥y for x € Ry.
0

So for d(z) > 2
D, (z)] < a! sup |¥(z—x—e¥)
0<p<2m
< Cralexp{—M(Ld(2))}Kint,nr(Re z — x)
and since r < t < €’

1.5 < Crexp{N*(1/h) — M(Ld(2))}#1n1ur (Re 2).

Now in the case 0 < d(z) < 2

- 2a+1
DV, (z)| < Cpo! ———=Kmnt,inr(Re 2z — ).
| ()] L (d(z))aﬂ Int, Inr ( )
So
(Vo) — ()2 (2 ) _
9l < C(L) gyexplN (- (2)) M(Ld(2))} i nr (Re 2)

and by (7) we get (50). O

/

PROPOSITION 2. Let S € Lgévfj)) (Ry) and g = TS. Let x be a cut-off
function as in Lemma 6 with r <t < e*. Then

G M(xg) € O(C\Ey)

and for every L < oo one can find Cp, < oo such that with K < oo inde-
pendent of L

(51) |G(2)| < Crexp{N* (%) — M(Ld(2)) } e nr (Re 2) for z € C\R..
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ProOF. The holomorphicity of G follows from the continuity of S by
the standard arguments. To show (51) observe that

G(2) = M(XT5S)(2) = / x(@)S[w ] da
R,

_ g / @)z~ Lda] = S[.]

R,

with W, given by (49). The exchange of the integral with the action of S is
legitimate by the continuity if S. Now applying Lemma 3 with Int < b < w
we get the existence of h > 0 such that

N,
B ARl A0S

Hence (51) follows by (50). O

Returning to the considerations from the begining of this section observe

that xu—J(D)(xg) o ¢ belongs to DM?)([r, 1]). As in the proof of Lemma
6 we find that M is an entire function satisfying with any L < oo

(52) |IMo(2)| < Crexp{—M(L|z|)}Kint,mr(Re z) for z € C.

Since for any k € Ny

I'z+k+1)

M(D*xg)(z) = TG D)

M(x9)(z + k)

we define the Mellin transform of yu by

e.9]

(53) M Z ”’” )M(Xg)(z+k)+/\/lap(z) for z € C\R.
k=

To justify this definition we shall show that the series on the right hand
side of (53) converges locally uniformly on C \ R. To this end put

G(z) = M(xg)(z) for z € C\ R;.
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Observe that for k& € Ny
Fz+k+1) + i
e =D 14
7=0

where

k ef k ef . .
{o}d:land {z}d: Z ji-...-jifor 1 <1<k, keN,.

1< <..<5i<k

So

n+1 (n+1)! Jleeeot g
{ l }: nl Z (n+1;'.. l

1<ji<-<gi<n+l o (n + l)
< (n+1)! <n + l> < 4y

n! {

Thus, if |ax| < CLYM;, for k € Ny with some L < oo, using (51), (M.1)
and (8) we derive for Rez > 0, z ¢ Ry

y;aw{”l }G(z+n+m

Ln+l

<C § Lt
o !
=0 "t
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X exp{N*(ﬁ) _ M(Ld(z +n+ l))}rfRezfnfl
Ay 0K N
< CTnGXp{N <%> }Z R

< 20%8Xp{M*<8i]1) + N*(di)) — M(Ld(z))}r~Rez,

Now let Rez < 0 with Imz # 0 and let k € Ny be such that —k — 1 <
Rez < —k. Putk, =k—nifn<kandk, = —-1if n > k. Then we
estimate (omiting the sum Zf;() if k, = —1)

- n+1
’lz;anﬂ{ ; }G(z—l—n—i-l)\

k
" (4L1)" (411"
<C
[g Mn Ml
x exp{IN* (L) — M(Ld(z +n + 1))}t~ Rezmn!
d(z+n+1)
0 (4L)" (4Ly)H!
_l’_
l—kz: M, M,
=kn+1
K
N(——— ) — MI(L —Rez—n—I
x exp{ (d(z+n+l)) (Ld(z+n+1))}r }
k
~Rez[(4L1/1)" K d 4L1/t )l
< Rez ( 1 *
< ot Res| ey ( Imz|) M (L| Im | }lzg

Swtmz{@%ﬂ {M*(851)+N <|1K ) =M (Llme))

N (4%”"6@{]\4*(87“) N ( M (L|Tm 2[)}]

)"
§4C%exp{M*(8?)+N*(%)— (L|Tm 2]) ¢~ Re=,
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Thus, by the above estimations we conclude that the series

Z (Zan+l{n+l}G(z+n+l)>

n=0

converges locally uniformly on C\R to a function F' € O(C\R) and having
in mind (52), by (8') we obtain

THEOREM 11. Let J(D) be an ultradifferential operator of class (M),
S e LE&%’(KQ, g=TS andu = J(D)g. Let x be a cut-off function of class
(M) equal to one on (0,r] and zero on [t,00) where 0 <1 <t < e“. Then
M(xu) defined by (53) is a holomorphic function on C\ R. Furthermore,
one can find H < oo and K < oo such that for any L < oo there exists
Cr, < oo (independent of r) such that

(M (xu)(z)]|
(54) < Crexp{M* ( ) +N*(‘If§z’) — M(L|Im z|) +M(H:’)}

X Kint,inr(Re 2) for z € C\ R.

We also have w =TT where

T = QL <b+ (M+(Xu)) —-b” (./\/l_(xu)))
(55) oo

Z (a + u + POt Rt Doy i 1) ().
k=

REMARK 4. If in Theorem 11 we take as a cut-off function x the char-
acteristic function x; of the interval (0,¢] then since for k € N

??‘
H

I'z+k+1)
T(z+1)

M{DFg(z) = )

MFE (z+k’)+
I

Il
o

for £Imz >0

we obtain

o0

k
E Z+ + )/\/lt g(z+k)+ F(z) for £Imz >0
k=0
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STz +k+1) .
F(Z):Zg(zakﬂ_l_klg(l)(t))t “Flfor z € C

is an entire function satisfying with some C' < oo and L < oo

|F(2)] < Cexp{M (L|z|) }t~ Rez for 2 € C.

(The estimation of F' can be derived following the lines of the proof of
Theorem 11 with G(z) =t*71.)

REMARK 5. If we assume in Theorem 11 that S is a Laplace distri-
bution S € L/(Q),w) (R4) then the factor exp{N*(K/|Imz|)} in (54) can be
replaced by |Imz|~%. Also in previous theorems we can omit the sym-
bol (N) (or (Np)) replacing exp{N (K - p(z))} and exp{N*(K - p(z))} by

(o(2))".
6. Examples

Ezxample 1. Let S =6/

(0 € Lt (R4) and f(z) = T7S(z) = —Inz for
zeC. For k € N put

(0,00)

(-1

=1

Then Ji(D) is an ultradifferential operator of class (p!)® with s =14 1/k.
Put w =1+ Ji(D)f. Then

> . =11 1
u(z) =1+ ZajDkJ(—lnx) = Z 2k = exp{ﬁ} for & 7 0.
j=1 3=0""

Sou € (’)(M*)((E) with M*(p) ~ p* as p — oo. For 0 < t < oo we compute

+ (21) 1/xk —z—1 _ = li —z—1
Miu(z) = / e’ dr = / (Zj!xkj>x dx

vE(t) yE@) T
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1
56 — / L
(56) ZO i
yE(t)
—kj—=z
= Z for £Imz > 0.
—kj —z
So by Theorem 4
(57) u=TT
where
T = i(zﬁ(/\/ﬁu) — b~ (M7u)) = il )€ L o (R)
- 27_”/ t ] k] O0,00) .

We also have

k
T =6 )+Zaj o+ j+) Plat b+ g4 g in L__.o,(R)

Note that if u(z) = exp{1/z*} that the formulae (56) and (57) remain true
under the assumption k£ > 0.

Observe also that (since M (u(z)) = L(u(e™¥)), L - the Laplace trans-
formation) we can write

E(exp{eyk})( ) = Ml(exp{l/xk} Zji . for z € C\ R,
=0

which in the case k = 1 agrees with the formula (3.2) of [D].

Example 2. Under the notation of Example 1

—1)(k+1)5

—1
F =Dy then u(x) = exp{—k}

if a; =

for x #0 and S = Z 71]6( kj)-

7!
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Note here that

o ]tk‘jz

Z for £ Imz >0,
p ! —k‘]—Z

but the integral

u(z)z " dz

o — .

defines an entire function. The inequality between /\/ltiu and the last inte-
gral is caused by the fact that u is not a generalized analytic function.

Ezample 3. Let S(a) = exp{—a?} for « € R and v = TS. Then

In2 Inz 2
u(zx) = /exp{—a2}$o‘da = exp{%}/exp{—(a + %) Hda
R R
= \/7_rx(1/4)h”” for z € C.

Since |u(z)| = y/mexp{1/4(In*|z| — arg®z)}, u € O(M*)(@ for M*(p) ~ p*
as p — oo with any k£ > 0. Now for 0 < ¢ < oo and £ Im z > 0 we compute

MEu(z) = / /exp{—az}xadax_z_lda:
)

=) R
tafz
:/exp{—aQ} / va1d:ﬁda:/eXp{—a2}a_zda.
R ~E(t) R

Note that ./\/lfcu can not be holomorphically extended to any larger domain
than {+Imz > 0}.

Ezample 4. Let s =1+ 1/k with k£ > 0 and

= i (j!)sDj(—llnx> for z € B(1).

J=0
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Then by Corollary 1, u € O(M*)(E(l)) with M*(p) ~ p* as p — oco. Since
1/(—lnz) = [;° x*da for |z| < 1 we compute for 0 <t <1 and £Imz >0

Mgcu(z):i ! Mti(Dj( L ))(z) mod O%P(C)

=X (ﬁ)s LA 1)G(z + j) mod O™F(C)

= I'(z+1)
where -
a—(¢
GIO) = Mi( 2 )(O) = [ T or ¢ € €\ R
0

Since 1/(27mi)b(G) =Y (Y-the Heaviside function) we obtain by Theorem
4, u =TS with

S(a) = Z (jll)s F(I?(;i—;)l)}/(a +j) for o € R.

Acknowledgment. The author is greatful to the referee for hinting a
mistake in the previous version of the proof of (23).
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