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Spectrum of Functions in Orlicz Spaces∗

By Ha Huy Bang

Abstract. Some geometrical properties of the spectrum of func-
tions in Orlicz spaces are given first in this paper.

The study of properties of functions in the connection with the sup-

port of their Fourier transform has been considered by S.N. Bernstein,

R.E.A.C. Paley, N. Wiener, L. Schwartz, L. Hörmander, S.M. Nikol’skii,

V.S. Vladimirov, O.V. Besov, L.D. Kudrjavtsev, V.P. Il’in, A.F. Timan,

N.I. Akhiezer, N.K. Bari, P.I. Lizorkin, B.I. Burenkov, V.N. Temlyakov, H.

Triebel, E.Görlich, R.J. Nessel, G. Wilmes, M. Morimoto, C. Watari, Y.

Okuyama, C. Markett, P. Nevai, G. Freud, G. Björck, C. Roumieu, R.W.

Braun, R. Meise, B.A. Taylor, M. Reed, B. Simon, S. Saitoh, Ha Huy Bang,

and many other mathematicians (see, for example, [2 - 4, 10, 14, 16, 18]

and their references). To this study, in particular, belong the inequalities

of Bernstein, Nikol’skii, Bohr, and the Paley - Wiener - Schwartz theorem.

Let f ∈ S′. The spectrum of f is by definition the support of its Fourier

transform f̂ (see, [11, 17]). Denote sp(f) = suppf̂ . Then the geometry of

sp(f), in general, can have enough arbitrary character. In this paper we give

some geometrical properties of the spectrum of functions in Orlicz spaces

LΦ(Rn) (a subset of S′). This study is necessary for us to characterize

behaviour of the sequence of norms of derivatives ‖Dαf‖Φ, α ≥ 0 in the

connection with the spectrum sp(f) (for Lp - norms it is given in [7]) and

completely describe functions in Sobolev - Orlicz spaces of infinite order in

the sense of their spectrum. Note that Sobolev - Orlicz spaces of infinite
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order arise in the study of nonlinear differential equations of infinite order

(see the definition in [5, 9] and their references).

Let Φ(t) : [0,+∞) → [0,+∞] be an arbitrary Young function [1, 12 -

13, 15], i.e., Φ(0) = 0,Φ(t) ≥ 0,Φ(t) �≡ 0 and Φ(t) is convex. Denote by

Φ(t) = sup
s≥0

{
ts− Φ(s)

}

the Young function conjugate to Φ(t) and by LΦ(Rn) the space of measur-

able functions u(x) such that

|< u, v >|=|
∫
u(x)v(x)dx |<∞

for all v(x) with ρ(v,Φ) <∞, where

ρ(v,Φ) =

∫
Φ(| v(x) |)dx.

Then LΦ(Rn) ⊂ S ′ and LΦ(Rn) is a Banach space with respect to the Orlicz

norm

‖ u ‖Φ= sup
ρ(v,Φ)≤1

|
∫
u(x)v(x)dx |,

which is equivalent to the Luxemburg norm

||f ||(Φ) = inf{λ > 0 :

∫
Φ(|f(x)|/λ)dx ≤ 1} <∞.

Let u ∈ LΦ(Rn), h ∈ L1(R
n) and v ∈ LΦ(Rn). Then ‖u ∗ h‖Φ ≤ ‖u‖Φ‖h‖1

and ∫
|u(x)v(x)|dx ≤ ‖u‖Φ‖v‖(Φ).

Recall that || · ||Φ = || · ||p when 1 ≤ p <∞ and Φ(t) = tp; and || · ||Φ = || · ||∞
when Φ(t) = 0 for 0 ≤ t ≤ 1 and Φ(t) = ∞ for t > 1.

Lemma 1. Let f ∈ LΦ(Rn) and sp(f) be bounded. Then f(x) is

bounded.

Proof. Without loss of generality we may assume that∫
Φ(|f(x)|)dx < ∞. Let ψ̂ ∈ C∞

0 (Rn), ψ̂ = 1 in some neighbourhood of
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sp(f) and M1,M2 be positive numbers such that Φ(‖ψ‖∞/M1) < ∞ and

‖ψ‖∞ ≤ M2. Then the Young inequality and the property Φ(λt) ≤ λΦ(t)

for 0 ≤ λ ≤ 1, t ≥ 0 yield

|f(x)|/M1M2 ≤
∫

Φ(|f(y)|)dy +

∫
Φ(|ψ(x− y)|/M1M2)dy

≤
∫

Φ(|f(y)|)dy + Φ(‖ψ‖∞/M1)

∫
|ψ(y)|/M2dy <∞.

The proof is complete. �

Theorem 1. Let Φ(t) > 0 for t > 0, f ∈ LΦ(Rn), f(x) �≡ 0 and ξ0 ∈
sp(f) be an arbitrary point. Then the restriction of f̂ on any neighbourhood

of ξ0 cannot concentrate on any finite number of hyperplanes.

Proof. We choose a function ϕ̂(ξ) ∈ C∞
0 (Rn) such that ϕ̂ = 1 in

some neighbourhood of ξ0. Then F−1ϕ̂f̂ = ϕ ∗ f ∈ LΦ(Rn). Therefore, it

is enough to prove our theorem for functions with bounded spectrum.

Put ĥ(ξ) = f̂(ξ − ξ0). Then h(x) = eiξ
0xf(x) belongs to LΦ(Rn) and

has bounded spectrum. So we can assume that ξ0 = 0.

We prove by contradiction: Assume that there exist a neighbourhood

U � 0 and hyperplanes H1, . . . , Hm such that the restriction of ĥ(ξ) on U

concentrates on H1, . . . , Hm. Without loss of generality we may assume

that 0 ∈ Hj , j = 1, . . . ,m. Then Hj can be defined by the equation

aj1ξ1 + · · · + ajnξn = 0,

where (aj1, . . . , ajn) is a unit vector in R
n.

We put for each j = 1, . . . ,m

Gj = R
n\

(⋃
i�=j

Hi

)

Then Gj is open. For any ψ(ξ) ∈ C∞
0 (Gj), the distribution ψ(ξ)ĥ(ξ) con-

centrates on the hyperplane Hj . We introduce the transformation

x = (x1, · · · , xn) � (y1, · · · , yn) = y,



344 Ha Huy Bang

where y1, · · · , yn are the coordinates of x in the new rectangular system of

coordinates, which is chosen such a way that the hyperplane

aj1x1 + · · · + ajnxn = 0

will be transformed into the hyperplane yj = 0. The coordinate transfor-

mation

xk =

n∑
s=1

αk,sys, k = 1, · · · , n

is defined by a real orthogonal matrix A = (αk,s) and |detA| = 1.

Put g(y) = F−1ψ ∗ h(x). Then ‖g(y)‖Φ = ‖F−1ψ ∗ h(x)‖Φ, suppŷ is

compact and, clearly, the Fourier transform of g(y) will concentrate on the

hyperplane ξj = 0 (see formula (7.1.17) [10] or the proof of Theorem 2

[8]). Therefore, taking account of a remark on Theorem 2.3.5 mentioned in

Example 5.1.2 [10], we get

(1) g(y) =
N∑
�=0

g�(y1, . . . , yj−1, yj+1, . . . , yn)(−iyj)� ,

where N is the order of the distribution ĥ(ξ) (N < ∞ because suppĥ is

compact) and ĝ�(ξ1, . . . , ξj−1, ξj+1, . . . , ξn), 0 ≤ ) ≤ N , are distributions

with compact support.

Because of Lemma 1, equality (1) is possible only if N = 0. So the

function g(y) does not depend on yj .

Further, by the definition we get

(2)

∫
Φ(|g(y)|/λ)dy <∞

for some λ > 0. Then

(3) Φ(|g(y)|/2λ) ≡ 0.

Actually, assume the contrary that Φ(|g(y0)|/2λ) > 0 for some point y0.

Because of the fact that Φ(t) never decreases and the continuity of g(y) =

F−1(ψĥ)(x), there is a number δ > 0 such that Φ(|g(y0)|/2λ) ≥ δ in some
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neighbourhood of y0, which contradicts (2) because g(y) does not depend

on yj .

Combining (3) and the assumption that Φ(t) > 0, t > 0, we get g(y) ≡ 0.

It means ψ(ξ)ĥ(ξ) ≡ 0. Since ψ(ξ) ∈ C∞
0 (Gj) is arbitrarily chosen, we get

ĥ(ξ) ≡ 0 on the hyperplane Hj . So ĥ(ξ) must concentrate on the planes

Hi ∩Hj , i, j = 1, . . . ,m, i �= j.
We put for i, j = 1, . . . ,m, i �= j

Gij = R
n\ ∪ {Hk ∩H� : (k, )) �= (i, j), k �= )}.

Then Gij is open. For any ψ(ξ) ∈ C∞
0 (Gij), the distribution ψ(ξ)ĥ(ξ)

concentrates on the plane Hi ∩Hj .

Introducing a suitable transformation of coordinates, by an argument

analogous to the previous one, we obtain ψ(ξ)ĥ(ξ) ≡ 0. Hence, since ψ ∈
C∞

0 (Gij) is arbitrarily chosen, we get that ĥ(ξ) must concentrate on Hi ∩
Hj ∩H�, i, j, ) = 1, . . . ,m, i �= j �= ).

Repeating the above arguments (m− 3) times more, we obtain that the

distribution ĥ(ξ) concentrates on
m⋂
i=1
Hi and then, by the same way, we get

ĥ(ξ) ≡ 0, which contradicts h(x) �≡ 0. The proof is complete. �

Corollary 1. Let Φ(t) > 0, t > 0, f ∈ LΦ(Rn) and f(x) �≡ 0. Then

for any ξ0 ∈ sp(f) there exists a sequence {ξm} ⊂ sp(f) such that ξmj �=
ξ0j , j = 1, . . . , n and ξm → ξ0.

Corollary 2. Assume the hypotheses of Corollary 1. Then for any

ξ0 ∈ sp(f) there exists a sequence {ξm} ⊂ sp(f) such that ξmj �= 0, j =

1, . . . , n and ξm → ξ0.

Corollary 3. Assume the hypotheses of Corollary 1. Then

span(sp(f)) = span(sp(f) − ξ0) = R
n

for any ξ0 ∈ sp(f).

Corollary 4. Clearly, sp(Dαf) ⊂ sp(f). Further, if the hypotheses

of Corollary 1 is satisfied, then sp(Dαf) = sp(f).
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Remark 1. In all above conclusions, the assumption Φ(t) > 0, t >

0 cannot be dropped because, in the contrary case, LΦ(Rn) contains all

constant functions.

Remark 2. In contrast with hyperplanes, f̂(ξ) may concentrate on

surfaces. Actually, let n = 3 and f(x) = sin |x|
|x| . Then sp(f) = {ξ : |ξ| = 1}

(see [6]) and, clearly, f(x) ∈ Lp(R
n) for any p > 3.

Theorem 2. Let Φ(t) be an arbitrary Young function, f ∈ LΦ(Rn)

and α ≥ 0 be a multiindex. Then sup
sp(f)

|ξα| = 0 if and only if Dαf(x) ≡ 0,

where Dα = Dα1
1 · · ·Dαn

n , Dj = −i∂/∂xj.

Proof. We have to prove only the “only if” part. Without loss of

generality we may assume that αj �= 0, j = 1, . . . , k and αk+1 = · · · = αn =

0 (1 ≤ k ≤ n). Then the distribution f̂(ξ) concentrates on the hyperplanes

ξj = 0, j ∈ {1, . . . , k} = I. For the sake of convenience we assume that

α1 = · · · = αk = 1.

We shall begin with showing that if ξαψ(ξ)f̂(ξ) concentrates on the

plane ξi1 = · · · = ξi� = 0 for some i1, . . . , i� ∈ I and ψ ∈ C∞
0 (Rn), then

DαF−1ψ ∗ f(x) ≡ 0. Actually, because ξαψ(ξ)f̂(ξ) concentrates on the

plane ξ1 = . . . = ξ� = 0 (we assume that ij = j, j = 1, . . . , ) for simplicity

of notation), we have

(4) F−1
(
ξαψ(ξ)f̂(ξ)

)
(x) =

∑
|β|≤N

gβ(x′′)(−ix′)β ,

where N is the order of the distribution ψ(ξ)f̂(ξ), x′ = (x1, . . . , x�), x =

(x′, x′′), β ∈ Z
�
+ and ĝβ(ξ�+1, . . . , ξn), |β| ≤ N are distributions with com-

pact support.

Further, we choose ω ∈ C∞
0 (Rn) such that ω(ξ) = 1 in some neighbour-

hood of suppψ. Then by virtue of Lemma 1, we obtain

||F−1
(
ξαψ(ξ)f̂(ξ)

)
||∞ = ||F−1

(
ξαψ(ξ)ω(ξ)f̂(ξ)

)
||∞

≤ ||F−1
(
ξαψ(ξ)

)
||1||F−1(ωf̂)||∞ <∞.
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Therefore, since (4) we get

F−1
(
ξαψ(ξ)f̂(ξ)

)
(x) = DαF−1ψ ∗ f(x) = g0(x

′′).

Put γ1 = 0, γ2 = · · · = γk = 1, γk+1 = · · · = γn = 0. Then

D1D
γF−1ψ ∗ f(x) = g0(x

′′).

Hence,

DγF−1ψ ∗ f(x) = ix1g0(x
′′) + h(x2, . . . , xn).

Therefore, taking account of DγF−1ψ ∗ f ∈ L∞, we obtain g0(x
′′) ≡ 0, i.e.,

DαF−1ψ ∗ f(x) ≡ 0.

Next we prove that ξαf̂(ξ) concentrates on the plane ξ1 = · · · = ξk = 0.

Actually, we put for any j ∈ I

Gj =
{
ξ ∈ R

n : ξi �= 0, i ∈ I\{j}
}
.

Then Gj is open. For each ϕ ∈ C∞
0 (Gj) we choose a function ψ(ξ) ∈

C∞
0 (Gj) such that ψ = 1 in some neighbourhood of suppϕ. Then ψ(ξ)f̂(ξ)

concentrates on the plane ξj = 0 and by the fact proved above, we get

< ξαf̂(ξ), ϕ(ξ) >=< ξαψ(ξ)f̂(ξ), ϕ(ξ) >

=< DαF−1ψ ∗ f, ϕ̂ >= 0.

So we have proved that ξαf̂(ξ) must concentrate on the planes ξi = ξj =

0, i, j ∈ I.
We put for i, j ∈ I, i �= j

Gij = {ξεRn : ξ� �= 0, ) ∈ I\{i, j}}.

Then Gij is open. Arguing as in the case Gj , we get

< ξαf̂(ξ), ϕ(ξ) >= 0, ∀ϕ ∈ C∞
0 (Gij).
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So ξαf̂(ξ) must concentrate on the planes ξi1 = ξi2 = ξi3 = 0, i1, i2, i3 ∈
I, i1 �= i2 �= i3.

Repeating the above arguments (k − 3) times more, we obtain that the

distribution ξαf̂(ξ) concentrates on the plane ξ1 = · · · = ξk = 0.

Finally, for every ϕ ∈ C∞
0 (Rn) we choose ψ ∈ C∞

0 (Rn) such that ψ = 1

in some neighbourhood of suppϕ. Then

< Dαf, ϕ̂ > =< ξαf̂(ξ), ϕ(ξ) >=< ξαψ(ξ)f̂(ξ), ϕ(ξ) >

=< DαF−1ψ ∗ f, ϕ̂ >=< 0, ϕ̂ >= 0.

Therefore, it follows from the density of C∞
0 (Rn) in S that < Dαf, ϕ̂ >= 0

for all ϕ ∈ S. Therefore, Dαf(x) ≡ 0. The proof is complete. �
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