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π1 of smooth points of a log del Pezzo

surface is finite : I

By R. V. Gurjar and D.-Q. Zhang

Abstract. A log del Pezzo surface is a normal projective surface S
defined over the field of complex numbers, such that S has at most quo-
tient singularities and −KS is ample, where KS denotes the canonical
divisor. The main result of this work is the following theorem:

Theorem. Let S be a log del Pezzo surface. Then the fundamental
group of the space of smooth points of S is finite.

We also give a quite precise description of the singularities of S when
S has Picard group of rank 1.

Introduction

A normal projective surface S over C is called a log del Pezzo surface if

S has at worst quotient singularities and −KS is ample, where KS denotes

the canonical divisor of S.

Recall that the divisor class group of a quotient singularity is always

finite. Hence for any Weil divisor D on a log del Pezzo surface S, nD is a

Cartier divisor for some integer n ≥ 1.

The principal result of this paper is the following:

Main Theorem. The fundamental group of the space of smooth points

of a log del Pezzo surface is finite.

In the case of a Gorenstein log del Pezzo surface, this result was proved

in [13] by first classifying such surfaces.In this paper, we also give a very easy

proof of the result in the case of Gorenstein log del Pezzo surfaces. So far,

there are not many results about general log del Pezzo surfaces. Recently,
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V.A. Alekseev and V.V. Nikulin have classified all log del Pezzo surfaces of

index ≤ 2 (i.e., where 2KS is Cartier)(cf. [1]).

The index of a log del Pezzo surface S is defined to be the smallest

positive integer n such that nKS is a Cartier divisor. In [15], Nikulin has

proved that the rank of the Picard group of a minimal resolution of S is

bounded by a universal function of the index of S. From this also one can

deduce Proposition 1.7 below.

M. Miyanishi has made the following:

Conjecture Let S be a log del Pezzo surface of rank 1. Then there

is a finite unramified covering of S − SingS which contains a Zariski-open

subset isomorphic to C × A1, where C is a smooth curve.

It follows easily from the Lemmas 1.2 and 2.2 of this paper that if Miyan-

ishi’s conjecture is true then the Main Theorem of this paper is true. The

Main Theorem thus lends a partial support to Miyanishi’s conjecture.

Due to the length of the proof of the Main Theorem, this paper is being

written in two parts. We will now give some indication of key ideas used in

the proof.

Following an important idea of Miyanishi and Tsunoda, in §3 we use

a “minimal” (−1) curve C on the minimal resolution of singularities, S̃,

of S. Using the assumption that−KS is ample we analyse the intersection

behavior of the exceptional divisor D with C. The proof splits into two

main cases according as the linear system |K
S̃

+ C + D| is empty or non-

empty. The bulk of the paper goes into handling the first case. The first

case itself splits into the “2-component” case and the “3-component” case.

The part II of this paper deals exclusively with the “2”-component” case. It

should be remarked that we can prove much more precise results about the

intersection behavior of C and D than given in §6, but the Main Theorem

stated above has been our main goal in this paper and so we have given

only those details which are crucial for the proof (cf. the remark after the

proof of Theorem 6.14). Several sub- cases from the “3-component” case are

reduced to the “2- component” case. We could have given a self-contained

proof for the “3-component” case, but this would have made the proof even

more technical. As a consequence, the proof of the Main Theorem (even in

the “3-component” case) is completed only in the part II of this paper.

The main ingredients in the proof of the Main Theorem are the follow-

ing :
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1) Several results of the paper [18]. The lemmas 1.5, 1.6 from [18]are

frequently used.

2) A reduction to the case when the Picard group of S is infinite cyclic.

3) A somewhat precise information about the configuration of singular

points when Pic S � Z.

4) A version of the Lefschetz hyperplance section theorem for funda-

mental groups given in [16].

5) A version of Van- Kampen’s theorem for non-connected intersections

due to P. Wagreich.

There are easy examples of normal projective rational surfaces over C

with quotient singularities (even double points) and with numerically effec-

tive anti-canonical divisor,such that the fundamental group of the space of

smooth points is infinite. See §1.15. This shows that the condition about

the ampleness of −KS in the Main Theorem cannot be dropped.

From the Main theorem, we see easily that any log del Pezzo surface S

is a quotient of a log del Pezzo surface T modulo a finite group such that

the space of smooth points of T is simply-connected (the group acting freely

outside a finite set of points of T ).

Acknowledgements. This work was started when both the authors were

visiting the Max Planck Institut für Mathematik in Bonn. We are very

much thankful to the Max Planck Institut and to Prof.F. Hirzebruch for

the financial support and hospitality.

§1. Some easy results

In this section we fix the following notations and terminology which will

be used throughout the paper.

Let S be a log del Pezzo surface as defined in the introduction. Denote

by So := S− (SingS) the smooth part of S. Let f : S̃ → S be a minimal

resolution of singularities and denote by D := f−1(Sing S) the exceptional

divisor. A divisor H on S̃ is numerically effective (nef, for short) if and only

if H · ∆ ≥ 0 for any curve ∆ on S̃. A nef divisor H is big if (H2) > 0. By a

(−n)- curve on S̃ we mean a nonsingular rational curve of self intersection

−n.
KS : canonical divisor of S.

f∗(H) : total transform of H by f.
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f ′(H) : proper transform of H by a birational morphism f.

H1 ∼ H2 : linear equivalence.

H1 ≡ H2 : numerical equivalence.

#H : the number of irreducible components of Supp H.

The dual graphs of minimal resolutions of quotient singularities are clas-

sified in [2].

Write D =
∑n

i=1Di where Di is irreducible.The first part of Lemma 1.1

below follows from the definition of a quotient singularity. The second part

is trivial and the third part follows from the ampleness of −KS (cf. [9]).

Lemma 1.1. (1) There exists a Q-coefficient divisor D∗ =
∑n

i=1 αiDi

such that 0 ≤ αi < 1 and

f∗(KS) ≡ K
S̃

+D∗.

Moreover, αj = 0 if and only if the connected component of D containing

Dj is contracted to a rational double point on S.

(2) Let p be the smallest positive integer such that pD∗ is an integral

divisor. Then pKS is a Cartier divisor and

f∗(pKS) ∼ p(K
S̃

+D∗).

(3) −(K
S̃

+D∗) is a nef and big divisor.Moreover, −(K
S̃

+D∗) ·B = 0

if and only if the support of B is contained in D.

(4) Suppose that B is an irreducible curve on S̃ with negative self

intersection. Then either B is a (−1)-curve or B ≤ D.

Proof. (1), (2), (3) are well-known results for quotient singulari-

ties.(See [9]).

(4) Suppose that B is not contained in D. Then B.K
S̃
< 0 by (3). Now

it follows from the genus formula that B is a (−1)-curve. ✷

Lemma 1.2. Let T be a normal projective surface with a finite mor-

phism ϕ : T → S which is unramified over So. Then T is a log del Pezzo

surface.

Proof. If T o = T− (Sing T ), then clearly KT o ∼ ϕ∗(KSo). This

implies that KT ∼ ϕ∗(KS). Since −KS is ample, −KT is also ample. Since
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ϕ is unramified over So, the local fundamental group of T at any point is

finite. Hence T is a log del Pezzo surface. ✷

Lemma 1.3. A log del Pezzo surface is rational.

Proof. Let f : S̃ → S be as in the beginning of this section. Then

for a suitable large integer p, −p(K
S̃

+ D∗) is a Cartier divisor linearly

equivalent to a nonzero effective divisor ∆. Hence |pK
S̃
| = φ. Now S̃ is a

ruled surface or P2.

Suppose S̃ is a ruled surface with a morphism ϕ : S̃ → B onto a smooth

projective curve B such that a general fiber of ϕ is P1.

First we consider the case where one of the irreducible components of D

maps surjectively onto B under ϕ. In this case B ≈ P1 and S̃ is rational.

Now we assume that D is contained in a union of fibers of ϕ. We have

an induced P1-fibration ϕ′ : S → B. Clearly, rank S ≥ 2. We borrow part

of the argument from the proof of Lemma 2.1. We argue by induction on

rank S.

By Kawamata’s contraction theorem [cf. 10,§ 3-2] , there is a contraction

σ : S → Y, where Y is a normal projective variety obtained by contraction

of an extremal face. If Y is a surface then rank Y < rank S and Y is a log

del Pezzo surface. By induction, Y and hence S is rational.

Suppose Y is a non-singular curve. If an irreducible curve which is a

multisection for ϕ′ is mapped to a point by σ, then that “horizontal” curve

is a rational curve and hence B is rational. Assume now that an irreducible

curve C contained in a fiber of ϕ′ is mapped to a point by σ. As C generates

an extremal ray, we see that every fiber of ϕ′ is irreducible and ϕ′ is the

contraction map. Thus Y = B.

Suppose Y is not a rational curve. Using a branched covering Z → Y

as in the proof of Case 2 in Lemma 2.1 ( using Fox’s result) with suitable

ramification divisor on Y and Lemma 1.2, we see that S1 = S ×Y Z is a

log del Pezzo surface with a P1-fibration ϕ′′ : S1 → Z. All the fibers of

ϕ′′ are reduced. Hence we can now assume that ϕ′ itself has all the fibers

reduced. Now S̃ is obtained from a minimal ruled fibration ψ : X → B by

a composition of blowing ups. Using the fact that all the fibers of ϕ′ are

reduced, we see that the contraction S̃ → X can be so chosen that we have

an induced morphism S → X. But then S = X. We have K2
S = 8(1 − g),
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where g is the genus of B. From the ampleness of KS we know that K2
S > 0.

Hence g = 0 and B is rational.

This completes the proof of Lemma 1.3. ✷

Lemma 1.4. H1(S
o,Z) is finite.

Proof. By Lemma 1.3, S̃ is rational and hence H1(S̃,Z) = 0. We

consider the long exact cohomology sequence of the pair (S̃,D)with integral

coefficients:

H2(S̃) → H2(D) → H3(S̃,D) → H3(S̃) → (0).

By Poincaré duality, H3(S̃,D) is isomorphic to H1(S
0).

The irreducible components of D give linearly independent homology

classes in H2(S̃) as the intersection matrix of D is negative definite. From

this we see that the cokernel of the map H2(S̃) → H2(D) is finite. By

Poincaré duality, H3(S̃) ∼= H1(S̃) = (0). Now the result follows. ✷

Lemma 1.5. κ(So) = −∞, where κ is the logarithmic Kodaira dimen-

sion as defined by S. Iitaka (cf. [8]).

Proof. Suppose |n(K
S̃

+D)| �= φ for some n ≥ 1. Since −n(K
S̃

+D∗)
is a nef and big Cartier divisor for some integer n >> 0, the complete linear

system |n(K
S̃

+D)− n(K
S̃

+D∗)| has dimension ≥ 1. This contradicts the

negative definiteness of the intersection matrix of D. ✷

Remark 1.6. If the Picard group of S has rank one,then M. Miyanishi

has proved the converse of Lemma 1.5 viz. in this case, if κ(So) = −∞,

then S is a log del Pezzo surface (cf. [18, Remark 1.2]). This result is false

if the rank of Pic S is bigger than one (cf. Example in §1.15).

The next result is a very useful step in the proof of the Main Theorem

of this paper.

Proposition 1.7. The algebraic fundamental group of So is finite.

Proof. We have to show that So does not have finite unramified covers

of arbitrarily large degrees.
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So, suppose that · · · → Sn → Sn−1 → · · · → S0 := S is a sequence of

finite Galois covers of S unramified over So. Let q be any singular point of

S. Then all the points in Sn lying over q are conjugate to each other under

the Galois group of Sn over S. The local fundamental groups of Sn at these

points are then mutually isomorphic and isomorphic to a subgroup of the

local fundamental group of S at q.

From this observation we see easily that the local fundamental groups of

Sn get stabilized if n >> 0 at every point of Sn over S−S0. Hence the maps

Sn → Sn−1 are unramified for large n. By Lemma 1.2 each Sn is a log del

Pezzo surface and hence rational by Lemma 1.3. But any normal projective

rational surface is simply-connected. Thus Sn → Sn−1is an isomorphism for

large n. This proves the result. ✷

In the remaining part of this section we collect together some known

results which will be used crucially in the proof of the theorem.

The following result is proved in [11, Chapter 1, §2.1.2].

Let X be a smooth projective rational surface and ∆ = ∆1 + · · ·∆r be

a reduced divisor with irreducible components ∆i.

Let m be the number of connected components of Supp(∆).

Let e(∆) = m− r+ Σi<j∆i ·∆j , which is clearly a nonnegative integer.

Lemma 1.8. dim H0(X,O(KX + ∆)) =
∑r

i=1 pa(∆i) + e(∆). Further,

H0(X,O(KX + ∆)) = 0 if and only if Supp ∆ is a normal crossing divisor

of nonsingular rational curves such that each connected component of Supp

∆ is a tree.

The following two results are proved by Madhav Nori in [16].

Lemma 1.9. Let X be a nonsingular quasi-projective surface with a

surjective morphism ϕ : X → B, where B is a nonsingular curve. Assume

that the general fiber F of ϕ is connected and each scheme-theoretic fiber of

ϕ contains a reduced irreducible component. Then the following sequence is

exact:

π1(F ) → π1(X) → π1(B) → (1).

The next result is a very useful version of Lefschetz hyperplane section

theorem.

Lemma 1.10. Let X be a nonsingular projective surface and ∆ any

effective divisor on X such that the Iitaka D-dimension κ(X,∆) ≥ 2. Let
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R ⊂ X be any proper Zariski closed subset. Then for any open neighbour-

hood U of ∆,the homomorphism π1(U −R) → π1(X −R)is surjective.

Using Lemma 1.10, we will now give an easy proof of the special case of

the Main Theorem when S is Gorenstein. This was proved earlier in [12,

13] by first classifying such surfaces.

Proposition 1.11. Let S be a Gorenstein log del Pezzo surface. Then

π1(S
o) is abelian and finite.

Proof. By Lemma 1.4, it is enough to prove that π1(S
o) is abelian. By

[4, Theorem 1, p.39],there is a non-singular elliptic curve A ∈ |−KS |. Since

−KS is ample and K
S̃

= f∗(KS),the Iitaka D-dimension κ(S̃,−K
S̃
) = 2.

Also A is disjoint from SingS as S has only rational double points. Now by

Lemma 1.10, we have a surjective map Z × Z = π1(A) → π1(S̃ −D). Thus

π1(S
o) is abelian. ✷

Remark 1.12. The proof shows that if | −KS | contains a member A

which is a rational cuspidal curve disjoint from SingS then π1(S
o) = (1)

because π1(A) = (1).

The next result follows from the well-known result of Mumford giving

the presentation of the fundamental group of the boundary of a nice tubular

neighborhood of a tree of non-singular rational curves on a smooth complex

surface. (cf. [14]).

Lemma 1.13 Let X be a non-singular projective surface and ∆ a con-

nected normal crossing divisor on X with all the irreducible components

non-singular rational curves. Assume one of the following two conditions:

(1) The dual graph of ∆ is linear and ∆ supports a divisor with positive

self-intersection.

(2) The dual graph of ∆ has exactly one branch point and the three linear

branches T1, T2, T3 such that:

(i) ∆ supports a divisor with positive self-intersection, and

(ii) the intersection form on T1 +T2 +T3 is negative definite and 1/d1 +

1/d2 + 1/d3 > 1, where di is the absolute value of the determinant of the

intersection matrix of Ti.

If U is a “nice” tubular neighborhood of ∆ in X, then π1(U − ∆) is

finite.
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We will need the following generalization of the Van-Kampen theorem

proved by P. Wagreich (cf. [17,Prop. 2.1]).

Lemma 1.14 Suppose A is a connected simplicial complex with con-

nected subcomplexes A0, A1 such that A = A0 ∪ A1, A0 ∩ A1 = B0 ∪ B1

where, Bi is a connected subcomplex of Aj for all i, j and B0 ∩B1 = φ. Let

ϕij : π1(Bi) → π1(Aj) be the map induced by the inclusion. Then π1(A)

is isomorphic to π1(A0) ∗ π1(A1) ∗ Z(u)/G where, * denotes free product

and Z(u) denotes the free group with one generator u and G is the normal

subgroup generated by the relations:

ϕ0,0(b) = ϕ0,1(b)

for all b ∈ π1(B0) and

ϕ1,0(b) = u−1ϕ1,1(b)u

for all b ∈ π1(B1).

1.15. An example

Let σ be an involution which acts diagonally and non-trivially on each

factor of the product P1 × E, where E is an elliptic curve and let T be

the quotient of this product modulo σ. Then T has only singularities of

type A1. The quotient morphism g is unramified over the smooth part of

T. It follows that the fundamental group of T − SingT is infinite. Clearly,

g∗(KT ) � KP1×E . Hence we see by projection formula that −KT is numer-

ically effective but not big. It is easy to see that T is a rational surface and

Pic T has rank > 1.

§2. Reduction to the rank one case

In this section, using Kawamata’s contraction theorem, we will show

that it is enough to prove the main theorem when Pic S ∼= Z. (Note that

since S is simply-connected, Pic S is isomorphic to Z if the rank of Pic S is

one.)

Suppose rank Pic S ≥ 2. Since KS is not nef, there is a contraction

ϕ : S → Y of an extremal ray by [10, Theorem 3.2.1]. (Note that a two-

dimensional quotient singularity is nothing but a log-terminal singularity

(cf. [9].) We have two cases:
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Case 1. Y is a surface.

In this case ϕ is birational and the exceptional divisor of ϕ is an irre-

ducible curve ∆ (cf. [10, Prop. 5.1.6]).

Lemma 2.1. Y is a log del Pezzo surface.

Proof. From [9] we know that S has at worst log-terminal singular-

ities. The proof of the Contraction Theorem shows that Y also has log-

terminal singularities, hence quotient singularities.

Clearly, ϕ∗(KS) = KY . We can write

KS = ϕ∗(KY ) + a∆ for some a ∈ Q.

We have KS · ∆ = a∆ · ∆ < 0 and ∆ · ∆ < 0 hence a > 0. Let Z ∈
NE(Y ) − {0}. By the projection formula,

(−KY )·Z = −(ϕ∗KY )·ϕ∗(Z) = −KS ·ϕ∗(Z)+a∆·ϕ∗(Z) = −KS ·ϕ∗(Z) > 0

by the ampleness of −KS . Now by Kleiman’s criterion of ampleness, −KY

is ample.

This proves that Y is a log del Pezzo surface. ✷

Now S−∆ ∼= Y −ϕ(∆), hence Y o−{one smooth point} is a Zariski-open

subset of So. This implies that we have a surjection π1(Y
o) → π1(S

o).On

the other hand, rank Pic Y < rank Pic S.

Case 2. Y is a smooth projective curve.

In this case by Lemma 1.3, Y ∼= P1.We claim that a general fiber of ϕ

is isomorphic to P1. For, if F is a general fiber of ϕ,then −KS · F > 0 and

F · F = 0. Now by the adjunction formula we see that F ∼= P1.

By restriction, we get a surjective morphism S0 → P1 whose general

fibers are P1. For any scheme-theoretic fiber F of So → P1, the g.c.d. of

the multiplicities of the irreducible components of F is called the multiplicity

of F.

Let F1, F2, · · · , Fr be all the multiple fibers of So → P1 with multiplici-

ties m1,m2, · · · ,mr bigger than one.

Suppose first r ≥ 3. Then by the solution of Fenchel’s conjecture due to

R. Fox, there is a finite Galois morphism B → Y such that for any point
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in B lying over ϕ(Fi), the ramification index is mi (cf. [3,5]). By usual

arguments, the normalization T o of So ×Y B in its function field is an étale

covering of So. The normalization of S in the function field of T o is therefore

a log del Pezzo surface T by Lemma 1.2. By Lemma 1.3, T is rational and

hence B ∼= P1. The morphism T o → B has no fibers of multiplicity> 1

and has P1 as a general fiber. Then by Lemma 1.9 we have a surjection

π1(F ) → π1(T
o) for a general fiber F of T o → B.

Hence T o is simply connected and hence π1(S
o) is finite.

Suppose r ≤ 2.

If r = 2, let F1, F2 be the multiple fibers with multiplicities m1,m2 and

d = g.c.d.(m1,m2). We consider the cyclic d−fold covering B → Y ramified

precisely over ϕ(F1) and ϕ(F2) with ramification index d. Then we work

with the normalization of So×Y B exactly as above and complete the proof.

In case r = 1 we get a surjection π1(F ) → π1(S
0). This follows by

applying Lemma 1.9 to the fibration outside the multiple fiber.

This completes the proof of the Main Theorem when there is a Mori-

Kawamata contraction of fiber type.

For future use, we state the following result whose proof is completely

similar to the proof in Case 2 above.

Lemma 2.2. Let Y be a log del Pezzo surface with a morphism ϕ :

Y 0 → P1. Assume that a general fiber of ϕ is isomorphic to either C or C∗.
Then π1(Y − SingY ) is finite.

Combining the arguments in Cases 1 and 2, by a repeated application

of contractions of extremal rays we reduce the proof of the main theorem

to the case when Pic S ∼= Z.

§3. Some analysis of the rank one case

In this section we give a somewhat detailed description of rank one log

del Pezzo surfaces.

So let S be a log del Pezzo surface of rank one. We use the notation

introduced in the beginning of §1. Let p be the smallest positive integer such

that pD∗ is an integral divisor.Then for every curve B on S̃ not contained

in D, −(K
S̃

+ D∗) · B ∈ 1
pN = {n/p|n ∈ N} (cf. Lemma 1.1). Here, N

denotes the set of non-negative integers. From this we obtain the following:



148 R. V. Gurjar and D.-Q. Zhang

Definition and Lemma 3.1. (1) There exists an irreducible curve C

on S̃ such that −(K
S̃

+D∗) · C attains the smallest positive value. Such a

curve satisfies C2 ≥ −1 (cf. Lemma 1.1,(4)).

(2) A curve C as in (1) above is called minimal.

For the time being, we fix the curve C of Lemma 3.1. We shall treat the

two cases |K
S̃

+ C +D| �= φ, |K
S̃

+ C +D| = φ separately.

§3.1 The case |K
S̃

+ C +D| �= φ

In this subsection, we always assume |K
S̃

+ C +D| �= φ.

Lemma 3.2 (cf. [18, Lemma 2.1]). Let C be as in Lemma 3.1.Suppose

|C +D +K
S̃
| �= φ. Then there exists a unique decomposition D = D′ +D′′

such that:

(1) K
S̃

+ C +D′′ ∼ 0,

(2) D′ is disjoint from C ∪D′′ and consists of (−2)-curves; hence D′ is

contracted to rational double points on S.

Remark 3.3. Write C̃ := f∗f∗(C) = C +G.As Pic S ∼= Z, C +G is a

nef and big divisor and G is an effective divisor with support contained in

D′′. In particular, the Iitaka D-dimension κ(S̃, C +D′′) = 2.

Remark 3.4. We can divide the case |C + D + K
S̃
| �= φ into the

following subcases:

Case (I-1) D′′ = 0. Then S is a log del Pezzo surface with only rational

double points. By Proposition 1.11, π1(S
o) is finite abelian.

In the following subcases, assume that D′′ �= 0. Now from K
S̃
+C+D′′ ∼

0 and by applying Lemma 1.8 to any proper subset of C ∪D′′ we see that

each irreducible component of C ∪D′′ is isomorphic to P1.

Case (I-2) D′′ �= 0 and C + D is a divisor with only simple normal

crossings. By Lemmas 1.8 and 3.2, there is a loop ∆ of nonsingular rational

curves contained in C+D′′and we have |K
S̃
+∆| �= φ.Now K

S̃
+C+D′′ ∼ 0

implies that ∆ = C + D′′ and C + D′′ is a simple loop of nonsingular

rational curves, i.e., each irreducible curve in C + D′′ meets exactly two

other irreducible components of C +D′′.
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Case (I-3) D′′ �= 0 and (C2) ≥ 0. This case can be reduced to the

case(I-2) above by replacing C with a new irreducible curve linearly equiv-

alent to C. Indeed, by the Riemann-Roch theorem, the Serre duality and

the genus formula, we have:

dim|C| = h1(S̃,O(C)) +
1

2
(C,C −K

S̃
) ≥ 1.

Then |C| has no base points (as C ∼= P1 and S̃ is rational). Choose C ′ ∈ |C|
such that C ′ +D has only simple normal crossings. Then−(K

S̃
+D∗) · C ′

attains the smallest positive value and |K
S̃

+ C ′ +D| �= φ.

Case (I-4) D′′ �= 0, (C2) ≤ −1 and C + D is not a divisor with only

simple normal crossings. Then C is a (−1)-curve by Lemma 3.1 and the

arguments as in Case (I-2) shows that one of the following two cases occurs.

Case (I-4a) D′′ is an irreducible curve such that C ·D′′ = 2 and C∩D′′

is a single point.By Remark 3.3, the intersection matrix of C +D′′ has one

positive eigenvalue and hence (D′′)2 = −2 or −3.

Case (I-4b) D′′ consists of two irreducible components D′′
1 , D

′′
2 such

that C · D′′
1 = C · D′′

2 = 1 and C ∩ D′′
1 ∩ D′′

2 consists of a single point.By

the same reasoning as in Case (I-4a), we have ((D′′
1)2, (D′′

2)2) = (−2,−2),

(−2,−3), (−2,−4) after interchanging the subscripts of D′′
i , if necessary.

§3.2 The Case |K
S̃

+ C +D| = φ

In this section we always assume that |K
S̃

+ C + D| = φ. First of all,

by Lemma 1.8, we have the following:

Lemma 3.5. C+D has only simple normal crossings, consists of non-

singular rational curves and has a disjoint union of trees as the dual graph.

We need the following results from [18].

Proposition 3.6 (cf. the proof of [18, Lemma 2.2]). Let C be as in

Lemma 3.1. Suppose |C +D +K
S̃
| = φ. Then either C is a (−1)-curve or

S is P2 or S is the Hirzebruch surface with the minimal section contracted.

In the latter cases, So is simply connected.
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From now on till the end of the present section, we assume always that

C is a (−1)-curve.

Lemma 3.7 (cf. [18, Lemma 4.1]). Let D1, · · · , Dr exhaust all irre-

ducible components of D with (C,Di) > 0. Suppose (D2
1) ≥ · · · ≥ (D2

r).

Then {−(D2
1), · · · ,−(D2

r)}is one of the following:

{2a, n}(n ≥ 2), {2a, 3, 3}, {2a, 3, 4}, {2a, 3, 5}

where 2a signifies that 2 is repeated a-times.

Lemma 3.8 (1) Suppose C meets exactly one irreducible component

D0 of D. Then (D2
0) = −2.

(2) C meets at least one component of D.

Proof. (1) Suppose (D2
0) ≤ −3. Then C +D is contractible to quo-

tient singularities. This leads to 1 + #(D) = ρ(S̃) ≥ 1 + #(C +D), the last

inequality holds because the intersection form on the Neron-Severi group of

S̃ has one positive eigenvalue. This is a contradiction.

(2) can be similarly verified. ✷

Lemma 3.9 (cf. [18, Lemma 4.4]). Suppose C meets exactly two irre-

ducible components D0, D1 of D. Then (D2
i ) = −2 for i = 0 or 1.

Lemma 3.10 (cf. [18, Lemma 4.3]). Assume that one of the following

cases takes place:

(1) C meets only one irreducible component D0 of D.

(2) C meets exactly two irreducible components D0, D1 of D, and (D2
1) ≤

−3.

Let σ : S̃ → T̃ be the blowing-down of the (−1)-curve C, let E =

σ(D0)and let B = σ(D − D0). Then there exists a log del Pezzo surface

T of Picard number one and there exists a birational morphism g : T̃ → T

such that g is a minimal resolution and B = g−1(SingT ).

Remark 3.11. Let D1, · · · , Dr be all irreducible components of D with

(C,Di) > 0 (hence (C,Di) = 1 by Lemma 3.5). Suppose (D2
1) ≥ · · · ≥ (D2

r).

By virtue of Lemmas 3.5, 3.7, 3.8 and 3.9, in the case where C is a (−1)-

curve, we can divide into the following cases:
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Case (II-1) r ≥ 2 and (D2
1) = (D2

2) = −2.

Case (II-2) r = 1 and (D2
1) = −2.

Case (II-3) r = 3 and {(D2
1), (D

2
2), (D

2
3)} = {−2,−3,−3}, {−2,−3,−4}

or {−2,−3,−5}.
Case (II-4) r = 2 and (D2

1) = −2, (D2
2) ≤ −3.

We shall consider these cases separately in §5, §6 and part II.

As remarked in the Introduction, Cases (II-3), (II-4) are “3-component

case” and “2-component case” respectively.

In §6 and part II we shall be tacitly using the following useful result

very often for estimating the coefficients of irreducible components in D∗.
(For the proof, cf. [18, Lemma 1.7]). Write D = Σn

i=1Di.

Lemma 3.12 Let {B1, ··, Br}(1 ≤ r ≤ n) be a subset of {D1, · · Dn},
say Bi = Di(1 ≤ i ≤ r). Assign formally the numbers B2

i and Bi · KS̃
to

Bi so that D2
i ≤ B2

i ≤ −2 and Bi ·KS̃
:= −2 −B2

i . Write D∗ = Σn
i=1αiDi.

Define rational numbers b1, · · ·, br by the conditions

Bj · (KS̃
+ Σr

i=1biBi) = 0 (j = 1, · · ·, r),

where Bi ·Bj := Di ·Dj if i �= j.

Then αi ≥ bi ≥ 0 (i = 1, · · · , r). Taking r = 1, we obtain αi ≥ 1 + 2/D2
i .

§4. The proof of the main theorem when |K
S̃

+ C +D| �= φ

In this section we prove the Main Theorem stated in the introduction

under the assumption that |K
S̃

+ C +D| �= φ.

By the discussion in Remark 3.4, we need only to consider the cases

(I-2), (I-4a) and (I-4b).

First we dispose of the cases (I-4a) and (I-4b).

Consider the case (I-4a). By two blowing-ups we get a smooth projec-

tive surface X with a morphism g : X → S̃ such that the total transform

B of C ∪ D′′ is a divisor with simple normal crossings and has four irre-

ducible components with a (−1)-curve B0 meeting the three other compo-

nents B1, B2, B3. Further, B2
1 = −2, B2

2 = −3, B2
3 = −4 or −5.

Let U be a small nice tubular neighbourhood of B0 ∪ B1 ∪ B2 ∪ B3

in X. Then Mumford’s result in [14] shows that π1(∂U) has the following
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presentation:

< e0, e1, e2, e3|e21 = e32 = e�3 = e0, e1e2e3 = e0 >,

where 1 = 4 or 5.

It is well known that π1(∂U) is then a finite group (cf. [2]). On the

other hand, the intersection matrix of B0 +B1 +B2 +B3 has one positive

eigenvalue. Hence by Lemma 1.10, we have a surjection

π1(U −B0 ∪B1 ∪B2 ∪B3) → π1(X − g−1(C ∪D)).

We have also a surjection π1(S̃ −C ∪D) → π1(S̃ −D). Now it follows from

π1(X − g−1(C ∪D)) ∼= π1(S̃ − C ∪D) that π1(S̃ −D) is finite.

The proof for the case (I-4b) is completely similar.

Now we consider the case (I-2). Then C +D′′ has simple normal cross-

ings, the dual graph of C + D′′ is a simple loop of smooth rational curves

and D′ = D −D′′ is disjoint from C +D′′.
Let U0 be a small nice tubular neighbourhood of D′′ in S̃ and U1 that

of C in S̃.

We can write (U0 −D) ∩ (U1 −D) as a disjoint union N0 ∪ N1, where

each Ni is homeomorphic to ∆∗ × ∆, where

∆ = {z ∈ C||z| < 1} ,∆∗ = ∆ − {0}.

Let D1, D2 be the irreducible components of D′′ meeting C (D1 = D2

in case D′′ is irreducible). By Mumford’s presentation for π1(∂U0), we see

immediately that “the” loop γ1 in N0 around, say D1 generates π1(∂U0).

Similarly, the loop γ2 in N1 around D2 generates π1(∂U0). We can assume

that γ1 is a small loop in C around one point in C ∩D′′ and γ2 a small loop

in C around the other point in C ∩D′′. In π1(C −D), we have γ1 · γ2 = 1.

Further, π1(U1 −D) ∼= Z generated by γ1.

Now we use Lemma 1.14.

We apply this to the space A = (U0 −D) ∪ (U1 −D) with A0 = U0 −
D,A1 = U1 − D. Since D′′ is contracted to a quotient singularity on S,

π1(U0−D) is a cyclic finite group.Then π1(U0∪U1−D) has the presentation:

π1(U0 −D) ∗ π1(U1 −D) ∗ Z(u)
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with relations

γ1 = g0, g
n
0 = u−1γ−1

1 u

where g0 is the generator of π1(U0 −D) given by γ1 and gn0 the generator

of π1(U0 −D) given by γ2.

It follows that we have an exact sequence

(1) → π1(U0 −D) → π1(U0 ∪ U1 −D) → Z → (1).

The intersection matrix of C +D has one positive eigenvalue. Hence by

Lemma 1.10, we have a surjection

π1(U0 ∪ U1 −D) → π1(S
o).

Let K be the kernel of this homomorphism. Then we get an isomorphism

π1(U0 ∪ U1 −D)/(π1(U0 −D) ·K) ∼= Z/(a)

for some a ≥ 0, i.e.,

π1(S
o)/(π1(U0 −D) ·K/K) ∼= Z/(a)

The group (π1(U0 −D) ·K/K) is clearly finite.

Now by Proposition 1.7, π1(S
o) does not have normal subgroups of ar-

bitrarily large indices. It follows that π1(S
o) is finite.

§5. The proof of the main theorem in the cases (II-1) and (II-2)

We consider the case (II-1) or (II-2) in Remark 3.11. We shall employ

the notation there. First of all, we have the following Theorem 5.1 which is

a consequence of §4 , Theorem 5.2 below and Lemma 2.2.

Theorem 5.1. Assume the case (II-1) of Remark 3.11 takes place.

Then π1(S
o) is a finite group.

Theorem 5.2 (cf. [18, Theorem 5.1]). Assume the case (II-1) of Re-

mark 3.11 takes place. Then one of the following cases occurs:

(1) So is affine-ruled.

(2) There is an irreducible curve C ′ such that −C ′ · (K
S̃

+D∗) = −C ·
(K

S̃
+D∗) while |C ′ +D +K

S̃
| �= φ.
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(3) C +D has the configuration given in [18, Picture10]. In particular,

there exists a P1-fibration ϕ = Φ|2C+D1+D2| : S̃ → P1 and there are two

irreducible components D3, D4 of D such that D − D3 − D4 are contained

in fibers and D3 and D4 are cross-sections. Hence the restriction morphism

ϕ|So : So → P1 is a C∗-fibration.

Next we consider the case(II-2) of Remark 3.11. We employ the following

notations. Let ∆ be the connected component of D containing D1. Then

either ∆ is a linear chain, or exceptional divisor of a minimal resolution of

a quotient singularity (i.e. a “fork”) with a central component R and three

twigs Ti’s, i.e., ∆ = R+ T1 + T2 + T3. (For the definitions of fork, twig, tip,

see [20 , Chapter 1]).

Remark 5.3. Denote by di = d(Ti) the absolute value of the de-

terminant of the intersection matrix of Ti. Suppose d1 ≤ d2 ≤ d3. Then

{d1, d2, d3} is one of the following: {2, 2, n}, {2, 3, 3}, {2, 3, 4}, {2, 3, 5}. In

particular,
∑ 1

di
> 1.

Now we shall prove the following Theorem 5.4.

Theorem 5.4. Assume that the case(II-2) of Remark 3.11 takes place.

Then π1(S
o) is a finite group.

Proof. Let ∆ be the connected component ofD such that C meets the

irreducible component D1 of ∆. Let U be a small tubular neighborhood of

C∪∆ in S̃. As S has rank 1, C+∆ supports an effective divisor with strictly

positive self-intersection. By Lemma 1.10 we have a surjection π1(U−∆) →
π1(S

o). We can write U as a union U1 ∪ U2, where U1 is a small tubular

neighborhood of ∆ and U2 that of C. Then U−∆ = (U1−∆)∪(U2−D1) and

(U1−∆)∩(U2−D1) is homeomorphic to B∗×B, where B = {z ∈ C||z| < 1}
and B∗ = B − {0}. Since U2 −D1 is a disc bundle over A1, we see by Van-

Kampen theorem that π1(U − ∆) is a homomorphic image of π1(U1 − ∆).

As ∆ contracts to a quotient singularity, π1(U1 − ∆) is finite and hence so

is π1(S
o). ✷

§6. The proof of the main theorem in the case (II-3)

In the present section, we consider the case (II-3) in Remark 3.11. So,

the (−1)-curve C meets exactly three irreducible components D1, D2, D3 of
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D and D2
1 = −2, D2

2 = −3, D2
3 = −3,−4,−5. Let ∆i (i = 1, 2, 3) be the

connected component of D containing Di. Since |K + C + D| = φ in our

case,C + ∆1 + ∆2 + ∆3 is a tree of P1’s(cf. Lemma 3.5).

We shall prove the following Theorem 6.1 which is a consequence of

Lemma 6.5, Theorems 6.12, 6.14 and 6.15.

Theorem 6.1. Suppose that the case(II-3) in Remark 3.11 occurs.

Then either π1(S
o) is finite or there is a minimal (-1)-curve E on S̃ such

that Case (II-4) in Remark 3.11, with C replaced by E, takes place.

First of all, we quote the following lemma from [18 , Lemma 2.3]).

Lemma 6.2. Suppose the case(II-3) occurs. Then either G(:= K
S̃

+

2C +D1 +D2 +D3) ∼ 0, or there exists a (−1)-curve Γ such that G ∼ Γ

and Γ ∩ (C +D1 +D2 +D2) = φ.

Lemma 6.3. Suppose K
S̃

+ 2C + D1 + D2 + D3 ∼ 0. Then Di is an

isolated irreducible component of D for i = 1, 2 and 3.

Proof. Suppose to the contrary that Di is not an isolated irreducible

component of D for some i. Then Di meets an irreducible component Bi of

D − Di.This leads to 0 = Bi.(KS̃
+ 2C + D1 + D2 + D3) ≥ Bi.Di > 0, a

contradiction. ✷

Remark 6.4. In fact, the converse of Lemma 6.3 is also true. Namely,

assume that Di is isolated for i = 1, 2 and 3. Then G(:= K
S̃

+ 2C +D1 +

D2 +D3) ∼ 0.

Lemma 6.5. Suppose that for i = 1, 2 and 3, Di is an isolated irre-

ducible component of D, i.e., ∆i = Di. Then π1(S
o) is a finite group.

Proof. We use D2
1 = −2, D2

2 = −3, D2
3 = −3,−4 or −5 and Lemmas

1.10 and 1.13. ✷

In view of Lemma 6.5, we may assume, from now on till the end of the

section, that Di is not an isolated irreducible component for i = 1, 2 or 3.

Therefore, K
S̃

+ 2C +D1 +D2 +D3 ∼ Γ by Lemma 6.3.

Lemma 6.6. (1) There are no (−n)-curves in D−D2−D3 with n ≥ 4

and there are at most two (−3)-curves in D −D2 −D3.
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(2) Each connected component of D contains at most one (−n)-curve

with n ≥ 3. In particular, ∆i −Di consists of (−2)-curves for i = 2 and 3,

and ∆1 consists of (−2)-curves and possibly one (−3)-curve.

Proof. (1) Let Bi (i = 1, · · · , s) be all (−ni)-curves in D−D1−D2−
D3 with ni ≥ 3. Note that D∗ ≥ ∑

i(ni − 2)/niBi, and by Lemma 1.1, 0 <

−Γ.(K
S̃
+D∗) = 1−Γ.D∗ ≤ 1−∑

i(ni−2)/niΓ.Bi ≤ 1−∑
i(ni−2)/niKS̃

.Bi

= 1−∑
i(ni − 2)2/ni (cf. Lemma 6.2). Then the assertion (1) follows from

this observation.

(2) Let ∆ be a connected component of D. Suppose to the contrary that

∆ contains two irreducible components of self intersection number ≤ −3.

Take a linear chain G = G1 + · · · + Gt (t ≥ 2) in ∆ such that G2
1 ≤

−3, G2
t ≤ −3, Gi.Gi+1 = 1 (i = 1, · · · , t − 1). Then D∗ ≥ 1/2

∑
iGi.Note

that 0 < −Γ.(K
S̃

+D∗) ≤ 1 − 1/2
∑

i Γ.Gi. So, Γ.
∑

iGi = 0, 1.

If ∆ �= ∆i for i = 2 and 3, then for k = 1 and t we have Γ.Gk ≥ K
S̃
.Gk ≥

1 (cf. Lemma 6.2). So, Γ.
∑

iGi ≥ 2. This is a contradiction.

Suppose ∆ = ∆i for i = 2 or 3. We may assume that G1 = Di. If

t = 2, then Γ.G2 ≥ (K
S̃

+ Di).G2 ≥ 2, a contradiction. If t ≥ 3, then

Γ.(G2 +Gt) ≥ (K
S̃

+Di).(G2 +Gt) ≥ 2, a contradiction. ✷

Now the following lemma follows from Lemmas 6.2 and 6.6.

Lemma 6.7. Let B be an irreducible component of D. Then B.Γ > 0

if and only if one of the following cases occurs:

(1) B.Di = 1 for i = 1, 2 or 3, B2 = −2 and B.Γ = 1.

(2) B.D1 = 1, B2 = −3 and B.Γ = 2.

(3) B ≤ ∆1, B.D1 = 0, B2 = −3 and B.Γ = 1.

(4) B is contained in a connected component ∆ of D other than ∆i

(i = 1, 2, 3), B2 = −3, ∆ − B = 0 or consists of only (−2)-curves, and

B.Γ = 1.

Lemma 6.8. K2
S̃

= 2 +D2
3.

Proof. Use Lemma 6.2. ✷

Lemma 6.9. (1) For i = 2 or 3, ∆i is a linear chain with Di as a

tip.
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(2) Suppose that D2
3 ≤ −4. Then for both i = 2 and 3, ∆i is a linear

chain with Di as a tip.

(3) Suppose that ∆i is a fork for i = 2 or 3. Then Di is a tip.

(4) If ∆1 is a fork, then ∆1 consists of (−2)-curves.

Proof. (1) Suppose to the contrary that for both i = 2 and 3, either

∆i is a fork or ∆i is a linear chain but Di is not a tip. Then D∗ ≥ 1/2D2 +

1/2D3. This leads to 0 < −C.(K
S̃

+D∗) ≤ 1 − C.(1/2D2 + 1/2D3) = 0, a

contradiction.

(2) Assume D2
3 ≤ −4. Suppose that (2) is not true for i = 2 (resp.

i = 3). Then D∗ ≥ 1/2D2 + 1/2D3(resp. D∗ ≥ 1/3D2 + 2/3D3). We reach

a contradiction as in (1). So, (2) is true.

(3) Suppose that ∆i is a fork but Di is not a tip for i = 2 or 3. Then

D∗ ≥ 2/3Di + 1/3Dj where {i, j} = {2, 3} as sets.We reach a contradiction

as in (1).

(4) Suppose that ∆1 is fork but does not consist of (−2)-curves. Then

∆1 contains a (−3)-curve B and ∆1−B consists of (−2)-curves (cf. Lemma

6.6). Note that D∗ ≥ 1/2B.

Case(1) B is adjacent to D1. Then Γ.B = 2 by Lemma 6.7. This leads

to 0 < −Γ.(K
S̃

+ D∗) ≤ 1 − Γ.(1/2B) ≤ 0, a contradiction. So, B is not

adjacent to D1.

Let B1, B2, · · · , Bs be all irreducible components of ∆1 adjacent to D1.

Then Γ.Bi = Γ.B = 1 by Lemma 6.7.

Case(2) D1 is the central component. Then s = 3 and D∗ ≥ 1/2B +

1/2D1+1/2Bi+1/4Bj +1/4Bk,where {i, j, k} = {1, 2, 3} as sets and Bi and

B are contained in one and the same twig of ∆1. This leads to 0 < −Γ.(K
S̃
+

D∗) ≤ 1−Γ.(1/2B+ 1/2Bi + 1/4Bj + 1/4Bk) = −1/2, a contradiction. So,

D1 is not the central component of ∆1.

Case(3) B is the central component of ∆1. So, D1 is contained in a

twig T1 of ∆1. Let G = G1 + · · · + Gt (t ≥ 2) be a linear chain in T1 + B

such that G1 = D1, Gi.Gi+1 = 1(i = 1, · · · , t − 1), Gt = B. Then D∗ ≥∑t
i=1 i/(t + 1)Gi. Note that G2 = Bj for j = 1, · · · , s − 1 or s. This leads

to 0 < −Γ.(K
S̃

+ D∗) ≤ 1 − Γ.(2/(t + 1)Bj + t/(t + 1)B) = −1/(t + 1), a

contradiction. So, B is not the central component of ∆1.

Since the above cases (2) and (3) are impossible, D1 and B are all

contained in twigs of ∆1. We shall see in the cases (4) and (5) below that

this again leads to a contradiction.
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Case(4) D1 and B are in one and the same twig of ∆1. Let G = G1 +

· · ·+Gt (t ≥ 2) be a linear chain in the twig such that G1 = D1, Gi.Gi+1 =

1(i = 1, · · · , t − 1), Gt = B. Note that G2 = Bj for j = 1, · · · , s − 1 or

s. If the distance from D1 to the central component of ∆1 is shorter than

that from B to the central component, then D∗ ≥ ∑
i 1/2Gi. This leads

to 0 < −Γ.(K
S̃

+ D∗) ≤ 1 − Γ.(1/2B + 1/2Bj) = 0, a contradiction. If

the distance from D1 to the central component of ∆1 is longer than that

from B to the central component, then D∗ ≥ ∑
i i/(t + 1)Gi. This leads

to 0 < −Γ.(K
S̃

+ D∗) ≤ 1 − Γ.(2/(t + 1)Bj + t/(t + 1)B) = −1/(t + 1), a

contradiction. So, Case(4) is impossible.

Case(5) D1 and B are contained in two different twigs T1, T2 of ∆1. Let

R be the central component of ∆1. Let G = G1 + · · ·+Gt(t ≥ 2) be a linear

chain in T1 + R such that G1 = D1, Gi.Gi+1 = 1(i = 1, · · · , t − 1), Gt = R.

Then G2 = Bj for j = 1, · · · , s− 1 or s.

Case(5.a) T2 has more than two irreducible components.Then T1 = D1

because ∆1 is contractible to a quotient singularity, and R = Bj for j =

1, · · · , s − 1 or s. This leads to D∗ ≥ 1/2B + 1/2Bj + 1/4D1 and 0 <

−Γ.(K
S̃

+D∗) ≤ 1 − Γ.(1/2B + 1/2Bj) = 0, a contradiction. So, Case(5.a)

is impossible.

Case(5.b) T2 = B. Then D∗ ≥ (t+ 2)/(t+ 6)B +
∑

i 2i/(t+ 6)Gi. This

leads to 0 < −Γ.(K
S̃

+D∗) ≤ 1 − Γ.((t+ 2)/(t+ 6)B + 4/(t+ 6)Bj) = 0, a

contradiction. So, Case(5.b) is impossible.

Case(5.c) T2 = B+B′ where B′ is adjacent to R. Then t = 2, 3 because

∆1 is contractible to a quotient singularity. Moreover, D∗ ≥ 4/(10 − t)B +

(2+ t)/(10− t)B′+
∑

i 2i/(10− t)Gi. This implies that 0 < −Γ.(K
S̃

+D∗) ≤
1 − Γ.(4/(10 − t)B + 4/(10 − t)Bj) = (2 − t)/(10 − t) ≤ 0, a contradiction.

So, Case(5.c) is impossible.

Case(5.d) T2 = B + B′ where B is adjacent to R. Then we have also

D∗ ≥ (t+ 2)/(t+ 10)B′ + 2(t+ 2)/(t+ 10)B +
∑

i 4i/(t+ 10)Gi. We reach

0 < −Γ.(K
S̃

+ D∗) ≤ 1 − Γ.(2(t + 2)/(t + 10)B + 8/(t + 10)Bj) = −(t +

2)/(t+ 10) < 0, a contradiction. So, Case(5.d) is impossible.

This proves Lemma 6.9. ✷

Lemma 6.10. Assume that ∆1 does not consist of (−2)-curves. Then

for both i = 2 and 3, ∆i is a linear chain with Di as a tip.

Proof. Suppose Lemma 6.10 is false. Then for k = 2 or 3, either ∆k
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is a fork or ∆k is a linear chain but Dk is not a tip. Decompose D∗ into

the form: D∗ =
∑3

i=1 ∆∗
i + D′∗ such that Supp ∆∗

i ⊆ ∆i and Supp D′∗ ⊆
D′ := D − ∑3

i=1 ∆i. On the one hand, we have 0 < 1 − Γ.
∑

i ∆
∗
i − Γ.D′∗.

On the other hand,we shall show that Γ.∆∗
1 ≥ 1/2 and Γ.∆∗

k ≥ 1/2. Thus,

we would reach a contradiction and therefore prove Lemma 6.10.

Let B1, · · · , Bs be anew all irreducible components of ∆k adjacent to

Dk. Then Γ.Bi = 1 (cf. Lemmas 6.6 and 6.7). If s ≥ 2, then ∆∗
k ≥ 1/2Dk +

1/4
∑

iBi and Γ.∆∗
k ≥ 1/2. If s = 1 then, by the additional assumption, ∆k

is a fork with Dk as a tip. Therefore, ∆∗
k ≥ 1/2Dk+1/2B1 and Γ.∆∗

k ≥ 1/2.

Let B1, · · · , Bs be all irreducible components of ∆1 adjacent to D1. If

B2
i ≤ −3 for some i, then ∆∗

1 ≥ 1/5D1 +2/5Bi. This leads to Γ.∆∗
1 ≥ 4/5 >

1/2 because B2
i = −3 and Γ.Bi = 2 (cf. Lemmas 6.6 and 6.7).Suppose that

B2
i = −2 for all i. By the hypothesis, ∆1 −

∑
iBi contains a (−3)curve B

(cf. Lemma 6.6).Let G := G1 + · · · + Gt (t ≥ 3) be a linear chain in ∆1

such that G1 = D1, G2 = B1 and Gt = B. Then ∆∗
1 ≥ ∑

i i/(2t+ 1)Gi.This

leads to Γ.∆∗
1 ≥ Γ.(2/(2t+ 1)B1 + t/(2t+ 1)B) = (t+ 2)/(2t+ 1) > 1/2 (cf.

Lemma 6.7).

This proves Lemma 6.10. ✷

Lemma 6.11. Assume that ∆1 is a linear chain but D1 is not a tip of

∆1. Then ∆1 consists of (−2)-curves.

Proof. Suppose Lemma 6.11 is false. Then by Lemma 6.10, ∆2,∆3

are linear with D2, D3 as tips. Then ∆1 contains a (−3)-curve B and ∆1−B
consists of (−2)-curves (cf. Lemma 6.6). By the hypothesis, D1 meets two

irreducible components B1, B2 of ∆1.

Claim(1). B is not adjacent to D1.

If B is adjacent to D1, say B = B2, then D∗ ≥ 3/7B + 2/7D1 + 1/7B1.

By Lemma 6.7, Γ.B = 2 and Γ.B1 = 1. This leads to 0 < −Γ.(K
S̃

+D∗) ≤
1 − Γ.(3/7B + 1/7B1) = 0, a contradiction. This proves Claim(1).

By Claim(1), B2
1 = B2

2 = −2. Let S0 := 2(C + D1) + B1 + B2 and let

ϕ : S̃ → P1 be the P1-fibration with S0 as a singular fiber. Then D2 and D3

are 2-sections of ϕ. Let S1 be an arbitray singular fiber, let Ei(i = 1, · · · , s)
be all (−1)-curves in S1 and let ai be the coefficient of Ei in S1. By the

minimality of −C.(K
S̃

+ D∗) and by noting that C has coefficient two in

S0, we see that
∑

i ai = 2 and for all i, −Ei.(KS̃
+D∗) = −C.(K

S̃
+D∗).
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Thus S1 has one of the following two dual graphs:

(1) (−1) − (−2) − (−2) − · · · − (−2) − (−2) − (−2),

(2) (−1) − (−2) − (−2) − · · · − (−2) − (−2) − (−1),

where in the first (resp. second) graph S1 has three or more(resp. two or

more) irreducible components. So, no singular fiber contains a (−n)-curve

with n ≥ 3. In particular, B must be adjacent to B1 or B2, say B2, and B

is a cross-section of ϕ.

Claim(2). ∆1 = B1 +D1 +B2 +B. In particular,D∗ = 1/9B1 +2/9D1 +

3/9B2 +4/9B+
∑3

i=2 ∆∗
i +D′∗ where Supp ∆∗

i ⊆ ∆i and Supp D′∗ ⊆ D′ :=

D −∑3
i=1 ∆i.

Claim(2) is equivalent to saying that B1 and B are tips. If B1 is not

a tip then D∗ ≥ 2/11B1 + 3/11D1 + 4/11B2 + 5/11B. This leads to 0 <

−Γ.(K
S̃

+D∗) ≤ 1−Γ.(2/11B1 + 4/11B2 + 5/11B) = 0 (cf. Lemma 6.7), a

contradiction.If B is not a tip, then D∗ ≥ 1/7B1 + 2/7D1 + 3/7B2 + 4/7B.

This leads to 0 < −Γ.(K
S̃

+D∗) ≤ 1− Γ.(1/7B1 + 3/7B2 + 4/7B) = −1/7,

again a contradiction. This proves Claim(2).

Claim(3). (1) For both i = 2 and 3, ∆i is a linear chain with Di as a

tip. (cf. Lemma 6.10.)

(2) For i = 2 or 3, ∆i = Di.

If for both i = 2 and 3, ∆i > Di, then D∗ ≥ 2/9D1 + 2/5D2 + 2/5D3.

This leads to 0 < −C.(K
S̃

+ D∗) ≤ 1 − C.(2/9D1 + 2/5D2 + 2/5D3) =

−1/45 < 0, a contradiction. This proves (2). Thus, Claim(3) is proved.

Since B,D2, D3 are not contained in fibers of ϕ and since ρ(S) = 1,

there are two singular fibers S1, S2 of ϕ each of which has the second type

of the above picture. By Claim(3), both 2-sections D2 and D3 meet only

(−1)-curves of Si for i = 1 or 2, say i = 1. Let E1, E2 be two (−1)-curves

in S1. Note that the cross-section B meets E1 or E2. Thus, 5 = (B +D2 +

D3).S1 = (B + D2 + D3).(E1 + E2). Thus, (B + D2 + D3).Ek ≥ 3 for

k = 1 or 2. This, together with D∗ ≥ 4/9B + 1/3D2 + 1/3D3, implies that

0 < −Ek.(KS̃
+D∗) ≤ 1−Ek.(4/9B+1/3D2 +1/3D3) ≤ 0, a contradiction.

This proves Lemma 6.11. ✷

Now we shall prove the following
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Theorem 6.12. Suppose that either ∆1 is a fork, or ∆1 is a linear

chain but D1 is not a tip of ∆1. Then we reduce to the case in §3.1 with C

replaced by a new minimal (-1)-curve.

Proof. By the assumption, ∆1 consists of only(−2)-curves (cf. Lem-

mas 6.9 and 6.11). So, there are irreducible components B1, · · · , Br (r ≥ 3)

of ∆1 such that B1 = D1, Bi.Bi+1 = Br−2.Br = 1(i = 1, · · · , r − 2) and

S0 := 2(C +
∑r−2

i=1 Bi) + Br−1 + Br has the first type of the picture in

Lemma 6.11.We see that r = 3 if ∆1 is a linear chain or a fork with D1 as

the central component.

Let ϕ : S̃ → P1 be the P1-fibration with S0 as a singular fiber. Then

D2 and D3 are 2-sections of ϕ. By the same reasoning as in Lemma 6.11,

every singular fiber of ϕ has one of two types in Lemma 6.11. Moreover,

−E.(K
S̃

+D∗) = −C.(K
S̃

+D∗) for every (−1)-curve E in a singular fiber

of ϕ. Let S0, S1, · · · , Ss (resp. T1, · · · , Tt) be all singular fibers of the first

(resp. second) type in Lemma 6.11. Then those s + t + 1 ones are all

singular fibers of ϕ. Let Ei (resp. Ej1, Ej2) be the(−1)-curve(s) in Si (resp.

Tj). Let Gim, Hjn be irreducible components of D. We can write Si, Tj in

the following forms:

Si = 2(Ei +
si−2∑
k=1

Gi,k) +Gi,si−1 +Gi,si ,

Tj = Ej1 +

tj∑
k=1

Hj,k + Ej2,

where E0 = C,Ei.Gi,1 = Gi,k.Gi,k+1 = Gi,si−2.Gi,si = 1(k = 1, · · · , si −
2), Ej,1.Hj,1 = Hj,k.Hj,k+1 = Hj,tj .Ej,2 = 1(k = 1, · · · , tj − 1).

Let σ : S̃ → Σd be a smooth blowing-down of all irreducible components

in Si’s and Tj ’s except for Gi,si ’s and Ej,2’s. Here Σd is a Hirzebruch surface

of degree d. Let Md be the minimal section of Σd. Then σ(Dk) ∼ 2Md +

bkσ(S0) for k = 2, 3. In particular, σ(Dk)
2 ≡ σ(D2)

2 − σ(D3)
2 ≡ 0 (mod 4)

for k = 2, 3.

Claim(1). (1) Suppose that Dk.Eja = 0 for some j in {1, · · · , t}, some k

in {2, 3} and some a in {1, 2}. Then we are reduced to the case in §4 with

C replaced by Ejb where {a, b} = {1, 2} as sets.
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(2) Suppose that for k = 2 or 3 and for some i in{1, · · · , s}, we have

Dk.Ei = 0 in the case si = 2 and Dk.Ei = Dk.Gi,1 = 0 in the case si ≥ 3.

Then we are reduced to the case in §4 with C replaced by Ei.

By the assumption, 2 = Dk.Sj = Dk.(Sj − Eja).So, Ejb + D contains

a loop and |K
S̃

+ Ejb + D| �= φ (cf. Lemma 1.8). The first assertion of

Claim(1) is proved.

In the case si = 2, we have 2 = Dk.Si = Dk.(Gi,1 +Gi,2). Hence Ei +D

contains a loop and the claim is proved. In the case si ≥ 3, we have

Dk.Gi,n = 1 for some 2 ≤ n ≤ si − 2 or Dk.(Gi,si−1 + Gi,si) = 2 by the

assumption and by Dk.Si = 2. Then ∆k can not be contracted to a quotient

singularity, a contradiction.

This proves Claim(1).

By Claim(1), we may assume that for both k = 2 and 3, we have

Dk.Ej1 = Dk.Ej2 = 1 for all j’s, that Dk.Ei = 1 for all i’s with si = 2

and that Dk.(Ei +Gi,1) = 1 for all i’s with si ≥ 3.

Case(1). Dk.Gi,1 = 1 for some k in {2, 3} and some i in {1, · · · , s} with

si ≥ 3, say i = 1. Then ∆k is a fork with G1,s1−2 as the central component.

Thus, ∆k.Ei = 1 for all i �= 1 because ∆k is contractible to a quotient

singularity. By Lemma 6.9, ∆k′ is a linear chain with Dk′ as a tip and

D2
k = D2

k′ = −3, where {k, k′} = {2, 3} as sets. Hence Dk′ .Ei = 1 for all i for

otherwise ∆k′ would be a fork. But then σ(Dk)
2 = −3+

∑
i si+

∑
j(tj+1)−1

and σ(Dk′)
2 = −3+

∑
i si+

∑
j(tj+1). This contradicts σ(D2)

2−σ(D3)
2 ≡ 0

(mod 4). So, Case(1) is impossible.

Case(2) Dk.Ei = 1 for both k = 2 and 3 and for all i in {1, · · · , s}. Then

σ(Dk)
2 = D2

k +
∑

i si +
∑

j(tj + 1) for both k = 2 and 3. Since σ(D2)
2 −

σ(D3)
2 ≡ 0 (mod 4), we must have D2

2 = D2
3 = −3. Then σ(D2)

2 = σ(D3)
2.

Hence σ(D2) ∼ σ(D3). Thus, σ(D2).σ(D3) = σ(D2)
2. But σ(D2).σ(D3) =∑

i si +
∑

j(tj + 1). We reach a contradiction. So, Case(2) is impossible.

This proves Theorem 6.12. ✷

Theorem 6.13. Suppose that ∆1 is a linear chain with D1 as a tip.

Then for both i = 2 and 3, ∆i is a linear chain with Di as a tip.

Proof. We consider, througout the proof, the case where ∆1 is a linear

chain with D1 as a tip and for k = 2 or 3, ∆k is either a fork or a linear

chain but Dk is not a tip. We want to get a contradiction. By Lemma 6.10,

∆1 consists of (−2)-curves.By Lemma 6.9, we have D2
3 = −3 and ∆k′ is a
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linear chain with Dk′ as a tip, where {k′, k} = {2, 3} as sets. So, we may

assume that k′ = 2, k = 3 because D2
2 = D2

3 = −3. Let Gi (1 ≤ i ≤ s; s ≥ 3)

be irreducible components of ∆3 such that G1 = D3, Gi.Gi+1 = Gs−2.Gs =

1(1 ≤ i ≤ s− 2). If ∆3 is a linear chain then s = 3, and if ∆3 is a fork then

s ≥ 4 because D3 is then a tip by Lemma 6.9.

Claim(1). D −∑3
i=1 ∆i consists of (−2)-curves.

Suppose to the contrary that D−∑3
i=1 ∆i contains a (−n)-curve B with

n ≥ 3. Then B2 = −3 by Lemma 6.6. Moreover, ∆2 = D2 for otherwise

D∗ ≥ 2/5D2+1/5D′
2+1/3B+1/2(D3+G2+ · · ·+Gs−2)+1/4Gs−1+1/4Gs

and 0 < −Γ.(K
S̃

+D∗) ≤ 1−Γ.(1/5D′
2 + 1/3B+ 1/2

∑s−2
i=1 Gi + 1/4Gs−1 +

1/4Gs) = 1 − 1/5 − 1/3 − 1/2 = −1/30 (cf. Lemma 6.7), a contradiction.

Here D′
2 is an irreducible component of ∆2 adjacent to D2.

Let R0 := 2(Γ +
∑s−2

i=2 Gi) + Gs−1 + Gs and let ψ : S̃ → P1 be the

P1-fibration with R0 as a singular fiber. Let R1 be the singular fiber of

ψ containing C + D1 + D2. Then there exists a (−1)-curve E such that

E.D2 = 1 and R1 = 2C + D1 + D2 + E. Note that B is a 2-section of

ψ because R0.B = 2Γ.B = 2(cf. Lemma 6.7). Hence 2 = R1.B = E.B.

This leads to 0 < −E.(K
S̃

+ D∗) ≤ 1 − E.(1/3B + 1/3D2) = 0 because

D∗ ≥ 1/3B + 1/3D2. We reach a contradiction. This proves Claim(1).

Let S0 := 4C + 2(D1 +G1 + · · · +Gs−2) +Gs−1 +Gs. Let ϕ : S̃ → P1

be the P1-fibration with S0 as a singular fiber. Then D2 is a 4-section. By

Claim(1), every singular fiber S1 of ϕ other than S0 consists of (−1)-curves

and (−2)- curves. So, it is easy to see that S1 has one of two types in Lemma

6.11. Let Si(i = 1, · · · ,m), (resp. Tj(j = 1, · · · , n)) be all singular fibers of

the first (resp. second) type. Then S0, Si’s, Tj ’s are all singular fibers of ϕ.

Let Ei (resp. Ei1, Ei2) be the (−1)- curve(s) in Si (resp. Tj).

Claim(2). ∆2 = D2.

Suppose to the contrary that ∆2 = H1 + · · · + Ht with t ≥ 2, H1 =

D2, Hi.Hi+1 = 1(i = 1, · · · , t−1). Let L1 be the singular fiber of ϕ containing

H2 + · · · + Ht. Then L1 = Tj for some j, say j = 1 because D2 is a 4-

section and D2 is a tip of the linear chain ∆2. Then T1 = E11 + H2 +

· · · + Ht + E12 with, say E11.H2 = E12.Ht = 1. Since D2 is a 4-section,

we have D2.E1k ≥ 2 for k = 1 or 2. This leads to 0 < −E1k.(KS̃
+ D∗) ≤

1 −E1k.
∑

i(t+ 1 − i)/(2t+ 1)Hi ≤ 1 − 2t/(2t+ 1)−1/(2t+ 1) = 0 because

D∗ =
∑t

i=1(t+1− i)/(2t+1)Hi+ (other terms). We reach a contradiction.

This proves Claim(2).
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By Claim(2), D2 meets only (−1)-curves in singular fibers. So, D2.Ei =

D2.Ej1 = D2.Ej2 = 2 for all i = 1, · · · ,m and j = 1, · · · , n because

−Eik.(KS̃
+ D∗) > 0 for k = 1, 2 and D∗ ≥ 1/3D2. Let σ : S̃ → Σd be

a smooth blowing-down of curves in singular fibers. Here Σd is a Hirze-

bruch surface of degree d. Let Md be a minimal section on Σd. Then we

have σ(D2) ∼ 4Md + bσ(S0) and σ(D2)
2 ≡ 0 (mod 8). On the other hand,

by the above description on the intersection of D2 with singular fibers, we

have σ(D2)
2 ≡ D2

2 + 2 (mod 4). We reach a contradiction. This proves

Theorem 6.13. ✷

Next we prove the following Theorem 6.14.

Theorem 6.14. Assume the same hypothesis as in Theorem 6.13 and

assume further that ∆1 is not a (-2)-chain. Then either Theorem 6.1 is

true, or there is a minimal (-1)-curve E such that Case (II-3) in Remark

3.11, with C, ∆i replaced by E, ∆̃i, is true and that ∆̃1 consists of exactly

two (-2)-curves. Here, ∆̃i for i = 1, 2, 3 are all the connected components

of D meeting E.

Proof. In view of Lemma 6.6, ∆1 consists of one (−3)-curve and

several (−2)-curves . By Theorem 6.13, ∆i is a linear chain with Di as a tip

for i = 2 and 3. LetD′
i be the irreducible component ofD adjacent toDi (i =

1, 2, 3) if it exists. LetD′ := D−∑3
i=1 ∆i.Write ∆1 = R1+· · ·+Rr+· · ·+Rd

such that R1 = D1, R
2
r = −3, Ri.Ri+1 = 1(i = 1, · · · , d − 1). So, R2 = D′

1.

We have:

D∗ =
r∑

i=1

i(d− r + 1)/(d+ 1 + r(d− r + 1))Ri

+
d∑

i=r+1

r(d− i+ 1)/(d+ 1 + r(d− r + 1))Ri + ∆∗
2 + ∆∗

3 +D′∗,

where Supp ∆∗
i ⊆ ∆i and Supp D′∗ ⊆ D′.

Case(1). ∆i = Di for i = 2 and 3.

Before we consider the Case(1), we will make some remarks which will

be used often till the end of the proof of Theorem 6.1.

We will often use a different minimal (-1)-curve E instead of the original

curve C. Let D̃i be all the irreducible components of D which intersect E

and let ∆̃i be the connected component of D containing D̃i. By repeated
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use of results in §3, §4, §5, Lemmas 6.2, 6.3, 6.5, 6.6 and Theorems 6.12,

6.13 we see that one of the following situations takes place:

(a) Case (II-3) in Remark 3.11, with C,∆i replaced by E, ∆̃i, is true.

Moreover, ∆̃i is a linear chain with D̃i as a tip, ∆̃1 except possibly for one

(−3)-component, ∆̃2 − D̃2, ∆̃3 − D̃3 are (-2)-chains and D̃2
2

= −3, D̃3
2

=

−3,−4,−5.

(b) Case (II-4) in Remark 3.11, with C,∆i replaced by E, ∆̃i, . . . , is

true.

(c) A case in §3.1, §5 or Lemma 6.3, with C,∆i replaced by E, ∆̃i, . . .,

occurs. Hence, π1(S
0) is finite.

To prove Theorem 6.14, we can always assume that every minimal curve

E fits case (a) since we do not use Theorem 6.14 to treat the remaining case

(II-4) in Remark 3.11.

Consider the case where ∆i = Di for i = 2 and 3. By Lemma 6.6, (1)

D′ contains at most one (−3)-curve. So, D′ consists of (−2)-curves and

possibly one (−3)-curve (cf. Lemma 6.6).

First assume that r > 2.

Consider the P1− fibration ϕ with S0 := 3C + 2D1 +R2 +D2 as one of

the singular fibers.Then Γ and R3 are cross-sections, D3 is a 3−section and

D − (D3 +R3) is contained in fibers.

Case(1.1). r > 2 and D′ contains a (−3)-curve B.

Consider the fiber S1 containing B. Since Γ ·Rr = 1 = Γ ·B,Rr cannot

lie in S1.Hence S1 has a unique (-3)-curve and all other components are (-1)

or (-2) curves. By Lemma 1.6 of [18], the sum of the coefficients of all the

(-1) curves in S1 is at least 3. As C is minimal, we see that each (-1) curve

Ei in S1 is minimal and the sum of the coefficients of the Ei’s is precisely 3.

Case(1.1)(1). S1 contains a unique (-1) curve E. Then the multiplicity

of E is 3. Since E fits the Case (a) above, we have E ·B = E ·D3 = E ·G1 = 1

for some (-2)-curve G1. Hence D̃1 = G1, D̃2 = B, D̃3 = D3. Thus, S1 has

the dual graph: B − E −G1 −G2 for some (-2)-curve G2.

Since R3 is a cross-section of φ, ∆1 = R1 + · · · + R5, r = 3, G2 =

R4, G1 = R5. Now D∗ ≥ 1/3B + Σ3
i=1i/5Ri, leading to a contradiction

0 < −Γ · (K
S̃

+D∗) ≤ 1 − 1/3 − (2/5 + 3/5) < 0 (cf. Lemma 6.7).

Case(1.1)(2). S1 has exactly two (−1) curves E1, E2 with multiplicity

of E2 equal to 2. Now R3 ∩E2 = φ. Since E1 and E2 fit Case (a) above, we

have E2 ·B = E2 ·D3 = 1 and S1 has exactly two possible configurations:
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(α) S1 = G− E2 −B − E1, where G is a (−2) curve. As R3 is a cross-

section of φ and E1 has to intersect some (−2) curve, we see that R3 is a

(−2) curve, R3 · E1 = 1 and hence r > 3. But then R3 is not a tip of ∆1

which intersects E1, a contradiction.

(β) d = r = 3, S1 = (−2)−E2 −B1 − · · · −Bm −E1, B1 = B,E1 ·D3 =

E1 · R3 = E1 · Bm = E2 · D3 = E2 · B1 = 1. However, −C · (K
S̃

+ D∗) =

−E2 · (K
S̃

+ D∗) implies that m = 10. Since K2
S̃

+ ρ(S̃) = 10, we see by

Lemma 6.8 that ρ(S̃) ≤ 13. This is a contradiction.

Case(1.1)(3). S1 has three (−1) curves E1, E2, E3. Since each Ei fits

Case (a) above, using Lemma 1.6 of [18] we can assume that E2 meets only

the curve B from S1. Again since E2 has to meet some (−2) curve, R3 is

a (−2) curve meeting E2. But again in that case R3 is not a tip of ∆̃1, a

contradiction.

Case(1.2). r > 2 and D′ has only (−2) curves. Hence Γ ∩D′ = φ.

Case(1.2)(1). r > 3.

Let S1 be the singular fiber containing the (−3) curve Rr. We consider

three cases as in Case(1.1) above. We are easily reduced to considering the

case when S1 has the configuration:

Rr − E −G1 −G2, where E2 = −1, G2
1 = G2

2 = −2. As in the assertion

in Case 2, part (3) below, #D = 7 + a,D2
3 = −a. Since E fits Case (a)

above, we have E · D3 = 1 and r = d = 4. By taking E as the minimal

curve, we have the case in the statement of Theorem 6.14. Indeed, ∆̃1 =

G1 +G2, ∆̃2 = R1 + · · · +R4, ∆̃3 = D3.

Case(1.2)(2). r = 3. Let λ = d − r. Then the determinant of the

intersection matrix of ∆1 = ±(4λ + 7). Now Γ meets only R2, R3. We

will apply Lemma 1.14. Let U be a tubular neighborhood of ∆1 ∪ Γ.

Let a small loop around D1 be denoted by γ. If γ2, γ3 are small loops

around R2 and R3 respectively, then in π1(U − ∆1), γ2 = γ2, γ3 = γ3.

Then π1(U − D) =< γ, u|u−1γ2u = γ−3 >. Since < γ >=< γ2 > as the

order of γ is 4λ+ 7, the group generated by γ is normal in π1(U −D). Now

the same argument as in §4 shows that π1(S
0) is finite.

Case(1.3). Now we are left with the case r = 2.Again first assume that

D′ has a (−3) curve B. Then D∗ ≥ 1/5R1 + 2/5R2 + 1/3B and 0 < −Γ ·
(K

S̃
+D∗) ≤ 1− (4/5+1/3) < 0, a contradiction. Hence D′ consists of only

(−2) curves and Γ ∩ D′ = φ. Now again the same argument above using

Lemma 1.14 shows that π1(S
0) is finite.



π1 of smooth points 167

Case(2). ∆k �= Dk for k = 2 or 3. Then the following assertions are true.

(1) D′ consists of (−2)-curves. Hence D∗ =
∑3

i=1 ∆∗
i .

(2) D2
3 = −3,−4 and r ≥ 3, i.e., (D′

1)
2 = −2.

(3) 7−D2
3 =

∑3
i=1 #(∆i) + #(D′), where #(∆) denotes the number of

irreducible component in ∆.

(4) Suppose D2
3 = −4. Then D3.E ≤ 1 for every(−1)-curve E.

If D′ contains a (−n)-curve B with n ≥ 3, then n = 3 (cf. Lemma

6.6) and D∗ ≥ 1/3B +
∑r

i=1 i/(2r + 1)Ri + 1/5D′
k + 2/5Dk. This leads

to 0 < −Γ.(K
S̃

+ D∗) ≤ 1 − Γ.(1/3B +
∑r

i=1 i/(2r + 1)Ri + 1/5D′
k) =

1− 1/3− (r+ 2)/(2r+ 1)− 1/5 < 0 (cf. Lemma 6.7), a contradiction. This

proves the first assertion of Case(2).

If D2
3 = −5, then D∗ ≥ 1/5D′

2 + 2/5D2 + 3/5D3 (resp. D∗ ≥ 1/3D2 +

1/3D′
3 + 2/3D3) in the case k = 2 (resp. k = 3). This leads to −C.(K

S̃
+

D∗) = 1 − C.D∗ ≤ 0, a contradiction. So, D2
3 = −3,−4.

If r = 2, then D∗ ≥ 1/5D1 +2/5D′
1 +1/5D′

k +2/5Dk and 0 < −Γ.(K
S̃

+

D∗) ≤ 1−Γ.(2/5D′
1+1/5D′

k) = 0 (cf. Lemma 6.7), a contradiction. So, r ≥
3. (3) follows using Noether’s equality and from the following observation:

10 − (2 +D2
3) = 10 −K2

S̃
= ρ(S̃) = 1 + #(D) (cf. Lemma 6.8).

(4) follows from the fact that D∗ ≥ 1/2D3 and−E.(K
S̃

+D∗) > 0.

This proves (1) ∼ (4) above.

From now on until the end of the proof of Theorem 6.14 we will assume

that we are in the situation of Case(2).

Claim (1). It is impossible that ∆i �= Di for i = 2 and 3.

Consider the case where ∆i �= Di for i = 2 and 3. Then D∗ ≥ 1/5D′
2 +

2/5D2+1/5D′
3+2/5D3+

∑r
i=1 i/(2r+1)Ri. Note that 0 < −Γ.(K

S̃
+D∗) ≤

1 − Γ.(1/5D′
2 + 1/5D′

3 + 2/(2r + 1)R2 + r/(2r + 1)Rr) = 1 − 1/5 − 1/5 −
(r + 2)/(2r + 1) (cf. Lemma 6.7). Hence, r ≥ 8. On the other hand, by the

assertion (3) in Case(2), 11 ≥ 7−D2
3 =

∑3
i=1 #(∆i)+#(D′) ≥ r+2+2 ≥ 12.

We get a contradiction.

Therefore Claim(1) is true.

Now we have either ∆2 = D2 or ∆3 = D3, D
2
3 = −3 or −4. Further, D′

has only (-2) curves by the assertions in Case(2).

Claim (2) r > 4.

Now we may assume that ∆k �= Dk,∆k′ = Dk′ for {k, k′} = {2, 3} as

sets. Write D2
k = −a,D2

k′ = −b. Then (a, b) = (3, 3), (4, 3), (3, 4).
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Write ∆k =
∑t

i=1 Ti such that T1 = Dk, Ti.Ti+1 = 1(i = 1, · · · , t − 1).

Then we have

D∗ =
r∑

i=1

i(d− r + 1)/(d+ 1 + r(d− r + 1))Ri

+
d∑

i=r+1

r(d− i+ 1)/(d+ 1 + r(d− r + 1))Ri

+
t∑

i=1

(a− 2)(t− i+ 1)/((a− 1)t+ 1)Ti + (b− 2)/bDk′ .

We now calculate (cf. Lemma 6.7):

−C.(K
S̃

+D∗) = 1 − (d− r + 1)/(d+ 1 + r(d− r + 1))

−(a− 2)t/((a− 1)t+ 1) − (b− 2)/b,

−Γ.(K
S̃

+D∗) = 1 − 2(d− r + 1)/(d+ 1 + r(d− r + 1))

−r(d− r + 1)/(d+ 1 + r(d− r + 1)) − (a− 2)(t− 1)/((a− 1)t+ 1).

Since −C.(K
S̃

+D∗) ≤ −Γ.(K
S̃

+D∗), we get

(r+ 1)(d− r+ 1)/(d+ 1 + r(d− r+ 1)) ≤ (b− 2)/b+ (a− 2)/((a− 1)t+ 1),

and

(14) 2/b ≤ (a− 2)/((a− 1)t+ 1) + r/(d+ 1 + r(d− r + 1)).

On the other hand, by the assertions in Case(2), one has

6 −D2
3 = d+ t+ #(D′).

Consider the case where (a, b) = (3, 3). May assume ∆2 = D2, D
2
3 = −3

and ∆3 =
∑t

i=1 Ti. By (14), we get

(14.1) 7/15 ≤ 2/3− 1/(2t+ 1) ≤ r/((d+ 1 + r(d− r+ 1)) < 1/(d− r+ 1).

Hence d−r ≤ 1. If d−r = 1, then (14.1) implies that 7/15 ≤ r/(3r+2) < 1/3,

a contradiction.

So, d = r. Then (14.1) implies that 7/15 ≤ r/(2r + 1) and r ≥ 7.
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Consider the case where (a, b) = (4, 3). Then ∆2 = D2, D
2
3 = −4 and

∆3 =
∑t

i=1 Ti. (14) implies that

(14.2) 8/21 ≤ 2/3− 2/(3t+ 1) ≤ r/(d+ 1 + r(d− r+ 1)) < 1/(d− r+ 1).

Hence, d− r ≤ 1. If d− r = 1, then (14.2) implies that 8/21 ≤ r/(3r+ 2) <

1/3, a contradiction.

So, d = r. Then (14.2) implies that 2/3− 2/(3t+ 1) ≤ r/(2r + 1) < 1/2

and t = 2, 3. On the other hand, 0 < −C.(K
S̃

+ D∗) = 1 − 1/(2r + 1) −
2t/(3t + 1) − 1/3 ≤ 1 − 1/(2r + 1) − 4/7 − 1/3. Hence r ≥ 5 and r ≥ 8 if

t = 3.

Consider the case where (a, b) = (3, 4). Then ∆3 = D3 with D2
3 = −4

and ∆2 =
∑t

i=1 Ti. (14) implies that

(14.3) 3/10 ≤ 1/2− 1/(2t+ 1) ≤ r/(d+ 1 + r(d− r+ 1)) < 1/(d− r+ 1).

Hence d−r ≤ 2. If d−r = 2, then (15.3) implies that 3/10 ≤ r/(4r+3) < 1/4,

a contradiction. Thus, d− r = 0, 1.

If d = r+1, then 0 < −C ·(K
S̃
+D∗) = 1−2/(3r+2)−t/(2t+1)−1/2 ≤

1 − 2/(3r + 2) − 2/5 − 1/2 = 1/10 − 2/(3r + 2). Hence r > 6 and r > 8 if

t ≥ 3. If d = r, then 0 < −C ·(K
S̃

+D∗) = 1−1/(2r+1)− t/(2t+1)−1/2 ≤
1− 1/(2r+1)− 2/5− 1/2 = 1/10− 1/(2r+1). Hence r > 4. Thus Claim(2)

is proved.

Let S0 = 3C + 2D1 + R2 +D2 and ϕ : S̃ → P1 the fibration as before

with S0 as one of the fibers. Recall that r > 4 and consider the fiber S1

containing the (-3) curve Rr. Now D3 is a 3-section, R3 is a cross-section,

R4 + · · · + Rd is contained in S1. Let Ei(i = 1, . . . , l) be (-1)-curves in S1.

Then each Ei is minimal.

Since each Ei fits Case (a) above, Ei · Rr = Ei ·D3 = 1. Clearly l < 4

and if l = 3 then S1 = Rr +E1 +E2 +E3 and r = 4 which is not true.Hence

l < 3. From Lemma 1.6 of [18], if l = 1 then r = 4. Thus l = 2 and

S1 = E1 − Rr − E2 − (−2). This again means r = 4 and Theorem 6.14 is

proved. ✷

Remark. By using a more detailed argument we can prove the follow-

ing more precise result: With the same hypothesis as in Theorem 6.13, the

connected component ∆1 consists of only (-2) curves.



170 R. V. Gurjar and D.-Q. Zhang

Now we can prove the following Theorem 6.15 which consists of Lemmas

6.16, 6.18, 6.21, 6.22, 6.23 and 6.24 below.

Theorem 6.15. Assume the hypothesis as in Theorem 6.13 and as-

sume further that ∆1 is a (-2)-chain. Then Theorem 6.1 is true.

Now we consider the case where ∆1 is a linear chain with D1 as a tip.

By Theorem 6.13, for both i = 2 and 3, ∆i is a linear chain with Di as a

tip. By Lemma 6.6,∆1,∆2 −D2 and ∆3 −D3 consist of only (−2)-curves.

Write f(C) ≡ −cKS , f(Γ) ≡ −γKS . Then −C.(K
S̃

+ D∗) = c(K
S̃

+ D∗)2

and −Γ.(K
S̃

+ D∗) = γ(K
S̃

+ D∗)2. By the choice of C, we have γ ≥ c.

By Lemma 6.2, we have f(K
S̃

+ 2C + D1 + D2 + D3) ≡ f(Γ) and hence

−1+2c = γ ≥ c. Therefore, c ≥ 1 and c = 1 if and only if γ = 1, if and only if

γ = c. We can write f∗f(C) ≡ C+D∗
c whereD∗

c ≥ 0 and Supp D∗
c ⊆ D. It is

easy to see that KS+f(C) ≡ (c−1)(−KS) and K
S̃
+C+D∗+D∗

c ≡ P1.Here

P1 := −(c − 1)(K
S̃

+ D∗) which is zero (resp.a nef and big divisor) in the

case c = 1 (resp. c > 1).

Write ∆1 =
∑r

i=1Ri such that Rr = D1, Ri.Ri+1 = 1(i = 1, · · · , r − 1),

∆2 =
∑s

i=1 Si such that Ss = D2, Si.Si+1 = 1(i = 1, · · · , s − 1) and ∆3 =∑t
i=1 Ti such that Tt = D3, Ti.Ti+1 = 1(i = 1, · · · , t− 1).

Lemma 6.16. (1) D∗ =
∑

i i/(2s+1)Si +
∑

i(a−2)i/((a−1)t+1)Ti +

D′∗ where a := −D2
3 and Supp D′∗ ⊆ D′ := D −∑3

i=1 ∆i.

(2) N := D −D∗ −D∗
c ≥ 0 and Supp N = D.

(3) κ(S̃,K
S̃

+ C + D) ≥ 0 and K
S̃

+ C + D = P + N is the Zariski

decomposition where P := K
S̃
+C+D∗+D∗

c . Moreover, P ≡ −(c−1)f∗(K
S̃
),

and hence either c > γ > 1 and κ(S̃,K
S̃

+ C +D) = 2, or c = γ = 1 and

κ(S̃,K
S̃

+ C +D) = 0.

Proof. (1) follows from that B.(K
S̃

+D∗) = 0 for every B ≤ D. By

a similar reasoning, one obtains D∗
c =

∑
i i/(r + 1)Ri +

∑
i i/(2s + 1)Si +∑

i i/((a−1)t+1)Ti. So, N =
∑

i(r+1−i)/(r+1)Ri+
∑

i(2(s−i)+1)/(2s+

1)Si +
∑

i((a− 1)(t− i) + 1)/((a− 1)t+ 1)Ti +D′ −D′∗. Then (2) follows

(cf. Lemma 1.1,(1)).

(3) Note that κ(S̃,K
S̃

+ C +D) ≥ κ(S̃, P ) = κ(S̃, P1) (because S̃ is a

rational surface)= 0 (resp. 2) if c = 1 (resp. c > 1). So, κ(S̃,K
S̃
+C+D) ≥

0. So, there is a Zariski decomposition for K
S̃

+ C + D.Since P (≡ P1) is

nef, N ≥ 0 and P.Ni = 0 for every irreducible component Ni of D, the
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decomposition given in (2) above is the Zariski decomposition.Therefore,

κ(S̃,K
S̃

+ C +D) = κ(S̃, P ) = 0, 2.

This proves Lemma 6.16. ✷

Remark 6.17. Note that every twig of C + D is admissible. Since

SuppN = D ⊆ C +D, N = Bk∗(C +D) by Fujita [6 , 6.17 and 6.18]. In

particular, if κ(S̃,K
S̃

+C+D) = 0, then P ≡ P1 = 0, K
S̃

+C+D ≡ N =

Bk∗(C +D) and hence (K
S̃

+ C +D).C = Bk∗(C +D).C.

Lemma 6.18. Assume κ(S̃,K
S̃

+ C + D) = 0. Then Theorem 6.1 is

true.

Proof. Let D′ := D−∑3
i=1 ∆i. By Remark 6.17, we can apply Fujita

[6 , 8.7] to the pair (S̃, C + D). Since in our case β(C) = 3, D2
i ≤ −3

and Di.C = 1 for both i = 2 and 3, only the case(4) there takes place.

Therefore,
∑3

i=1 d(∆i) = 1. This, together with D2
2 = −3, D2

3 = −3,−4,−5,

implies that D2
3 = −3,∆2 = D2,∆3 = D3,∆1 = D1 + R1 where R1 is

a (−2)-curve. By Lemma 6.7, Γ.
∑3

i=1 ∆i = Γ.R1 = 1. Moreover, D∗ =

1/3D2 + 1/3D3 +D′∗, where Supp D′∗ ⊆ D′. Hence C.D∗ = 2/3.

By Lemma 6.16, γ = c = 1. Hence −Γ · (K
S̃

+D∗) = −C · (K
S̃

+D∗),Γ ·
D∗ = C ·D∗ = 2/3 > 0 and Γ is a minimal curve.

By the arguments at the beginning of Theorem 6.14, we may assume

that Γ fits Case (a) there. So Γ meets two (-3)-curves B1, B2 of D′.
Suppose first that B1, B2 are not both isolated components of D. This

will lead to Γ.D∗ = Γ.D′∗ > 1/3 + 1/3 because at least one of the con-

nected components which contains B1 or B2 has more than two irreducible

components. This is a contradiction.

Now we assume that both B1, B2 are isolated. We consider again the

fibration ϕ given by S0 := 3C+2D1+R1+D2. The curve Γ is a section of this

fibration and B1, B2 lie in different singular fibers, say S1, S2 respectively.

Since ρ(S̃) = #(D) + 1, Si contains only one (-1)-curve Ei which is also

minimal (cf. [18, Lemma 1.6]). We may assume that each Ei fits Case (a)

in Theorem 6.14. So we reduce to the situation (cf. Theorem 6.14):

S1 = B1 − E1 − G1 − G2, S2 = B2 − E2 − G3 − G4 where G2
j = −2 for

j = 1, 2, 3, 4.

The 3-section D3 meets only the (-1) curves from the three singular

fibers. The triple cover ϕ : D3 → P1 has at least 3 ramification points
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with ramification index 3. This clearly contradicts Hurwitz formula.This

completes the proof of Lemma 6.18. ✷

Remark. κ(S̃,K
S̃

+ C +D) = 0 is impossible.

Now we consider, till the end of the proof for Theorem 6.15, the case

κ(S̃,K
S̃

+ C +D) = 2.

Lemma 6.19. ∆4 := D − ∑3
i=1 ∆i is zero or a single connected com-

ponent of D.

Proof. We will need the following result from [7].

‘Let V be an affine surface with atmost quotient singularities. Assume

that H0(V ;Q) ≈ Q and Hi(V ;Q) = (0) for i > 0. If κ(V − SingV ) = 2,

then V does not contain any irreducible curve homeomorphic to C and V

has at most one singular point.’ (In [7], the assertion about V having at

most one singular point is not made but it follows very easily from the

Lemma 8 of [7], as the second inequality of that lemma cannot hold if there

are more than one singular points.)

To apply this, we notice that V = S − f(C) satisfies the hypothesis in

the result above. Hence ∆4 is connected. ✷

Lemma 6.20. (1) ∆4 = D −∑3
i=1 ∆i is a single connected component

of D and consists of one (−3)-curve B and several (−2)-curves.

(2) Write D∗ = αB +
∑

i i/(2s + 1)Si +
∑

i(a − 2)i/((a − 1)t + 1)Ti+

(other terms) in notations of Lemma 6.16. Then 1 > s/(2s + 1) + (a −
2)t/((a− 1)t+ 1) and α < 1/(2s+ 1) + (a− 2)/((a− 1)t+ 1).

(3) r+ s+ t+u = 7−D2
3 where r, s, t, u are respectively the numbers of

irreducible components in ∆i (i = 1, 2, 3, 4).

Proof. (1) In view of Lemmas 6.6 and 6.19, it suffices to show the

assertion that ∆4 contains a (−3)-curve. Suppose to the contrary that

this assertion is false. Then D − (D2 + D3) consists of (−2)-curves (cf.

Lemma 6.6 and Theorem 6.14). By Lemma 6.8, we have K2
S̃

= 2 − a

where a := −D2
3. Write D∗ = αD2 + βD3+ (other terms). First one has

0 < −C.(K
S̃

+D∗) = 1 − α− β. So, one can calculate as follows:

0 < (K
S̃

+D∗)2 = K
S̃
.(K

S̃
+D∗) = K2

S̃
+α+(a−2)β = 2−a+α+(a−2)β
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= (2 − a) + (α+ β) + (a− 3)β < (3 − a) + (a− 3)β = (a− 3)(β − 1) ≤ 0.

We reach a contradiction. So, ∆4 contains a (−3)-curve. Thus, (1) is proved.

(2) First 0 < −C.(K
S̃
+D∗) = 1−s/(2s+1)−(a−2)t/((a−1)t+1). So,

the first inequality follows. Next, by (1) and Lemma 6.7, −Γ.(K
S̃

+D∗) =

1−Γ.(αB+(s−1)/(2s+1)Ss−1 +(a−2)(t−1)/((a−1)t+1)Tt−1. Now the

second inequality in (2) follows from that −C.(K
S̃

+D∗) = c(K
S̃

+D∗)2 <
γ(K

S̃
+D∗)2 = −Γ.(K

S̃
+D∗).

(3) By Lemma 6.8, K2
S̃

= 2+D2
3. Hence ρ(S̃) = 8−D2

3. Now (3) follows

from that the number of irreducible components in D is equal to ρ(S̃) − 1.

We have proved Lemma 6.20. ✷

Lemma 6.21. It is impossible that ∆i = Di for two of i’s in {1, 2, 3}.
In particular, D2

3 = −3,−4.

Proof. Assume that ∆i = Di,∆j = Dj for some distinct i, j in {1,

2, 3}. Then Γ · (∆1 + ∆2 + ∆3) ≤ 1 and Γ · ∆4 = 1 by Lemma 6.20(1).

From the proof of Lemma 6.19, we know that S − f(C) does not contain

any curve homeomorphic to C. But the image of Γ in S gives rise to such

a curve. This is a contradiction.

Suppose that D2
3 = −5. By the first assertion D2 < ∆2 or D3 < ∆3.

This leads to D∗ ≥ 2/5D2 +3/5D3 or D∗ ≥ 1/3D2 +2/3D3. Any of the two

cases leads to −C.(K
S̃

+D∗) ≤ 0, a contradiction. So, D2
3 = −3,−4.

This proves Lemma 6.21. ✷

Lemma 6.22. Suppose that D2
3 = −4. Then either Theorem 6.1 is

true or there is a P1-fibration ϕ : S̃ → P1 such that all singular fibers and

irreducible components of D are as described in the proof of Claim (2) below.

Proof. Consider the case D2
3 = −4.We use the notations in Lemmas

6.16 and 6.20. We also let D′
1 = Rr−1, D

′
2 = Ss−1, D

′
3 = Tt−1. These are

(−2)-curves and adjacent to D1, D2, D3 respectively.By the first inequality

in Lemma 6.20,(2), we obtain the following:

Claim(1). (s, t) = (2, 2), (1, t), (s, 1).

Consider first the case (s, t) = (2, 2). Then, one has ∆i = Di + D′
i for

i = 2 and 3. By Lemma 6.20, one has α < 1/5 + 2/7 < 1/2. Hence ∆4 is
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a linear chain with B as a tip.Write ∆4 =
∑u

i=1Bi such that Bi.Bi+1 = 1

and Bu = B. By the same lemma, one has r + u = 7.

Claim(2). Suppose that (s, t) = (2, 2) and r = 1. Then there is a minimal

(-1)-curve E2 on S̃ and two connected components ∆3,∆4 of D, both linear

chains, ∆3 = D3 + D′
3,∆4 = B1 + · · · + B6 such that D2

3 = −4, B2
6 =

−3, D′2
3 = −2 = B2

1 = · · · = B2
5 . Further, E2 · ∆3 = E2 · D3 = E2 · ∆4 =

E2 ·B5 = 1.

Consider the case where (s, t) = (2, 2) and r = 1.In the present case, we

have ∆1 = D1 and u = 6. Hence

∆i (i = 1, 2, 3, 4)

are all connected components of D. Then Γ.D = Γ.(B +D′
2 +D′

3) = 3 (cf.

Lemma 6.7).

Let

F0 := 2Γ +D′
2 +D′

3,

ϕ : S̃ → P1

the P1-fibration with F0 as a singular fiber. Let F1 (resp. F2) be the

singular fiber containing C +D1 (resp. B1 + · · ·+B5). Then there exists a

(−1)-curve E such that E.D1 = 1, E.B6 = 2 and

F1 = C +D1 + E

because B6 is a 2-section. Note that F2 consists of only (−1) and (−2)-

curves (cf. Lemma 1.1,(4)). So, F2 has the second type in Lemma 6.11.

Thus, there are two (−1)-curves E1, E2 such that E1.B1 = B5.E2 = 1 and

F2 = E1 +B1 + · · · +B5 + E2.

Since ρ(S) = 1 and since D− (D2 +D3 +B6) is contained in singular fibers

of ϕ,

F0, F1, F2

are all singular fibers of ϕ for otherwise the cross-section D2 would meet an

irreducible component of D in a singular fiber (�= F0, F1, F2) which contains

only one (−1)-curve.

Let τ : S̃ → Σ3 be a smooth blowing-down of curves in singualr fibers

such that τ(D2)
2 = −3. Then τ(D3) ∼ τ(D2) + 3τ(F0), τ(B6) ∼ 2τ(D2) +
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6τ(F0). Hence τ(D3)
2 = 3 and τ(B6)

2 = 12. Thus, D2.E1 = D3.E2 =

B6.E1 = 1.

Now all singular fibers of ϕ and C +D are precisely described above.

This proves Claim(2).

Now we have only to consider the case r ≥ 2. Indeed, if (s, t) = (1, t) or

(s, 1) then r ≥ 2 by Lemma 6.21.

Claim(3). It is impossible that (s, t) = (2, 2) and r ≥ 2.

We consider the case where (s, t) = (2, 2), r ≥ 2. Then u = 7 − r ≤ 5.

Let F0 := 3C+2D1 +D′
1 +D2 and let ψ : S̃ → P1 be the P1-fibration with

F0 as a singular fiber. Since Γ is a cross- section of ψ with Γ.D′
3 = Γ.B = 1,

D′
3 and ∆4 are contained in two distinct singular fibers, say F1, F2. So, F1

consists of (−1) and (−2)-curves (cf. Lemma 1.1,(4)). Hence F1 has one

of two types in Lemma 6.11.Since D′
2 is a cross-section, F1 has two (−1)-

curves E1, E2 such that F1 = E1 +D′
3 + E2 and D′

2.E1 = 1. Since D3 is a

3-section, one has D3.E1 = D3.E2 = 1 or D3.Ei = 2 for i = 1 or 2. This

is a contradiction to the fact that −Ei.(KS̃
+ D∗) > 0. Indeed, note that

D∗ = 4/7D3 + 2/7D′
3 + 1/5D′

2+ (other terms).

This proves Claim(3).

Next we consider the case where one of s, t is equal to 1. In view of

Lemma 6.21, we have r ≥ 2 and that only one of s, t is equal to 1. By

Lemma 6.20, ∆4 has a (-3) curve B. Let F0 := 3C + 2D1 + D′
1 + D2 and

let ϕ : S̃ → P1 be the P1-fibration with F0 as a singular fiber and F1 the

singular fiber containing B. By the arguments in Theorem 6.14, we may

assume that every (-1)-curve Ei in F1 fits Case (a) there. In particular,

Ei ·B = Ei ·D3 = Ei ·H = 1, where H is a (-2)-curve. Thus, D3 meets only

E′
is in F1 because D3 · F1 = 3 (cf. [18, Lemma 1.6]).

Case(1) There are three (-1) curves E1, E2, E3 in F1.Then F1 = B+ΣEi.

There are at most 2 more horizontal irreducible components of D viz. D′
2

and Rr−2 and they are sections of ϕ. Hence for at least one Ei, Ei meets no

(-2)-curve, a contradiction.

Case(2) There are two (-1) curves E1, E2 in F1.

Then F1 has dual graph E1−B−E2−G, where G is a (-2) curve lying in

∆1 or ∆2. If G < ∆1, then the section Rr−2 does not meet either of E1, E2.

Since E1 meets a (-2)-curve, D′
2 exists and D′

2 · E1 = 1. Taking E1 as a

minimal curve we have a situation treated in the proof of Theorem 6.14.

Hence Theorem 6.1 is true because in the present case D has no connected
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component of two (-2)-curves.

Suppose now that G < ∆2. Then the section D′
2 does not meet either of

E1, E2. By the same reasoning as in the case G < ∆1, but with E1 replaced

by E2, Theorem 6.1 is true.

Case(3) There is a unique (-1) curve E in F1.

Since E fits Case (a) in Theorem 6.14, F1 has the configuration : B −
E−G1−G2, where G1, G2 are (-2) curves. Now if G1+G2 < ∆2, then we see

using Theorem 6.14 that r = 2, s = 4, t = 1, u = 1 (as in this case ∆1 is the

unique connected component of D consisting of only (-2)-curves). But this

contradicts Lemma 6.20, part (3). So assume G1+G2 < ∆1. Now D′
2 cannot

exist as it cannot meet any curve in F1. Hence s = 1, r = 5, u = 1, t = 4 by

Lemma 6.20.

Since ρ(S) = 1, the number of horizontal irreducible components of

D is one more than the difference between the number of (−1)-curves in

singular fibers and the number of singular fibers of ϕ (cf. Lemma 1.5 of

[18]).

Now Γ is a section of ϕ and ∆3 −D3 is contained in a singular fiber, say

F2, which consists of only (-1) and (-2) curves. So, F2 has the second type

in Lemma 6.11 because R3 · F2 = 1.

Then every singular fiber other than F2 has exactly one (−1)- curve for

ρ(S) = 1. We can write F2 = E1 + T1 + T2 + T3 +E2 with two (−1)-curves

E1, E2 such that E1.T1 = T3.E2 = 1. Now D∗ = 1/3D2 +
∑4

i=1 2i/13Ti +

1/3B. Since D3 · F2 = 3, (D3 · E1, D3 · E2) = (1, 1), (0, 2) or (2, 0). This

contradicts −Ei ·(KS̃
+D∗) > 0. This completes the proof of Lemma 6.22. ✷

Lemma 6.23. Suppose that D2
3 = −3. Then Theorem 6.1 is true.

Proof. We use the notations in Lemmas 6.16 and 6.20. We also let

D′
1 = Rr−1, D

′
2 = Ss−1, D

′
3 = Tt−1. One may assume that s ≤ t. By Lemma

6.21, it is impossible that (s, t) = (1, 1). So, t ≥ 2.

Consider first the case where ∆4 is a fork or a linear chain but B is not

a tip. Then α ≥ 1/2. So,

1/2 ≤ α < 1/(2s+ 1) + 1/(2t+ 1)

by Lemma 6.20 and hence (s, t) = (1, 2). By Lemma 6.21 we have r > 1.

We use arguments after Claim (3) in Lemma 6.22. In that proof we have

used D2
3 = −4 only in the last part. In the present situation, by Lemma
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6.20 (3), r+ s+ t+ u = 7− (−3) = 10. The arguments in the above lemma

reduced to considering the case r = 5, s = 1, u = 1. But then in the present

situation t = 3, contradicting the assumption t = 2 above. Hence the case

when ∆4 is a fork or a linear chain but B is not a tip can not occur.

Next we consider the case where ∆4 is a linear chain with B as a tip.

Write ∆4 =
∑u

i=1Bi such that Bu = B. Then

D∗ =
∑
i

i/(2u+ 1)Bi + (other terms).

By Lemma 6.20, one has

u/(2u+ 1) < 1/(2s+ 1) + 1/(2t+ 1).

Therefore, by virtue of Lemma 6.20,(3),

(r, s, t, u) = (r, 1, t, 9 − r − t), (5, 2, 2, 1), (4, 2, 3, 1)

because s ≤ t by the additional assumption. If r = 1 or t = 1 then (r, s, t, u)

= (r, 1, t, u), a contradiction to Lemma 6.21. So, r ≥ 2, t ≥ 2.

Once r > 1, we obtain r = 5, s = 1, u = 1 and hence t = 3 by the

arguments after Claim (3) in Lemma 6.22. Let F0 := 3C + 2D1 +D′
1 +D2,

and ϕ : S̃ → P1 the P1-fibration with F0 as a singular fiber. Then D3 is a

3-section. Let F1 be the singular fiber containing ∆4. By the same reasoning

as in Lemma 6.22, we deduce that F1 = 3E + B + 2R1 + R2, where E is

a minimal (-1) curve and E · B = E · R1 = E ·D3 = 1. We also see easily

that ϕ has precisely one more singular fiber F2 = E1 + T1 + T2 +E2, where

E1, E2 are (-1) curves (cf. [18, Lemma 1.5] and Lemma 1.1 (4)).

Now D∗ = 1/3D2 +
∑3

i=1 i/7Ti+1/3B. Since −Ei.(KS̃
+D∗) > 0, D3.Ei

= 1 for i = 1 and 2 because D3.F2 = 3.

Let S′
0 := 3C+2D1+D

′
1+D3 and let ψ : S̃ → P1 be the P1-fibration with

S′
0 as a singular fiber. Then D2, D

′
3, R3 are 3-section, cross-section, cross-

section, respectively. Since ρ(S) = 1 and since D′
3 is a cross-section, one can

find (−1)-curves L1, · · · , L4 such that S′
0, S

′
1 := 2L1+T1+B+L2, S

′
2 := L3+

R1 +R2 +L4 are all singular fibers of ψ. Moreover, L1.T1 = L1.B = L2.B =

L2.R3 = L3.R1 = L4.R2 = (L3 +L4).D
′
3 = 1 and (D2.L1, D2.L2) = (1, 1) or

(0, 3).

If (D2.L1, D2.L2) = (1, 1), then −C · (K
S̃

+ D∗) = 1 − C.(1/3D2 +

3/7D3) = 1 − (1/3 + 3/7) > 1 − (1/3 + 1/3 + 1/7) = 1 − L1.(1/3D2 +
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1/3B + 1/7T1) = −L1.(KS̃
+ D∗), a contradiction to the choice of C. If

(D2.L1, D2.L2) = (0, 3), then 0 < −L2.(KS̃
+D∗) = 1−L2.(1/3D2+1/3B) =

1 − (1/3) × 3 − 1/3 < 0, a contradiction.

So this case is impossible. As we are using the arguments in the proof

of Lemma 6.14 (i.e. we may have chosen a different minimal (-1)-curve in

the proof above), we conclude that Theorem 6.1 is true.

This completes the proof of Lemma 6.23. ✷

Lemma 6.24 If S̃ has the P1-fibration as specified in the statement

Lemma 6.22, then π1(S
0) is finite.

Proof. Recall that in this case the curve E2 meets only the irreducible

components D3 and B5 of D, tranversally in one point and ∆4 is linear with

the (-3) curve B6 as a tip. Hence, A := E2 + ∆4 supports a divisor with

positive self-intersection. We will now apply Lemma 1.10.

Let U be a nice tubular neighborhood of A. Since E2 −D is isomorphic

to C∗, we see easily that U −D deforms to a tubular neighborhood of ∆4.

In particular, π1(U −D) is a finite cyclic group. By Lemma 1.10 we have a

surjection of this group onto π1(S
0). Hence the latter group is finite.

This completes the proof of Lemma 6.24. ✷

In view of the results in this part I of the paper, the proof of the Main

Theorem will be complete once we have shown the finiteness of π1(S
0) in

the “2-component” case i.e., Case (II-4). This will be accomplished in part

II of the paper.
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Added in proof:

The proofs of Theorem 6.14 and Lemmas 6.18, 6.22 and 6.23, also show:

Theorem 6.25. Suppose that Case(II-3) of Remark 3.11 occurs. Then,

with C replaced by a new minimal (−1)-curve E, one of the following cases

occurs:
(1) Cases in §3.1 and §5. (2) The case in Lemma 6.3, or the case in

Lemma 6.22, Claim(2), (3) Case(II-4) of Remark 3.11.
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