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1 Introduction and summary ’\

We consider the Cauchy problem for the following linear Schrédinger
equation

(1.1) { Dywu+ Hu =0,

u(0) = ug,

where u = u(t,z) € L?(R") denotes the time evolution of wave
function at time t € R; D, = 16;; and

N 1 n
(1.2) H= ~5 Z 0,0i(7) 0z, + W ()

ij=1

denotes the Hamiltonian of system, in which W (z) is the potential
energy.

In the vast literature, many aspects of Schrodinger equations have
been extensively studied, such as spectral theory, scattering theory,
and fundamental solutions, and so on, since Schrodinger equation is
the fundamental equation of quantum mechanics. Also, such results
have been extended to various operators in mathematical physics.
(See, for example, [27].)

In this thesis we study the microlocal singularities for solutions
of the above Schrodinger equations under certain assumptions on
a;j(z) and W(z). Studies of microlocal singularities of Schrédinger
equations goes back (at least) to a work by Boutet de Monvel [1],
which shows that the singularities of the solutions to Schrodinger
equations propagate at infinite speed, different from the wave equa-
tion, which propagate at finite speed as explained by the celebrated
Hérmander’s singularities propagation theorem [10]. However, it
does not indicate how the singularities of the solution u(t) at time
t is related to the initial state ug. Craig, Kappeler and Strauss
studied the propagation of singularities for the variable coefficient
Schrodinger equation in 1996 ([2]). They showed that the microlo-
cal regularity of the solution along a nontrapped geodesic follows
from rapid decay of the initial state in a conic neighborhood of the
asymptotic velocity of the nontrapping geodesic. This property is
called the microlocal smoothing property. Since then the microlo-
cal smoothing property has been studied by several authors. (See
[3-5, 7, 11, 17, 23, 26, 30] and the references therein.)
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In 2004, Hassell and Wunsch [9] studied a characterization of sin-
gularities of solutions to Schrédinger equations on scattering man-
ifolds, which was defined by Melrose [22]. Nakamura [24] studied
the same problem (on Euclidean spaces) using a completely differ-
ent method and different formulation for Schrédinger equation of
variable coefficients. The method of Nakamura is relatively simple
and is later adopted by other works on propagation of singularities
as well as other aspects. The results of Nakamura are generalized
and extended to Schrodinger equations on scattering manifolds, and
also to the study of analytic singularities of solutions. (See [12, 18—
20, 25].) |

On the other hand, the singularities for perturbed harmonic os-
cillators have also been studied by several authors. Smoothing prop-
erty, fundamental solutions, and propagation of singularities for so-
lutions of the harmonic oscillator equations have been studied in the
following works: [6, 8, 13-16, 21, 28, 29, 31-35]. In most of these
works, the authors considered the constant coefficients cases, i.e.,
a;j(z) = d;;. In this thesis we study the variable coefficients cases
for the harmonic oscillators and also a related model, i.e., magnetic
fields Schrodinger equations. Specifically, we study the following
problems.

e Short-range perturbation of harmonic oscillators. More pre-
cisely, we will consider the case W(z) = % + V(z) in (1.2),
and a;j(x) and V(z) are assumed to satisfy the following con-
ditions:

Assumption A. a;;(z), V(z) € C°(R™;R) for j,k=1,...,n,
and (a;x(z));x is positive symmetric for each z € R™. More-
over, there exists > 1 such that for any o € Z7,

|02 (aju(x) = &je)| < Cala)™#1,
|07V (2)] < Cafa)* 71
for z € R with some C,, > 0, where (z) = /1 + |z[.

This model is studied in Chapter 2 using an argument similar
to [24]. We characterize the singularities of solutions in terms
of the classical scattering data and the propagator for unper-
turbed harmonic oscillator Hy = —3A + £|x|?.
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e Short-range perturbed constant magnetic fields: We consider
the Hamiltonian of the following form

H=3 (Do (M), ~ A,(2))ase (&) (Do (M) — 44(z))

with

=5 %)
_% 0

The conditions on the perturbations are similar to the short-
range perturbed harmonic oscillators, i.e., we 1mpose the fol-
lowing conditions on the coefficients:

Assumption B. a;;(z), 4;(z), V(z) € C°(R%R) for j, k €
{1,2}, and (ajk(x))j , 15 positive symmetric for each z € R2.
Moreover, there exists 1 > 1, po > 1, psg > 0 such that for
any o € Z2,

|8°‘ ajp(z) — 0, )| < Ca(x)_“l""’l,
V)] < Culefi,
|82 4;(z)| < Cofx)~Hale

for z € R? with some C, > 0, where (z) = /1 + [z]2.

This model is studied in Chapter 3, using an argument sim-
ilar to perturbed harmonic oscillators. The singularities of
solutions are characterized by using the classical scattering

data and the propagator for the constant magnetic operator
HO = %(Dw —_ M.’B)2

e Propagation of singularities for long-range perturbations: In
Chapter 4, we study the long-range perturbation of harmonic
oscillators, i.e., we assume the same assumption as in Chapter
2 except for the condition p > 1, which is replaced by the con-
dition p > 0 instead. We use similar argument as in [25] to
construct a modified free propagator and then use this modi-
fied free propagator multiplied by the propagator of the unper-
turbed harmonic oscillator to characterize the singularities of
solutions, combined with the modified classical scattering data.
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For more detailed information we refer the introduction section
of each chapter.

For the reader’s convenience, here we list some notations, which
are used throughout this thesis:

The Hilbert space is denoted by H = L%(R"), and the space
of the bounded operators on H is denoted by £(3). The Fourier
transform is denoted by

a(€) = Fu() = (2m) 2 / ey (z)dz,

n

and the inverse Fourier transform is denoted by i(z) = F *u(x). For
a smooth symbol a(z,£) on R?**, we denote the Weyl quantization
by a¥(z, D,), i.e., for u € 8§(R™), a Schwartz function on R",

a"(z, Dy )u(z) = (27)™" / / £V Eq (2 £)u(y)dy de.

We use the S(m, g) symbol notation and we denote the wave front
set of u € 8'(R") by WFu (in the sense of Hérmander [10]).



2 Wave front set for perturbed harmonic oscil-
lators

2.1 Introduction

In this chapter we consider a Schrodinger operator with variable
coefficients and the harmonic potential:

1 o . 1
H= 53" 00,00(2)0s, + 5lof + V()

Jk=1

on X = L?*(R"), n > 1. We denote the unperturbed harmonic
oscillator by Hy:

1. 1,
H()——§A+§|1I| on g‘f,

and we suppose H is a short-range perturbation of Hy in the follow-
ing sense: '

Assumption A. aj;(z), V(z) € C*(R™R) for j,k=1,...,n, and
(ajr(z));, is positive symmetric for each € R™. Moreover, there
exists 4 > 1 such that for any o € Z7,

|02 (ajr(z) — 6ji)| < Cofz)~r1,
102V (z)| < Cofz)?># e

for z € R™ with some Cy > 0, where (z) = /1 + |z|2.

Then it is well-known that H is essentially self adjoint on C§°(R™),
and we denote the unique self-adjoint extension by the same symbol
H. We denote the symbols of H, Hp, the kinetic energy and the
free Schrodinger operator by p, po, k and kg, respectively. Namely,
we denote \

n

P8 =5 O an(e)Esb + 5lel + V()
k=1
po(z,€) = 3161 + 3lal?,

n

Ko 6) =5 3 an(@)ie, kola,€) = SIel"

Jk=1



We denote the Hamilton flow generated by a symbol a(z,£) on R?®
by exp(tH,) : R*™ — R?". We also denote

m(X) =z, m(X)=¢ for X = (z,£) e R™™.

Let (z9,&) € R*™. (z0,&) is called forward (backward, resp.)
nontrapping (with respect to k) if

|71 (exp(tHy ) (z0,&)| — oo

as t — 400 (t = —oo, resp.). If (z0,&) is forward/backward non-
trapping, then it is well-known :

(x:lm é.:l:) = t—l-gl:noo eXp(—tHko) © eXp(tHk)(x()v 50)

exists, and Si: (20,&) > (z+,&s) are locally diffeomorphic (see,
e.g., Nakamura [24], Section 2.).

Now we present our main results of this paper. Let us recall
our harmonic oscillator Hy has a period 27, i.e., e"?"Hop = ¢ for
@ € H. Moreover, we have

eFp(z) = p(-z), peX.
Our first result concern the evolution by H up to time w. We denote
u(t) = e"Huyg, uy € K.
We denote the wave front set of a distribution f by WF(f).

Theorem 2.1. (i) Suppose (zg,&y) is backward nontrapping, and let
O0<tyo<m, ug€eH. Then

(z0,&0) € WF(u(ty)) < (z_,£) € WF(e oHoyy).

(11) Suppose (xg,&y) is forward nontrapping, and let —m < ty < 0,
ug € H. Then ’

(z0,&0) € WF(u(ty)) <= (z4,&4) € WF(e™"0Moyy).

Remark 2.2. We note that microlocally e~®H° is a rotation in the
phase space. More precisely, for any reasonable symbol a = a(z, §),

e""0q¥(z, D,)e"M0 = a (cos(t)z + sin(t) Dy, — sin(t)z + cos(t) D, ),



where a*(z, D,) denotes the Weyl-quantization of a. Hence, in par-
ticular, (z9,&) € WF(e~*How,) if and only if there exists a symbol:
a€ C’°°(]R2") such that a(zg, &) # 0 and

“a (cos(t)z — sin(t) Dy, h(sin(t)x + cos(t) D) )uo|| = O(R™)

as h — 0.

At the time t = &7, u(t) behaves differently. We denote the set
of forward (backward, resp.) nontrapping points by T, (T_, resp.)
C R*™\ 0 := {(z,£) € R*™™, ¢ # 0}. S are diffeomorphism from
(R**\ 0)\ T4 to R?>"\ 0, and hence S;* are well-defined from R?*\ 0
to (R?"\ 0) \ T+. We also denote the antipodal map in R** by T

ie., I'(z,£) = (—z, =¢).

Theorem 2.3. (i) Suppose (zg,&) is backward nontrapping, and let
ug € H. Then

(z0,&) € WF(u(m)) <= S;'oT oS_(z0,&) € WF(ug).
(i1) Suppose (xg, &) is forward nontrapping, and let ug € H. Then
(%0,&) € WF(u(—m)) <= S8Z'oT o8, (z0,&) € WF(up).

The microlocal singularities of solutions to Schrodinger equations
have been attracted attention during the past years, especially af-
ter the publication of the break-through paper by Craig-Kappeler-
Strauss [2] in 1996 (for more literature, see references of [2] and [24]).
On the other hand, the singularities of solutions to the harmonic os-
cillator type Schrodinger equations have been studied by several au-
thors, including Zelditch [35], Yajima [32], Kapitanski-Rodnianski-
Yajima [13], Doi [8] and Wunsch [31]. Most of these works concern
the case with constant coeflicients with potential perturbations. In
particular, if the metric is flat, i.e., if a;x(z) = d;x, then Sy is the
identity map, and Theorem 2.3 recovers results in [8, 13, 32, 35]. In
fact, if the metric is flat, Theorem 2.1 is also obtained by Doi [§],
and this paper is partially motivated by this beautiful work. More-
over, he also considered a class of long range type perturbations, i.e,
when V(z) = O(|z|) as |z| — oo, and demonstrated that a shift of
singularities occurs. Microlocal smoothing effect for the Schrédinger
equations on scattering manifolds with harmonic potential is studied
by Wunsch [31].



In a sense, this paper is an analogue of a work by Nakamura [24]
where the microlocal singularities of asymptotically flat Schrodinger
equations is studied (see also a closely related work by Hassel-
Wuncsh [9] and Ito-Nakamura [12]). The main difference (and the
novelty) is the analysis of the classical trajectories with high ener-
gies. In [24], the standard classical scattering theory is sufficient
to prove the propagation of singularities (with a scaling argument).
However, in the presence of the harmonic potential, the high energy
asymptotics of the classical trajectories is completely different from
the long-time asymptotics. Thus we need to obtain precise high en-
ergy asymptotics of the trajectories using the time evolution of the
harmonic oscillator, and it is carried out in Section 2.2. This situa-
tion is somewhat similar to the case of such analysis for Schrodinger
equations with long-range perturbations [25], but the asymptotics
itself is naturally completely different. We also note that our results
have much in common with a paper by Zelditch [35], at least in
spirit, and our results may be considered as generalizations of his
results to variable coefficients cases.

The main results are proved in Section 2.3, and the argument
is similar to [24]. However, the scaling argument is slightly more
complicated, and we try to give a more transparent formulation
(see the last part of Section 2.2 and the beginning of Section 2.3).
- In the last section, we discuss generalizations of our main theorems
to the case when the harmonic potential is inhomogeneous.

2.2 High energy asymptotics of the classical flow

In this section, we study the high energy behavior of the classical
flow generated by p(z,£). More precisely, we consider the proper-
ties of exp(tHp)(zo, Ao) as A — +o0o. Thoughout this section, we
suppose (g, &) is forward nontrapping, and consider the case t > 0.
The case t < 0 can be considered similarly.

For A > 0, we write

1 <& zl? 1
p(z,€) = 3 Y ap(@)gié + l2—>\|3 + 3 Vi(a),
J.k=1
1 1
A b e



Then, by direct computations, We learn
(21)  m(exp(tHy)(z, X)) = m(exp(\tHp (g, §)),
(2.2) mo(exp(tHy,)(z, X)) = X - ma(exp(AtHpn ) (2, £)).

Hence, it suffices to consider exp(tH,»)(z, §) for 0 < t < Ao, instead
of exp(tH,)(z, A§) for 0 <t < t,.
We note, for each fixed t € R,

(2.3) Jim exp(tHp) (2, ) = exp(tH)(z, )

by the continuity of the solutions to ODEs with respect to the coef-
ficients. Hence, if ¢ > 0 is large and then A > 0 is taken sufficiently
large (after fixing t), m1(exp(tHp)(o, &o)) is far away from the ori-
gin by virtue of the nontrapping condition. The next lemma claims
that this statement holds for 0 < ¢t < Ad with sufficiently small
0>0. :

Lemma 2.4. There exists 6 > 0 and a small neighborhood 2 of
(zo,&0) such that

|T1(exp(tHpn)(z,€))| > cit —co for 0 <t < A, (z,€) € Q
with some cy,cs > 0.

Proof. In the following, we dehbte

exp(tHy)(x,€) = (v (t; 2, €), 7 (t; 2, €)).

By the conservation of the energy: p*(y*(¢),n*(t)) = const., and the
ellipticity of the principal symbol, we easily see

1
W G OF + (2O <O, (2,0 €QtER,

where 0 is a small neighborhood of (%0, &0). Hence, in particular,
we have

vt 2,6 < C), | (te,6)| < C
for t > 0 with some C > 0 by the Hamilton equations. On the other
hand, by direct computations, we have

42 & dy d
w0 OF =255 (v ) =25 Sentuind)
7,k

=4y ) + 2W (),



ikt
8(1‘]g
+ J A - A
Jf?m B2s (Y") Qem (Y™ )00 Y5 i
= > ap() T Wy, — Zagk T
J7k7e’m
1 1% 2
3z Zaak(y'\)ga(y’\)y}\ | ol -)\—QV(yA)
gk

Combining these, we learn

LWOF 2 1001 - el + 32,

~ We note p*(z9, &) = k(x0, &) +O(A72) and k(x, &) > 0, and hence
p*(z0, &) > 0 for large A. Since A=2(y*)2 = O((t)2/)?),if 0 < ¢t < 6A
with sufficiently small § > 0, the last term is small and

a2 |yA( )1 > 3p M ) — caly?)7H

for the initial conditon (z,£) € Q. By the nontrapping condition
and (2.3), if Ty > 0 is sufficiently large and ) is large (depending on
To), then

ca(y(To)) ™ < p(z,€) for (z,€) € 9, and %IyA(To)I > 0.
Then by the standard convexity argument, we learn
WAOP = [N T)° + 0 (,€)(t — To)®  for t € [Ty, A,
and this implies the assertion. O

Lemma 2.5. Let 6 > 0 and Q as in the previous lemma, and let
€ (0,0). Then

lim exp(—oAH ) o exp(cAH»)(2,€) = Sy (z,§),

A—00

for (z,€) € Q.
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Proof. We denote
(2} (t;2,€), CM(t; 2, €)) = exp(—tH,y) o exp(tHp ) (x, §),

and we show the convergence of (2*(a)),( o)) to S, (z,&) for
(z,€) € 2. We recall

exp(—tH,)(z,€) = (cos({)z — Asin(£)¢, 5 sin($)z + cos(£)€)
since py is the scaled harmonic oscillator. Thus
() = cos($)y () —Asin(3)n (1), ¢ = §sin(§)y () +cos()n(2).

By direct computations, we have

(2.4)
d _ 1. dy £y, A ~£d771?
= )\sm( )yp + cos()—=E o — cos(x)m, — Asin($) 7
1 . '
= —sin($)a + cos($) Y ap(v)n] — cos(m}
J
L in(2)y2 1 sin(t) (2 57 2% (a0 L 1OV
+ S sin(8)od +sm<x>(2 > Gt + 350
= cos(% Za]k(y )‘
J
Oa; 10V
ot 9ai; AN 2OV
+Sln()\)< ax (y )77177] + )\axk(y ?>
=0((yh™* )+0()\< )T 4 AT )
=0((t)™)
for 0 <t < A. Similarly, we have
(2 5)
1 1 . v 1 dnp}
26 = g eos(Dd + 5 () ZE — in($ynd + cos(t) U
1 .

1 1 .
= cos(L)yp + ~ 3 sin(£) > " a(y)n} — Xsm(i)m?
J
- pCOS(i)yk — cos(£) (— a ——If(y T+ 5z . —(y)

11



8a, 1 0V
o B 1)

= Oy~ )+0(< M A2y >““‘”)

=O0((t)™™)
for 0 <t < dA. Moreover, for each t € R, we have
(9aw
hrilo Ezk Zaﬂk -+ = 5 Z 31%
d
dt( K — k),
d 8(11] d .
Jim 0 = =5 G 0, = g

where (7(t),7(t)) = exp(tHk)(x,f). By using the dominated con-
vergence theorem, we conclude

oA A (o)
lim (o)) = z + lim %dt =z+ /0 i( — ti)dt

A—o00 A—oo Jg dt
=l (5(0) — ¢7(t)) = ma(S+ 2,6)),
a')\ A 9]
lim ¢*o)) =€+ lim idt £+/ | i~(t)dt
A—00 A—oo J dt 0 dt
= lim_7(t) = ma(Si (2, )
This completes the proof of the lemma. O

Lemma 2.6. Let 0 < 0 < 7, and let Q be a small neighborhood of
(x0,&0) as in the previous lemmas. Then

/\lim exp(—oAH ) o exp(0AH» ) (7, €) = S4(x, )

for (z,€) € Q.

Proof. 1t suffices to consider the case § < ¢ < 7, and we fix such o.
Let € > 0, and we show that if

max(|2X(oA) = 24|, [CM(0N) — &4]) > ¢
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then ) is bounded from above, where (z,,&;) = Si(z,€), and
(2*,¢?) is as in the proof of the previous lemma. Our claim then
follows from this assertion.

We first note

M t) = cos(%)z)‘(t) + Asin(%)(’\(t).

For the moment, we suppose |2*(t) — 4|, [(*(£) —&;| < e. Then we
have

V()] = Asin(3)([6+] =€) = (|z+] +€) 2 &1

with some §; > 0 provided 0A <t < g, & < |€4|/2 and A > A,
where d; and g depend only on |z,| and |£,|. Then, by using
formulas (2.4) and (2.5), we learn

d A
—_ < —H
ldt"’ (t)‘ < OXH,

d .\ _
—(ME)| < O
00| <0

- Now we choose A sufficiently large that

€
max(|z)‘((5)\) — T4, |C/\(5>\) —&4)) < 2
and suppose

max(|z*(oA) = 24|, [C(0A) — &) 2 €
Then there exists tg € (6, 0\) such that
max(|2*(to) — 24|, [C*(t0) — &+) = ¢
and
max(|2*(t) — x|, |CM(t) — €4]) < e for A <t <to..
By the above observation, we learn

o gzA

) =l = [P0 -2+ [ 2 mﬂ

)
< |2M0N) = 24| + Clty — SAAH
<|2* 6)\)—at+|+C(a—6))\ w=1)
0 d¢
) =&+ N
) =&+ Clo =A™

[C*(to) — 84| = ——(t)dt

(
(6
(

<[¢*(ox



Thus we have

e = max(|2(to) — 2+, | (to) = €4]) < =+ Co = A4,

and hence A < (2C(c — §)/e)/#*~Y | and this completes the proof of
the assertion. O

The next theorem follows immediately from Lemma 2.3.

Theorem 2.7. (i) Suppose (zo, &) is forward nontfappmg, and let
0 < o < 7. Then there exists a neighborhood Q0 of (zo,&o) such that

,\h—>r§o 71 (exp(—0 Hy,) 0 exp(c Hp)(z, X)) = m1(S4(z,€)),
linc}o A7y (exp(—0 Hp,) 0 exp(a Hy) (2, XE)) = m2(S4(,€))

A—>

for (z,€) € Q, and the convergence is uniform in Q.
(ii) Suppose (zo,&o) be backward nontrapping, and let —m < o < 0.
Then there exists a neighborhood Q of (xg, &) such that

)‘ILIEO 71 (exp(—0 Hp,) 0 exp(a Hy) (z, X)) = m1(S_(z,€)),
lim A™'my (exp(—0 Hy,) 0 exp(0 Hp)(z, X)) = ma(S-(z,£))

A—00
for (z,€) € Q, and the convergence is uniform in Q.

We introduce several notations as a preparation for the proof of
our main results. We set

£(t;x,&) = (p o exp(tHy,))(z,€) — po(z, §)

= Z (aji(cos(t)x + sin(t)€) — 6;x) (— sin(¢)z; + cos(t)é;)

Jk=1
X (—sin(t)zx + cos(t)€x) + V (cos(t)z + sin(t)€).
Then it is easy to show that £(¢; x, ) generates the scattering time

evolution:
St = exp(—tH,,) o exp(tH)).

Similarly,

t;z,€) = (0* o exp(tHyp)) (@, €) — (2, €)

14



generates the time evolution:
S} = exp(—tHpy) o exp(tHp).
We denote the scaling with respect to £ by J,, i.e.,
Irn(z,€) = (z, ) for (z,€) € R*™.
Then by (2.1) and (2.2), we have
exp(tHp)ods = droexp(AtHyn),  exp(tHp,)ods = droexp(AtH,),
and hence we ‘also have

(2.6) Siodxr=10r0 S

2.3 Proof of main results

In this section, we mainly concern the case (xg,&p) is forward non-
trapping, and prove the part (ii) of Theorem 2.1.

We first consider the property of e*Hoe=#H for ¢t < 0. Let vy €
Cs°(R™), and we consider '

’U(t) — eitHo e_itH’Ug.

Then it is easy to observe

%’U(t) = —?:BitHO(H - Ho)e_itH’UQ

— (e He I — H)o(t) = —iL(e)o(t),

where L(t) = e*foHe #Ho — [, We recall, for any reasonable
symbol a(z, &), we have

e (z, D, )e "0 = (g 0 exp(tH,,))"(z, D,),

without the remainder terms, since po(z, &) is a quadratic form in
(z,€), and we employ the Weyl quantization. Thus we have

L(t) - (p o exp(tHy,))"(x, Ds) — po(x, Dz) = £“(t; 7, Dy),
ie., £(t;z,€) is the Weyl-symbol of L(t). This is in fact expected,

since efoe~"H ig the quantization of S;.
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Let Q be a small neighborhood of (g, &) as in the last section,
and let f € C§°(Q2) be such that f(z¢,&) > 0, and f(z,€) > 0 on
R, We then set

fu(z,€) = f(z,hE), h=A"",

where h > 0 is our semiclassical parameter. We consider the behav-
ior of
G(t) — eitHoe—itHf'w (.’L‘, th)eitHe—itHo

as h — 0. The operator valued function G(t) satisfies the Heisenberg
equation:

@7 26()=~ilL®).00). G)= f(z.hD,)

The corresponding canonical equation of the classical mechanics is

and the solution is given by
bo(t;2,€) = (fa o S77)(x,€)
since S, is the Hamilton flow generated by £(¢; z, 5). Now we note
fu(z,€) = f(z,&/X) = (f 2 33")(z,€).
Hence, recalling (2.6), we learn
fao St =fod3y 087 = fo (808"
=fo(@roSy) ™ =fo (S ed".
In other words, We have
bo(t; 2,€) = (fao ;) (@, €) = (f o (S%)7")(x, k).
We expect
G(t) ~ o(t;z, D) = (f o (S3) ") (z, hDy)

for small h > 0, and we construct the asymptotic solution to the
Heisenberg equation (2.7) with the principal symbol ¢y(t; z, §).
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Lemma 2.8. Let —m < ty < 0, and set I = [ty,0]. There eists
Y(t;z,€) € C(R?™) fort € I such that

(1) ¥(0;z,8) = f(z, h§).
(i) Y(t; 1,&) is supported in Sy o Jx(Q) = I 0 S3,(Q).
(ii1) For any o, 8 € ZT, there is Cog > 0 such that
020 (t; 7, €)| < Cophl®, tel,z,¢eR™

() The principal symbol of v is giwen by o, i.e., for any a,B €
77, there is Cop > 0 such that

|8§8?(1j}(t;:c,f) —o(t;x,€))| < Coph™Pl te I z 6 eR™
(v) If we set G(t) = V¥ (t;z, D), then

H%G(t} +ilL(),GB)]|| = O(h™)

£(3)
as h — 0, uniformly int € I.

Proof. Given the classical mechanical construction above, the con-
struction of the asymptotic solution is quite similar to (or slightly
simpler than) the proof of Lemma 4 of [24]. We note £(t;z,&) €
S((€)?, dz? + dg?/(€)?) locally in z, and my (supp (Yo(t;-,-))) is con-
tained in a compact set by virtue of the asymptotic property: S3, ~
Sy as A — co. We omit the detail. O

Now the proof of Theorem 2.1 is almost the same as the proof of
Theorem 1 of [24], and we simply refer the reader to the paper.
Finally, we show Theorem 2.3 follows from Theorem 2.1.

Proof of Theorem 2.3. We prove the part (i) only. We note
(2.8) WEF(e~i™/2Hoy) = WF(4), |
(2.9) WE(ei"/DHoy) — WF (@) = T(WF(@)).

In fact, e~{"/2Ho is the Fourier transform. (See also Remark 2.2.)
We set (z/,¢&') = S;' oT 0 S_(x,&) so that

(2100 (2-,6) =T(@}, &), where (¢,,£,) = S, (z,€).

17



By Theorem 2.1 (i) with ¢, = 7/2, and u(7w/2) as the initial condi-
tion, we have

(20, &) € WF(u(m)) <= (z_,€-) € WF(e="/2Hoy(7/2))
= (z_,&) € WF(u(n/2)).
We have used (2.8) in the second step. On the other hand, by

Theorem 2.1 (ii) with to = —7/2, and u(7/2) as the initial condition,
and using (2.9), we also have

(2',&) € WF(up) < (2,,&,) € WF('™/PHoy(1/2))
= (,€&,) € WF(u(r/2)) = T(WF (u(r/2))).

By (2.10), this implies the claim of Theorem 2.3 (i). The part (ii)
is proved similarly. O

2.4 Inhomogeneous harmonic oscillators

Here we consider the case when the harmonic potential is inhomo-
geneous, i.e.,

1 1 <

with a positive symmetric matrix (b;;), and

1 n ) 1 n
H= ——2- Z 8$ia¢j(x)8zj + 5 Z bijfL’iIDj + V(CL‘)

i,j=1 i,5=1

We assume (a,x(z)) and V' (z) satisfy Assumption A. By an orthogo-
nal transform, we can diagonalize the harmonic potential, and hence
we may assume Y bz;x; = Y7 vix}, where v >0, j=1,...,n,
are eigenvalues of (b;;). The behavior of the inhomogeneous har-
monic oscillator depends on the number theoretical properties of

(vj)j=y- If there exist no to > 0 such that
(211) tij € 7TZ, ] = ].7 o, n,

then it is well-known that the recurrence of the evolution operator
does not occur, i.e., there are no ¢y # 0 such that e~®#° = J. In this
case we have the following result:

18



Theorem 2.9. Suppose (xq,&) is backward nontrapping, and sup-
pose that there are no ty > 0 such that (2.11) hold. Then for any
t>0,

(z0,&) € WF(e™™uy) = (z_,6.) € WF(e *Hoyy).

Obviously, an analogous result holds for ¢ < 0, but we omit it
here.

If there exists tp > 0 such that (2.11) holds, then we have the
following result: '

Theorem 2.10. Let ty > 0 be the smallest positive number satisfy-
ing (2.11), and let m; = tov;/m € Z. We set

F(l:ly voey Ty gl? e 7§n) = (O.lxl: c o3 0nTn, 01517 v 70n§n)

for (z,€) € R*™, where 0; =1 if m; is even, and o; = —1 if m; is
odd. Suppose (zo,&o) is backward nontrapping. Then for 0 < t < t,

(900;50) € WF(e7™uy) <= (z_,6.) € WF(e *Hoyy),
and
(z0,&) € WE(e7#Hyg) = S oT 08 _(x0,&) € WF(u).

The proofs of these theorems are similar to Theorems 2.1 and
2.3, and we omit the detail. We only note the fact that

exp [—z’to <—%dd—; + V;f;-)] w(z) = (F2™iu) () = u(o;z)

forue L(R),j=1,...,n.
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3 Singularities for solutions to Schrodinger equa-
tions with asymptotically constant magnetic
fields

3.1 Introduction

In this chapter we consider a Schrodinger operator with variable
. coefficients and magnetic potentials:

= % 22: (ij — (Mz); — Aj(x))ajk(x) (Dzk — (Mz), - Ak(m))

Jk=1

+V(z)
on H = L*(R?), where

0 1
M= < ) |
_% 0
We denote the unperturbed constant magnetic operator by Hy:
1
Hy = —2-(Dx - Mz)> onX,

and we suppose H is a short-range perturbation of Hy in the follow-
ing sense:

Assumption B. a;x(z), 4;(z), V(z) € C*(R*R) for j,k € {1, 2},
and (ajk(:c))j . is positive symmetric for each z € R2. Moreover,
there exists u1 > 1, po > 1, pg > 0 such that for any a € Z2,

|8a ajk( )__ 5; )| < Ca<w>—u1—|al,
laav I < —uz—lal
|6°‘A |S < > —p3—|o

for z € R? with some C, > 0, where (z) = /1 + |z|2.

Then it is well-known that H is essentially self adjoint on C$°(R?),
and we denote the unique self-adjoint extension by the same sym-
bol H. This problem is closely related to the perturbed harmonic
oscillators in the previous chapter. Thus the assumption and for-
mulation and the argument are almost the same. For our reader’s
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convenience, we formulate it in a parallel way. So in the following
we denote the symbols of H, Hy, the kinetic energy and the free
Schrodinger operator by p, po, k and ko, respectively. Namely, we
denote . »

.6 =5 3 a@) (& — (Ma); = 4/(2) (6~ (M) - 44(0))
+ V x),
po(z,€) = 5(€ — Ma)?,

2
k(z,€) = % Z ai(2)€&k,  ko(z,§) = %|§|2-

Jk=1

Like the previous chapter, we denote the Hamilton flow generated
by a symbol a(z,£) on R?" by exp(tH,) : R*™ — R?. We also
denote :

m(X)=z, mX)=¢ for X = (z,€) € R*™.

Let (z0,&) € R*™. (z0,&) is called forward (backward, resp.)
nontrapping (with respect to k) if

|1 (exp(tHy) (2o, &) ) | = 00

as t — +oo (t = —oo, resp.). If (zo, &) is forward/backward non-
trapping, then

(T4,8x) = Jim exp(—tHy,) o exp(tHy) (o, o)

exists, and Sy: (zo,&) — (z4,&s) are locally diffeomorphic (see,
the previous chapter).

Now we present our main results of this paper. Let us recall the
constant magnetic operator Hy has a period 27, i.e., e 2 Hop = o
for ¢ € JH. Our first result concerns the evolution by H up to time
2m. We denote

u(t) = e Hyy, wuy € H.

We denote the wave front set of a distribution f by WF(f).
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Theorem 3.1. (i) Suppose (o, &) is backward nontrapping, and let
0<ty<2m, ug € H. Then

(@0, 60) € WF(ulty)) < (o_,£) € WE(e=toHoyy).

(ii) Suppose (zg,&o) is forward nontrapping, and let —2m < ty < 0,
ug € H. Then

(20,60) € WF(ulto)) = (24,&:) € WF(e™" o).

Remark 3.2. We note that microlocally e~#H° is a rotation in the
phase space. More precisely, for any reasonable symbol a = a(z, £),

etHog® (g, D, )e o = g¥ (A(t)ﬂC + B(t)Ds, —B(t)z + A(t)DW) ]

where a®(z, D,.) denotes the Weyl-quantization of a and

l4cost _ sint t _ant
Alt) = (————2 sint ) —cost <cos L —sin 2)
- sint l4cost | — 2 . ’
2

t
5 5 Sin COS B
sin t 1—cost : 13 in &
B(t) = 2 w3 ) =sint (97 T3
1—cost sint 2 \gint cos & '
2 2 2 2

Hence, in particular, (zg,&) € WF(e %Hoy,) if and only if there
exists a symbol: a € C§°(R?™) such that a(zo, &) # 0 and

| (A(t)z + B(£) Dy, h(—B(t)z + A(t) Dy))uo|| = O(h™)

as h — 0.

At the time t = 27, u(t) behaves differently. We denote the
set of forward (backward, resp.) trapping points by T, (T_, resp.)
C R™\ 0 := {(z,€) € R?™ ¢ # 0}. Si are diffeomorphism from
(R?"\ 0)\ Tz to R?*\ 0, and hence S;' are well-defined from R?"\ 0
to (RQn \O) \ ‘Ti.

Theorem 3.3. (i) Suppose (zo, &) is backward nontrapping, and let
ug € H. Then

(.’L’0,€0) € WF(U(ZW)) — S_|__1 o S..(l’o,fo) c WF(UO)
(i) Suppose (xg,&o) is forward nontrapping, and let ug € H. Then
(z0,&) € WF (u(=2m)) <= SZ'o S, (z0,&) € WF(up).
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If the metric is flat, i.e., a;x(z) = d;x, then we have in particular
the following

Corollary 3.4. If aji(x) = d, then
WF (u(2m)) = WF(u(—27)) = WF(up).

There are many results about the microlocal singularities for
Schrodinger equations since the pioneer work of Craig-Kappeler-
Strauss [2] in 1996. Here we just list some of them (For more in-

formation, see [2, 16, 24]). For perturbed free Schrodinger equa-
‘tions, see [9, 12, 24, 25]. For perturbed harmonic oscillators see
8, 13, 16, 31, 32, 35]. In [16], we studied the perturbed harmonic
oscillators. Since in many aspects magnetic fields operators appear
to have similar properties to harmonic oscillators, such as spectrum,
periodicity of the corresponding classical trajectories, and so on, we
naturally expect the analogue in microlocal singularities too.

In this paper we study the magnetic and metric perturbation ef-
fect of the constant magnetic fields. By the similar argument to
that in the paper of perturbed harmonic oscillators[16], we obtain
analogue of microlocal singularities between harmonic oscillator and
magnetic fields. Moreover, from the results and the argument, we
see that the perturbation of magnetic fields does not affect the prop-
agation of singularities, while the metric perturbation does.

The rest of this paper is arranged as follows. Section 3.2 is de-
voted to the analysis for the asymptotic behavior of the classical
Hamilton flow, and the main results are proved in Section 3.3. In
the last section we generalize the results to the case of inhomoge-
neous magnetic fields perturbation in higher dimension.

3.2 High energy asymptotics of the classical flow

In this section, we study the high energy behavior of the classical
flow generated by p(z,£). More precisely, we consider the proper-
ties of exp(tH,)(zo, Ap) as A — +oo. Throughout this section, we
suppose (zg, &) is forward nontrapping, and consider the case t > 0.
The case t < 0 can be considered similarly.

For A > 0, we write

p(@,€) = 5(6 — T M)’
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and

P (€)= %Z (@) (& — 5 (M), — 3 45(z))
x (6~ s (M)~ +Au(x)
+ %V(z)

Then, by direct computations, we learn

(3.1) . mi(exp(tH,)(z,AE)) = mi(exp(AtHp)(z,£)),
(3.2) o (exp(tH,)(z, X)) = A - ma(exp(AtH ) (x, €)).
Hence, it suffices to consider exp(tHy»)(x, §) for 0 < t < Ay, instead

of exp(tH,)(z, Af) for 0 < t < t.
We note, for each fixed t € R,

(3.3) /\11_{20 exp(tHp)(z, &) = exp(tHy)(z, §)

by the continuity of the solutions to ODEs with respect to the coef-
ficients. Hence, if t > 0 is large and then A > 0 is taken sufficiently
large (after fixing t), m1 (exp(tH)(zo, o)) is far away from the ori-
gin by virtue of the nontrapping condition. The next lemma claims
that this statement holds for 0 < ¢ < AJ with sufficiently small
6> 0. f

Lemma 3.5. There exists 6 > 0 and a small neighborhood Q) of
(20, &) such that

|m1 (exp(tH ) (z,))| > cit —ca for 0 <t < A6, (z,€) € Q)
with some cq, cé > 0. '
Proof. In the following, we denote
exp(tHp)(z,€) = (62, €),m (7, €)).

And we let p = min{p;, u2, us + 1}. By the conservation of the
energy: p*(y*(t),n*(t)) = const., and the ellipticity of the principal
symbol, we easily see

N e < S(ED), @oearer
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where (2 is a small neighborhood of (zg,&). Then by Gronwall
inequality, we have for any 7' > 0 fixed,

<2, 8)] < Or.

By the conservation of the energy and the ellipticity again, |n*(t)| <
Cr follows.
Hence, in particular, we have

[V (t;2,6)| < CW), | tz,6)| <O

for t > 0 with some C > 0. On the other hand, by direct computa-
tions, we have

d? 2 d? dy?
Zi_t5|y,\(t)| = QEt_2 <y,\ . ET) = (Z ajr(y)y; nk>

= 4p*(y*, ") + 2W (y*, ),

where
1 A (y?
W) = awy?) (ake(yk) = 5ke) (%A - X(Myk)j - ]g\y ))
7.k, L
1 Ai(y?
x (= 5(My")e - K(Ay ))
da; 10a;m,
+ 30 w(FE0 ) - 5520 )
7,k L,m
1 Aj(y
X (77}\ - X(My)‘)j - #
1 Am(yA)
AT A _
< (= 5 M9 = =)
A
+ y)’faek(y )azm( A) (sz - Mje) X
J,klm
1 A (y?
X (777}1‘1. - X(Myk)m - ———)\(——))
vp 0A 0A;
+ Y Fan@am@) (G20 - F20Y) X
i,kL,m J J

(1 = 20, — A
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E/__ () R TTP
Ek v y )= =V
Combining these, we learn

a2 'yk(t | apr ) - 04((yA)‘“ + 271 (y)‘>)

We note p*(zq, &) = k(xo, &) +O(A72) and k(x, &) > 0, and hence
p*(@o, &) > 0 for large A. Since A7 (y*) = O((t)/A), if 0 < ¢ < 6A
with sufficiently small § > 0, the last term is small and

_d_2_| A(t)|2>3 ,\( A ’\)—c( A>—u

dt2 Yy Z9p\y,n 4 y

for the initial condition (z,&) € Q. By the nontrapping condition
and (3.3), if Ty > 0 is sufficiently large and ) is large (depending on
Tp), then

AT ™ <P(E,6) for (2,6) €, and AT > 0
Then by the standard convexity argument, we learn ‘
WOP 2 [y (T0)* + p (@, &)t — To)? for t € [To, 6],
and this implies the assertion. O

Lemma 3.6. Let § > 0 and Q as in the previous lemma, and let
€ (0,9). Then

lim exp(—oAH,y) o exp(eAH)(2,€) = Sy (, ),

for (z,€) € Q.
Proof. We denote

(zh(t; x,€), CN¢; z,8)) = exp(——thé) o exp(thA)(as, £),

and we show the convergence of (2*(c)),(*(o))) to Si(z,€) for
(z,&) € Q. We recall

exp(~tHyy)(z,€) = (A7(})o = AB" (46, 1B (H)z + AT($)¢),
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since p} is the principal symbol of the scaled constant magnetic
operator. Thus we have

2(t) = AT($)y (t) — ABT(£)n(¢)
and
¢Mt) = 3BT (v () + AT(4)n (@),

where M" denotes the transpose of the matrix M. And by direct
computations, we have

(3.4)

a5 _ - dA%(3) ,  dBL(3) N N
%zk_; Y T ATt A(x) = — AB; (x)—t}

A
- ‘}\‘ Z am@(y)\) (MmJ + %(y)‘))
(- Loy - 240
%g—;(y*)}
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j=1
0A;
+ 2 (B o0~ B MsA))
OA;
= 3 Bi(§) 52 0 Min, |
jlm
2
1 da m y’\ 1 Am A
+Z>\Bjk(§){§zg—;l(ﬂﬁz—X(M?J'\)m— &)
j=1 £m J
1 Ady®)
A_ Lo ¢
x (m = 3 My - 25
1 0Am
Y Z(aml(y)‘) - 5me) (Mm‘ 55“
mé J
a1 Ay A(y)
X (778 A(My )E Y )
10V, ,
ﬁa_xj(y )}
2 2 »
1 Ay
#3400 Y (0e0) = 03 (2 = 201y — 20
j=1 =1
=0o((n™)
for 0 <t < d\, where
sn b t
_ ¢ f—sinf —cosi
Cft) = cos 3 ( cos %2 —sin%) ’

ot ¢
—sint —cosz
—ain t
D(t) =sin 5 ¢ 2,
coss —sing

come from the derivative of A(t) and B(t) write w.r.t. t.
Similarly, we have

(3.5)

doa_y () W3 1, dy
ECI;\:Z{— Ayt + 220 + < Bin(5) = + Aj(L)

28



=i{;( Al§)+ Da(D)d + 3 (~1Bi§) + 208}

dy] t dn;\ )

1
\x Bir(x) g + Ar(3) =

+
HMN
~~

22{%( At )+Djk(i))y%+§(—%B (H)+ Cak(%>)ﬂ?}

j=1

i %z,;a“z;ﬁy“(a 50t = 2250)
< (=50~ 240)
£33 ane0) (Mo + %%:i(y*))
« (- Joum - 442
> L) S (ol - 6i) (7 — Loy - A1)
ot et fun s
20

(77? - ;(My’\)e - %y’\))

- (T ¢ M)+ A)

j=1




0A;( (W)
+ 3 ZA i_xe_z )\ZZA f -’Ue — "= My,

7ém
~ %z Z Bir($)4; (")
— O((t)‘(’“fl))

for 0 <t < §\. Moreover, for each t € R, we have

8am
hrrolo Eizk Zaﬂk -+ = 5 Z aa:k

d
= —({J, — t7]
dt(yk Tik)s
. 3% _d.
)\lglc}o EE B Z Ba:k )7l = ai

where (§(¢),7(t)) = exp(tHy)(z,€). By using the dominated con-
vergence theorem, we conclude

oA A o 4
1. A _ . G _ _
fim o0 =act fin [ Grdi =t [ - 0
=, lim (~(t)—tﬁ(t)) =m(S4(z,€)),

Jlim o) =€+ Jim /aA —dt=¢+ /Ooo i~(t)dt

dt
= lim 77()~7T2(S+(w,£))-

t—+o0

This completes the proof of the lemma. O

Lemma 3.7. Let 0 < 0 < 27, and let Q be a small neighborhood of
(%0,&0) as in the previous lemmas. Then

)‘lim exp(—oAHy) o exp(cAH» ) (z,€) = S4(z,§)

for (z,€) € Q.

Proof. Tt suffices to consider the case § < o < 2m, and we fix such
o. Let € > 0, and we show that if

max(|z*(0A) — 24|, [CMoX) — &) > €
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then A is bounded from above, where (z;,&.) = S.(z,€), and
(2*,¢*) is as in the proof of the previous lemma. Our claim then
follows from this assertion.

We first note

v(1) = A(3)22(1) + AB(3)C ).

For the moment, we suppose |22 () — 24, [¢M(t) — €4 | < e. Then we
have

[y (®)] > 2xsin(%) (€] — &) — (|| + &) > 61\
with some d; > 0 provided 0A <t < o), € < |[£4]/2 and A > A,

where ; and )¢ depend only on |z| and |£,|. Then, by using
formulas (4.4) and (4.5), we learn

‘ ] < on,

d

—ME)| < OaH L
G| <o
Now we choose A sufficiently large such that

ax(|2*(6X) — 24, [} (OX) — &4]) <

N ™

and suppose
max(|z*(0A) — 24|, [CM(oX) = &4]) 2 ¢
Then there exists ty € (A, oA) such that
max(|z*(to) — 241, 1C*(t0) — &+[) = ¢
and
max(|2*(t) — x|, |¢M(t) — €4]) < e for 6XA <t <.
By the above observation, we learn

to d
20) ~zl = [P0 -z + [ >dt\
P\

< |22M(0N) — o |+ Cto — AN
< |26 )\)—:c+|—|—C’a—5))\ w1,

1CP (to) — &4 | = ‘C (0X) — &+ +/ (t )dt
[
< [¢MON) — &4+ C( 0—5))\ “

31



Thus we have
e = max(|(to) = 241, 1M (t) = &1) < = + Ol = AW,
and hence A < (2C(0 —6)/e)Y/#=1) | and this completes the proof of
the assertion. O
The next theorem follows immediately from Lemma, 3.7.

Theorem 3.8. (i) Suppose (xg,&o) is forward nontrapping, and let
0 < o < 2m. Then there exists a neighborhood Q0 of (xo,&) such
that

)}Lrgo 71 (exp(—0 Hy,) 0 exp(c Hy)(z, X)) = m1(S4(z,8)),
Jim Ao (exp(—0 Hyy) 0 exp(0 Hp)(z, AE)) = (S (, €))
for (z,€) € Q, and the convergence is uniform in Q. -

(ii) Suppose (zq,&o) be backward nontrapping, and let —2m < o < 0.
Then there ezists a neighborhood Q2 of (zg,&y) such that

,\11_>I§o 71 (exp(—0 Hy,) 0 exp(c Hp)(z, X)) = m(S-(z,€)),
)}1_{{)10 A7y (exp(—0 Hy,y) 0 exp(0 Hy)(z, AE)) = m3(S-(x, €))

for (z,€) € Q, and the convergence is uniform in €.

We introduce several notations as a preparation for the proof of
our main results. We set

U(t;z,€) = (poexp(tHy,))(x,€) — po(z, £)

< {=(B®w), + (A®E), - (M(A®)z + BE))

)
— A (At x+B(t€)
><{ (B(t)) (At)e)

t)¢)

}
00}

— (M (At)z + B(t)£)>

k
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_ Z{—ng(t)xe + Aje(t)&e — <M(A(t)x + B(t)£)>j

~ A, (A + B(1e) )
+ V(A(t)z + B(t)E).

Then it is easy to show that £(t;z,§) generates the scattering time
evolution:

S; = exp(—tHp,) o exp(tH,).

Similarly,
At z,€) = (p* o exp(tH,)) (2, €) — pp(a, €)

generates the time evolution:

S} = exp(—tH,) o exp(tHp).

We denote the scaling with respect to &€ by J,, i.e.,
Ix(z,€) = (z,X) for (x,&) € R*™.

Then by (3.1) and (3.2), we have
exp(tHp) oy = Jroexp(AtHpn), exp(tHy)odx = droexp(AtH ),
and hence we also have

(3.6) Si0dx=10x05%.

3.3 Proof of main results

In this section, we mainly concern the case (z,&y) is forward non-
trapping, and prove the part (ii) of Theorem 3.1.

We first consider the property of e®*foe=®H for ¢ < 0. Let vy €
Cs°(R?), and we consider

U(t) — 6itHo e_itHvo.
Then it is easy to observe
Ez,v(t) — tho(H H ) —’LtH
= —i(e"HoHe "o — Ho)v(t) = —iL(t)v(t),
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where L(t) = eHoHe #Ho — H, We recall, for any reasonable
symbol a(z, ), we have

0¥ (z, D,)e” " = (a o exp(tH,,)) " (z, D,),

without the remainder terms, since pg(z,&) is a quadratic form in
(z,€), and we employ the Weyl quantization. Thus we have

L(t) = (p ) exp(tho))w(x, D) — po(z,D,) = £*(t; z, D),

i

ie., £(t;z,€) is the Weyl-symbol of L(t). This is in fact expected,
since e*foe=H ig the quantization of .

Let © be a small neighborhood of (zg,&p) as in the last section,
and let f € C§°(Q) be such that f(zo,&) > 0, and f(z,£) > 0 on
R*. We then set '

fh(x7§) =f(x5h£)7 h:)‘_lf

where h > 0 is our semiclassical parameter. We consider the behav-
ior of _ . . _
G(t) — 6thoe—thfw (JI, th)ethe—-thg

as h — 0. The operator valued function G (t) satisfies the Heisenberg
equation:

(7 L6() = ~ilLe).C0] GO = f(z.hD,).

The corresponding canonical equation of the classical mechanics is

0 112,€) = ~{L o} (62,8), ¥(0;2,€) = f(x, he)

and the solution is given by

bo(t;2,€) = (fao S;)(2,€)

since S; is the Hamilton flow generated by £(¢; z,£). Now we note

fh(:E?g) = f(x? 6/)‘) = (f © 3;1)(37’6)

Hence, recalling (3.6), we learn

faoSit=Ffody oSt =fo(S0d\)"
= fo(dro Si‘t)_l =fo (Sﬁt)_l ° 3;1~
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In other words, we have

Yo(t;2,€) = (fn o S7)(2,€) = (f o (S3) ™) (z, hE).
We expect

G(t) ~ %o(t; 2, Do) = (f o (Si) ") (@, hDy)

for small A > 0, and we construct the asymptotic solution to the
Heisenberg equation (3.7) with the principal symbol q(t; z, £).

Lemma 3.9. Let —27 < ty < 0, and set I = [ty,0]. There exists
Y(t;z,€) € CP(RY) fort € I such that

(i) ¥(0;2,8) = f(z, h€).
(ii) ¥(t;x, &) is supported in Sy o JA(2) = I o S3(€).
(iii) For any o, B € Z2, there is Cpp > 0 such that

02000 (t; 7, €)| < Caphl®!, tel,z,€eR

(iv) The principal symbol of P is given by iy, i.e., for any o, B €
7%, there is Cop > 0 such that

838ﬂ Yt z, &) — vo(t; x,€)) | < Caﬁh1+l'3|, tel z &R
3

(v) If we set G(t) = v¥(t; z, D,), then

= O(h™)
L(H)

“ L(0), G(¢)

as h — 0, uniformly int € I.

Proof. This can be proved by similar argument as in the previ-
ous chapter. Here we sketch it. Given the classical mechanical
construction above, the construction of the asymptotic solution is
quite similar to (or slightly simpler than) the proof of Lemma 4 of
[24]. We note £(t;z,€) € S((€)?,dz* 4 d€?/(€)?) locally in z, and
1 (supp (¥o(t;+,+))) is contained in a compact set by virtue of the
asymptotic property: Sy, ~ S, as A — co. We omit the detail. [
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And then as the same argument in the previous chapter, the proof
of Theorem 3.1 is almost the same as the proof of Theorem 1 of [24],
and we also simply refer the readers to the paper.

Finally, we show Theorem 3.3 follows from Theorem 3.1 by a
similar argument.

Proof of Theorem 3.3. We prove the part (i) only. We note
(3.8) WF (e Hoy) = WF (e™Hou) = T'(WF(u)).
where I'(z, &) = (—M&, M) is a symplectic transform in the phase
space. (See also Remark 3.2.)
We set (z/,&') = S71 0 S_(z0,&) so that
(39)  (0-6) = (€h€l), where (,€,) = 5,(¢/,€).

By Theorem 3.1 (i) with o = 7, and u(n) as the initial condition,
we have

(zo,&) € WF(u(2m)) <= (z-,&) € WF(e""™Hoy(r))
= (z-,&) e T(WF(u(n))).
We have used (3.8) in the second step. On the other hand, by
Theorem 3.1 (ii) with ¢y = —m, and u(7) as the initial condition,
and using (3.8) again, we also have
(2',¢) e WF(ug) <= (a,,&,) € WF(e"™ou(r))

= T(WF (u(m))).
By (3.9), this implies the claim of Theorem 3.3 (i). The part (ii) is
proved similarly. , O

3.4 Inhomogeneous magnetic fields operators

Here we consider the case when the magnetic vector potential is
inhomogeneous, i.e.,

_ %(Dw ~Mz)?  onH = L}R™),

and
H= % Z (D, —(Mz);—Aj(z)) aji(z) (Dwk—(Mx)k—Ak(x))—i-V(x)
k=1
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where

VR

| .
NN ©
@IS
~

(% ©)

and vy, -+ , v, are positive numbers. We assume (a;(z)) and V (z)
satisfy the analogous form of Assumption B. The behavior of the in-
homogeneous magnetic operator depends on the number theoretical
properties of (v;)7_;. If there exist no ty > 0 such that

(3.10) tov; €27Z, j=1,...,n,

then it is well-known that the recurrence of the evolution operator
does not occur, i.e., there are no ty # 0 such that e™®fo = J. In this
case we have the following result:

Theorem 3.10. Suppose (xg, &) is backward nontrapping, and sup-
pose that there are no ty > 0 such that (3.10) hold. Then for any
t>0,

(z0,&0) € WF (e ™ug) <= (2_,&) € WF(e *oyy).

Obviously, an analogous result holds for ¢ < 0, but we omit it
here. :

If there exists ¢, > 0 such that (3.10) holds, then we have the
following result: '

Theorem 3.11. Let ty > 0 be the smallest positive number satisfy-
ing (3.10), and let m; = tov;/2m € Z. Suppose (xo,&y) is backward
nontrapping. Then for 0 < t < t,

(z0,&) € WF (e Hyy) «— (z-,¢-) € WF (e~ "Hoy,),
and |

(Io,fo) S WF(B_#OH'U,O) p S_'__l o] S-(CL‘(),&]) € WF(U())

The proofs of these theorems are similar to Theorems 3.1 and
3.3, and we omit the detail. We only note the fact that

exp [—z’to (%(Dz - ij)2)}u(az) — u(z)
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for u € L*(R?), with M, = (
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4 Propagation of singularities for harmonic os-
cillators with long-range perturbations

4.1 Introduction

In this g:hapter we consider a Schrodinger operator with variable
coefficients and the harmonic potential:

1< 1
H = =5 3 00ai(@)0n, + 5lol? +V(2)

J,k=1

on H = L*R"), n > 1. We denote the unperturbed harmonic
oscillator by Hy:

1, 1 .,
Ho——§A+§|x| on X,

and we suppose H is a long-range perturbation of Hy in the following
sense:

Assumption C. aj;(z), V(z) € C*(R™%R) for j,k=1,...,n, and
(ajk(x));k is positive symmetric for each z € R™. Moreover, there
exists 4 > 0 such that for any o € Z7,

|02 (ajn(z) — 636)| < Cafa) ™12,
|62V (z)| < Cofz)?~+1

for x € R™ with some C, > 0, where (z) = /1 + |z]2.

Then it is well-known that H is essentially self adjoint on C§°(R"™),
and we denote the unique self-adjoint extension by the same symbol
H. As has done in the previous chapters, we denote the symbols of
H, Hy, the kinetic energy and the free Schrodinger operator by p,
po, k and kg, respectively. Namely, we denote

1 n
p(e,6) =5 3 an(@)éh + glel’ +V (@),
j k=1
1
po(2,€) = 5167 + 5ol

n

7,k=1
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And also as has done in the previous two chapters, we denote the
Hamilton flow generated by a symbol a(z, ) on R?" by exp(tH,) :
R?™ — R?". Then we can denote

£(t,z,8) = poexp(tHy,)(x,€) — po(z, €),

which is the most important quantity in our work and we shall
devote much effort to estimating it. We also use

m(X) =z, mX)=¢ for X =(z,£) € R*™

to denote the projection to the first and the second coordinate of
the phase space T*R™ respectively.

Let (z0,&) € R* and recall that (zo, &) is called forward (back-
ward, resp.) nontrapping (with respect to k) if

|71 (exp (tHk) (w0, &o)| — o0

as t = 400 (t = —oo, resp.). If (z¢,&) is forward/backward non-
trapping, then it is well-known that the modified classical scattering
data exists, and Si: (2o, &) — (24 (20, &0), &+ (0, &o)) are locally dif-
feomorphic (see, e.g., Nakamura [25], Section 2.). Specifically, if we
let

) (g(t7 l‘o,f@),ﬁ(t, x07€0)) = eXp(tHk)(x07§0)

denote the Hamilton flow associated with the kinetic energy k(z, £),
then from [25] section 2, we know that

§+(0,&0) = tlifinoo 7(t, 2o, o)

exist and fi(:l:RT%, €) are diffeomorphisms from {¢£ € VR”; €| > cR}
to the image, for some ¢ > 0, when R > 0 is chosen to be sufficiently

large. Since £1(z,&) and fi(:tRé—l,é) are homogeneous of degree 1

w.r.t. £, we can choose P(zg,&) such that
- €x (w0, &0) = fi(iR%,P)-
Then from the argument in [25] section 2, we also know

(§(t, m0, &) — di(t, £RE, P)).

24 (%o, o) R

= lim
t—=+o0
In order to characterize the singularities, we will construct a so-

lution W (¢, &) to the time-dependent Hamilton-Jacobi equation in
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Section 4.2, i.e., we will construct a solution to the following equa-

tion: 5 oW
- = _ >
atW(t, 5) E(t7 85 (t’ 5)75)7 |§l - C4R7
for £t € [0, o], and any t, € [0, 7).
Our result concerns the evolution by H up to time 7. We denote

u(t) = ey, ug € H.

If the wave front set of a distribution f is denoted by WF(f), then
we have Y

Theorem 4.1. (i) Suppose (xg,&o) is backward nbntmpping, and let
O0<to<m, ug € H. Then

(0, &0) € WF(u(to)‘) = (2_,¢6)) ¢ Wp(eiWF—to,Dm)e—itoﬂguO).

(ii) Suppose (zg,&) is forward nontrapping, and let —m < ty < 0,
ug € H. Then ‘

(0, &) € WF(u(ty)) <= (24,&4) € WF (" (TloDe)gmitoHoy ),

Remark 4.2. We note that microlocally e™®° is a rotation in the
phase space. More precisely, for any reasonable symbol a = a(z, &),

e "Hog¥(z, D,)e™ = o (cos(t)z +sin(t) Dy, — sin(t)d: +cos(t)D,),

where a¥(z, D,) denotes the Weyl-quantization of a. Hence, in par-
ticular, (zo, &) & WF (e ®H0qyy) if and only if there exists a symbol:
a € C§°(R?) such that a(zg, &) # 0 and

||a®(cos(t)z — sin(t) D, h(sin(t)z + cos(t) Dy))ug || = O(h™)
as h — 0.

Our method and formulation has the advantage of having more
clear structure and can be used in a unified way to deal with long-
range perturbation with harmonic or without harmonic potential,
compared to the traditional method where only one term of the
modified propagator was constructed in order to deal with long-
range perturbations. In fact we can use our method to construct
a new modified propagator in the form e'(-3tA+W(t.Dx)) g the long-
range perturbation of the free Schrodinger operator in [25], and by
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the constructions, we see that for large &, we have the relationship
—3t|EP+W (L, &) = W (¢, €) between the modified propagator W (¢, €)
in [25] and our W (t,€). Also it is more clear and more natural in
our method to see that we can regard the long-range perturbation
of the free Schrodinger operator as the “limit” case of the pertur-
bation of the harmonic oscillator when the angular frequency w in
the term sw?z? tends to 0. Indeed in this case the period T = 27 /w
tends to oo and Hj tends to —%A, then theorem 4.1 “tends to”
the corresponding theorem for perturbation of the free Schrodinger
operator. '

The main idea for the study of the problem is simple. If we
let v(t) = eHoe="Hyy as in the short-range perturbations, then we
know v(t) satisfies the evolution equation:

%v(t) = —i(eFo He~Ho _ Ho)o(t)

with vy € L%(R"™). Namely, v(t) is a solution to a Schrodinger equa-
tion with time-dependent Hamiltonian:
L(t) = %v(t) (e et _ F Y (t).

Since the perturbation has been assumed to be long-range pertur-
bation, by the calculus of symbols we see that the speed of propaga-
tion of singularities is not necessarily finite for ¢ # 0. But carefully
checking gives us the information that in L(t) we have separated
the quadratic part Hy from H, thus we can try to construct a mod-
ified propagator as in [25] for the evolution equation for v(t) with
the Hamiltonian L(t). Then we can combine the method used in
short-range perturbation in chapter 2 with the argument in [25] to
complete the proof.

Since the propagation of singularities is closely related to the
corresponding classical Hamilton flow, we study the high energy
asymptotic behavior of the classical flow in Section 4.2, and prove
the main theorems in Section 4.3.

4.2 High energy asymptotics of the classical flow

In this section, we study the high energy behavior of the classical
flow generated by p(z,£). More precisely, we consider the proper-
ties of exp(tH,)(zo, A) as A — +o00. Thoughout this section, we
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suppose (zo, &) is forward nontrapping, and consider the case ¢ > 0.
The case t < 0 can be considered similarly.
For A > 0, we write

A lz> 1
Nz, €) = Za]k §]k+—2ﬁ+—V()

J,k 1
1
A _ 2 2
po(z,6) = §|§| + 2—>\2fl’| :
Then, by direct computations, we learn

(4.1) mi(exp(tHy)(z, X)) = m1(exp(MH ) (z,§)),
(4.2) mo(exp(tHy)(z, X)) = A - ma(exp(MtH ) (z, §)).

Hence, it suffices to consider exp(tHx)(z,§) for 0 < t < Mo, instead
of exp(tHp)(z, A§) for 0 <t < .
We note, for each fixed t € R,

(4.3) Jim exp(tHp»)(z,€) = exp(tHy)(z, £)

by the continuity of the solutions to ODEs with respect to the coef-
ficients. Hence, if ¢ > 0 is large and then A > 0 is taken sufficiently
large (after fixing t), 71 (exp(tHyn)(z0,&0)) is far away from the ori-
-gin by virtue of the nontrapping condition. The next lemma claims
that this statement holds for 0 < t < Ad with sufficiently small
6> 0.

Lemma 4.3. There exists § > 0 and a small neighborhood Q0 of
(z0,&o) such that

|T1(exp(tHp ) (2, 8))| = it —cy for 0 <t < NG, (z,€) €
with some cq,cy > 0.

Proof. In the following, we denote

exp(tHp)(z,€) = (y*(t; 7, €), 0’ (t; 2, £)).

By the conservation of the energy: p*(y*(t),n*(t)) = const., and the
ellipticity of the principal symbol, we easily see

1 .
TV GO + I (G2, O <O (2,6 €QtER,
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where () is a small neighborhood of (z¢,&;). Hence, in particular,
we have

Wt z,6)| < Clt), In*(t=,€)|<C

for ¢ > 0 with some C > 0 by the Hamilton equations. On the other
hand, by direct computations, we have

& dy

= 4p* (v, ) + 2W (v, ),

where
Wt m) =Y (@) (an(y*) — de)n)np
Jsk,€
aaﬂc A, A
+ D 320 am@)mn
],kfm
aafm
— > anly —ax—k My;nemy, — Eagk(y A
],kf'm
2
BBV Z a;(y 87 )yj - X§|y >~ ﬁV(y").

Combining these, we learn

jtz @) > 40 (A, ) — ca( (W) + A2 (H)?).

We note p*(zo, &) = k(zo,&) +O(A2) and k(x, &) > 0, and hence

(20, &) > 0 for large A. Since A72(y*)2 = O((t)2/X\?),if 0 < t < A
with sufficiently small § > 0, the last term is small and

dtz|y @) = 3™ n?) = calyt)

for the initial conditon (z,€) € Q. By the nontrapping condition
and (2.3), if Ty > 0 is sufficiently large and X is large (depending on
Ty), then

el (T0) ™ < p(@,€) for (,6) €, and TAT)] > 0.
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Then by the standard convexity argument, we learn
)P 2 [N (To) P + M2, )t = To)* for t € [Ty, 6)],
and this implies the assertion. O

Lemma 4.4. Let 6 > 0 and Q as in the previous lemma, and let
€ (0,0). Then

Jim o (exp(~0AHy) 0 exp(oAHyp) (,€)) = 73 (S:(2,€)),
for (z,€) € Q.
Proof. We denote
(Xt 2,€), (M (t; 2, €)) = exp(—tH,y) 0 exp(tH, ) (z, £),

and we show the convergence of (*(a\) to (S (z, €)) for (z,&) € Q
We recall

exp(—tHy)(z,€) = (cos(%)z — Asin(2)¢, 3 sin(§)z + cos($)€)
since p;) is the scaled harmonic oscillator. Thus we have
(1) = cos( )y (1) — Asin(£) (1),
and
| ¢* = 1sin(§)y () + cos($)n*(®).
By direct computations, we have

(4.4)
d , 1 dyl/c\ A . d"?lfc\
ey sn1(§)y,C + cos($) =+ ol cos(£)mi — /\sm(i)g
1
=3 sin(£)yp + cos(L) Zajk(y — cos(L)mp

1-t,\-£_8%‘,\,\,\la_vx
+ Lsin(H)y) +sm<A>(2 > G i + 35 0

= cos(£) D _(au(y*) — &)
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= 0((y")™) + O+ A1) )

=0((H)™)
for 0 <t < dA. Similarly, we have
(4 5)
1 1 dn}
Ck COS(-f() X sin(% )— 5 sin(£)my + cos(%)%
1 1 . 1
be cos(%)up + by sin() Zajk(y'\)ﬁ}\ DY sin(£)np
1 Ouaij Ay 1oV
— g cos(L)ud — cos(: )( S+ )
1 .
= Xsln(i)Z(ajk(y ) 5gk)77j

= O M) ™) + O(() ™ + Ay >-<ﬂ-1>>
= o({t)™")

for 0 <t < dA. Moreover, for each t € R, we have

d aaz
lim —22(t) = Zajk 9 — e + = 5 Z 2(

A—00 d
J
d
—t
dt — (G — t7x),
Ba,] d .
lim 52 Z 5z, DT = e

where (g(t),7(t)) = exp(tHy)(z,£). By using the dominated con-
vergence theorem, we have the following conclusion

a’)\ o0
lim C)‘(a)\) £+ hm/ —dt 5-1—/ % (t)dt
0

A—00
= lim 7(t) = 7T2(5'+(~’0’5))'

This completes the proof of the lemma. : O
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From the proof of the above lemma, we see that Alim 22 (o)) does
—00

not necessarily exist, although )}im (Mo ) does exist. However we
—00
have the estimate

2A6X) = O(A1™M), as A — oo.
In fact we can extend these estimates to larger time as follows:

Lemma 4.5. Let 0 < 0 < 7, and 2 be as in the above lemma, then
lim (A(oX) = €,(2,8),
—00

and for any 0 < po < p < 1,

A C2))
,\1520 Ao

for (z,€) € Q.

Proof. By above lemma, we need only to consider the case § < o <
7, and we fix such a 0. Let g > 0, we will show that if

A
e Rt e

then A is bounded from above. This will implies the result.
In the following argument, we may take g small, such that g <
|—52+—|. We choose X > 0 sufficiently large such that

EXCN N €0
S e el < 2,

and suppose

2M(oA
| /\1( o ) , [¢Mox §+‘} 2 €0,
then there exists to € (0A, 0A) such that

At
max li\l(‘:jﬂ)l’ ¢ (o) — £+|} = €o,

and

max{ |/\1 o , ¢ (t) — f l} < &,
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for 60X <t <'tp.
Since

Yy (t) = cos(£)2*(t) + Asin(£)¢A (1),

we have '

()] = Asin(3) (€] = €0) — A1 70gg > 612

with some d; > 0 provided A <t <ty < oA < 7, g < |§+| and
A > Xo. Then by the formulas (4.4) and (4.5), we learn that

420] sov, o] <o

for t € (6, to]. Thus
22 (to 1 fo dz £)dt
Al—ro )\1—No + Ao Py ‘
2@, (=8N,
— | Al—ko Al—ro
< %0 4 C(o — §)A o),
and
2 A o d¢r
) -l = [N - e+ [ B
b3

<G ON) = &l + Clto — SA)A#
< %0- + C(o — )\

These estimates imply

A
t
Eg = max{ ‘il(—s()”? K-)\ tO €+ } < s + C(O' _ 6))\"(#‘”0)

and hence A < (2C(0 —§)/gp)Y/#~#0) and this proves the assertion.
O

From the above lemma, we learn that for any 0 < o < m, there
exist C'1, Cy > 0 such that

v ()| = Cult] -
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for t € [0,0)]. And then by (4.4), we also have

d s\ —u
Z2\(t) = 0((t)™),

for t € [0,0A]. This implies that
(1) = 0(()'*).
as A — oo.

Proposition 4.6. Let 6; > 0, then there exist Ry > 0, ¢g > 0, C >
0 such that ’ '

D ¢tm,6)| < Rl

5 (Cno -9 <cr

for0<t<o<m,
(2.€) € Qrs, = {(2,6) € B | [e]-R| < 1, [6] 2 A, 2:€ > b1l ¢]}
with R > Ry, and A > coR. Moreover, for any o, 8 € Z7, there is
Cop > 0 such that ‘
d\2s 0\5 e
(55) (38) (e(t:2.6) = )| < Cuglilie) =+,
0 \%7 0\A _
(52) (Ge) ct2.8) ~ 8] < oty

for (z,€) € Qrs, and 0 <t <o < 7.

Remark 4.7. By similar calculation as in [25], we know that for large
R > 0, the points in (g 5, are forward nontrapping.

Proof. By setting A = |£|, we need only to show the above estimates
for 2* and ¢* with |£| =1, A > \p and ¢t € [0,0)].

We mimic the argument in [25]. Let s = &; or z;, j = 1,...,n.
We note the fact that

W (2),m(t)) = exp(tHpn ) (2*, ().
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- From the formulas (4.4) and (4.5), we see that

- d [0z} = 1 o2 ¢
() = cos() D a(v) ~ 03 sin(5) 22+ con($) L]

A A
Then l%is’ and l%%’ are majorized by a solution to

Z > c(R+6Jt))77HZ + car(R + 8]t]) ™2

o S =

= Z 01(R + 5|t|)_2_y’Z + Cl(R -+ 5|t|)—1_“5
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for 0 <t < Ao, with
E(0) > 1, if s =g,
2(0) >0, if s = z;.
Let
Z=cy(R+5t)*, E=c3(1—(R+6t)¥), 0<t <)o
with 0 < p' < p. Then the differential inequalities for the majorants
are satisfied if
dca(1 = p) > c1coR™* + cyc3,
Seap’ > R (¢ycq + ciea R,

and R™* < % so that = > 0. Now we choose ¢y, c3 and Ry so that

max{y := z—z,R“"} < ———5(1 c_l'u),

1
R+ <=
_ 2’
for R > Ry, then the above conditions are satisfied. Thus we learn

20| et [ <en

for R> Ry, A > ¢oR and ¢ € [0, \], provided

8325 O] < 1 5 0] < ‘CW

We now consider the case s = z;. Then we may set c; = R™! and

we have 52 \
y 4 1 0
_J < 1- G 2 ()] < L.
8xk(t)‘ < jBE+6t) Bxk()‘ >R

We integrate the above equation for £ (gi ) to obtain
8('\ c17y
dr—im2m R+ 6r)"17#d
B | < R (R+ T dr + — 7 ( + or) r
_ 017 —1-2u(1 9 1y -2u
T 1=+ 5)")
&Y pt-n(y _ (14 Lpyn
+ 5/~6R (1—( ~|—Rt) )
< CR™',
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if t € [0, Ato]. Similarly, if s = &, we may set ¢y = 3 and we have

8;:3\ 2 _, 196 -\
%jﬂggm+&ﬂu _4ﬂ<2

AN -
We integrate the above equation for < (%—) again to obtain

a)\
%— ]k{<261/(R+5r 1= 2”dr-l—ch/(R-l—(Sr) ~I=kdr
k
)
—2pn(1 — — )2
va (1= (1+50)7)
201 “u 4] -
- 1= (14 —¢)H
+ S R (4 ™)
< CR™.

For higher derivatives, we can prove it by induction. Since the
argument is similar to that in [25], we omit the details and the
interesting reader may refer to that paper. O

Now we consider the map:

A€ (8, RE/IEL€).

The above proposition implies | %% -1 || = O(R™*) uniformly for
|€] > coR. We choose R so large that 6‘2 is invertible for |£| > ¢ R.

It is also easy to see that |A — fl O(R™#[¢|) for |€] > coR, and
hence
Ran(A) D {¢ e R" | [¢| = csR}

with some ¢4 > 0. Then we set
P(t,)7" : {€ eR™ | [¢] > R} - R”,

ie.,
(@&, RP(t,£)/|P(t,€)], P(t,€)) = &, for |¢] = caR.

By the above proposition, we learn

4o |(2) Peo|scerel el zar
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Then we set

Wi(t,6) = [ (£(6,2(6):C(9) +2(5) 0165 ds-+ Rle, for I > caR
where |

2(s) = 2(s, RP(t,§)/|P(t,€)|, P(t,€)),
((s) = (s, RP(t,€)/|P(t, )], P(t, £)).

It is well-known that W (¢, §) satisfies the Hamilton-Jacobi equation:

0 oW,
(47) Ewl(tag) = E(t7 _(96_(t7§)7§)7 |€| Z C4R.
and
(4.8) Wi (t,€) = 2(t, RP(t,€)/| P, &), P(t,€)).

By the construction, we also know
B8 WA(t, )| < Cal€)>™ 1%, for t € [0,0], [€] > iR

This can be seen as follows: for |a| < 1, we use proposition 4.6,
(4.8) and (4.6) to estimate 9¢W1(t, €); and for |a| = 0, we use (4.8)
and (4.7) to estimate it, by noticing that

0t,z,€) =% Z(ajk(x cost + €sint) — )

k=1
X (—z;sint + &; cost)(—zg sint + & cost)
+ V(zcost + Esint).
Finally we use a partition of unity to construct W (¢, ) such that

v [ WAE), €] > caR + 1,
G { Rllﬁl + P/ (2-p), ¢ <R

Lemma 4.8. (/25], Appendiz) Suppose n > 2, f € CYR"), and
suppose
|0:f(z)] < C(z)?, =zeR",
with some C >0, B € R. Then
- .
|f(2) = f(v)| < C5max{(z)", () }|2 — y|.

The same estimate holds forn =1 ifz -y > 0.
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Lemma 4.9. Suppose (zo,&) is forward/! backward nontrapping, and
Q2 is a small neighborhood of (zg, &), then

g(t,z,€) — §(t, £RP(x,€)/|P(x,£)|, P(x,€))
7(t,z,€) — ii(t, £RP(x,£) /| P(x,£)|, P(=,))
as t = oo, for (z,€) € Q.
Proof. For simplify the notations we let
§(t) = 4(t,,€), §'(t) = §(t, £RP(z,€)/|P(x,€)], P(x,€)),
q(t) = i(t,z,€), 7(t) = i(t, £RP(z,€)/|P(z,€)|, P(z,£)).

Then by the Hamilton equation and the above lemma, we have

o),
o({t)="),

I

\E@t—'wﬂscwﬂwmw—mm+cww—ﬁwm

|20~ 7)< Oy - 7(0)] + i) - 7).
Since we initially know
| |5(t)| = O((t)), |A(t) — &| = O({&)™),
7)) = O((t)), |7 () —&x| = O((t)™),

we have

|5(t) 7' (1) = 0( t), |at) -7 @)|=
We get igj(t) | = O((t)'~*) by integrating the first differential
inequality, and then |17 | = O({t)~?*) by integrating the
second differential inequality and using the new estimate for |77(t) —
7/'(t)| and also noting that #(+oc) — 7(£oo) = 0. And then we
repeat and iterate it to obtain

5(t) =g (®)] =0Q), |7@)—7@#)] =0,
which completes the proof. O
Proposition 4.10. Suppose (xg, &) is backward nontrapping, and

let 0 < ty < m, then there exists a neighborhood Q2 of (xg,&) such
that

§+(x7 5) = )\h_)IElo A_lf(tm z, /\6)7

24 (2,6) = lim {2(t0,2,36) — BW (to, C(t0, 2, 26)) },

54



for (z,€) € Q.
Proof. We need only to show
t,3,8) = 2\t 7, €) = W (t, (M (to, 2, €))

converges as A — 0o, where WA(t, &) = W (t/\, A€) and t = Aty. For
(z,€) near (xg,&), we choose P* € R™ such that

At 2,€) = ((t, RPY/|P*|, P*),
and we set
v'(s) = 2*(s, RPY/|P*|, PY),  w’(s) = (*(s, RP*/|P*|, P*)
for s € [0,t]. We also set
a(s) = 2*(s,2,€) — v\(s),
b(s) = C(5,2,€) — wA(s).

Then |a(0)| = |z — RP*/|P*|| < |z| + R, b(t) = 0, and a, b satisfy
the following differential equations:

d o0,
d—sa(s) = 8—€(S,Z
£b(8) - —(893 (S,Z 7C ) - oz (377) , W ))

where (A (t,z,£) = p* o exp(—tHp,)(z,€) — p3(z,€). Then by using
the Hamilton equation and the above lemmas, we have the following
differential inequalities

|a/(s)| < ex(s)™|a(s)] + c1(s) |b(s)],

'(5)] < ea{s) ™2 #|a(s)| + ex(s) T H[b(s)],

for s € [0,¢] with some ¢; > 0. Since we initially know that a(s) =
O((s)!7#), b(s) = O(1), we get

)1 = | [ W] < e

by integrating the second differential inequality, and then

la(s)| = ’a(O) + /OS a'(u)du‘ <|z|+R+ cg(s)l—z” = O((s)!72),
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by integrating the first differential inequality and using the new
estimate for |b(s)|. Repeating these steps, we have

[b(s)] = O((s)™), la(s)| = O((s)"~**).
Then by iterating it, we finally get
[b(s)] = O((s)™"7*), la(s)] = O(1).
Moreover, we have the following
la/(s)| = O({s)™7)

which implies a’(s) € L(R).

Since (Mt z,€) — &4(z,€) as A — oo, for t = My, O <ty < m,
we have P> —» P as A\ — oo, where P is given by the equa-
tion: &, (z,€¢) = &.(RP/|P|, P) Hence, in particular, v(s) —
(s, RP/|P|, P) for each s. Then by the Lebesgue convergence the-
orem, we learn

/»\li_{ilo{z(to,x, AE) — OcW (to, ((to, , /\5))}
= lim {2\ (t,2,0) - (1)}
. t g
= /\11_{210 z — RP/|P| +/0 E(z’\(s,x,@ - v’\(s))ds} »

— 2 RBJ|P|+ /Ooo dis (a(s) — d(s, RB/|P|, B)) ds

_ /0°° %{s(ﬁ(s) —ii(s, RE/|P|, P)) }ds
= Jim_(3(s) - 9(s, RP/|P|, P))

§——+00
+ 1im {s(ii(s) - (s, RP/|P|, P)) }
= z+(x7€)'
in the last step we used the fact that
lim (§(s) = §(s, RP/|P|, P)) = 2, (s,€),
i(s) = 7i(s, RP/|P|, P) = O({s) '),

which is proved in lemma 4.9. This implies the result. O
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4.3 Proof of the main theorems

In this section, we consider the case 0 < ty < 7, the case for —7 <
to < 0 is the same.

Lemma 4.11. Let v,p > 0 and suppose a € S({z)*(£)?, dz?/(z)? +
d€?/(€)?) and the terms involving £ are homogeneous polynomials
w.r.t&. Let

Q — ezW(t,Dz)ethoa(x, Dw)e—tho e—zW(t,Dz).

Then @ € OPSk((t&)7(€)?, dz?/(t€)? + d€?/(€)?) with any K CC
R™. Let g(t,z,&) = 0(Q) be the Weyl symbol of Q. Then the prin-
cipal symbol of Q is given by

go = a((a:-%-agW(t, §)) cost+Esint, —(x+ W (¢t,€)) sint+£ cos t),
and |

9(t,x,€) — go € Sk ((t€) (€)%, dz?/(t€)* + d€?/(€)?).
Here t € [—t,0).

Proof. The proof is similar to the one in [25], so we just sketch it
here. Since the symbol of Hj is a polynomial of order 2, we have

e og(z, D,)e oy = a(ﬁc cost + D, sint, —zsint + D, cost)u,
for u € §(R™). And we write
b(t,x,€) = a(xzcost + €sint, —zsint + £ cost).

Since the Weyl quantization has the same symbol representation in
the Fourier space as in the conﬁguration space, we may write

Au: = F(b(t,z, D) F 'u)
(2m)~ // —i(e- ")xb t z, § ) (n)dndz

for u € 8(R™). Then by direct computations, we have
6iW(t7£)Ae_iW(t,§)u(§)

= (271')_”//ei(W(t,E)*W(t,{l))—i(ﬁ—n)-wb( )u(n)dndx

(2m)~ // i(&—m)-(z— W(tﬁn)b(t z, 5 ) (n)dndz
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= @m™ / / Ei(g_n)‘zb(t z + W(t’ £,n), St

where

Ju(n)dndz,

Wit e,m) /ag (t, s€ + (1 — s)n)ds

1 §+n  £—n

We easily see that W (t, £, €) = OeW (t,€) and
H(ED) +(52)
< Ca5<§ J2r n>1 u- |a+ﬁ|<§ pSE——

for any o, B € ZT}. By the definition of W (¢, £), we learn

8W (£,6)] < Ca( (€)1 + [tl(g)>H1),

and hence
OgBEW (8, €,m)]
—la+8]|
< Cag (<§+Tn> e — pylassl

+ () T g — oo

<u(E5D) () e

Since sint # 0 when t € (0,t0), we learn, from the definition of

W (t, & n),
Cl<t(§—;n—>> < l(m+W(t,§,n)) cost + (5—;77) sint’

<a(i(£57)

if |€ —n| < 3]¢€ +n| and for z € K CC R". Now since

bt + W (t,€,m), S57) = a(X (1), 2(1)
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where

X(t) = (z+ W(t,f,n)) cost + (E;n) sint,

E(t) = —(z+ W(t,&n))sint + (€ ; 77) cost,

we consider two cases:
(i) cost # 0. In this case, we also have

a5 < |-

8

5 +W(t,§,n)) sint + (§+77> cost‘
+

2
= 02< 2 77>’

if € — | < 3|¢ + 7] and for z € K CC R™ Then we can show

Iy

agagagb(t, z+W(tEm), “Tn) ‘

< Caﬂ7<t(5—;’l) ) <§+T77>”_'ﬁ g pylei+ioiats

forx € K CC R™
(ii) cost = 0. In this case, we have

- + + -
(7 + Wit 6m), S5 0) =0 (B2 (@4 Witem)).
Since a(z,£) is supposed to be a polynomial with respect to £, we
need only to consider the number of derivatives with respect to the
second variable of a(z,&) small than p.

- First we consider derivatives with respect to z, we have

Bg‘b(t,x—l-W(t, £, n),§—+—n>’

2
< Ca<x +W(t,¢, n)>”_'°"<§+T’7>"
< Ca<€ er n>” 5-577>(1—u)(p—|a|)
= g, (ST Sy
<C <_+_77_>"+p<§ﬂ>—lal
-T2 2 )



in the last step we used the fact that we need only to consider
ol < p.

The derivatives for £ is treated by the same trick as for z, by
noting that one derivative with respect to the first variable of a(z, )
we get a decreasing factor of the form <5+’7> - and one derivative
with respect to the second variable leads to a extra decreasing factor

of the form <5+”> g , and also noting that one derivative of W (¢, €, )

&+n

leads to a decreasing term < . Thus we need only to consider

the term which can be estimated by a form
Ce(w+W(t,&m)" " |0 (¢, &,m)| 7,
which in turn can be estimated by

Cslz + W (t,&,m))* |8 W (¢, ¢,m)|"”

< Oﬁ<§-|2—n>(p 1B (A—p <_§¥>—ul5l
< Cﬁ<§—i2—17>(1 p)p— Iﬂl

Combining the above estimates we can show that

agaga;b(t, z+W(tEn), g#) .

< Caﬁy<t(§¥> >V_|a| <§_;|—2_77>p—lﬁ+*y| (€ - n)lVl+lp[+la+ﬁ+7[

for € K CC R". Then by the asymptotic expansion formula for
the simplified symbol, we learn that the principle symbol is given
by

b(t,x+W(t,§,n),§+T"),

and we have

10282 g(t, ,€)| < Caglte)” 1ol ()P~ 1A!

for x € K, £ € R™. The other claims follow from the asymptotic
expansion formula. O
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Now we will prove Theorem 4.1(i). Let a € C5°(R?*) such that
a(zo, o) # 0 and supported in a small neighborhood of (zq, &), and
set

an(z, &) = a(z, h€).

We also set

A(t) — ezW(t,Dx)ez‘tHoe—itHah (CL‘, Dw)eitHe—itHoe—iW(t,Dx)

for t € [—to,0]. Then A(¢) satisfies the Heisenberg equation:

d T

with the initial condition:
A(0) = W OP)g, (z, D,)e W OP) = &z, D),

where

L(t) — eiW(t,Dz)(eitHoHe—itHo _ Ho)e—iW(t,Dz) _ %I;/_(t, Da:)

We also note that the principal symbol of @, (z, §) is given by a(z —
RE/I€|, hE), and ap(z,§) is supported in a neighborhood of (xg —
R¢o/\&ol, €0/h) modulo O(h™)-terms.

We denote

Se: (2,6) = (2(t 2, 6), ((t, 7, £)),
Sp o (2,8) = (BA(t,2,6), (Mt 2, €)).

S; (resp. S7) is the Hamilton flow generated by
0(t,z,8) = Ltz + 8 W (t,£),€) — W (L, €)
(P (t, z, &) = N"20(t/ X\, z, AE), resp.) with the initial condition:
2(0,z,§) =z + R¢/¢], €(0,2,8) =¢&.
By virtue of the Hamilton-Jacobi equation, we have
(49) Utz &) =Ltz + W (1,€),€) — Lt %W (£,€),€)

for sufficiently large |¢|.
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By the above lemma, we learn that the principle symbol of L(t)
is given by £(t,z,§), and the remainder symbol r(t, z, £) satisfies

0202 (t, 7, €)] < Cla (1) #~271%1(&) 19 4 (tg)=4-lel (g)-2-1a)

forz € K CCR™, t € [—to,0].
If we denote the scaling with respect to & by J,, i.e.,

Inz,&) = (z,X8) for (z,€) € R*",
then we can show that
St © 3)\ = 3/\ © SQtv

as in the argument for short-range perturbation of harmonic oscil-
lators. Thus we get

froSit=fo0di oS = fo(S,0dy)7"
=fo(droSy) = fo(Sy) o dt

with h = % Then we can construct an asymptotic solution to the
Heisenberg equation by the same argument as in [25] in the following
lemma and therefore complete the proof of the theorem 4.1.

Lemma 4.12. Let 0 < ty < m, and set I = [—to,0]. There exists
Y(t;z, &) € C(R?™) fort € I such that

(i) If we write G(t) = (t;z, D,), then
G(0) = WD), (z, D, )e~W(:D=)
modulo O(h™)-terms. | |
(i) Y(t; z,€) is supported in Sy o JA(Q) = Jx 0 S3(Q).
(i) For any o, B € L7, there is Cog > 0 such that
0209 (t;z,€)| < Caghl®!, tel,z,¢cR™

(iv) The principal symbol of 1 is given by 1y, i.e., for any o, B €
77, there is Cop > 0 such that

10207 (W(t; 7, €) — ho(t; ,€))| < Caph'™P!, tel,z¢eR™
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(v) Fort € I, we have

= O(h™)

[acwrizo.col

as h — 0.

Proof. Sketch: We denote

n

o(2,6) = 5 3 (a(e) ~ ek + V(@)

k=1

Then
£t ,z,€) = c(xcost + Esint, —rsint + cost).

By lemma 4.11 with a replaced by c, we see that

Utz + O W (t,€),€) € S({tg) (&) + (€)™, da®/(t€)* + d€?/(€)*)
for z € K CC R™ Then by (4.9), we have

U(t, z+0W (¢, €),€) € S((t&) ™€)+ (t€) 1+, dx?/ ()2 +de?/ (£)?)

for x € K CC R Now the remaining argument is similar to [25],
so we omit the detail and refer the reader to that paper. O

Proof of Theorem 4.1(i). By the above lemma and the construction
of L(t), we have

H % ( gitH —itHo e—iW(t,Dz)G(t) W (£,D2) it Ho e—itH) “ = O(r™),

as h — 0, for t € I. This implies

” gitoH gitoHo g =iW (—10,D) (3 _ )W (~10,Dx) g=itoHo gito
e ODIG0) 02 = o)
By (i) of the above lemma, we have

‘”G(_to)eiW(—to,Dm)e—itoHouo|| _ ||ah(33, Dw)u(to)”’ _ O(hoo),
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where u(t) = e™*#uy with ug € L>(R"). We note that the principal
symbol of ¥(—tg, z, &) is given by o(—to,z,£) = ap 0 S:tlo. Then by
(ii) of the above lemma, we learn

|¢(_t07x7§)| >e>0

for |.’.U - Z_($0,§0)| < 57 |€/h’ - 5“(1’.0750)' < d with some 59 e > 0.

Now we suppose (z9,&) € WF(u(ty)). Then by choosing a(z, £)
supported in a sufficiently small neighborhood of (zg,&;), we may
suppose

||ah‘(x, Dw)u(to)” = O(h*).

Then we obtain
|G(—to)e oDty | = O(r<)
and this implies \
(2 (0, &), €= (0, &) & WEF (€W (FtorDe) gmitoHoy, )

Conversely, if (2-(zo, &), §- (0, o)) & WEF (e (TfoDa)gmitoHoy,),
then also by taking a(z, ) supported in a sufficiently small neighbor-
hood of (z9, &), we have [¢(—tg, z,£)| > € > 0 for |z — 2_ (g, &)| <
9, |§/h—£&_(z0,&0)| < 0 with some d,e > 0, since ¥(—tg, T, £) is sup-
ported in S_;; (supp a) modulo O(h™)-terms, and it is very close to
S_(supp ay) if h is small enough. Then we have ||ax(z, Dy )u(to)|| =
O(h*), and hence (zo, &) & WF (u(to)). : O

Remark 4.13.

(i) We can also study the long-range perturbation of the inho-
mogeneous Harmonic oscillators as in short-range perturbations in
Chapter 2. ‘

(ii) We can also study the long-range perturbation of Magnetic
fields as in Chapter 3.

‘The argument is almost the same as the above proof, so we omit
the details.
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