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A Compact Imbedding of

Semisimple Symmetric Spaces

By Nobukazu Shimeno

Abstract. A realization of a ε-family of semisimple symmetric
spaces {G/Hε} in a compact real analytic manifold X is constructed.
The realization X has the following properties: a) The action of G on
X is real analytic; b) There exist open G-orbits that are isomorphic
to G/Hε for each signature of roots ε; c) The system Mλ of invariant
differential equations onG/Hε extends analytically on X and has regular
singularities in the weak sense along the boundaries.

Introduction

Let X = G/H be a semisimple symmetric space of split rank l. The

purpose of this paper is to construct an imbedding of X into a compact

real analytic manifold X without boundary. Our construction is similar to

those in Kosters[K], Oshima[O1], [O2], Oshima and Sekiguchi[OS1], and

Sekiguchi[Se]. The main idea of construction was first presented in [O1].

In [O1] and [O2] Oshima constructed an imbedding of X in a real an-

alytic manifold X
′. The number of open G-orbits in X

′ is 2l and all open

orbits are isomorphic to X. For example, if X = SL(2,R)/SO(2), then X
′

is P
1
C
; there are two open orbits that are isomorphic to X and one compact

orbit that is isomorphic to G/P � {z ∈ C ; |z| = 1}, where P is the set of

the lower triangular matrices in G = SL(2,R). The idea of construction is

as follows. By the Cartan decomposition G = KAH, we must compactify

A. We choose a coordinate system on A � (0,∞)l so that the coefficients

of vector fields that correspond to local one parameter groups of transfor-

mations of G/H continue real analytically to R
l. In [O1] and [O2], Oshima
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used the coordinate system (t1, · · · , tl) = (a−α1 , · · · , a−αl) (a ∈ A), where

{α1, . . . , αl} is the set of simple restricted roots.

When X = G/K is a Riemannian symmetric space, Oshima and

Sekiguchi[OS1] used the coordinate system (t1, · · · , tl) = (a−2α1 , · · · ,
a−2αl) (a ∈ A) and constructed a compact real analytic manifold X. There

exists a family of open orbits {G/Kε ; ε ∈ {−1, 1}l}, where G/Kε are

semisimple symmetric spaces. For example, if X = SL(2,R)/SO(2), then

there are three open orbits in X, one of which is isomorphic to

SL(2,R)/SO(1, 1) and the other two open orbits are isomorphic to X. The

two orbits that are not open are isomorphic to G/P .

We shall generalize the construction in [OS1] for a semisimple symmetric

space X = G/H and construct a real analytic manifold X. The main result

is given in Theorem 2.6. There exists a family of open orbits {G/Hε ; ε ∈
{−1, 1}l}, where G/Hε are semisimple symmetric spaces such that (Hε)C �
HC for all ε. If G/Hε is a Riemannian symmetric space for some ε, X is

identical with that was constructed by Oshima and Sekiguchi.

§1. Semisimple symmetric spaces

In this section we define a family of semisimple symmetric spaces and

establish some results about it, to be used later.

1.1. Symmetric pairs

First we review some notation and results of Oshima and Sekiguchi[OS2]

concerning symmetric pairs. Let g be a noncompact real semisimple Lie

algebra and let σ be an involution (i.e. an automorphism of order 2) of g.

Denoting by h (resp. q) the +1 (resp. −1) eigenspace of σ, we have a direct

sum decomposition g = h ⊕ q. We call (g, h) a semisimple symmetric pair

or symmetric pair for brevity. We define that two symmetric pairs (g, h)

and (g′, h′) are isomorphic if there exists a Lie algebra isomorphism φ of g

to g′ such that φ(h) = h′.
There exists a Cartan involution θ of g which commutes with σ. Here-

after we fix such θ. Denoting by k (resp. p) the +1 (resp. −1) eigenspace

of θ, we have a direct sum decomposition g = k ⊕ p. We call (g, k) a Rie-

mannian symmetric pair. Since σ and θ commute, we have the direct sum

decomposition

g = k ∩ h ⊕ k ∩ q ⊕ p ∩ h ⊕ p ∩ q.
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Let a be a maximal abelian subspace of p∩q and let a∗ be its dual space.

For α ∈ a∗, let gα denote the linear subspace of g given by

g
α = {X ∈ a

∗ ; [Y,X] = α(Y )X for all Y ∈ a}.

Then the set Σ = {α ∈ a∗ ; gα 
= {0}, α 
= 0} becomes a root system. We

call Σ the restricted root system of the symmetric pair (g, h). Put

Σ0 = {α ∈ Σ ; α/2 /∈ Σ}.

Let W denote the Weyl group of Σ. For α ∈ Σ let sα ∈ W denote the

reflection in the hyperplane α = 0. Fix a linear order in a∗ and let Σ+

be the set of positive elements in Σ. Let Ψ = {α1, . . . , αl} be the set of

simple roots in Σ+, where the number l = dim a is called the split rank

of the symmetric pair (g, h). Let {H1, . . . , Hl} be the basis of a dual to

{α1, . . . , αl}.

Definition 1.1.

(i) A mapping ε : Σ → {1,−1} is called a signature of roots if it satisfies

the following conditions:{
ε(−α) = ε(α) for any α ∈ Σ,

ε(α+ β) = ε(α)ε(β) if α, β and α+ β ∈ Σ.

(ii) For a signature of roots ε of Σ, we define an involution σε of g by

σε(X) =

{
σ(X) for X ∈ Zg(a)

ε(α)σ(X) for X ∈ gα, α ∈ Σ

where Zg(a) = {X ∈ g ; [X, a] = 0}.

Denoting by hε (resp. qε) the +1 (resp. −1) eigenspace of σε, we have a

direct sum decomposition g = hε ⊕ qε. By definition, σε commutes with θ

and σ, and a is also a maximal abelian subspace of p∩qε. This implies that

Σ is also the restricted root system of the symmetric pair (g, hε). For a real

Lie algebra u let uC denote its complexification. The following lemma can

be proved easily in the same way as the proof of Lemma 1.3 in [OS1].
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Lemma 1.2. The automorphism

fε = Ad
(
exp

(∑l
j=1

π
√
−1
4 (1 − ε(αj))Hj

))
of gC maps hC onto (hε)C. Hence the complexifications of h and hε are

isomorphic in gC.

For a symmetric pair (g, h), let F ((g, h)) denote the totality of symmet-

ric pairs (g, hε) for all signatures ε of roots and we call it an ε-family of

symmetric pairs (obtained from (g, h)).

For each α ∈ Σ, θσ leaves gα invariant. Denoting by gα+ (resp. gα−) the

+1 (resp. −1) eigenspace of θσ in gα, we have a direct sum decomposition

gα = gα+ ⊕ gα−. The number m(α) = dim gα is called the multiplicity of α

and the pair (m+(α),m−(α)) = (dim gα+,dim gα−) is called the signature of

α. If we denote by (m+(α, ε),m−(α, ε)) the signature of α as a restricted

root of (g, hε), then

(1.1) ((m+(α, ε),m−(α, ε)) =

{
(m+(α),m−(α)) if ε(α) = 1

(m−(α),m+(α)) if ε(α) = −1.

Definition 1.3. A symmetric pair (g, h) is called basic if

m+(α) ≥ m−(α) for any α ∈ Σ0.

Proposition 1.4. ([OS2, Proposition 6.5])Let F be an ε-family of

symmetric pairs. Then there exists a basic symmetric pair in F that is

unique up to isomorphism.

Example 1.5.

(i) Riemannian symmetric pairs are basic. If an ε-family F contains

a Riemannian symmetric pair, then the mutually non-isomorphic

symmetric pairs contained in F are determined in [OS1, Appendix].

For a Riemannian symmetric pair (g, k) = (sl(2,R), so(2)), the ε-

family is up to isomorphism given by

F ((g, k)) = {(sl(2,R), so(2)), (sl(2,R), so(1, 1))}.
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(ii) For a real semisimple Lie algebra g′ let g = g′⊕g′ and h = {(X,X) ;

X ∈ g′} � g′. In this case m+(α) = m−(α) for any α ∈ Σ and hence

the pair (g, h) is basic.

(iii) The ε-families obtained from irreducible symmetric pairs such that

they are neither of type (i) nor (ii) are determined in [OS2, Table V].

For example, the symmetric pair (g, h) = (so(3, 6), so(3, 1) + so(5))

is basic and the ε-family is up to isomorphism given by

F = {(so(3, 6), so(3 − k, 1 + k) + so(k, 5 − k)) ; 0 ≤ k ≤ 2}.

1.2. Definition of symmetric spaces G/Hε

For an ε-family of symmetric pairs, we will define a family of symmet-

ric spaces. Hereafter we assume that (g, h) is a basic symmetric pair and

consider the ε-family obtained from (g, h).

For a Lie group L with Lie algebra l and a subalgebra t of l, let ZL(t)

and Zl(t) denote the centralizer of t in L and that of t in l respectively and

let L0 denote the connected component of the identity element in L.

Let GC be a connected complex Lie group whose Lie algebra is gC and

let G be the analytic subgroup of GC corresponding to g. We extend σ and

θ to gC as C-linear involutions.

We assume that the involution σ is lifted to G (i.e. there exists an

analytic automorphism σ̃ of G such that σ̃(expX) = expσ(X) for any

X ∈ g) and denote the lifting by the same letter. If GC is simply connected

or is the adjoint group of gC, then any involution of g is lifted to G (c.f.

[OS2, Lemma 1.5]).

Lemma 1.6. Under the above assumption, the involution σε of g is

lifted to G for each signature of roots ε.

Proof. We fix a signature of roots ε. Let G̃C denote the universal

covering group of GC and let G̃ be the analytic subgroup of G̃C correspond-

ing to g and let π denote the covering map π : G̃ → G. The involutions σ

and σε are lifted to G̃C.

Let U be the analytic subgroup of G̃C corresponding to u = k +
√
−1p.

Then the center Z̃ of G̃C is contained in ZU (
√
−1a). It follows from [H,

Chapter VII, Corollary 2.8] that ZU (
√
−1a) is connected. By definition, σ
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and σε coincide on Zu(
√
−1a), hence their liftings to G̃C coincide on the

connected Lie group ZU (
√
−1a). Since σ is lifted to G, kerπ ⊂ ZU (

√
−1a)

is σ-stable, hence it is σε-stable. It follows from [H, Chapter VII, Lemma

1.3] that σε is lifted to G. �

We define Gσ = {g ∈ G ; σ(g) = g} and let H be a closed subgroup of

G between Gσ and its identity component (Gσ)0. The homogeneous space

G/H is called a semisimple symmetric space associated with the symmetric

pair (g, h). Hereafter we fix a symmetric space G/H associated with (g, h).

LetK be the analytic subgroup of G corresponding to k. The Weyl group

W of the restricted root system Σ can be identified with NK(a)/ZK(a),

where NK(a) is the normalizer of a in K. For a signature of roots ε, we put

Hε = (Gσε)0ZK∩H(a).

Lemma 1.7. Hε is a closed subgroup of G that is contained in Gσε.

Proof. It follows from the proof of Lemma 1.6 that σ and σε coincide

on ZK∩H(a), hence Hε ⊂ Gσε .

For any z ∈ ZK∩H(a) we have σε ◦ Ad(z) = Ad(σεz) ◦ σε = Ad(z) ◦ σε,
hence Ad(z)(hε) = hε. It shows that Hε is a group with Lie algebra hε.

Since (Gσε)0 is a closed subgroup of G and Hε has finitely many connected

components, Hε is a closed subgroup of G. �

The above lemma shows that G/Hε is a semisimple symmetric space

associated with the symmetric pair (g, hε). We give an important lemma

that will be used later;

Lemma 1.8. For each signature of roots ε,

(i) ZK∩(Gσε )0(a) ⊂ ZK∩(Gσ)0(a)

(ii) ZK∩H(a) = ZK∩Hε(a)

Proof. (i) Let ε be a signature of roots. We put haε = k ∩ hε + p ∩ qε

and let (Ha
ε )0 be the analytic subgroups of G corresponding to haε . If ε =

(1, · · · , 1), then we drop ε in our notation and write ha, Ha
0 etc. Then

(haε , h
a
ε ∩ k) is a Riemannian symmetric pair and a is a maximal abelian

subspace of haε ∩ p. The groups K ∩ (Gσε)0 and K ∩ (Ha
ε )0 are maximal

compact subgroups of (Gσε)0 and (Ha
ε )0 respectively, thus K ∩ (Gσε)0 and
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K ∩ (Ha
ε )0 are connected. Moreover K ∩ (Gσε)0 and K ∩ (Ha

ε )0 have same

Lie algebra k ∩ hε. Therefore they coincide. It follows from [W, Lemma

1.1.3.8] and its proof that

ZK∩(Gσε )0(a) = ZK∩(Ha
ε )0(a) = (ZK∩(Ha

ε )0(a))0(K ∩ (Ha
ε )0 ∩ exp

√
−1a)

Since (ZK∩(Ha
ε )0(a))0 = (ZK∩Ha

0
(a))0 for each ε, it suffices to prove

(1.2) K ∩ (Ha
ε )0 ∩ exp

√
−1a ⊂ K ∩Ha

0 ∩ exp
√
−1a ,

for each signature of roots ε.

Let (H̃a
ε )C be the simply connected connected Lie group with Lie algebra

(haε)C. Let H̃a
ε and K(H̃a

ε ) be the analytic subgroups of (H̃a
ε )C correspond-

ing to haε and k ∩ hε respectively. By [H, Chapter VII, Theorem 8.5], the

lattice

a
K(H̃a

ε )
= {X ∈ a ; exp

√
−1X ∈ K(H̃a

ε )}

in a is spanned by
2π

√
−1

〈α, α〉 Aα (α ∈ Σ(haε , a)),

where Aα ∈ a is determined by α(X) = B(Aα, X) for all X ∈ a. Here B

denotes the Killing form of haε and Σ(haε , a) is the restricted root system for

the symmetric pair (haε , k ∩ hε). Notice that m+(α, ε) is the multiplicity of

α ∈ Σ considered as an element of Σ(haε , a). By (1.1) and Definition 1.3,

m+(α) ≥ m+(α, ε) for any α ∈ Σ0 and ε(α) = ε(α/2)2 = 1 for α ∈ Σ \ Σ0.

Therefore we have Σ(haε , a) ⊂ Σ(ha, a), hence a
K(H̃a

ε )
⊂ a

K(H̃a)
. By Lemma

1.2, the center of (H̃a
ε )C coincides with that of (H̃a)C and σε coincides with

σ on it, hence (1.2) follows.

Since we have ZK∩Hε(a) = ZK∩(Gσε )0(a)ZK∩H(a) by the definition of

Hε, (ii) follows from (i). �

§2. Construction of compact imbedding

2.1. Parabolic subgroups

We assume that (g, h) is a basic symmetric pair. We define a standard

parabolic subalgebra pσ of g by pσ = Zk(a) + nσ, where nσ =
∑

α∈Σ+ gα.

Let pσ = mσ + aσ + nσ be a Langlands decomposition of pσ (c.f. [OS2,
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Section 8]). Let Pσ denote the parabolic subgroup of G with Lie algebra pσ

and let Pσ = MσAσNσ be the Langlands decomposition corresponding to

pσ = mσ +aσ +nσ. Let N−
σ be the analytic subgroup of G corresponding to

n−σ = θ(nσ). If (g, h) is a Riemannian symmetric pair, then pσ is a minimal

parabolic subalgebra of g.

Definition 2.1. A mapping ε : Σ → {−1, 0, 1} is called an extended

signature of roots when it satisfies the condition:

(2.1) ε(α) =
l∏

i=1

ε(αi)
|mi| for α =

l∑
i=1

miαi ∈ Σ.

Note that any mapping of Ψ = {α1, · · · , αl} to {−1, 0, 1} is uniquely

extended to a mapping of Σ to {−1, 0, 1} which satisfies (2.1). Therefore

we can identify the set of all extended signatures of roots with {−1, 0, 1}l
by ε �→ (ε(α1), . . . , ε(αl)). For an extended signature of roots ε, we define

a signature of roots ε̃ by

(2.2) ε̃(αj) =

{
ε(αj) if ε(αj) 
= 0

1 if ε(αj) = 0.

For an extended signature of roots we define Θε = {α ∈ Ψ ; ε(α) 
= 0},
〈Θε〉 = Σ ∩

∑
α∈Θε

Rα and 〈Θ〉+ = Σ+ ∩ 〈Θ〉. Let WΘε be the subgroup of

W generated by the reflections with respect to the elements of 〈Θε〉. Notice

that 〈Θε〉 become a root system and WΘε is its Weyl group.

We define a parabolic subalgebra pε by

pε = mσ + aσ +
∑

α∈〈Θε〉
g
α +

∑
α∈Σ+\〈Θε〉

g
α

and let pε = mε + aε + nε be the Langlands decomposition of pε such that

aε ⊂ aσ. Let Pε be the parabolic subgroup of G with Lie algebra pε and

let Pε = MεAεNε be the Langlands decomposition of Pε corresponding

to pε = mε + aε + nε. We define subalgebras aε, m(ε) and p(ε) of g by

aε =
∑

αj∈Θε
RHj , m(ε) = mε∩hε̃ = Zhε̃(aε) and p(ε) = m(ε)+aε +nε. We

have a direct sum decomposition aσ = aε + aε.
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Let A, Aε and M(ε)0 be analytic subgroup of G corresponding to a,

aε and m(ε) respectively. We define M(ε) = M(ε)0ZK∩H(a) and P (ε) =

M(ε)AεNε. If ε is a signature of roots, Θε = Ψ, WΘε = W and P (ε) = Hε.

On the other hand, if ε = (0, . . . , 0), Θε = ∅, WΘε = {e} and Pε = Pσ.

Lemma 2.2. M(ε) and P (ε) are closed subgroups of G.

Proof. Since Ad(z)σε̃(X) = σε̃(Ad(z)X) for all z ∈ ZK∩H(a) =

ZK∩Hε̃(a) and X ∈ g, we have Ad(z)(m(ε)) = m(ε) for all z ∈ ZK∩H(a).

Therefore M(ε) is a group. It is closed, because M(ε)0 is a connected

component of Hε̃ ∩Mε and ZK∩H(a) is compact.

Owing to the Langlands decomposition, P (ε) is closed because M(ε) is

closed in Mε. It is easy to see that M(ε) and Aε normalize Nε. Thus P (ε)

is a group. �

2.2. Root systems and Weyl groups

Let

(2.3) Ψ′ = {α ∈ Ψ ; 2α /∈ Σ and m−(α) = 0}

and Σ′ = Σ ∩
∑

α∈Ψ′ Rα. For an extended signature of roots ε, we define

Σ′
ε = {α ∈ Σ′ ; ε(α) = 1} and Σε = {α ∈ 〈Θε〉 ; ε(α) = 1 or m−(α) > 0}.

By [B, Chapter IV, Proposition 23], Σε and Σ′
ε are root systems. Let W ′,

Wε, W
′
ε and W ′

Θε
denote the subgroups of W generated by the reflections

with respect to the roots in Σ′, Σε, Σ′
ε and Σ′ ∩ 〈Θε〉 respectively. We put

W (ε) = {w ∈WΘε ; Σε ∩ wΣ+ = Σε ∩ Σ+}.

Lemma 2.3.

(i) W (ε) = {w ∈ WΘε ; Σε ∩ Φw = ∅}. Here Φw = {α ∈ Σ+ ; w−1α ∈
−Σ+}.

(ii) W (ε) = {w ∈W ′
Θε

; Σ′
ε ∩ wΣ+ = Σ′

ε ∩ Σ+}.
(iii) Let the pair (W ∗

Θε
,W ∗

ε ) be equal to (WΘε ,Wε) or (W ′
Θε
,W ′

ε). Then

every element w ∈W ∗
Θε

can be written in a unique way in the form

w = wεw(ε) (wε ∈W ∗
ε , w(ε) ∈W (ε)).
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Proof. The proof is almost the same as that of [OS1, Lemma 2.5]. So

we omit it. �

Let ε be a signature of roots. Let W (a;Hε) be the set of all elements w

in W such that the representative w̄ of w can be taken from NK∩Hε(a). We

have W (a;Hε) � NK∩Hε(a)/ZK∩Hε(a). We put W (a; (Hε)0) =

NK∩(Hε)0(a)/ZK∩(Hε)0(a). For α ∈ Σ0, let g(α) denote the Lie subalge-

bra of g that is generated by gα and θgα.

Proposition 2.4. Let ε be a signature of roots.

(i) Let α ∈ Σ0. Then haε ∩ g(α) 
= {0} if and only if sα ∈W (a; (Hε)0).

(ii) W (a;Hε) = Wε.

Proof. We use the method of rank one reduction. Let α ∈ Σ0. If

haε ∩ gα 
= {0}, then α can be considered as an element of the restricted

root system Σ(haε , a) of the symmetric pair (haε , k ∩ haε). Thus there exists

Xα ∈ gα ∩ haε such that exp(Xα + θXα) = s̄α (c.f. [H, Chapter VII]).

If haε ∩ gα = {0}, then by [OS2, Remark 7.4], (g(α), g(α) ∩ h) = (so(n+

1, 1), so(n, 1)) for some n. Thus sα /∈W (a; (Hε)0).

Since W (a; (Hε)0) is generated by the reflections sα (α ∈ Σ) such that

sα ∈W (a; (Hε)0), W (a; (Hε)0) is the Weyl group of the root system

Σε = {α ∈ Σ ; (g(α), g(α) ∩ h) 
= (so(n+ 1, 1), so(n, 1)) for any n}.

Thus W (a; (Hε)0) = Wε. Since Hε = (Hε)0ZK∩H(a), we have W (a;Hε) =

Wε. �

By Proposition 2.4, we have W (a;H) = W . Hereafter we fix represen-

tatives w̄ ∈ NK∩H(a) for all w in W .

2.3. Construction of compact imbedding

Let X̃ denote the product manifold G×R
l ×W ′. For s ∈ R define sgn s

to be 1 if s > 0, 0 if s = 0 and −1 if s < 0. For x = (g, t, w) ∈ X̃ we define

an extended signature of roots εx by εx(αj) = sgn tj (j = 1, . . . , l). We have
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Aεx , Wεx , Θεx , Pεx , P (εx) etc., which we write Ax, Wx, Θx, Px, P (x)

etc. for short. For (x, t, w) ∈ X̃ we define a(x) ∈ Ax by

(2.3) a(x) = exp(−1
2

∑
tj �=0 log |tj |Hj).

Definition 2.5. We say that two elements x = (g, t, w) and x′ =

(g′, t′, w′) of X̃ are equivalent if and only if the following conditions hold.

(i) εx(w
−1α) = εx′(w′−1α) for any α ∈ Σ.

(ii) w−1w′ ∈W (x).

(iii) ga(x)P (x)w̄−1 = g′a(x′)P (x′)w̄′−1.

The condition (i) implies wΘx = w′Θx′ , wΣ′
x = w′Σ′

x′ , and wW ′
Θx
w−1 =

w′W ′
Θx′
w′−1. Therefore, under the condition (i), the condition (ii) is equiv-

alent to

w−1w′ ∈W ′
Θx

= W ′
Θx′

and w(Σ′
x ∩ Σ+) = w′(Σ′

x′ ∩ Σ+).

Therefore this is in fact an equivalent relation, which we write x ∼ x′.
Assume that x, x′ ∈ X̃ satisfy the conditions (i) and (ii). The Lie algebra

p(x) = p(εx) equals

Zh(a) +
∑

αj∈Ψ\Θx

RHj +
∑
α∈Σ

{X + εx(α)σ(X) ; X ∈ g
α},

where Zh(a) is a centralizer of a in h. Since w̄′−1w̄ ∈ H, it is easy to

see that Ad(w̄′−1w̄)p(x) = p(x′). Moreover since w̄′−1w̄ZK∩H(a)w̄−1w̄′ =

ZK∩H(a), we have w̄P (x)w̄−1 = w̄′P (x′)w̄′−1. Therefore the condition (iii)

is equivalent to

ga(x)P (x) = g′a(x′)w̄′−1w̄P (x) in G/P (x).

Therefore the equivalent relation is compatible with an action of G on X̃

given by g′(g, t, w) = (g′g, t, w) (g′ ∈ G).

Let X denote the topological space X̃/ ∼ and let π : X̃ → X be the

projection. The space X inherits from X̃ a continuous action of G, given by

gπ(x) = π(gx).

We state the main theorem of this paper:



562 Nobukazu Shimeno

Theorem 2.6.

(i) X is a compact connected real analytic manifold without boundary.

(ii) The action of G on X is analytic and the G-orbit structure is normal

crossing type in the sense of [O1, Remark 6].

(iii) For a point x in X̃, the orbit Gπ(x) is isomorphic to G/P (x) and

X has the orbital decomposition

X =
⊔

ε∈{−1,0,1}l
w∈W ′

ε

Gπ(e, ε, w).

(iv) There are |W ′| orbits which are isomorphic to G/H (also to

G/P ((e, 0, 1))). For a signature of roots ε and w ∈W ′
ε, the number

of compact orbits in X that is contained in the closure of the open

orbit Gπ(e, ε, w) � G/Hε equals |W (ε)|.

Remark 2.7.

(i) If (g, h) is a Riemannian symmetric pair, then the space X was

constructed in [OS1, Section 2] and the above theorem was proved

there ([OS1, Theorem 2.6]).

(ii) In [O2, Section 1] Oshima studies a realization of semisimple sym-

metric spaces. Let X be a semisimple symmetric space and let X
′

denote the compact real analytic manifold that is constructed in

[O2]. All open orbits in X
′ are isomorphic to X. The construction

of X is similar to that of X
′. The difference is that a(x) is defined

by exp (−
∑

t log |tj |Hj) in [O2] in place of (2.3).

Example 2.8. For the R-, C- and H-hyperbolic spaces, the space X is

constructed by Sekiguchi [Se, Section 3]. For example, consider the case

of the real hyperbolic space. Let G = SO0(p, q) and H = SO0(p, q −
1) (p ≥ q ≥ 1). We take K = SO(p) × SO(q) and a = RY where Y =

E1,p+q + Ep+q,1, then a is a maximal abelian subspace in p ∩ q. We have

Σ = {±α} where α(Y ) = 1 with signature (m+(α),m−(α)) = (p−1, q−1).

Therefore the rank one symmetric space X = G/H is basic. The space X

has the orbital decomposition X = X+ ∪ X0 ∪ X−, where X+ � X and

X− � SO0(p, q)/SO0(p− 1, q).
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§3. Proof of Theorem 2.6

In this section we prove Theorem 2.6. The proof goes in a similar way

as the proof of [OS1, Theorem 2.7]. We will give an outline of the proof

here.

Let ap be a maximal abelian subspace of p containing a. Let Σ(ap) be

the restricted root system of (g, ap). Let g(σ) be the reductive Lie algebra

generated by

{g(ap;λ) ; λ ∈ Σ(ap) with λ|a = 0},
where g(ap;λ) denotes the root space for λ ∈ Σ(ap). Put

m(σ) = {X ∈ mσ ; [X,Y ] = 0 for all Y ∈ g(σ)}.

Let G(σ) and M(σ)0 denote the analytic subgroups of G corresponding to

g(σ) and m(σ) respectively and put

M(σ) = M(σ)0(K ∩ exp
√
−1ap).

By [O2, Lemma 1.4] we may assume that the representative w̄ of w ∈ W

in NK(a) normalize G(σ) and M(σ) for all w ∈W .

We fix a basis {X1, · · · , XL} so thatXi ∈ gα(i) for some α(i) ∈ Σ+, where

L = dim nσ. We fix an basis {Z1, · · · , ZL′} of mσ so that {Z1, · · · , ZL′′}
is a basis of m(σ) and {ZL′′+1, · · · , ZL′} is a basis of g(σ), where L′ =

dimmσ and L′′ = dimm(σ). Moreover we put l′′ = dim aσ and choose

Hl+1, · · · , Hl′′ ∈ aσ ∩ h so that {H1, · · · , Hl, Hl+1, · · · , Hl′′} is a basis of aσ.

We put X−i = σ(Xi). Then {X−1, · · · , X−L} is a basis of n−σ and

{X1, · · · , XL, X−1, · · · , X−L, Z1, · · · , ZL′ , H1, · · · , Hl′′}

forms a basis of g.

Lemma 3.1. Fix an element g of G and consider the map

π̃g : N−
σ ×M(σ) ×Aε → G/P (ε)

defined by π̃g(n,m, a) = gnmaP (ε).

(i) The map π̃g induces an analytic diffeomorphism of N−
σ ×

M(σ)/(M(σ) ∩H) ×Aε onto an open subset of G/P (ε).
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(ii) For an element Y in g let Yε be the vector field on G/P (ε) corre-

sponding to the 1-parameter group which is defined by the action

exp(tY ) (t ∈ R) on G/P (ε). For p = (n,m, a) ∈ N−
σ ×M(σ) ×Aε,

we have

(Yε)π̃(p) = dπ̃p

((
L∑
i=1

(ε(αi)c
+
i (nm)a−2αi + c−i (nm))Ad(m)X−i

+
L′′∑
j=1

c0j (nm)Zj +
l∑

k=1

ck(nm)Hk


p

.
Here X−i, Zj and Hk are identified with left invariant vector fields

on N−
σ , M(σ) and Aε respectively. Moreover the analytic functions

c+i , c
−
i , c

0
j and ck on G are defined by

Ad(g)−1Y =
L∑
i=1

(c+i (g)Xi + c−i (g)X−i) +
L′′∑
j=1

c0j (g)Zj +
l∑

k=1

ck(g)Hk

for g ∈ G.

Proof. Notice that σ = σε on M(σ). We have

M(σ) ∩H ⊂ ZK∩H(a) = ZK∩Hε(a) ⊂ Hε.

Thus M(σ) ∩H ⊂M(σ) ∩Hε. The inclusion M(σ) ∩Hε ⊂M(σ) ∩H can

be proved in the same way. Therefore we have M(σ) ∩ H = M(σ) ∩ Hε.

Now (i) follows from [O2, Lemma 1.6].

The proof of (ii) can be done in the same way as that of [O2, Lemma

1.6 (ii)], where the statement is proved when ε does not take the value −1.

So we omit it. �

For g ∈ G and w ∈W ′, we define the set Uw
g by

Uw
g = π((gN−

σ ×M(σ)) × R
l × {w}).



Semisimple Symmetric Spaces 565

Then Lemma 3.1 shows that the map

φwg : N−
σ ×M(σ)/(M(σ) ∩H) × R

l → Uw
g ⊂ X

defined by (n,m, t) �→ π((gnm̄, t, w)) is bijective. We put U = N−
σ ×

M(σ)/(M(σ) ∩H) × R
l.

Lemma 3.2. Fix g, g′ ∈ G and w,w′ ∈W ′.

(i) For an element Y of g the local one parameter group of transforma-

tion (φwg )−1 ◦ exp(tY ) ◦ φwg (t ∈ R) defines an analytic vector field

on U .

(ii) The map (φw
′

g′ )
−1 ◦φwg of (φwg )−1(Uw

g ∩Uw′
g′ ) onto (φw

′
g′ )

−1(Uw
g ∩Uw′

g′ )

defines an analytic diffeomorphism between these open subsets of R
l.

(iii) φwg is a homeomorphism onto an open subset Uw
g of X.

Proof. To prove (i), we may assume that w = e. By Lemma 3.1,

Y ∈ g determines an analytic vector field on N−
σ ×M(σ)/(M(σ)∩H)×R

l
ε,

becauseHk determines the vector field −2tk
∂
∂tk

on R
l
ε by the correspondence

t �→ a(t). Here R
l
ε denotes the set {t ∈ R

l ; tj = 0 if ε(αj) = 0}. They

piece together and define an analytic vector field on U .

We can prove (ii) and (iii) in the same way as the proof of [O2, Lemma

1.9] and [OS1, Lemma 2.8]. So we omit it. �

We put V = {t ∈ R
l ; tα < 1 for all α ∈ Σ+}. Since (gkm, t, w) ∼

(gk, t, w) for any g ∈ G, k ∈ K, m ∈ ZK∩H(a), t ∈ R
l and w ∈W ′, we can

define the map

ψw
g : K/ZK∩H(a) × V → X

by (kZK∩H(a), t) �→ π((gk, t, w)).

Lemma 3.3. For any g, g′ ∈ G and w ∈W ′, the map

(φw
′

g′ )
−1 ◦ ψw

g : (ψw
g )−1(Imψw

g ∩ Uw′
g′ ) �→ (φw

′
g′ )

−1(Imψw
g ∩ Uw′

g′ )

is an analytic diffeomorphism between the open subsets of K/ZK∩H(a)× V
and U .
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Proof. We fix an arbitrary point x in (ψw
g )−1(Imψw

g ∩ Uw′
g′ ). We can

prove in the same way as the proof of [OS1, Lemma 2.9] that the differential

of the map (φw
′

g′ )
−1 ◦ ψw

g at x is bijective, hence the map (φw
′

g′ )
−1 ◦ ψw

g is

an analytic local isomorphism between open subsets. The injectivity of the

map also can be proved in the same way as the proof of [OS1, Lemma 2.9]

by using the Cartan decomposition [Sc, Proposition 7.1.3]. So we do not

give the proof in detail here. �

Proof of Theorem 2.6. It remains to prove that X is connected,

compact and Hausdorff. The proof can be done in the same way as the

proof of [OS1, Theorem 2.7] by using Lemma 2.3, Lemma 3.2, Lemma 3.3

and the Cartan decomposition [Sc, Proposition 7.1.3]. So we omit it. �

The following are easy consequences of Theorem 2.6 and Lemma 3.3.

Corollary 3.4. For a signature ε of roots and an element w of W ′,
we put X

w
ε = π(G × {ε(α1), · · · , ε(αl)} × {w}) and Bw = π(G × {0} ×

{w}). Then we have natural identifications G/Hε � X
w
ε and G/Pσ � Bw.

Moreover Bw is contained in the closure of X
1
ε if and only if w ∈W (ε).

Corollary 3.5. The map

ψw
g : K/ZK∩H(a) × V � (kZK∩H(a), t) �→ π((gk, t, w)) ∈ X

is an analytic diffeomorphism and
⋃

g∈G,w∈W ′
Imψw

g is an open covering of

X.

§4. Invariant differential operators

In this section we shall show that the system of invariant differential

equations on G/Hε extends analytically on X and has regular singularities

in the weak sense along the boundaries. For the notion of the systems of

differential equations with regular singularities we refer [KO], [OS1] and

[Sc]. First we recall after [O2] and [Sc] on the structure of the algebra of

invariant differential operators on G/Hε.

For a real or complex Lie subalgebra u of gC let U(u) denote the universal

enveloping algebra of u′, where u′ is the complex subalgebra of gC generated

by u.
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Retain the notation of Section 1. Let j be a maximal abelian subspace

of q containing a. Then by the definition of σε, j is also a maximal abelian

subspace of qε. Let Σ(j) denote the root system for the pair (gC, jC). Let

Σ(j)+ denote the set of positive roots with respect to a compatible orders

for Σ(j) and Σ. Put ρ = 1
2

∑
α∈Σ(j)+ α. Let nC be the nilpotent subalgebra

of gC corresponding to Σ(jC)+ and put n
−
C

= σ(nC).

From the Iwasawa decomposition gC = n
−
C
⊕ jC⊕(hε)C and the Poincaré-

Birkoff-Witt theorem it follows that

U(g) = (n−
C
U(g) + U(g)(hε)C) ⊕ U(j).

Let δε be the projection of U(g) to U(j) with respect to this decomposition.

Let η be the algebra automorphism of U(j) generated by η(Y ) = Y − ρ(Y )

for Y ∈ j and put γ̃ε = η ◦ δε. Then the map γ̃ε induces an isomorphism:

γε : U(g)hε/(U(g)hε ∩ U(g)(hε)C)
∼−→ U(j)W (j),

where U(g)hε is the set of hε-invariant elements in U(hε) and U(j)W (j) is the

set of the elements in U(j) that are invariant under the Weyl group W (j)

of Σ(j).

Let D(G/Hε) denote the algebra of invariant differential operators on

G/Hε. Since D(G/Hε) � U(g)hε/(U(g)hε ∩ U(g)(hε)C) (c.f. [O2, P 618]),

we have the algebra isomorphism:

(4.1) γε : D(G/Hε)
∼−→ U(j)W (j)

Let w be an element in W ′ and ε be a signature of roots. Put X
w
ε =

Gπ(e, ε, w) and let

ιwε : G/Hε
∼−→ X

w
ε

be the natural isomorphism. Let D(X) denote the algebra of G-invariant

differential operators on X whose coefficients are analytic.

Proposition 4.1.

(i) There exists a surjective algebra isomorphism

γ : D(X) → U(j)W (j)
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that is given by γ(D) = γε ◦ (ιwε )−1(D|Xw
ε ), which does not depend

on the choice of w ∈W ′ and ε ∈ {±1}l.
(ii) The system of invariant differential equations

Mλ : (D − γ(D)(λ))u = 0 for all D ∈ D(X)

has regular singularities in the weak sense along the set of walls

{π(G{(e, t, w) ; tj = 0} ; j = 1, . . . , l} with the edge π(G(e, 0, w))

for each w ∈ W ′. The set of characteristic exponents of Mλ is

{swλ = (swλ,i)1≤i≤l}, where swλ,i = 1
2(ρ− λ)(Hi).

Proof. The proof can be done in a similar way with the proof of

Proposition 2.26 and Lemma 2.28 in [OS1] (c.f. [O2]). So we omit it. �
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