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Confluence Procedures in the Generalized

Hypergeometric Famaly

By Anne DuvAL

Abstract. We work out two confluence procedures in the family
of generalized hypergeometric differential equations allowing to com-
pute the Stokes matrices of some confluent equations as limits of well
chosen matrices attached to the associated regular equations.

1. Introduction

The family of generalized hypergeometric equations is given by
Lod T d

Dyples ) = (~1)77= [ (o +ay) = [[ (e + ;= 1)

j=1 j=1 @

with a = (Oq,ag,"',Oép) € CP and § = (ﬁl,ﬁz,"',ﬁq) e C1.

The variable z lies in the Riemann s}here P1(C).

As the change of variable z — 1/z transforms Dg,(a, 3) in Dy (6, )
where 8’ = (1 — f1,---,1 = fB¢) and & = (1 —aq,--+,1 — o), Wwe may

suppose without loss of generality that p < g.
The equation D, then has

e three singular points, namely 0,1, 00 if p = q. All of them are regular
singularities.

e two singular points, 0 and oo if p < ¢. The point 0 is a regular
singularity and the point co is an irregular one.

The irregular singularity gives rise to a so-called Stokes phenomenon which
has been explicitely described for these equations in [1]. In the same paper
and in a subsequent paper from C. Mitschi alone, [6], it is shown how to use
this result to compute, with the help of J.-P. Ramis’ fondamental theorem
(see [4]), the differential Galois group of some equations in the family.
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598 Anne DUVAL

We are interested here in the case ¢ = p + 1 with p > 2. This case is the
“less irregular” ome, in the sense that the Newton polygon of D1, has
two sides, one with slope 0 and length p and the other one with slope 1 and
length 1. In this case there are, up to conjugacy by the formal monodromy
matrix, two Stokes matrices, Sg and S.

A confluence procedure is obtained by allowing two singularities to col-
lapse and at the same time one parameter to “disappear”. Both goals
are achieved by making the change of variable z = ¢/b in the equation
Dyt pri(a; ﬁ) where one of the components of  is —b and then by making
b — oo.

In a first procedure b — oo in a non real direction. We show how the
two Stokes matrices can be obtained as limit values of connection matri-
ces linking well chosen fundamental sets of solutions around b and oo of
the Fuchsian equation. We can get both Stokes matrices as limits of the
same connection matrix but one with b — oo in one of the half-plane of C
delimited by the real line and the other matrix as b — oo in the opposite
half-plane. Up to conjugacy by the formal monodromy matrix for one of
the Stokes matrices, both matrices can also be obtained with b — oo in one
and the same half-plane. As a by-product of this study one gets sectorial
limits for some fundamental sets of solutions.

In a second procedure b — oo in one of the two real directions. More pre-
cisely b = bg+n with n € Z. Thus the local monodromy around each one of
the three singularities is fixed. This time one gets the Stokes matrices, up
to some convenient part of the formal monodromy, as limits n — +oo (resp.
n — —oo) of the monodromy matrices around b and around oo expressed
in a “mixed” basis combining solutions which are eigenvectors of the local
monodromy around b or around oo.

These two procedures have been suggested by J.-P. Ramis in [8] where
the first procedure is developped for the hypergeometric case (p = 1). The
second procedure for p =1 is studied by Zhang in [9].

The paper is organised as follows. The rest of this section is devoted to
some notation used throughout this paper. We then recall for the Fuchsian
equation and for the confluent one some more or less classical properties,
putting them in a form convenient for our purpose. In the two final sections
the confluence procedures explained above are successively studied.
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We denote by C the universal covering of C*.
For z € C and ) € C, z* means e*'"* where Inz = In |z| + i arg 2.
For § € R, arg ze" = argz + 6.

For p = (p1,---,pp) € CP and X € C,

| = g1 + -+ + pap,

pAA=A+p=(u+X e+ A),

A= (A, Aap)

p; = (B, s e, g1, p) € CPTY,

;‘ = (= 5)5 = (B0 — g, o5 Hj—1 — [y g1 — [y o5 Hp — M),
(:uv )‘) = (p1,- "hu[n)‘) and (Avﬁ) = ()‘7/“7" 'Mup) (6 Cp-i—l)_

For j € N, up € CP and A € C,

0 = 1 if j=0
Tl M+ (A —1) i G#0
1 if j=0

Wi = I )y it j#0

For x € C", if f is some function of one complex variable such that
for j =1,---,n, f(x;) is defined, then f(z) = ][}, f(x;).

For p,ge Nand a € C?,3c (C\Z7)9,

1%%@@:§:gﬁ£

>0 <g>] ]! .

If moreover o € (C\ Z)P, for 0 <m < ¢, 0 <n <p,

2%ds

Fﬂ I T(1 = a; + 5)
mmn( . . J 1 J =1 J
Grq (23 5;2) m/ I

jeme1 D1 = G5 + 5) Hg 1 (e = 5)
for a suitable path ~.

For o € C",
dZCLg (Q) = d’LCLg (ab T aan)

denotes the diagonal matrix with entries a, - - -, o, on the main diag-
onal.
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2. The Fuchsian Equation

Let b denote the complex parameter which will be used in the confluence
procedure. The starting point is the Fuchsian hypergeometric equation
Dpi1pr1((p, —b);v) with p € CP, v € CPT! and b € C satisfying the
genericity hypotheses: for i # j, v; —v; € Z, p; — p; € Z and p; +b € Z.
Moreover we suppose that the complex number

A=lpl = lpl+1
is not an integer.

2.1. Fundamental sets of solutions

Under the previous conditions the following facts are well-known and
can be found for example in [7]. In the punctured neighborhood of 0 in C
given by {0 < |z| < 1}, a fundamental set of solutions is provided by the
line vector

EO(Z) e (w1(2)7 7wp+1(z))
where for j =1,---,p+1,
wj(2) = 2 7 Fp(L+ p— vy, 1 =D —wy); 1+ 153 2)

In the neighborhood {|z| > 1} of oo, a fundamental set of solutions is

Soo(2) = (M(2)s++ hpia (2))
where for j =1,---,p,
hj(2) = 27" pai Fp (L4 py — w5 (1 — i, 1+ b + 1)1/ 2)

and
hpi1(2) = 2% 1 Fp(1 —b— ;1 — b — w;l/z).

Note that this set can be obtained from the set of solutions near 0 using the
change of variable z +— 1/z and the remark in the introduction.

Near the singular point 1, there is a fundamental set of solutions with
p functions holomorphic in a full neighborhood of 1, the p + 1-th one being
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O((1 — 2)7?P). According to [7] one can choose for the p holomorphic
functions the Meijer G-functions given for j =1,---,p by :

(1 — )
(2) = = GPL2 (1461 —p,l—p )l —u;
SOJ(Z) I‘(—b—,u])I‘(l +/14] _Z) p+1,p+1(( Hj H]) v Z)

where the path « in the definition of the G-function goes from —ico to +ioo
so that all poles of I'(1 —v; —s) (j = 1,---,p+ 1) lie to the right of v and
all poles of I'(=b+s) and I'(i; +s) (j =1,---,p) lie to the left of ~.

The ¢;(z) are analytic functions of z with a branch point at the origin. The
given integral definition is valid for z € C with |arg z| < 2m.

For the last function, we will choose (see [7])

_ c 1\*
Ppt+1(2) = Z/\(l —2) )\+bz 1- )\k_|_ bYx (1 - _)

k>0 o

where the ¢ are independant of b and given explicitely by the following
formulas ([7] p. 330) :

co = 1
c _ Z Bil,"',ip—lNih'"viP—l
¢ (i — i) (k= ip 1)

11- .
0<iy <ig-<ip_1<k 1

Wlth? if for n = 17 Y 2 571 = Z?:l Vi — [,

B iy = (B1)in (B2 + i1 )ig—iy + (Bp + ip—1)k—i, 4

and

Nigosipoy = (V2 — 11)iy (V3 — p2)ig—iy = {Vpr1 — Mp)k—ip_q -
The function ¢,41 is holomorphic for #z > 1/2.

Note that for p = 1, one gets

(1 — p)e(ve — )k

k!
in accordance with the usual hypergeometric case.
For p = 2, one has

C = <1_)\_V1>I;C<!1_)\_V2>k3F2(—k, V3 — WU1,V3 — W23 1-—X— v, 1—-X— Vo, 1).

Cl =

We will denote this fundamental set of solutions by

S1(2) = (01(2), s opa ().
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2.2. Connection matrices

The following formulas give linear relations between the analytic con-
tinuation (denoted by the same name) of the functions belonging to the
previous sets of solutions. They can be found for example in [3] or [7].

For j=1,---,p,

_ o Tem) R obonry)
#il2) = L(=b—py )T (1+p;—v) Z T(vi—p)) wi(2)
and
Ty

epia(2) =T(A+b-N) 3 wi2)

= T(vi — (v +b)

In the next formulas, arg z €]0, 27| and if necessary argl/z = — arg z.
FOI‘jzl,"',p-‘rl,

F(1+V*) P(14ps—v )0 (=b—pi) I (p ) m(1+p;—v
wj(2) = Fa i) il rj(y ) ey ()
I'(l1-b—v +b) ir v,
+ F(V_Jj-_b)(u Lm0 41 (2).

For j =1,---,p and under the same condition for the argument,

I(1— u 1+u]+b)

(1+ -—1/1 (- i —v;
hJ(Z) _ 1+Mj_y Z . M )T( )6 im(14p; ) (Z)

(Vl +b Vl ,u )

and

P =@ )T(1+ b4 py)T(1 = b —v)
PO+ -t —b—p )

and

: P D(u)0(=b—pi), . T(p+b)
_ (A= b =
opr1(z) = e T(1+b—A\) [;1 =
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DEFINITION 2.1. Fore,d € {0, 1,00} with ¢ # d, the connection matrix
M. 4 is defined by the relation

Ye(z) = Xa(2) M q.

The six matrices so defined belong to GL(p + 1,C). They satisfy the
relations M, q = MJC1 and if {c,d,e} ={0,1,00}, Mo = Mg eM. 4.

The previous connection formulas give the entries of the four matrices
Mooy Mooo, My and M o.

For ¢,d € {0,1,00}, let M, 4= (mfjd) Then

e forl<i<pandl<j<p+1,

000 _ (1 +v)0(=b— m)I'(p)

0,00 _ im(1+pi—v;j)
W T+ p, — vy — ) (1= b —vy)

for 1<j<p+1,
0,00 F(l + E;)F(H + b) em(l_b_l,j)

P T Ty + 0T (L + - 1)

m

eforl<i<p+landl1<j<p,

o DOm0 b w)

9T D = )01 gy — )0+ b)

o for 1 <i<p+1,

w00 _ (=)0 —b—p)

‘ _ —i7r(1—b—l’i)
Miptt T T Z b — v (1 — )

e forl<i<p+landl<j<p,

0 ra-— H;T)F(l —b—v)'(—v])

W D(v = p )T+ py — )0 (=b — pj)

m

o for 1 <i<p+1,

0 L(1-A+0)(~y;)
WP T (v — )T (v + b)
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o for 1<i<p 1<j<pandi#j,

m; 57 =0
e for 1 <j <p,
1,00
mj; =1
o for 1 <j <p,
leo _F(l — )T+ 0+ p)I(=b+1 - v)
i D(=b+1— (14 p; —v)

o for 1 <i<p,

1o D(E)T(=b—p)I'(1 —A+0) im(A—b)

mi,p-l—l = F(Z — /J’Z) e
e finally
oo TEADTA=A+b) 0\
Myi1p+1 = F(Z"i‘ b) € :

3. The Confluent Equation

The equation

p d p+1 d
Dpiap(psv) = —t H(tg + p5) — H(t@ +vj—1)
j=1 J=1

is studied in [1] where the Stokes phenomenon is described. We will recall
here the results in the form we need and give some other useful formulas.
We make for the coefficients u; and v; the same genericity hypotheses as in
the previous section.

3.1. Solutions of the confluent equation
A fundamental set of solutions analytic in C is given by

So(t) = (@1(8), - By (t)
where for 1 < j <p+41,

Wj(t) =t Fp(1 = vy + s 1+ w55 1)
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A fundamental set of formal solutions at oo is given by:

N = <(I)17"'7(I>p+1>

where for 1 < j < p,
¢, = t_ujp_HFp_l(l +pj—rvl— E} 1/t)

and
(pp+1 = 67tt)\@

where © is a formal series in 1/¢ normalized by choosing the constant term
equal to 1. This series is not hypergeometric when p > 2.
For 1 < k <p we set

171 . . s
Gk(t) = Gg;—i—l((l — Pk, 1- Hk)’ 1- v; te' )

where the path of integration joins —ioco to +ioco, leaving to its right the
points —v; +n (j =1,---,p+ 1;n € N) and to its left the points —p —n
(n e N).

We set

Go(t) = GPELN(1 — 1 — 1)

where the path of integration leaves to its right the points —v; +n (j =
1,---,p+1;n € N).
The following facts are asserted in [3].

PROPOSITION 3.1. Fork =1,---,p the function Gi(t) is a solution of

Dpy1p(ps 1)
For —57” <argt < 3, the function t**Gy(t) admits the series :

e F(l + HE — Z)

ra _HZ)

pr1Fp—1 (L + p —v31 — pys1/t)

as asymptotic expansion near oo.

The function Go(t) is also a solution of this equation.

For =38 < argt < 32X, the function e't=*Go(t) admits the series © as
asymptotic expansion near oo.

According to these results it is natural to introduce the following fun-
damental sets of solutions which are in fact “sums” in the sense of 1-
summability ([5]) of X in the given sectors.



606 Anne DUVAL

e For —=F <argt < 3,

S impy T(—p7) i, TA—pt)
Ynjp = (6 M T @10, e “”mTpr)Gp(t%Go(t))

which we also write
fd ’iﬂ',Uw ( - ) .
2—7r/2 = (6 mGj(t)7 (=1 ,P)aGo(t)>

e For - <argt < 37”

~ i, FA=pt) —or .
Zﬂ—/g = (e ¢ “JmGj(te 2 )7(] = 17"'7p)>G0(t))

oFor§<argt<577r

- —im I1-p7) —2iT . i —2im
Ygpj2 = (6 M o Gite 2, (G =1, p),e* ™Gy (te > ))

3.2. Stokes and connection matrices

In [3] one can find the following formulas connecting the functions G;
and w;.

Forlgjgpand—%”<argt<g,

; - = F( )F(l + K~ ) im(1—-v;)
Gj(t) = ; (s — Bj) e w;(t).

For —=F < argt < 3m

pt+1
-y
Go(t) = ————w;(t).
Conversely one can deduce from classical formulas ([3]) the two relations for
~F <argt<i1<j<p+l,

~ (1+V) im( A v — (- ,u) (2
(1) = ez [T TVG +va—uz iy €™ Gilt)]

and for —§ < argt < 37”

e~ i

- TA4v3) T _in(Odws— JL(1—p¥) —2im
w](t) = m[e i ()\‘1’ ' I)G +ZF(V-— 1_"_“1_” )G’L<t€ 21 ):|
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Force {-3, 7, 37”}, let us define the connection matrix M, by the equality

Se(t) = So(t) M,

with ¢ — 7 < argt < c+ .
We will denote by P, the inverse matrix M L. The previous formulas give
explicit values for the entries of these matrices.

If M. = (mgj) and P, = (ﬁf]) then

e forl<j<pand1<i<p+1,

~ /2 I'(1— Hj)r(_ﬂi) (L)

Mo T+ g v (v — )

o for 1 <i<p+1,
~—m/2 F(_E:()
mz',p+1 - F(Z/i _ H)

eforl<j<pand1<i<p+1,
rhff — m;]?/26—2i7r(1+“j_yi)
e for1<i<p+1,
~7|'/2 ~_ﬂ—/2

My pr1 = M pi1

I<j<pand1<i<p+]1,
~3n/2 _ ~w/2

o for 1 <i<p+1,
~3r/2 .~ —m/2 2im(Av;)
ip+l = Mypi1€

forl<i<pand1<j<p+1,

" L(L = vy + p )P (v — )

for 1 <j<p+1,
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e forl<i<pandl<j<p+1,

n/2 )2
p:] - ljﬂ
o for 1 <j<p+1,
/2 —n/2 72z7r()\+1/371)

Ppi1,j = Ppi1y

e forl<i<pandl1<j<p+1,

~37T/2 —7"/2 2177(;“ vj)
g T iy
o for 1 <j<p+1,
3r/2 .5
Pp+1, = Ppt1,j

In accordance with [1], one defines the Stokes matrices Sy and S; by the
equalities

with —5 < argt < 5 and
with § <argt < 37”

We will denote by Ej; ; the matrix with all entries equal to 0 except the
(i,7)-th one equal to 1 and by I the identity matrix of order p + 1. Then

o=+ 2 s g
= LT i
0 = I(1+ [1j — v) p+1,j
and ()
P ) It
S, =T+ 2ge™M ) =17 g
P> P(py o) 7

These constant invertible matrices satlsfy the relations :
g: So, MW—M3wS7r, So—PWM z, Sﬂzps_nM%,
2

and Psx = SWPW.

M

M

wf§
|
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4. A First Confluence Procedure

As explained in the introduction one makes the change of variable z =
t/b in the equation Dy pi1((p, —b);v) and then allows b to tend to oo in
such a way that the conditions p; +b & Z and —A+ b € Z still remain valid.
This change of variable leads to the equation

p
d
Dpi1pi1 = H + 145) H(t% +vi—1)
: ‘771

which has the three regular singular points 0, b and co. Formally Dg 1 p+1
tends to Dpy1,(p, v) as [b] — oo.

4.1. Limit properties
We recall some well-known confluence properties. If necessary the proofs
can be found in [3].

LEMMA 4.1. For z,0 € C,

z
lim (1-—=)"7=¢€°
|U|—>oo( O')

uniformly on compact sets.

LEMMA 4.2. Leta € CP, c€ C? and —7 < argb < 7, then

L'(b+a)

lb—oo T'(b + ¢)

LEMMA 4.3. Let Ac CP, Be(C\Z)?, e Cande==%

lim ,1F5((A,eb+ B); B; 2/b) = ,Fy(A; B;ez)

|b|—o00

uniformly on compact sets if ¢ > p and term by term if ¢ < p.

LEMMA 4.4. Let Ac CP*l Be (C\Z )P~!, B€C and e = +, then
term by term

‘bl‘lm p+1Fp(A; (B, b + B);b/t) = pr1Fp—1(4; Bie/t).
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The next proposition is easily deduced from these lemmas.
PROPOSITION 4.5. Uniformly on compact sets of C, for 1 < j < p+1,

Jim b () = (1),

Moreover, for 1 < j < p, then term by term

lim b " hy(

|b]—o0

p) = ®;.

The last function hpy1 cannot be studied with the help of the above
mentionned lemmas as the parameter b appears in all the coefficients of
the hypergeometric function. This kind of situation has been studied by
Knottnerus [2] where one can find the proof of the following assertion also
cited by [3].

LEMMA 4.6. For A € CP*L, B € (C\ Z7)P, r a sufficiently large
positive real number and |arg(l — z)| <,

d n
prFp(r+ Air + Bi2) = (1= )P4 14 22 4 3 pk;(kz) +0( ]
k=2

where dy only depends upon A and B and pi(z) is a polynomial in z with-
out constant term and of degree less than k, the coefficients of which only
depends upon A and B.

From this lemma one “deduces” that for each n € N,

« ” — b — dl - dk 1
hpa(8/8) <=7 b7 (L= )T [1 - S Y (DR 0 ()]
k=2
€ _» o im(b=A) A A b atb di | o g 1
=" e b1 - 7) [1—7+Z(—1)t7+0(5)}
k=2

where dj, is the coefficient of the leading term in the polynomial py.
This heuristic computation will be helpful in choosing the proper nor-
malization.
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Finally, as

k

k>0
(t — b)k
k _
k>0t (1=X+Db)g

and taking into account the fact that the space of formal solutions of the
form t*e~t times a formal series is one dimensional, one deduces the next
proposition.

ProPOSITION 4.7. Term by term,

\b1|lm b op1(t/b) = the 'O

where

o= Z(—l)k%ﬁ-

k>0

Note that this last formula gives an explicit value for the coefficients of
the formal series ©.

4.2. Normalized solutions

According to the results of the previous section it is natural to define
the following fundamental sets of solutions near the three regular singular
points of D]l;H,pH.

Around 0, one defines

S8 (t) = Zo(t/b)No

where
No = diag (b7, - -+, b 77r+1),

Around oo, one defines
250 (1) = Soo(t/b) Noo

where |
Noo = diag (bfﬂl, . ’b*,up’ bAe’HT()\fb))‘
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Around b, one defines
Yh(t) = B1(t/b)N,

where
Ny = diag (b7, - b=He b,

The next proposition is a consequence of the previous section.

PROPOSITION 4.8.  Uniformly on each compact set of C,

lim X4(t) = Zo(t).

|b]—o0

For ¢,d € {0,b,00},¢ # d, one defines the connection matrix Mgd by
the equality
Zo(t) = Se(t) Mg

The next lemma shows the relationship between these matrices and those
defined for the equation Djq1p11((1, —b);1).

LEMMA 4.9. Forc,d € {0,b,00},c # d,

b _ ar—1
My = Ny ' M aN..

In particular if for 1 < 1,5 < p+ 1 the (4, j)-th entry of the matrix Mé’d
is denoted by bmfﬁ, one has :

e forl<i<pandl<j<p+1,

me,OO _ F(l + ZJ)F(Hz) F(_b _ /’Ll) bl*HLz‘*Vj eiﬂ(l«#/iifuj)

W T (- vy + p) Ty — ) (L= b — ) ’
o for1<j<p+1,

bm0700 o F(l + Z;) F(E + b) b—)\—uj—l-leiw(l—)\—uj).
P T(1 = v+ p) Ty, +b)
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PROPOSITION 4.10. If =27 < argb < —m then

lim Mb = ]5_1.
|b|1 0,00 3
If —t < argb < 0 then
lim Mb = ﬁz.
|b|1 0,00 3

If 0 < argbh < 7 then

PROOF. For the (p+1, j)-th entry, the result is a consequence of lemma
4.1if —7 < argb < . If =27 < argh < —7 one writes b = b'e~ %" so that
0 < argd’ < m and then one uses the same lemma.

For the other rows one writes b = (—b)e™™ if —27 < argh < 0 and b =
(—=b)e'™ if 0 < argh < T, so that —7 < arg(—b) < 7 in each case. Then one
uses lemma 4.1. [

The proof of the following proposition is along the same lines.

ProprosiTION 4.11. If —w < argb < 0 then

|b]—o0 2
If 0 < argbh < 7 then .
lim M, = Mx.
U
If m < argb < 27 then .
llm MI?,O — MSTr .

|b|—>oo 2

Using these two propositions together with the relation
Ml?,oo = M(l)),ooMl?,o,
one gets :
PROPOSITION 4.12. If —m < argb < 0 then

lim M}, = Pz M_

[b]— o0

= 50.

vl
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If 0 < argb < m then

lim M}, = Ps: M

[b|—oo o

= Sr.

Wl

It is worthwhile to notice that these limits can be obtained directly from
the explicit values of the entries of the matrix Mé’,oo. In fact one has :

o for 1 <i,j <p, 'm{=0ifi+jand m)>* =1,

e for 1 <j <p,

b boo POA=p7) P4p+0)T(A—b—v) , —A—p; —im(A—b
Mpily = T2 lli](l—b—ﬁ) b HaeT O
(1 —u*)
= ———_U(b).
1+ pj—v)

If —7 < argh < 0, one writes b = (—b)e " so that 0 < arg(—b) < .
Then U(b) = U1 (b)Ua(b) with

_ rl-bv-v)
ST —=b— )T (—p; —b)

when |b] — oo as [1 — pu| — p; — |1 —v| = =X — py.

U1(b) (=0 —1

Up(b) = T(—p; —b)D(1 + pj + b)er™ )
eiﬂ'(b“i’uj)

= u7m— .
eiﬁr(bJﬁu]’) — e“r(bJﬁuj)

using the well-known relation I'(z)['(1 — z) = n/sin wx.

As Sb < 0 when —7 < argh < 0, e 1) — 0o as |[b| — oo and thus
Us(b) — —2im.

If 0 < argb < 7, one writes b = (—b)e'™ and, with the same notations
as before, one has

eiw(b_uj)

o, —2iTA
Ug(b) = ime e—im(b+uj) _ gim(btpy)”

This time Jb > 0 and thus U(b) — 0 as |b] — oco. More precisely
Us(b) = O(e=273Y),
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o for 1 <i<p,

D(p) .
b l.)’oo p— =t _h X _ )\+ui ZTI'()\fb)
M Tl M)I‘( b— p)T(1— X+ b)b " Hie
D(ur)
— _Eil gim(Am) sy
e .
T'(v — ) ©)

Writing as before b = (—b)e™ with ¢ = 1 if 0 < argh < 7 and
€ —1if —7 < argb < 0 so that —7 < arg(—b) < 7, one has
V(b) = Vi(b)Va(b) with

and

—if0<argh<m,

Vel 0 eiﬂ'(/\—b) o
2(b) = Tom ) — omin(r—p) 10
—if —m < argh <0,
) im(A—b) N
Va(b) = 2ime 2 % 0(e™)

SiT(A—b) _ g—in(A-b)
with &b < 0.

e Finally
b boo L(p+b)I(1—A+0b)

Mpt1p+1 = F(Z"i‘ b) — 1

when |b] — oo with —7 < argb < 7, as it follows from the relation
A=lpl+ 1z -1=0.

These results altogether give a direct proof of Proposition 4.12 and more-
over give information on the speed with which the last row or column of the
matrix Mé” - converges to 0.

As a by-product of the previous results we get the existence of actual
limits for the fundamantal sets of solutions of Dg +1,p+1 around b and co.
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PROPOSITION 4.13. The following limits hold uniformly on compact

subsets of é,

. b
lim Xp(t)
|b|]—o0
—m<arg b<0

: b
lim  Xp(¢)
[b]— o0
O<arg b<m

. b
lim ()
|b]—o00
m<arg b<2m

[b]—o00
—2r<argb<—m

Jim S5.(t) = Sx(t)
—7r|<|;§2<0

|b] —o0
O<argb<m

Proor. All proofs are along the same lines. We give one of them.

We start with the relation >_

2() Zo()M z. For —m < argh < 0,

Proposition 4.8 and 4.11 assert that uniformly on compact sets of (~3,

3

vl

(t) = lim SH(t)Mp, = lim 3p(t). O

|b] —oc0

|b] —oc0

Taking into account the definition of the functions entering these funda-
mental sets one is led to the limit properties listed in the next proposition.

PROPOSITION 4.14. Let a,b,0c € C,A € CP~' B € CP*l. Let argb be
fixed with —m < argb < 0 or 0 < argb < m, then uniformly on compact sets

of (Nj,
1.
ba—l
dm 5 e
2. .
. k

P ,%% A=A+

3.

|bl|1m p+1Fp(B; (A, b+ o )t)

((_bv avé); B

1) = Gitbi((a, A) Bit)

b,
(1= )F =G (= 1 = pit)

t p,p+1

b, T(A o
FggiGﬁm«l,A);ﬁ;tc )
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. t b
Jim () i Fp(L b= vl b= =) = G (1 - w1 - wit)

By expressing the hypergeometric function 41}, as a G-function ([3] p.
147), one can also deduce from properties 3. and 4. the following formulas.

COROLLARY 4.15.  With the same notations and hypotheses, uniformly
on compact sets of C

1.
t

lim T(b+ )Gyl (LA b+0): By

|b] =00

) = GhEH((1, A); Bt)

. 1 +1,1 t 11,0
dm m Ot (1 =01 — w1 — ) =GRl - il - 15t)

Note that the two properties of this corollary as well as property 1. of
4.14 express the validity of “taking the limit under the [ sign in the integral
defining the G-functions under consideration.

As a final remark, let us note that it is also possible to get both Stokes
matrices Sg and S; as limits when b — oo in one and the same half-plane.
We have seen that in the half-plane —7 < argb < 0, Sp = limp| M,ioo.
The next proposition shows that S-! is obtained up to conjugation by the
formal monodromy as the limit in the same half-plane of another matrix,
denoted by M’Zm.

The monodromy around b is given in the basis Eg(t) by the matrix

Ty = diag (1,---,1,e”27A=0)),
N——

p

PROPOSITION 4.16.  Let M"y =T, M} Ty Then

. b /\_ _ —~
lim My =M1S'M
|b] o0 ’
—mw<arg b<0
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where M denotes the formal monodromy matriz of the confluent equation
given in the basis % by

M = diag (€2Z7TM1, e e2z7rup’ e—2z7r)\)‘

PROOF. Let bm’g”;o denote the (4, j)-th entry of the matrix M’gm. One
has

e forl1<i,j<pori=j=p+1,

b, 1b,00 __ b __boo
Mg = My

which is equal or tends to 0 if 7 = j and 1 if i = j.
e For 1 <j <p,

b, b0 b __boo  2im(A-b) _ 273b
Mp+1,5 = Mpta,4€ = 0(e”™7).

e For 1 <i < p, with b= (—b)e'™,

b, tboo b _boo —2im(A-b)
Mipr1 =  Mip€
*
L)

_ Lt im(A+pi) —2¢m(A—b)
7F(2 — ;Li) € Vl(b)Vg(b)e

with llm|b|ﬂoo Vl(b) =1 and

6721‘71'(;” +A) eifr(bf)\)

—2tm(A=b) _ o s =20 (A
Va(b)e 2" A=Y = 97 RO N —2ime” Hm(nitA),

These formulas altogether give the result. Note that, as S, = I + N and
N?=0,0nehas S;'!=1—-N.O

5. A Second Confluence Procedure

For this second type of confluence, we express the monodromy around
b and around oo in one of the two “mixed” basis ¥, and X! defined as
follows.
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Let X8 = (Y, - - ,cpfl’,ﬂ) and X% = (h},-- -,hg+1), then

Z’rn == (hIL R hgv @;}H»l)

and
b b 1.b
E;n = (8017 Tty Sopv hp+1)‘

If f is some solution of the differential equation D,11 41, we denote by 7 f
the image of f under the monodromy around b and by 7 f the image of f
under the monodromy around co.

As the basis EZ consists of eigenvectors for the monodromy around b, one
has 'Ygo? = cp? forj=1,---,pand Vgogﬂ = 6*2”()‘*1’)902“

Similarly, as the basis X’ consists of eigenvectors for the monodromy
around oo, one has :th = e2iTHy hg for j=1,---,p and ﬁhgﬂ = e_Qi”bh]l;H.

We use the following notations, for j =1, ---,p

D1 — p)T(1+ pj +b)T(1 —b—
Y (1= )T+ + 01 =0 Z)b—x—uje—wdA—w
I P(1+p —v)T(1—b—p) ’

()T~ BI(1 = A+ )

8 = b gim(A=b).
’ (v — py)
5~ Tetdra-a+y
p
Apr1 = Bpri+ Y a;B;
=

PROPOSITION 5.1.  The matriz T, expressing the monodromy around b
i the basis X, is given by

1 0 0
0 1 0 0
T, = I 0
0 0 1 0
Aapj_l b Ao:,j_l mp ef2z7r()\fb)
with mp = e~ 2im(A=b) _ 1,
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In the same basis the monodromy around oo is given by the matrix

eQiﬂ',u,l 0 . 0 51 (62737r,u1 _ e—QiTrb)
0 eimpz .. 0 52 (€2i7ru2 _ e*2i7Tb)
T = : : o :
0 . 0 ey Igp<€2i7rup _ e—2i7rb)
0 T, 0 o—2imb

ProOOF. The relation EZ = EZOMZE”OO implies h? = 90? + ozjhfﬂrl and
thus
ThY = @b+ TR .

Moreover
p+1
b b
(pp—l-l = Z hj
j=1
& b b b
- Z ﬁj(%‘ + ajhpi1) + Bpr1hpiq
7j=1
P , ,
= Z Bipj + Apiihyiy
j=1
and thus
b
p+1 Ap+1 71 Pp+1
so that
P
. 1 )
TH - _ B; b o—2im(A=b) b
1 Ppi1
" AT Apn P
1 .
ne. .+ e 2im(A=b) _q <pb )
p+1 AP-H( ) p+1
From this relation one deduces for j =1,---,p
b b —2im(A—b b
= gl (O g,
p+1
b X _2ir(A=b b
- hj + ’ (6 2ém( ) — 1)901)—4—1'

Ap+1
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To compute the last column of the second matrix one just has to notice that

p
5, b _ § : 2imp b —2imby1 b

<.
Il
MR

I
'M“

<
Il
_

p
IgjeQ'm,uj hs + 67217rb [Sperl . Z ﬁjhﬂ
j=1

|
.Mﬁ

<
Il
—

24714 —2imby\ 1,b 2iwh, b
Bj(e*™i —e )hj+e ¢pr1 O

We will now compute Ap, ;. This computation should be classical but
due to a lack of proper reference we prefer to give a proof. We first state a
lemma.

LEMMA 5.2. For a,v € C" with oj — ay, € Z if j # k, the following
equality holds

= sin (| - |a))
sin 7w (z+v)

‘ sin(z+a)
function in e%™®. By partial fraction decomposition one gets the equality

PrROOF. The quotient (x € C) may be viewed as a rational

sinm(z +v) Jin(lv~la) +Zsm7r(1/ aj) e~im@tas)

sinm(z + ) i sin(af) sinm(z+a;)

Taking all the coefficients and x real and writing down the equality of the
imaginary parts, one gets

= sin7 (v — aj)
0 =sinn(|la — E sn( ) .
j=1 Q;

By analytic continuation this relation is still valid for complex values of the
parameters. [

PROPOSITION 5.3. The determinant Api1 of the connection matric
Mbboo is given by
Nl1-b—-v)
1—b—p)T(A—0)

Apt1=Bpt1+ Z ;B = T(

J=1
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PrOOF. We use the lemma with n = p+ 1 and a = (u, —b), getting
the relation

P
sin (v SlIlﬂ'(I/ — i) _
= A—b).
sin 7 ( +]z::1 sin 7 (p w *)sinm(—p; —b) sinm( )

But A,41 can be written as

L(b+4) P(1—p*)T(14+p54+b)T(1—b—p)T (" )T (—b—p;)
Apyr = T2 g + 2j= B N (EmTE=)) v g 7 ]
_ TA=b—v)I'(1—A+b sin 7(b+v) inm(v—p;)
- ( F(l—)biﬂ) 11 [smwéb—l—u) + Z] 1 s1n7ri sm7r(ujb—uj)]
1—p—
_ a-b-y) sinm(\ — b)w
Il—b—p) ™
Nl1-b-v)

= TU—b-pT(A=b)

REMARK. With this value for A, it would be easy to get in closed
form the entries of the matrix Mgo,b = (Mé’,oo)f1 and thus of M 1.

PROPOSITION 5.4. Ifb=bg+n with by € C and n € N, then

lim T, = diag(1,---,1, 672”()\71)0)) So_l
n—+00 ——
P
= diag(1,---,1, 672”)‘) diag (1,---,1, 62”1’0) SO_1
P P
lim T~ _ Sfl diag (62i7ru1 .. 62i7rup 672i7rb0)
n—-+00 ™ ’ ’ )
= S-ldiag (e ... €2 1) diag (1,---,1,e 200)
———
P

PrRoOOF. With the help of Proposition 5.3, one may write

(7O 1) = A;U5(b)
Apt1
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with .
F(l _Hj)

Aj= ———

L1+ pj— 1)

and
Uj(b) = T(A+pu;+b)I'(A— b)b*/\fﬂjefiﬂ()\fb)(6727;#()\7()) ~1)
= T(1+4 g5 +b)L(A — b)b A1 e=2mA=09igin (b — )
—ain(a-p) DL F 4 +0)y 3y

iTe NIRRT
so that |
lim Uj(bO + n) — —2’L'7T6_2”r(>‘_b0)_
Similarly

Bj(*mhs — e = 23,3 =0 sin w(p; + b) = B;V;(b)

with -
5o LW
J
(v — py)

and

Vi(b) = 2i0(=b— pj)T(1 — X+ b)b e 2 sin (b 4 1)
L(L—A+0b) i) o= 2imb

623

= —u7m
(1 +b+ py
so that
lim Vj(by +n) = —2ime %m0, [
n—oo
The diagonal matrix diag (1,---,1,eT2™) may be viewed as a ran-
———

p

dom factor linked to the “exponential torus” of [4]. The diagonal matrices
diag (1,---,1,e~%™) and diag (€™, - .. ¢2™Hr 1) are complementary parts
——

p

of the formal monodromy matrix M described at the end of section 4. It is

then possible to give the same heuristic “explanation” of the limit procedure

as the one given in the case p =2 in [9].
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One can do the same computations in the other mixed basis X/, and
give the same interpretation of the results.

PROPOSITION 5.5. The matrix Té expressing the monodromy around b
in the basis X is given by

1 0 o ee- B

A1 T

.. 2
0 1 0 A,y

/! .

y=1: : R :

B
o -~ 0 1 ﬁmb
0 -+ .. 0 e2im(A=d)
with mp = e~ 2im(A=b) _ 1,

In the same basis the monodromy around oo is given by the matrix

e2imp1 0 .. 0 0
0 e2impz .. 0 0
/o
¥ . : . . .
0 ... 0 21T ip 0
a1(€2i7ru1 _ €—2i7rb) . . ap(eZiﬂup _ e—2i7rb) e—27j7rb

If b =bg — n with by € C and n € N, then

lim Té = diag(1,---,1, 6721‘71'()\—170)) 51
n—+00
argb—>7r p"
= diag(1,---,1,e 2™ diag (1,---,1,e*™0) 51
——— N
p P
and
nEI—Il-loo T‘ZY — SO_I diag (621'71’#1’ . 62i7r,up7 672i7rb0)
argb—>—ﬂ—
= So—l diag (e2i7ru1’ .. 62”“1’, 1) diag (17 s, e_2i7rb0),

——
p
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