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INTRODUCTION

We are interested in Whittaker functions belonging to the standard representa-
tions of the real symplectic group of G = Sp(2,R). At the present time, the explicit
expressions of Whittaker functions with minimal K. -types of G = Sp(2,R) are ob-
tained by Ishii [I] for the principal series with respect to minimal parabolic subgroup
(the Ppin-series) ; Miyazaki-Oda [MO1] for the generalized principal series represen-
tations induced from the Jacobi maximal parabolic subgroup (the" Pj-series); and
Oda [O1] for the discrete series representations. Among standard series of repre-
sentations, only the case of the generalized principal series representations induced
from the Siegel maximal parabolic subgroup (the Ps-series) have not yet handled.

Our motivation here is to have explicit formulas lof Whittaker functions for Ps-
series with peripheral K-types. Our strategy is, one way to have explicit formulas of
the system of partial differential equations for the radial part of Whittaker functions
belonging to the Ps-series, and the other way to have more formulas for the principal
series Whittaker functions. The reason of this strategy is because we want to
derive the solution, i.e., the Whittaker functions belonging to the Ps-series from
the Whittaker functions belonging to the principal series, utilizing the embedding

of the Pg-series to Py;,-series.

We deduce explicit formulas for Whittaker functions with “non-minimal” small
K-types in the Ppin-series from the fundamental formuias by Ishii in [I]. This is the
first main result of this paper (Chapter I, Theorem 8.5 and Theorem 8.6).

To give explicit formulas of Whittaker functions for all the scalar K-types, we
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4

use shift operators which move K-type of Whittaker functions from Ishii’s formula
to general scalar K-types. The shift operators, the so called Maass shift operators,
were firstly introduced by Maass in the context of global theory of automorphic
forms in [M1]. Also in a different context, G. J. Heckman, E. M. Opdam ([HO],
[OP]) and T. Koornwinder ([K]) discussed similar operator. In our situation, they
are iterated composites of t'he gradient operators and the injections or pro jections in

the Clebsh-Gordan decomposition (i.e., composites of the Dirac-Schmid operators).

The second main result of this paper is to find explicit formulas of the holo-
nomic system for the radial part of the vector-valued Whittaker function of the
Ps-principal series with peripheral K-types (Chapter II, Theorem 3.1). Here the
peripheral K-types of a Ps-principal series II are the K-type whose dimensions
are smallest. We exp>ect the solution space of the obtained holonomic system has

dimension eight, i.e., the order of the Weyl group.

In Chapter III, for a special Ps-series induce from the diécrete series Dy of
SL*(2,R), we give explicit formulas of power series Whittaker functions with T(1,~1)
K-type on G (i.e., the secondary Whittaker functions). Eight linearly independ
solutions are obtained utilizing various embedding of the Ps-series into the Pm{n-

series.

Let us explain the contents of this paper. In Chapter I, section 1 we recall the
structure of G = Sp(2, R), its standard subgroups and their Lie algebras. In section
3, we define the principal series representation. In section 5, we recall the definition
of Whittaker functions satisfying the system of two differential equations which is
expressed in section 7.

In section 8, applying the shift operators introduced here, we show power series
expansions of eight Whittaker functions in Theorems 8.5 and 8.6.

In Chapter II, we show the holonomic system for Ps-principal series Whittaker
function (Theorem 3.1). In section 1, we recall the basic facts on the Ps-principal

series, and in section 2, we investigate the (g, K')-module structure of this repre-
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sentation around the peripheral K-types. Passing to the Whittaker model, we get
a holonomip system for the radial part of the’Whittaker functions with peripheral
K-types (Theorem 3.1).

In Chapter III, we consider one example. Here the Pg-series is induced from the
discrete series Dy of SL*(2,R). We consider eight different embedding II < 7 of
the Ps-series into Ppin-series (section 1).

In section 2, starting from a Whittaker function with sccalar K-type T, be-
longing to 7, we shift the K-type from 7y to a constituent in II, by application
of the Whittaker realization of some elements in S(p+) — U(gc). Then we have
four solutions either in Theorem 2.1 or in Theorem 2.5, which satisfy the holonomic
system of Theorem 3.1 of Chapter II.

The important object for application to automorphic forms is the Whittaker
function with moderate growth, which should be a linear combinétion of (eight
power series) Whittaker functions discussed here. If this part is developed in the
near future, then we caﬁ hope to have applications for automorphic forms, say, for

Eisenstein cohomology classes in the mixed Hodge structures discussed by Oda and

Schwermer [OS].
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CHAPTER I

PRINCIPAL SERIES WHITTAKER FUNCTIONS ON
THE REAL SYMPLECTIC GROUP OF RANK 2

I-1. Lie groups and Lie algebras

Let G be the real symplectic group of degree two

¢ 7 (0 1,
gJ2g_J2'—(_12 02>}'

For a Cartan involution §(g) =tg~!, g € G of G, its fixed part

(1.1) G =Sp(2,R) ={g € SL(4,R)

(12) K={geciow=a-{( 5 §)ec}

is a maximal compact subgroup of G.

Let g be the Lie algebra of G which is given by

(1.3) g=5p(2,R) = {X € My(R) | JX +XJ =0}

If we denote the differential of 6 again by 6, then we have §(X) = —*X for X € g.

Hence the subspaces

(2.4) ¥3={XEg|9(X)=X}={(g _1_3A>

tA=A''B= B;A, B e Mg(R)} ,
and

(1.5) - {X= (_AB i) I AB EVMQ(R);tAz—A,tB=B}

give the Cartan decomposition g = ¢ @ p. The linear map « is

(1.6) u(2)9A+\/-_13l—><_AB i)eé
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which defines an isomorphism of Lie algebras from € to the unitary Lie algebra
(1.7) u(2) = {C € Mx(C) | *C + C = 0}.
We recall a basis of u(2)¢ :

(18)e=10 e=00 e=01 6000
. 11 00722 01712 00721h10‘

‘For1<1i,j <4, let E;; be the matrix unit with its (¢, j)-entry 1 and remaining
entries 0. Moreover we put H; = E; ; — Ea; 21, We take a = RH; @ RH,. Then

a is a maximal abelian subalgebra of p.

Let
(1.9)
1 ng 1 niy nNg
N = ¢ n(ng,n1,ng,n3) = L N . 1 nl2 13 n; € R
’ —ng 1 ‘ 1

be the maximal unipotent radical of G. Fix an unitary character n of N, for

n(nOa ni, n2, TL3) € N’
(1.10) n(n(no,n1,n2,n3)) = exp(2mv/—1(cong + csns))

with some co, c3 € R. In this paper we assume that 7 is non-degenerate, i.e.,
cocs # 0. Then, hereafter, we may assume that ¢y = c3 = 1 without loss of

generality. Let
(1.11) A= {a(al,az) = diag(a1,az,a7t,a3) | a; € R>0}

be a maximal split torus of G. We have the Iwasawa decomposition G = NAK of
G, where A and N are the analytic subgroup with Lie algebra a and n, respectively.
Moreover, we have an Iwasawa decomposition g=n® a @ £ of g.

Let M = Zk(A) be the centralizer of A in K.
(112) - M= {dia‘g(el) €2, 5‘1)‘52) | €1,€2 € {:l:l}} .

Then the minimal parabolic subgroup P = NAM of G has the Langlands decom-

position.



I-2. Root system of (g,0)
Let {e1 = (1,0),e2 = (0,1)} be a standard basis of the 2-dimensional Euclidean
plane R2. The root system of (g, a) is given by ¥ = {£2e1,+2ey, te1, +ey}. We

denote a positive root by W = {2e1, 2e3, 1 + €2, €1 — ez} and generators E, of gq:
' (02 enn _ (02 e2+ten
(21) E261 - (02 02 > B} E61+62 - (02 02 )
_ 02 €22 | _(e2 0O
Bae, = <02 02 > » Ber—ea = ( 02 —e12 )’
Here e; ; (4,7 > 2) are the matrix units in Mz (C).

I-3) Principal series representations

We put o to be an irreducible unitary representation of M which is determined
by o(y1) and o(y2) with y; = diag(—1,1,—1,1) and v, = diag(1,—1,1,—1). We
define o; € M (1=0, 1, 2, 3) such that

(3.1) oo(711) = oo(r2) =1, o1(m) = o1(y2) = -1,
o2(m) = Loa(12) = =1, o3(m) = —1,03(12) = 1.

For v = (v1,13) € C?, let e” be a quasi-character of A, which obtained from a linear
form v € Homg(a, C). We suppose the condition that vy, v, and v; £ v, are not
integers. |

The representation 1y ® €”7? ® o of P is defined as (1y ® e’7? ® o)(I) =
lN(n)e”"'P(a)a(m‘) yforl=n-a-m,neN,ac Aand m e M. Here p=(2,1) is

the half-sum of the positive roots.

DEeFINITION 3.1. We call an induced representation
(3.2) 7=Ind$(1y ® e¥? ® o)

of G from the minimal parabolic subgroup P = NAM the principal series represen-
tation of G. i.e. m is the right regular representation of G on the space H, , which

is the completion of

53 {f:G—><C smooth | (7am) E’e;:’f’)g(ggf(gx}



with respect to the norm

(3.4) 112 = /K (k) 2.

If o = 01 or 0 = 03, then we call ™ an even principal series representation of

G. If 0 = 03 or 0 = 04, then we call ™ an odd principal series representation of

G. O

The representation space of this parabolic induction is identified with a closed

subspace of L?(K)
(35) L%MﬁK,a[MmK) = {f < Lz(K) l f(mk) = O'(m)f(k)’m € Ma ke K}

I-4. The peripheral K-types of the principal series repreéentation

Let (7,V;) be a K-type of m. According to the theory of highest weight, the
irreducible representations of K are parameterized by the set of dominant weights
Lt ={x=(AX) €EZDZ| A\ > \2}. We denote by 74, = S~ *2 ® det?® the
representation corresponding to A = (A1, A2). The dimension of the representation

space V), associated to A isd = A1 — Ao + 1.

LEMMA 4.1 ([MO1], P.9, PROPOSITION 3.2). (a)(i) If o = oo, then 7, (I is
even) occurs in T with multiplicity one and the minimal K-type of m is T(p,0)-
(i4) If o = o1, then 71y (1 is odd) occurs in m with multiplicity one and the minimal
K-type of m are 7(1,1) and T(_;7_1).
(b)} If 0 = 02 or o = 03, then 1141, occurs in m with multiplicity one and the

minimal K-type of m are 710y and 7o, —1). O

I-5. Whittaker functions
For the pair (N,n) defined above. Let C“-Indﬁ (n) be the representation of G
induced from 7 as C*°-function. Then the representation space of C*-Ind§ (n) is

the space

6.1 GPW\G) ={f € C%(G) | f(rg) =n(r)f(g),(r,g) € N x G}
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and
(5.2) Co™d(N\G) = {f € C,°(N\G) | f is moderate growth}.

By the right translation, Cp°(N\G) is a smooth G-module and we denote by the
same symbol its underlying (gc, K)-module (gc is the complexification of g). For

any finite-dimensional K-module (7, V;), we put

(53)  CZ(N\G/K)

={p: G — V,,C® | p(rgk) = n(r)r(k~Y)e(g), (r,9,k) € N x G x K}.

Then the function ¢ € C3% (N\G/K) is determined by its restriction ¢|4 to A,

because of the Iwasawa decomposition G = NAK of G.

If we denote by (7*,V,«) the contragradient representation of (7,V;) and (-,-)

the canonical paring on Vi« x V.. Then the relation

(5.4) | {o)(g) = (" eulg)), v eV g€G,

defines an isomorphism between ¢ € Homg (7*, C*-Ind§(n)) and ¢, € C5%(N\G
/K). |
For an irreducible admissible representation (m, H,) of G, we choose a K homo-

morphism i € Homg (7%, 7|k ). Let
(5.5) Inx = Hom(g, gy (7, C*°-Ind§ (1))

be the intertwining space between (gc, K)-modules m and C*™-Ind$/(n) consisting
of all K-finite vectors. For each T Zy,x, we define an element T; € C2° (N\G/K)
by

(5.6) T(i(v*)(9) = (v, Ti(g)), v* € Vem,g€G.
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DEFINITION 5.1. We call the subspace

(5.7) Wh(rm,n,7) = U {T; € Cor(N\G/K) | T €L}

i€Homg (7% ,m| k)

of C2%.(N\G/K) the space of Whittaker functions with respect to (m,n,7). More-
over we -denote by IBW the space of Z, consisting of the intertwining operators

whose images in C°(N\G) are moderate growth functions and define the subspace

(5.8) Wh(rm,n, 7)™°d = U {T; € Wh(7r, n,7) | T eI}

i€Homg (7%,7| k)

of Wh(m,n, 7). An element in Wh(m,n, 7)™ is called Whittaker function of mod-

erate growth. [

Because G has a Iwasawa decomposition G = NAK, ¢, € Wh(w, n,T) is deter-

mined by its restriction ¢,|4 to A. We call ,the|4 A-radial part of ¢, |a.

I-6. The standard basis

Each irreducible representation, or simple module 7 of ¢¢ = gl(2,C) has a
monomial basis parameterized by Gelfand-Tsetlin patterns M = (’\1 o )‘2) € G(N),
A = (A1, A2), consisting of 3 integer satisfying the inequalities_ A2 < a < A;. Then

the following is well-known ([O1], p. 267).

PROPOSITION 6.1. There exists a basis {f(M)}mecn in T of tc such that

6.1)  enf(M)=af(M), exnf(M) = (A1 + A2 — a) f(M),
ernf (M) = (A1 — @) f(My1),  enf(M) = (a—X)f(M-1).
a+1

Here My = (%, ) and Moy = (%, %) for M= (M ) eG(y). D

For all M € G*(A\) = {M € G(\) | f(M) € V{[o]}, where Vi¥[o] is the o-
isotypic component of Vy, we define a K-homomorphism Sy (M ) from V), to the
representation space H, of G such that
6.2) Va = Cf(M)* ®c Va — D, (VXlo]) ®c Va = Hx.

Then {Sx(M)}rrec+(n) become a basis of the space Homg (Vy, Hr). We call the

basis the induced basis from the monomial basis.
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L*(K) models of the principal series

Now we define natural sets of orthogonal basis in the irreducible constituents
in the K-finite vectors on H, , < L?(K). The point here is that we can specify
canonical basis in irreducible K-modules in each K-isotypic component in L%(K).

Firstly recall the canonical isomorphism

Hyo =L}y (K)  fo flx
with
L%M,a)(K) = {s € L*(K) | s(mk) = o(m)s(k)for a.e. m € M,k € K}.

We define the tautological representation

S:z=K> <_AB i) — S(z) = (zigg ;zgg) =A++V/=-1B e U(2).

Let S*(S(x)) be a square matrix of degree k + 1 associated with S(z) which is

defined as follows. For two independ variables U and V, define two linear forms
U = $11U + 892V and V' = 521U + 522V,

or equivalently by (U’,V’) = (U,V) - S(z). Then by using homogeneous forms
{(U")*=(V")"}o<i<k of degree k, we define a (k + 1) x (k + 1) matrix Sk(S(x)) by

((U/)k’ T (U/)k_i(vl)a R (V,)k) = (Uk’ T 7Uk_ia Vi’ T avk) ' Sk(S(CC))

The k + 1 entries of each row vector of S*(S(z)) make a canonical basis of a
simple K-module 7(; 0y in L?(K) with highest weight (k, 0).
elementary functions

Then we define a k 4+ 1 column vectors {sgk)}ogsk of k+ 1 elementary functions

(63) (587,87, s) = *Sym*(S(a)),
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And also we put A = det S(x). We set for even k,

k k) (K k k k) (k
(6.4) Sf) k]—(s(()),sé), s,(c)) and Sfl’):,)’m,k_l] (sg),sé), s,(ck)1

Moreover A(z) denotes the determinant det S(z) of the matrix S(z) as a func-
tion on L?(K). Then for each pair of integers m,n, the entries of the vector
A(x)msgn) (z) form a set of canonical basis of T(;,n,m) for each i (0 <4 < n).

Let (A(z)™s?(z)) be the irreducible K-module in L?(K) generated by the entries

of A(x)msgn) (z). Then for o = g, the T(;s4n,m)-isotypic component in H is given

by
@?_/(2)( (x)™ szz)(a:)) if m +n and m are even,
@(n 1)/2( Az)™ sg;) 1(z)) if m+n and m are odd.

For o = 01, the 7(y,4n)-isotypic component in H.
@(n 1)/2(A(x)msg;) 1(z)), if m+n and m are even,
{ @:Lz/g( (x)mszz)(x)) if m +n and m are odd.
 I-7. System of partial differential equations for Whittaker functidns
From now on, we consider only those principal series with o € M such that
o =0y or‘a = 0. Let us fix a Whittaker functional T"in Z, . Let f&D) e H, be an
K -finite element, which corresponds to Al in L2(K), via the model H, = L%M,U) (K)
with even [ for o = 0¢, and odd [ for o = 7.

Then we define the function ¢ on A by
30 (a) = a?(y) - ¢ (a) = T(ED) 4.

Here T' € I, be a Whittaker functional.” Moreover we use the coordinate y =
(1,y2) = (a1/a3,03), and the symbol 9; = y;(9/y,) i = 1, 2 and a* (y) = y}y3’* =
a3ay. We give two partial differential equations characterizing the Whittaker func-
tions with one or two dimensional K-type, respectively, which were obtained by

Miyazaki and Oda [MO1], p.28, Theorem 10.1.

PROPOSITION 7.1 ([MO1], .28, THEOREM 10.1). Let ®U(y) be an A-radial

part of the even pm’hcipal series Whittaker function with 1-dimensional K-type. If
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we put 8V (y) = a? (y) WD (y), then D (y) satisfy

(7.1) {26% + 403 — 40,0, — 2(2my1)? — 4(2mys)? — 41(2773,2)}90(“)(;,)

= (1} + 1)V (y)
and

(7.2) {(al Fl4+1)(0 —1—1)(By — 205+ 1+ 1) (8, — 205 — 1 — 1)
4 @2my)t =227y 2 {(O1 + 1) (01 — 202 + 1) — (1 + 2)}
+4l(2my1)? (2my2) — 4(2my2) (2my2 + DOL+1+1)(01—-1-1) go(l’l)(y)

= {1/% -+ 1)2}{1/% -+ 1)2}g0(l’l‘) (y). O

We remark that the Proposition 7.1 is essentially equivalent to what is obtained
by computing the action of the elements of the center Z(g) of the universal embe-
loping algebra U(g) of g, which are the generators of degree 2 and 4. . This system

is a holonomic system of rank 8.

I-8. Formal power series solutions and the shift operator

In this section we consider a formal power series solution

(8.1) Py @) = > all) @myy ) (2myy)

m,n>0

around (y1,y2) = (0,0). The holonomic system of partial differential equations
has regular singularities along two divisors y; = 0 and y; = 0 which are of simple

normal crossing at (y1,y2) = (0,0).

LEMMA 8.1. The characteristic indices (11, T2) are elements of the set

(82) A= {w(yl, (Vl + 1/2)/2) | weW=G, x (Z/2Z)2}

={(e1v1, (e111 + €212)/2), (e2v2, (111 + e212)/2) | e1,62 € {£1}},

where W is the Weyl group. U
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Proor. This is given by Ishii ([I], p. 9) O

We have the following recurrence relation which the coefficients Qmn = a,g,l%
satisfy
(8.3)

2{2m2—2mn+n2+2(ﬁ —T72)m—+ (272 —Tl)n}am,n—2am,n_2—2lam,n_1 —m—1,n =0,

and

(8.4)
[Cm+rm+l+1D)2m+7 —1—-1)2m—2n—2m — 7 +1+1)

x(@2m—2n-2m -1 —1—-1)— {7 — 1+ 1)*}{ (22 —7)?> — (1 +1)*}amn
+ am—2.pn — 2{(2m + 7 —|— DN@m—2n— 2 —7)+1)—1(l+ 2))}am.1,n

+dlam—1n-1 = 4@m+7 +1+1)2m =71 — 1 = 1) (amn—2 + lamn_1) =0.

The solutions of the above recurrence relations of a, , are obtained as follows.
TIwasawa decomposition

For z =tz € M, (C), we put

(8.‘5) | px(z) = (i\/gf—_fa: i§m> '

We define p the’ image of p4 respectively. Both of p_ is stable under the adjoint
action of K, and the action Adp . of the element ((1 ++/=1)/v/2) 15 in the center
of K defines a complex structure.

Put X414 = pi(ey) for i =1, 2 and X112 = pi((e12 + €21)/2), then we have
pr =CX 111 ®CX 1o0DCX 99, and p_ = CX_11 BCX_12®CX_9y. Then Iwasawa

decomposition tells that
(86) X:Eii = 142/ —1E26i + Hi,i+2 + m(eii),

fori=1, 2, and
(8.7)

X-l—,12 = E€1—€2 TV —1E61+62 + 5(621), X—',12 = E€1—62 -V —1E€1+€2 - K(em)'
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shift operators

If we use two matrices of shift operators

Xi11 Xt
8.8) Cy =
( , ) * <X¢12 X:l:22)

then for det(C+) € Sym?2(p+), we have a lemma.

LEMMA 8.2.

Ad,, (k)(detCy) = det(S(k))*? - det Cs.
O

This implies that (det C1)f*Y is a scalar multiple of f(i+2:1+2),
(det C )M = (1 + 1+ 1) (vp + 1 + 1)f1+21+2),

ProorF. This is shown substantially in the proof of theorem 10.1 of [MO1],
utilizing Harish-Chandra hypergeometric functions. The other proof is to compute
the value of det(C+)f(") at the identity e € K utilizing the Iwasawa decomposition

(see Hayata, [H], Proposition 3.15 or [02], Theorems 5.1 and 5.2). O

Passing to the Whittaker realization via T' € Z,, ., we have the following propo-

sition.
PROPOSITION 8.3. The operator detC acts by
- ] i
e (Y)pa(T(detCy)) - a(W)p() (a) = (1 + 1+ 1)(v2 + 1+ T2 (a),
~where pa is the A-radial part. O
Now we have to compute the Whittaker realization T'(detC;.) of

det C+ = {2\/ —1E262H1,3 + H1,3H2,4 + H1,3K,(622) + 2/ —1E2€2m(611)

+ Hy 4k(e11) + k(er)k(eas) — B2 _., — Haa — 2v/—1Ese, — K(ea2) },

which is already rewritten in the normal order U(g) = U(n)U(a)U(¢) with respect

to the Iwasawa decomposition.
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PROPOSITION 8.4. The action of a=*(y)T(det Cy)a”(y) on ¢ = <p£ln)7_ ) s given

by

(8.10) a” ?(y)pa(T(detCy))a’ (y)p

={(01 +1+1)(202 — 1 + 1+ 1) + 2mesya (8 + 1+ 1) + Am?cdyite. O

PROOF. The same calculations were given by [H], p.21, Lemma 6.2. The actions
()

(m1,72)

of Hy3, Hyy €ac on p = ¢ (y) are given by

Hisp=01p,  Haup= (202 —01)p.
The actions of the elements Fe, y¢,, Fe,—ey, Fae, and Fy,, in nc are the following:

Eel—{-ech =0, Eel—ezSO =27y _]-COy190>

Eoe, 0 =0, Eae, 0 = 21/ —1c3yzp.

The actions of elements k(e11) and k(eg2) in Ec are

k(e11)p =lp, and k(ea)p = lp.

Finally we have to consider the a”(y) twist in the unknown functions : ® =

af(y)p. O

THEOREM 8.5. Suppose that v1, Vo and v1 £ v, are not integers. Forl € Z, let

cpg_i 3_2))( ) be the Whittaker function with K-type T(32;) , and a(2l 2D = 1. Then

(l2l)

the coefficients arm, are given as follows.

—j (0,0 l I -1
B9) o= Y weegen (W (05

(4,9)

0<i+5<|l
n—j:even
(2m—|—7’1+1) (—2m—7'1+2n+27'2+1 ) ,
x| 21T +i ,
2 1]—i 2 ] —i—j

with

(00)_ F —n,m+121—|—1 m—%
3 %+1,T2—7+1

)

min!(r — 72 + D (r2 + 1), 22m+71+2n4272 7

X
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Here the generalized hypergeometric series are denoted by

e (@i #
z)_z Di(e); i

b
o (%
’ i>0
with Pochhammer symbol (a); =T'(a+1i)/T(a). O

PROOF. Suppose that ¢ = 0 or o = 01, and vy, v, and v; + v, are not integers.

For | € Z, we consider the formal power series solutions

(L.0) 1 (l l) 2 2m+m; n+7'2
30(7.1,7_2)(:1/) (1/ +l+ 1)(7/2 +l+ 1) z:>0 ( Y1 ) (47ry )

We put for k € Z,

PR () = 470 (y) - pa(T(det C1))Fa? (), (v)

1 l+k I+k 2m+ +
T I D I L > alhet) (2my, )P (dmyy) .
m,n>0

(21,21)

The explicit formulas of ¢ 7_2)(y) and cp(2l+1’2l+l)

(11,72)

(y) for I € Z, can be given
recursively.

In fact, by using the Proposition 8.4, we have the corresponding recurrence

relations among a(l D

(8.11) alf2?) = 2m+ 1 + 14 1)(-2m + 2n + 212 — 7y + 1+ 1)alt?)

+alh L+ 20em 4+ 1+ 1)alh

m—l n m,n—1-*

Now we use induction. If [ = 0, then the formula of Theorem 8.5 for the coefficients

of go( (y) is due to Ishii ([I], p.11, Theorem 2.1). The inductive step I — [ + 2

(T1,72)
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is confirmed, ! is true for recurrence if we check the developed form of (8.11) :

(0,0 [+1 l+1—1 2m+7m +1
Z am—i,n—j i ] '—2_—
(1,5)€z? I4+1—i
y (2n—2m+27'2—7'1—l-1 +i)
2 I+1—i—j

=@m+n+2A+1)02n—2m+2n-n+2+1) Y a0

m—p,n—q
(p,q)€Z?

1\ (1-p 0,0 I\ (1=r\ (2m+7 -1\
<) (77 2 et () (17) (25
(r,s)€Z2 l—r

2n — 2 279 —
x(n m+ 27 Tl+3+r)
2 l—r—s

+@2m+7m+20+1) Z a%0)

m—t,n—1—u
t,u€Z?

— 2 1 2n — 270 — T —
() () (msp) (metmemnntly
u 2 -t 2 l—t—u

(0,0)
m—i,n—j*

This can be checked by comparing both side of the coefficients of a We

can check that the solutions are truly the unique solutions (8.3). O

REMARK. As is well-known, we do not need to check (8.4), because the “Casimir

recurrence” (8.3) determine the possible solution uniquely. But we did check.

THEOREM 8.6. Suppose that 0 = 01, v1, V2 and v £ vs are not integers. For

leZ,let cp(2l+1’2l+1)(y) be the Whittaker function with K-type T(3141,2141) and

(T1,72)

. 1,2141 .
aggl;)l’mﬂ) = 1. Then the coefficients a%fi{ 2 e given as follows.

_9i—i (1,1 l l—1
B12)  e@paw o S g () (170

(4,5)
0<i+5<I
m—i,n—j:even

(2m+7‘1+1) (—2m—7‘1+2n+27'2+1 )
Xl ——— —+1
l—i l—i—j

2 2

and forl <0,

Q@A) Z 22|l|—2i_ja£:_1%’—nl_)j <|§|> (Illj— z)
(4,9) :
0<i+j<|I|
m—'b,n_]zeven
2Im+1+1 2m -7 +2n+2mn+1 )
x (=L 1T - +i ,
2 i 2 i3
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where

_ oyl T 1
JUD =) o p (ThmA g Ay, mm— 5 =g
m,2t m,2t 31472 _7_'_1_+l7-_7'_1+l

2 207127 73 2

| )

X
mIt (1) — T2 + 1) (12 + 1) 22mtritntre’

forn=2t, if n =2t + 1, then we have
WO 0y g (—tmtF i om =Tt
m,2t+1 m,2t+1» 342 2_1 4+ %’ T — %1 + %

1)
X - 2(2m+1 +1)
(1 +1)(272 — 11 + 1)mlt! (11 — T2 + V(12 + 1) 22m+7itntne”

PrOOF. This proof is completely the same as that of Theorem 8.5. If k = 0,
then the results the above theorem are due to Ishii, ([I], p. 11, Theorem 2.2). We

omit details. 0O



21

CHAPTER 1I

THE HOLONOMIC SYSTEM FOR WHITTAKER FUNCTION
OF Ps-PRINCIPAL SERIES REPRESENTATIONS

In this chapter, we discuss the Ps-principal series representation. We calculate
the holonomic system on A, which is satisfied by the radial part of vector-valued
Whittaker functions belonging to the Ps-principal series with peripheral K-types,

i.e. K-types with smallest dimension.

II-1. The generalized principal series representation with respect to
the Siegel parabolic subgroup |
The Siegel maximal parabolic subgroup Ps of G has the Langlands decomposi-

tion, where Ps = NgAsMs. Namely,

N={(% )| T=r= (0 ) emm),

N9 N3
Ag = {diag(a,a,a™",a™!) € G| a € Rso},

A 0
we{(l 2)eo

Before the definition of the Ps-principal series, we recall some basic facts on the

and

As € GL(2,R), det Ag = :I:12} .
Go. We write

representations of Mg = SL*(2,R) and its identity component M§ = SL(2,R) =
' 1 =z
Go =SL(2,R), Ky=S0(2), Ny= {( )

0 1 xER}

Ao = {ag = diag(r,r™") | r € Rso}, Mo = {diag(s,e) | & € {1},

For a character o’ in Mo, a linear form 1 € Homg (ag, C) (ap = Lie(Ay)), the half
sum of the positive root py and the minimal parabolic subgroup Py = NoMgAo,
To = IndIG,g (1n, ® 0’ ® 0T ro)

"Typeset by AMS-TEX
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is a principal series representation of SL(2,R). The Hilbert space of the principal

series representation 7 is defined as

_ ). f(nomoapz) = o’ (mg)e(votro)log(ao) £(z),
Ho = {f $Go—=C ng € No,mg € My, ap € Ag,z € Go and f|g, € L2(K0) )

with the usual right quasi-regular action of Go.

Let Dy (resp D; ) be the holomorphic (resp antiholomorphic) discrete series rep-
resentation of SL(2,R) with Blattner parameter k (resp —k) If we put vy (log(ao)) ::
(k—1)logr and sgn(c’) = (—1)*, then these are injective M-homomorphisms from
Dif to mp, and the quotient o/ (D;f @ Dy) is a finite dimensional representation of
dim k£ — 1.

Now we define the Ps-principal series. Then D; denotes the discrete series
representation Indglﬁ(iQ(fR{’;R ) (Dj) of SL(2,R) = Mg, where representations space Hp,
is the direct sum H p+r ®Hp- of the representations spaces of DF of SL(2,R). Let
e”s be the quasi-character of Ag, which is obtained from a linear form vg € Homg (a,
C). The representation 1y, ® Dy ® erste of Ps is defined as (Dy ® es1°)(l) =
e’s*t?(a)Di(m) ,for l=n-a-m,n € Ns,a € Ag, m € Ms. Here p is the half-sum

of the positive restricted roots.

DEFINITION 1.1. We call an induced representation
IT = Indg_(1ng ® €517 @ Dy,)

of G from Pg the Ps-principal series representation of G. [

The representation space H = Hyy of II is

f(namz) = e¥s*°(a) D (m) f(z),
{f — Hp, ,measurable on G (a € Ag,m € Mg,z € G),fK I f ||Hok dk <oo [

By restriction of f to K, this representation space is naturally identified with a

closed subspace of L?(K; Hp,)

{f : K — Hp,,square-integrable | f(mz) = Dk(m)f(a:), (meMsNK,ze€ K)}.
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This space is the L*-induction of the unitary (Ms N K)-module (Dk|msnk, Hp,,)
to the larger compact group K. Via the natural isomorphism Mg N K = O(2) as a
(MsNK)-module Hp, is a Hilbert space direct sum @52 ) Cog2, P, Cu_(k+2q)-

Here vy, € Hp,, (m € Z) is the element in Hp, corresponding to x,, € L?*(Kp) :

cosf sinf _ J/TTme
Xm((—sin9 COSG))_e (0 €R)

by the restriction vy, — vm|k, € L?(Kp). Therefore L%MsﬂKyDHMSnK)(K) is the

completion of the direct sum

o0 o .
@ L%MsﬂK,kaa) (K) B Cogi20 & @ L%MSOK,X_k_za) (K) X Cu_g_2q.

a=0 a=0
By the Frobenius reciprocity law, the multiplicities of the K-type of II are fully

described as follows.

PROPOSITION 1.2. The multiplicity of 7, 1,) in the Ps-principal series repre-
sentation II is given by

0, if Lh—Ila#k m0d2 or 1 -1 <k,

II: =
L= 70, 1) {[l—l#ﬁ—l, if Li—lo=k mod2 and U —Ip> k.

- Therefore we will pay attention to Whittaker functions with multiplicity one
K-type, ie., li =l +k, Iy =1 for | € Z. These K-type 1(;1,) (I € Z) are called

the peripheral K-types of II.

- REMARK 1.3. The Dy & L?(K) model of the Ps-principal series.
Now we want have an expression of the elements in the peripheral K-type 7(;41,

in IT. In general for f € H,, (z € K), f|x has an expression

flx(z) = Z frr2a(T) K vgyoq + Z fok—2q(z) Rv_g_2q4
a=0

a=0

with fri0.(z) € L?

(MsmK),Xk+2a(K) and f_g_9, € L? (K). The in-

(MSﬂK,X—k—2a.)
tertwining property f|x(msz) = Dg(mgz)f|x(x) (ms € Ms N K) implies that

fm(m3z) = Xm(md)fm(zx) for m§ € MJ. Moreover when f|x belongs to the
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peripheral K-type, fii2q(x) and f_g_24(z) vanishes for a > 0. And we have
fr(z) = tf’)o(x)Al(:c) Cyy f-r(x) =t_ o(z)Al(z)c- with some functions ¢, and c_
on M2\ Ms. Here the functions t(ik)a (z) are defined as follows.

Firstly we recall the definition the vectors of function sgk) in the subsection I-6.

For k € N, we introduce 2(k + 1) vectors of length k£ + 1 by

(+5%.- ) = (tY“,’k’--_- ) = (589, o) sym (G —z)) |

this means

tgf:,)() = 3(()"’) ¥ ngk) _ Sgk) 4+ ...+ (_Z')asgk) 4.4 (_1)k/2s§ck);
tﬁf,)_z — ks$® Fi(k —2)s — (k= )5 + .- 4 (£i)(k — 2a)s)
o (CD) (=R

etc.

Note here that the same vectors have. the double names tf)a — t®) (0<a S k).

—k—a
We note that the vectors tgf)a of functions are diagonalized by the action of M¢.
Then these functions tgc’)o in L?(K) are utilized to describe K-finite functions
in the representation space of the Ps-principal series, because they exhaust those
functions which are right 7 )-isotypic under K and left i j-isotypic under MJ =

SO(2) up to scalar multiples in L?(K). Thus we see that the canonical basis of the

peripheral K-type 7(;4x,) is expressed as
Cy - tSﬁ)OAl X g +c -'tgc’)OAl Mov_g,

invariant under the action of Mg (or more precisely under M3\ Ms).
When the Ps-principal series II (with even k) is embedded in a principal se-
ries m of Chapter I, these functions c+ are mapped to some elements in the finite

dimensional C-vector space Homg (T(j4x,1y, 7 ).

II-2. The (g, K)-module structure for peripheral K-types
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‘Since K-types 7(1j,) occurs in the Ps-prihCipal series occurs with multiplicity
one, there is the unique injective K-homomorphism Ltk * Woagk,y — Hr, where
W(+k,1) be a representation space of K with respect to highest weight (I + k,1).

Let { f (l +ak’l>} be the canonical basis defined in Chapter I, Proposition 6.1.

I+ kK, .
LItk 1) <f(l+k—i)) =fi, 0<5i<k.

Then we have various annihilator among { f; }o<i<k. First we introduce the Casimir

Then we write

element defined as follows.

DEFINITION 2.1. Let C(X,Y) = Tr(XY) be the real part of the trace form.

Choose a basis X1,---, Xy, of g, and let (9;;) = (C(Xi,X;))" . Then we define

’

Casimir element by

1
50 = ZgMXin. O

2%}

Explicitly, it can be written as

C=H}+H: —4H, — 2Hy + 2F., ¢, E_c, e, + 4F2¢, E_oc,

+ 2B, e, B ey + 4E2e, E_ge,,
which is equal to
H} + H3 —4Hy, —2H, + 2E2 _, +4E3, +2E2 | +4E3,
—4Ese;, (Boe; — E—gey) = 2Ee; yey(Beyyey — B—ey—ey) — 4E2¢,(Fae, — E_ze,).
PRrROPOSITION 2.2. Let C be the Casimir element. Then we have
(2.1) C-fi=xu(C)f;, foreach 0<i<k,

with xu(C) = vs/2+ (k—1)2/2 — 5. Here xi1 : Z(g) — C be the infinitesimal
character of the quasi-simple representation I with Z(gc) the center of the universal

embeloping algebra U(g). Annihilator equations are

(2.2) Xioofi-1 —2X412fi + X411 fir1 =0
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and

(2.3) X_11fic1 +2X qofi + X _02fip1 =0. O

PROOF. (2.1) is the Casimir equation. We determine the value x(C). We have
to éompute x(C) = (vs+p—3)2%/2+ (k—1)2/2 — 5. We refer to the book of
Knapp, [KV], p. 665, Proposition 11.43 to determine the infinitesimal character of
I Put Ps — NgAgMs, where Ms — SL* (2, R) - {£1}. Lieds = ag is equal to

1 ets

exp{ R 1 = o—ts ts €R

-1 e ts
On the other hand, the set of Mg is
1 eto

- —to A
exp ¢ R 1 = € to eR

-1 ~ et
Since A is included in AgMgs, we compare the following equation in a to get a
representative of the infinitesimal character.
131 to +1ts
t2 —to + s
—t; —to —ts

—ty to —ts

We have (t1 + t2)/2 = ts and (1 — t2)/2 = to. And also we get

1 1
(vs+ps)(ts) = 5{(vs +ps)(t2) + (vs+ps)(t2)} and wvo(to) = 5 {vo(t1) —r0(t2) }-
Then we add both equations.

vo(to) + (vs + ps)(ts) = 5 (vs + vo + ps)(t1) + %(Vs — 1o + ps)(t2).

N

Since the first term of the right hand side of the above equation is equal to (v +

p)(Hz) and the second term of it is (v + p)(H2), then we have

(v 4 p)(H) = 5(vs +ps +k) and (v +p)(Ha) = £ (v + s — B)
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with the Blattner parameter k. This means ((vs + k — 1)/2, (vs — k +1)/2) is the
infinitesimal character of II. Therefore we have xri(C) = (v + (k —1))2/4 + (v —
(k=1))2/4-5=13/2+(k—1)2/2-5= (vs+p—3)2/2+ (k—1)2/2 — 5.

We consider the canonical surjection

P+ @ Wik — p+Wagry — Ho

(X ® v)— X, (X € px,v € Wigry)

which is a K-homomorphism. Since p, = Wia,0) and p_ = W _oy, we have the

Clebsh-Gordan decomposition

P+ @ Witk = Witk ©@ Waak,i+1) © Wigrt2,)

and

P— @ Wiy = Wigk—20) © Wigk—1,1-1) ® Wigr,—2)-

Here we note that {X 11, X412, X420} in py and {X_ 22, ~X_12,X_11} in p_ are
canonical basis, respectively. Recall here Lemma 3.1 of [O1]. Corresponding to this
decomposition, the elements {X_ 22fi — 2X 112 fit1 + Xq11five |0 < i < k—2}
form a canonical basis of the K-types 7(;1,42) in Hy. But this K-type does not
occur in Hyy. Hence we have (2.2). The relation (2.3) is obtained similarly, since
the set {X_11fi—1 +2X_12fi + X_o2fir1} (1 <4 < k) also forms a canonical basis

of the K-type T(l+k——2,l)' O

One might suspect that {f;} would have more relations under the action of
U(g). We explain below the reason that we believe these relation given in the

above proposition should be enough.

REMARK 2.3. We have

1 1
(2.4) - Z{Vg -2+ k+ 1)}fi = ——(X_11 X411 + X 22X 122)fi

4
1 ) 1
+ ZX—11X+22fi—2 + ZX—22X+11fi—I—2~

|
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However this relation is equivalent to the Casimir equation.
OUTLINE OF PROOF. We explain the heuristic reason why these equations given

above are enough. We take a canonical basis {f;}o<i<k of T(+k+1,41)- By the

Clebsh-Gordan decomposition ([O1], Lemma 3.2)

y k—2i k—i '
{“‘EX_FQin_]_ — L X.|_12f7; + _k_X—i-llfi—l—l

OSiSk}

is another canonical basis. Here we set f_1 = frir1 = 0. Then there exist a scalar

v+ independent of ¢ such that

7 k—2¢ k—1
(2.5) Y+fi = —EX+22fz'—1 i Xi1ofi + TX+11fi+1-

Moreover, if 1 <i < k — 1, adding ——% times of the relation (2.2), we have

’ 1 1
(2~6) Y+fi = _§X+22.fi—1 + §X+11fi+1-

Changing the role of {f;} and {f;}, we have

7 k— 2i k—1

(2'7) v-fi = —EX—llfi—l + A X_12fi + TX—QQfH-l
1 1 )

(2.8) = *§X—11f1:—1 + §X—22fi+1 1<i<k-1),

with a constant y_. The replacing f; in (2.8) by (2.6), we have

1 1
(’)’+’Y—)fi = ZX—ll (X+22fi—2 - X—|—11fi) + ZX—22(_X+22fi + X+11fi—|—2)
1 1 1.
= _Z(X_HXHl + X 00X 00)fi + ZX—11X+22f¢—2 + ZX—22X+11fi+2

1 1 1
= Z(X—11X+11 + X 99X y00)fi + ZX+22X—11fz'—2 + ZX+11X—22fi+2

1 1-
= 7 (X-uXon + XonXym + XyXo + XonXon)fi
1

1
- §X+22X—12fi—1 - §X+11X—12fi+1-

Here we apply the relation (2.3) twice to remove f;_s and f;15. Furthermore the
second line of the last right hand side is rewritten as

1 1 1 1

- §[X+22,X—12]fi—1 — §[X+11,X—12]fi+1 - §X—-12X—|-22fi—-1 - §X—12X—|-11fi+1
1 1 1 1 ‘

= —'2‘X—12X—|-12fi - 'Q-X—12X+12fi‘+ §X—12X+11f¢+1 + -2‘X—12X+22fi—‘1-
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Here we apply (2.2) twice.
Finally, we have to decide v4. Since the computation takes some space more,
we omit this. We have to compare the last equation with the Casimir equation.

Meanwhile we can rewrite the Casimir equation as

1 .
Z{X+11X_11 + X 11X+ X0 X 02+ X—22X+22}fi

1 vs—p+3)2 (k—-1)2
+§{X—|—12X——12+X—12X+12}fi+CEfi:{( > g ) +( 5 ) }fi,

where

Ce = %{N(€11)2 + r(e22)” + k(era)r(ear) + “(621)”(612)}

is the Casimir operator of the K-module W(; 1), hence it is equal to the scalar.

This is the outline of the proof. [

REMARK 2.4. The center Z(g) of U(g) has two generators, one is the Casimir
operator, the other is an operator Cy of degree 4. We should have a system of
equations

Cy- fi = xu(Cs) fi (0<i<k)

The equation which is essentially equivalent to this is obtained by the composition
det C_ -det C or det C -det C_. However det C.. is the composition of the opera-
tors (2.5) twice : T(4k,1) — T(14+k+1,141) — T(i+k+2,1+2)- Lherefore by the former
remark (2.3) implies that det C_ - det C is essentially the “square” of the Casimir

operator modulo the annihilation relation (2.2) and (2.3).

II-3. System of partial differential equations for Whittaker functions

Let ® € Hom(II, Co°(N\G)) be an intertwining operator, i.e., an algebraic Whit-
taker functional on II. Let ®(f;)|4 = gong’l)(y) be the A-radial part of the Whit-
taker function of the canonical basis {f;}o<i<x of T4k, in II. We will use these
notation below.

We introduce the coordinate associated with positive simple roots {e; — ez, 2e2},

y = (y1,v2) = (a1/a2,a3) and Euler operator 9; = y;(0/dy;), i =1, 2.
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THEOREM 3.1. Let ®FRD (y) be the radial part of the even Ps-principal series
Whittaker function with (k + 1)-dimensional K -type. Then @tk (y) = t(goglﬂ”c,l)
W), e W), ol () satisfy

(3.1)
{207 + 405 — 40105 — 872y} — 1672 c2y2

+8m(L +9)cays — (Us + p — 3)2/2 — (k — 1)%/2} D (1)

—4my/ — zcoylgo( T+ l)(y) +4mv/—1(k — z)coylgoz_,_l 2 (y) =0, 0<i<k,

(3.2) 01+ 1 — k+ 1) 8D () — dry/Teogrpl D ()

+(202 — 01 —dmezyz + 1+ — Dl (y) =0,  2<i<k

I

(3.3)
(011 —k—i+ 2) o (y) + drv/“Teoy1pFY ()

+(28; — 01 + dmezys — 1 —i + 1)(p§l+k’l) (y)=0, 2<i<k DO

REMARK 3.2. We note that a part of equations (3.2) is equivalent to (cf. Remark

2.3)

(3.4) {Br—l—k+)) (1 +1+k—i+2)
(205 — Oy + Amys — 1 — i — 1)(205 — Oy — dmys + 1+ 4 + 1)
—(s+p—2A—k—4)(vs+p+2+k—2) ! (y)
(@) = 1=k +)(20 — By — dmya + 1+ — D ()
— (O + 1+ k —i)(205 — 8y + dmys — 1 — i — V)TN () = 0,

2<i<k-2.
Logically speaking, we do not need this. But they might be useful for the investi-
gation in the future.

PRrROOF OF THEOREM 3.1. First we note that (3.1) is the Whittaker realization

of (2.1). We have to take care of the change caused by the multiplicity a”(y) =
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y%yg/ 2= af(y). Then the action on the A-radial part g0(l+k’l)

7

(y) of the K-invariant

element in the Whittaker model is given by the operator

{207 + 405 — 40,0, — 87°y} — 16793 + 8 (I + i)ya Yol TV (1)

— 4/~ Tiy1 o7 (y) + 4/ =T (k - Dyl (y)

which is given after the a?(y)-shift.

Next we will prove (3.2) and (3.3). There are the Whittaker realizations of (2.2)
and (2.3). We compute them by using the Iwasawa decomposition in Chapter I,
(8.6) and (8.7). Then its action on the A-radial part gogH'k’l)(y) of the K-invariant

element in the Whittaker model is given by the operators

(92— dmy +i+1 = D (y) =4V "Tya ol ™ 4 (01 + 1+ i+ k= el ),

and
01—k — 1+ +2)p "0 () + 4/ Ty () + (82 + drrys — 1= D)ol ().

We can checked by the target K-types. The left hand side of them are not occur

in the K-types decomposition of Ps-principal series. Hence their eigenvalues are

0. O
CONJECTURE. (3.1), (3.2) and (3.3) are holonomic system of rank 8. O

The conjecture means that the solution space of (3.1), (3.2) and (3.3) are nat-
urally isomorphic to the space of algebraic Whittaker functions Hom g g)(II, C*>°
-Ind§/(n)), which has the dimension 8, the order of the Weyl group (see [M2], p.

238, theorem 6.2.1).

REMARK 3.3. Heuristically speaking, it is easy to see that the rank of solution
space is dominated by 8 - (k + 1). But to determine the exact value of the rank

seems to be difficult just starting from the equations.
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I1-4. The characteristic indices

Around (y1,y2) = (0,0). Similarly as the case of other groups and other rep-
resentations, we may effect the point (y1,y2) = (0,0) is a regular singularity. We
want to determine the chéracteristic indices at (0,0). To have the characteristic
equations, it is enough to erase the terms divisible either y; or ys.

Therefore we consider a formal power series solution

(4.1) Sng-Hc,l)(y) — Z C%{n@ﬂ /—_1y1)m+u1 (27Ty2)n+lt2

m,n>0

LEMMA 4.1. The characteristic indices of (4.1) are as follows

. o1 1 1
(1) m=+fsvs+5(k-1), - pp==x5vs,

2 2 2
. 1 1 1
(18) w1 = :|:§Vs + 5(7{: —1), po = §(k -1). O

We remark that (i) (we call this pair case 1) is pu1 — po = (kK —1)/2, (ii) (we call

this pair case 2) is puo = (k—1)/2.

PrOOF. Similarly as the case of other groups and other representations, we may
expect the point (y1,92) = (0,0) is a regular singularity. We want to determine the
characteristic indices at (0,0).

Firstly we set ¢co = c3 =0 in (3.2) and (3.3) of Theorem 3.1 :

{ O +1—k+ i)™ D) + (20, — 01 + 141 — 1)l HED(y) =0,
(01— 1=k —i+2)p"5 (@) + (20, — &1 = 1 =i + 1)l ™ (y) = 0.

If we may set p; = cé%yf 1yb? then

{ (1 +1—k+d)ely + (2pa —p +1+i—1)es? =0,
(1 — 1=k +i+2)cly? @pa —pr —1—i+1)c§) = 0.

. i —2 i
To have non zero solution for c&o ), c(%, we need

(i +l=k+i)(u =l —k+i+2)— Qua—p +1+i—=1)2uz —p1 —l—i+1) =0,

This last equation is simplified as (u; —k +1)? = (2uz — p1)?. Here we have either
w1 — po = (k—1)/2 or puy = (k —1)/2. In the case 1, c(()% = —081;0_2), and in the

case 2, (up —k+1+ z’)c(()?) =(m—-k-1l-i+ 2)0&72)'
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To determine p; completely, we use the equation (4.1) by putting ¢ = c3 = 0

and setting the term 8 (Il + i)y, = 0.

I+k,l
kD — .

— 2)2 _1)\2
| {28%+48§—48182— ("S+§ 3)° _ (k 21) }so

Therefore
(vs+p=37 (k=17
2 2 '

2uf + 4us — dpape =
In either case
2p1 + 4y — dpape = pf + 2ue — 1) = 43 + (pa — k+1)%

Then

(s +p—3)?% (k=-1)°
4 4

2uf = 2(k = Dpn = pa{m — (k= 1)} =
If up —po = (k—1)/2, then {u1 — (k—1)/2}2 = (vs +p—3)%/4. If po = (k—1)/2,
then py = +£(vs+ p—3)/2+ (k — 1)/2. Thus we have our lemma. O

We remark that the characteristic indices (i) , (ii) are same properties. Namely,

(i) are 1 — pz = (k — 1)/2, (i) are pp = (k — 1)/2.
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CHAPTER III

SOLUTIONS FOR THE FORMAL
POWER SERIES WHEN k£ =2 AND [ = -1

III-1. The holonomic system of rank 8

We discuss here a very special case, hoping that this result would give some
insight for the general case. Here we consider only those Ps-principal with minimal
K-types of dimension three. This means that we take Dy = D, in the definition of
the Ps-principal series.

If k£ = 2, our holonomic system is reduced to the following.

PROPOSITION 1.1. Let o=V (y) be the radial part of the even Ps-principal

series Whittaker function with 3-dimensional K -type. Then o(H=1(y) = t(cpél’_l)

@), " (W), 5"V (y)) satisfy

(1.1)
{207 + 403 — 4018, — 8> cy? — 16m%cays + 87 (i — 1)cays

~v2/2 = 1/2}o D (y) — dnv/—Ticoy o7 + 4mv/=1(2 = deoyn ot = 0,

for 0<i<2,
(1.2)

(01— 1) (y) — dnv/—Teoyn ot () + (20, — 81 — dmesys) ol (y) = 0,

and
(1.3)
(& = 16" () + drv=Teopriet" ™ (y) + (202 = B + dmeaye) 05 (y) = 0.
a
We know that the system (1.1), (1.2) and (1.3) are a holonomic system of rank
at most 24 (= 8 x 3). And we expect that the rank of the above holonomic system
is 8.

Typeset by AMS-TEX
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a heuristic argument for rank 8

Here is a heuristic enumeration of the rank of our holonomic system. We have

an equation

él,—l) fél,—l)
(det C_)(det C+) fl(l’_l) = (1/1 — 4)2(y2 — 4)2 . fl(l’_l)
2(1,—1) f2(1,—1)

as we remarked in Chapter II, Lemma, 2.4, this is derived from those relations which

we already discussed. The Whittaker realization of this equation is of the form

(17_1) (L_l)

Yo %o
{07(202 — 61)* + lower terms} ¢§1’_1) = (1 —4)% (v, —4)?- (pg1,-—.1)
(17_1) ‘ (17_1)

P2 2

These equation together with the Casimir equation (1.1) implies t(go(()l’_l) Agogl"l)
wgl’_l)) are solutions of a holonomic system of rank 24 (Compare with the system
in [MO], Theorem 10.1, which has rank 8). But we have the relations (1.2) and
(1.3) compatible with these equations. Their derivations 8%(20 — 9;)? - (1.2) = 0,

0%(202—01)%-(1.3) = 0 should give 2x8 = 16 other relations among 24 independents
{af(zaz o) Y =0,1,2, a,beNx N} .

Thus remaining rank is 24 — 16 = 8. To have a rigorous proof, we have to fined,
say, an integrable affine connection on a rank 8 vector bandle over the spagce
{(y1,y2) € C?} equivalent to our holonomic system. Probably we need a more
“dirty” computation which we cannot yet find.

The idea of the construction of solutions

Before the statement of the result, we explain how to get our power series so-
lutions for the K-type 7(; _1) in the Ps-principal series from those of the Ppin-
principal series.

Recall the definition the principal series representations my of M{ = Gop =

SL(2,R) given in Chapter II, p. 25.

T = Indgg(lNo ® e @ o)



36

is principal series representation of SL(2,R). Set g = 1. Then we have an exact

sequence of Gy-module
0— Dy ®D; — 19— C—0

of the representations of SL(2,R). The irreducible decomposition the induction

+
Indgi(QE?RJ;R ) gives two exact sequences of SL*(2, R).

0— DS & D; — 7 — C(£) — 0

Here C(+) is the trivial representation of SL*(2,R) and C(—) the determinant
representation of SL*(2,R) ([V], pp. 68-77, Proposition 1.4.8). Then we have four
embeddings. IT — 7 of the. Ps-series II into a principal series representation 7 with
either o € M\min iso = ogoro =0y and withv; = (V5+k—1)/2, v = (V5—k+1)/2,

orvy=Wi+k—-1)/2, 5= (Frs —k+1)/2.

III-2. Construction of 8 independent power series solutions

To have a Whittaker function with K-type 7(;,_1) belonging to II, we start from
the Whittaker function with K-type 7(1,1) or 7(_1,_1) (or the' Whittaker function
with K-type 7 0)) belonging to 7. Applying some adequate elements in S(p+), we -

shift those K-types of 7 to the K-type 7(1,_1) in II.

THEOREM 2.1. The case of the embedding o = o1, (v1,v2) = ((vs+k—1)/2, (vs—
k+1)/2).

We define the functions cp&l_ji)(y) by Chapter II, (3.1). A power series solu-

tions =V (y) = a? (y)p(, ) (1) =1(85" 7V (), 8"V (y), 857 (1)) with the

characteristic indices (i) in Lemma 5.2 is given by

V) =ar(y) S [{-2(20m+ )+ (1 = 2) + 1) Prolr, p2)
m,n>0

o+ 43 Q-1 (1, #2) } + dea{ Quun b, 12) + Pro (b, 12) } (v |
(ﬂ.yl)2m+u1 (7ry2)2”+“2
min!(py + p2 + 1)m(p2 + 1)’

3" V() = —a* () - (dmcoys) Y Prn(pr, p2) -

m,n>0

(1)t H (g ) 2 i
minl(p1 + p2 + Dm(p2 + 1)a




37

and

o) =ar) 3 [{2(20m =)+ (= p2) + 1) P, 2) — 405Qumn )

m,n>0

minl(py + p2 + D)m(p2 + 1)5
Here (p1, p2) = (V§/2+1/2,0%/2) are the characteristic indices (i) of Lemma 5.2

+ {2(2n + 112)Qmn (1, 2) + 4C3Pm,n(H1,#2)}(7T3/2) :

with v§ = vs or v = —us.
The case of the embedding (vi,v2) = (vs +k—1)/2,—(vs + k —1)/2).
The ezplicit formulas of @1~V (y) with characteristic indices (i) in Lemma 5.2

18 a power series solution
3V @W) =) D [4{nPrmnlr, 12) + c5Qmn1 (1, p2) |
m,n>0 ‘

+ {2(2(n —m) + (p2 — p1) — 1) Qm,n(p1, p2) + 4cg P (pi1, M2)}(7Ty2)]
(Tryl)2m+l-01 (ﬂ-yz)2n+ﬂz

min!(p1 + g2 + Dm (u2 + 1),

‘I’gl’—l)(y) = —a’(y) - (2mcoys) Z Qm,n(ﬂl,ﬂz) :

m,n>0

(y1) 2 mHE (myg) 2t
min!(py + p2 + 1)m(p2 + 1)n

and

. tI)gl’_l) (y) = a”(y) Z [{2(#2 + n)Pm,n(y’la N2) =+ 403Qm,n—1(“1> :U‘Z)}

m,n>0
+ {2(2(7" —n)+ (p1 — p2) + 1) Qmn(p1, p2) — 43 P n (11, Mz)}]
(y1)? ™ HH (ryp ) 2t

min!(p1 + p2 + V)m(p2 + 1)n
Here (p1, p2) = (v§/2 +1/2,1/2) are the characteristic indices (ii) of Lemma 5.2.

We set
—n, m+8 41 —pm—EL_ 1
Pm,n(lfll,uz)=3F2( wicn? el P |1),
3 T3 H2—5 T3

2(2m + p1 + 1) Fy (—n, mAtlpg, —m-bgl
p1+1)(2u2 — p1 + 1) 2

. Qm,n(,u'l,,uQ) = (

Before the proof of this theorem, we prepare two lemmas on the (g, K)-module
of the principal series. Recall the notation of I-6, (6.3) and (6.4):

S[((_?]) =* (8%1 S$11812 8%2 ) ) S[(Qz]) =1 (S%l S21822 8%2 )

for S(z) = (z; 22) € U(2) (z € K).
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LEMMA 2.2. Let*(fo fi f2) be a vector of elements in H, corresponding to
the vector {S[(oz]) - AS’[(QQ])}A“1 of elements in L*(K), which is the canonical basis of
T(1,-1)-

Ifri =(vs+k—1)/2 and vy = (vs — k + 1)/2, we have

. _ 1 fO
(1) Cria) AT = CoyypA = 3 (fl) |
2

X1 X 2o
with C+;(+2) = 215- . X+12> and C—;(+2) = % . —X_12) .
Xi22
Moreover we have

' fo Jo
(i) Ciit-n | i | =0 and Cyp | /1] =0,
f2 f2

forCocoy = (Xyo2 —2X112 Xyn1) andCojgy = (X_11 2X_12 X_50). O

PROOF. First we quote some special cases of the formulas in Theorem 5.1 of

(02].

PROPOSITION A (A PART OF THEOREM 5.1). Suppose v1 and vy are generic

and o = o1. We have

2.1)

Con (S7ATT sia—) =4 (v2tp2=1 n+p=3),
(2.2)

Ci(-2) (S%])A_l szz])A_l) =A (ra+p2—1 ni+p1—3),
(2.3) |

1_(q@ @\l (rt+p—1

C+;(+2)A - (S[o] S[z] ) 6 (,/2 + pg — 1) )

(2.4)

(@ @)1 (r2tp2-1
Caent= (85 555 (u1+p1—1>' -

In order to prové the first formula of the statement (ii), we multiply the vector
(_11> from the right for the both sides of (2.1) in the above Proposition A, to get

fo
Ciy—2) | 1 | =A&{(va+p2—1)—(v1+p1—3)}. Set here k =2, vy = (v5+k—1)/2
2
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and v, = (vs —k +1)/2, then we find that the left side is 0. The second formula of
(ii) is shown similarly.

In order to show (i) of our lemma, subtract (2.4) from (2.3) to get
C+;(+2)A_1 —C 40 = (Sfoz]) S(z) ( > V1 +p1) = (v2+p2 — 1)}
1
="(fo H f)z {V1+;01 (V2+P2—1)}

Rewrite the parameters v; and v, by vg, then we have (v1 + p1) — (v2 + p2) = 2

hence we get (i) in the lemma. O

REMARK. The embedding consider here is corresponding to the map

tgr )oC+ vy +1t-oc- ®U_ — <_11> € HOHIK(T(]_’_l),ﬂ'O) ~ (2
(cf. Chapter II, Remark 1.3).

LEMMA 2.3. Define fo, fi and f2 as follows :
“fo A f2)= {3(2) ng}/l"

Assume that k = 2. If v1 = (vs +1)/2 and v = (—vs + 1)/2, then we have

L.
(i) C—H(—|—2)A_1 + C—;(+2)A = 3 fi]s
f2
fo fo
(ll) C+;(+2) fl =0 and C,;(+2) fl = 0.
fa fa

ProOF. The proof is similar to that of Lemma 2.2. When we assume k& - 2,

= (vs+k—1)/2 and —vp = (vs—k+1)/2, we have (r1+p1—=3)+(v2+p2—1) =0.

Multiply (1) to the right on the both sides of (2.1) and (2.2) in Proposition
A, to get the annihilator relations (ii).

To get (i), we add (2.3) and (2.4). O

PROOF OF THEOREM 2.1. The explicit formulas of ®(1:1) and &(~1~1) are given

by Ishii([I], p.11 Theorem 2.2). These are the Whittaker realizations of A*!. If
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we calculate the Whittaker realization of the left hand sides of (i) of Lemma 2.2
and Lemma 2.4, then we obtain the power series in Theorem 2.1. Since we have
the relation (ii) of either Lemma 2.2 or Lemma 2.4, these power series satisfies the
equations (1.2) and (1.3).

Lastly, since the Casimir operator is in the center Z(g), the annihilation (C' —
XW(C))Yf(l’” = 0 holds if we apply some elements Y in S(p). Moreover x,(C) =
xm(C)), if we have an embedding II — 7. Thus our power series satisfies the

Casimir equations (1.1).. O

REMARK. The embedding considered here is corresponding to the map

tff’)oc_,_ Qv +t_gc- Q@U_ (1

1
) S HomK(T(l’_]_),T['()) = (Cz
(cf. Chapter II, Remark 1.3).

THEOREM 2.4. The case of the embedding o = og, (v1,1v2) = ((V§ +1)/2, (V5 —

1)/2) or (v§ +1)/2, - (5 +1)/2).

Another 4 solutions with characteristic indices (i) and (ii) are as follows :

oY = yaf(y) - (2mV=Teoyr) Y (4” +2u2 + 4”C3y2)

m,n>0
x 3F (_n, mA B 41, —m—H4L ) (myn) ™4 (ryp) 2 he
5Py B4l w5 ) il (ug + pp + Doz + D)

7 =10 (y) Y (2mas — pa) + 1673 )

m,n>0

—n, m+EL41, —m—EL
xoFp (TR e

) (7Ty1)2m+“1 (ﬂ-y2)2n+ﬂz
min!(p1 + po 4+ D)m(p2 + 1)n

“and

<I>§1’_1) = ~a(y) - (2mv/—1coy1) Z (4n + 2p9 — 47T03y2)

m,n>0

x 3 (—n, m g1, —m— ) (my1) e (myp )2t he
372 FAL o we=F 4 mlnd(pg + po + Dm(pe + 1)n

Here (u1, p2) is either (vg/2+1/2,v5/2) or (v§/2+1/2,1/2), and v = (v§+5) (v +

1)/4.

PROOF. We again quote special cases of Theorem 5.1 of [02].
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PROPOSITION B. Assume that v1, vy are generic and o = o¢. Let A be the

canonical generator of 7‘(0,0)4 S[(Oz]), S[%) be two canonical basis of T30y inside Hy,

S[(OZ])A‘Q, S[(22])A‘2 be the canonical basis of T(o,_2) inside H. Moreover let S

be the canonical basis of 71,1y inside Hy.

(2) A -1
A

Let Cy 4oy and C_,42) be the same symbols as in Lemma 2.2, and

' X112 Xynn 0
Cosy = | —3X422 0 3X4n
0

—Xyo2 Xy

“and
X 12 X 22 0
C—;(O) = '—%X_ll 0 %X—22 )

0 -X_11 —X_12

respectively. Then we have

0 Cmat = (sEat spa) g (ie),
CrimA® = (Sa° sa0) % : (I’j; iﬁ;) ,

and

(i) Co (SPa0 s@a0) = % (s —1) n)s@Pa,

1 -
Cro (SPA72 SPA2) =2 (-n (-1)sHa
with (p1,p2) = (2,1). O

By composing the operators in the above Proposition B, we have the formulas :

—(Xp12X 20 + X111 X12) o
AY =y_

SHA-L

(24)  Ciy0)0Cy42)A% = | $(Xy11X_11 — X422 X 29) 1]

(X_|_22X_12 + X—|—12X—11)

and

(2)A—1’

X 12 X411+ X 22X 112
A = 7.5y

(25) C—;(O) o} C+;(+2)AO - —%X_11X+11 + %X_22X+22
» — (X1 X 12+ X112X11)

with

1 1 1 1
V- = 5(”% -1+ 5”1(1/1 +2) and 4 = —§V1(V1 +2)+ 5(’/% - 1).



42

Here we specialize the parameter (v1, 1) so that either (vq,v2) = (V5 +1)/2, (Vg —
1)/2) or (% +1)/2, ~(v5 +1)/2). Then v =7, = 1(s§ + 5) (5 +1) £ 0.

Now using the Iwasawa decomposition for (2.4), we have

E61—62 (H2,4 + H1,3) - 2 _1E€1—62E262
2, - 13, - 453, p

(V8 +5) (v +1)SH A
Eei—e,(Ha,a + Hi3) + 2/ ~1E¢, —¢, Eae,

N

Then we compute their Whittaker realization similarly as Theorem 2.1, to get
Theorem. By the definition of Cy;0 0 C4,(42)A%, the Whittaker realization of this
vector satisfies thé annihilator relations (1.2) and (1.3) obviously. Secondary, be-
cause the element C' — x1(C) € Z(g), we have {C — xu1(C)}Cyy;(0) © Ci,(4:2)A° =
C4(0)9C;(+2){C —xm(C)}A? = 0. Passing to the Whittaker realization, this yields

the equation (1.1) of Theorem 1.1. O

REMARK. Starting from (2.5) in place of (2.4), we have the same result.

The last the;)rem gives 4 linearly independent power series solutions for our
holénomic system in Proposition 1.1, and Theorem 2.1 gives another 4 linearly
independent solutions. Therefore we have 8 linear independent solutions. Here '
linear independence is obvious from the characteristic indices and the parity of
non-vanishing monomials in the power series. We note here that our system has no

solution with logarithmetic singularity along y; = 0 and y = 0.

REMARK. The case of general [ with k£ = 2 is handled in the same by our results
in Chapter I. But we omit that, because the formulas are more complicated. For
small k like k = 4, which is interesting from a geometric view point, we still can

extend similar computations by force.
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