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Chapter 1

Introduction

The elementary functions are basic functions on the differential and integral
calculus. For example, the exponential function, the trigonometric functions
and their inverses. Some authors have studied them on the differential al-
gebra. Liouville introduced the concept of the elementary extension, which
is constructed from functions having an explicit representation in terms of
a finite number of algebraic operations, logarithms, and exponentials (cf.
[25, 26]). In this paper we study solvability and irreducibility of difference
equations in the same direction as Liouville. We introduce Rosenlicht’s defi-
nition of the elementary extension to see the concept precisely.

Define a differential field to be a field K, together with a derivation on K,
that is, a map of K to itself, usually denoted a — o/, such that (a+b)’ = a/+¥’
and (ab) = a’b+ ab’ for all a,b € K. We call a an exponential of b, or b a
logarithm of a, if b’ = a//a. By a differential overfield of a differential field
K we mean a differential field which is an overfield of K whose derivation
extends the derivation on K. An elementary extension of a differential field K
is defined to be a differential overfield of the form K(¢1,...,t,), where for each
i=1,...,n, the element ¢; is either algebraic over the field K(¢i,...,t—1),
or the logarithm or exponential of an element of K (t1,...,t;—1).

Although we are familiar with the elementary functions, it has not been
clarified what kind of functions are elementary on the difference algebra.
On this problem Karr defined the II¥-extension and introduced a difference
analogue of Liouville’s theorem on elementary integrals (see [13]). The IIX-
extension is constructed from solutions of difference equations of the form,
y1 = ay + B3, a # 0. The gamma function for example satisfies I'(z + 1) =



zI'(z), the case @ = z and § =0, and

logT(x + 1) = log'(z) + log z,

the case a =1 and 8 = logx.

~ Other transforming operators than z — z + 1 can be considered. We
introduce some examples with elementary difference equations. For example,
cosz satisfies the multiplication formula, cos2x = 2cos?z — 1, where the
transforming operator is £ +— 2x. On this operator, logz satisfies y; =
y+log2, the case @ = 1 and B = log 2 of the preceding form. The ¢-gamma
function I'; tells us another example (cf. [7]). It is defined for 0 < ¢ < 1 and

satisfies .

Lo+ D) = =Ty, Ty =1

If we put t = ¢*, then ¢g-gamma function is a solution of the difference
equation, L .
ylzl__'§y7 (a:].__zaﬂ:()%

with the transforming operator ¢ — g¢t. In his paper [15] Koornwinder
says that I';(z + 1) tends to the gamma function I'(z + 1) for all complex
z # —1,-2,... as ¢ — 17, which should be one of the reasons why the
g-gamma function is said to be a g-analogue of the gamma function. Differ-
ence equations with the transforming operator ¢ — gt, ¢ € C*, which are
multiplication formulas, are especially called g-difference equations.

The transforming operator z — 2% is the last example. The function
f(z) =322, 2% is called the Mahler function and satisfies f(2?) = f(z) — z.
Mabhler proved that f(a) is a transcendental number for any algebraic number
a with 0 < |a| < 1 (see [17]).

Before we define the solvability of difference equations, we introduce a
solvable equation to see the notion. The difference equation,

(1-1) Y2— U —:c2y=0,

with the transforming operator z — x + 1 can be reduced to two equations
of the form y; = ay + B, a # 0. In fact let f be one of its solutions. Then f
satisfies

fo—(@+1)fi = —zfi + 2,



where f; denotes the i-th transform of f. If we put ¢ = f; — zf then g is
a solution of y; = —zy and f is a solution of y; = zy + g, where the field
of coeflicients in the latter equation should be extended to include g. This
equation is derived from the function F'(z) of Miscellaneous Example 46 in
Whittaker and Watson [32], chapter XII.

In his papers [4, 5, 6] Franke introduced the theory of solvability of linear
difference equations. A linear homogeneous difference equation is said to
be solvable (by elementary operations) if some fundamental system for the
equation is contained in a Liouville-Franke extension (LFE).

LFE defined by Franke is a sort of finite chain of field extensions, which
is a difference analogue of Liouville extension (see [5, 27]). A Liouville exten-
sion of a differential field K is a differential overfield of the form K (¢4, ..., t,),
where for each ¢ = 1,...,n either ¢; is in K(¢y,...,t;—1), or t,/t; is in
K(tq,...,t;—1), or t; is algebraic over K(t1,...,t;—1).

LFE is defined as follows. A pair K = (K, ) is called a difference field if
K is afield and 7 is an isomorphism of K into K. The pairs (C(z), z — z+1),
(C(z),z — 2z) and (C(x),z — z?) are difference fields. A difference field
K is said to be inversive if 7TK = K. For difference fields K = (K, 7) and
K' = (K',7") we say that K'/K is a difference field extension if K’ is an
overfield of K and 7| = 7. An LFE N/K, which is also called kKLE, is a
finite chain of difference field extensions,

K=KycKiC--CKy=N=(N,7),

such that for some identical k € Zx; each of the extensions K;/K;_1 is “gen-
erated” by an element a; satisfying 7%a; = y + 8, 8 € K;_; or 7Fa; = ay,
a € K;_1, or an element algebraic over K;_;. It is easily seen that any solu-
tion of y; = ay + B, a # 0 is contained in an LFE, and so we find that the
equation (1.1) is solvable by elementary operations.

In the differential case it is well known that the Airy equation is not
solvable (see [12]). Like the gamma function, there is a g-analogue of the
Airy function, which satisfies the following linear homogeneous g-difference
equation,

(1.2) Yo+qtyi—y=0 (t— qt).

In Chapter 3 we construct a general theory of solvability of difference Riccati
equations and show that this equation is not solvable for transcendental



number ¢. If f # 0 is a solution of the equation (1.2) then g = f,/f satisfies
the Riccati equation,

_ —qty+1
Y

We define

Definition 3.1 (difference field extensions of valuation ring type). Let N'/K
be a difference field extension, and N' = (N, 7). We say N'/K is a difference
field extension of valuation ring type if there is a chain of difference fields,

K=K¢cKiC---CcK,.1CK,=WN,

such that for each 1 < i < n the extension K;/K;_; satisfies one of the
following.

(i) The extension K;/K;_; is algebraic.

(ii) K; and K;_; are inversive, K;/K;_; is an algebraic function field of one
variable, and there is a valuation ring O of K;/K;_; such that 77O C O
for some j € Zq.

Then we prove

Theorem 3.2. Let K = (K, 7k) be a difference field, and a,b,c,d € K.
Define the matrices A = Ay = (24), A = (txAim1)A (i > 2), and put
A; = (‘Clg)) Zﬁg) Suppose b #£ 0 and ¢ # 0 for all i > 1. Let k > 1, and
suppose the equation over K, yi(c®y+d®) = a®y+b*) has a solution in a
difference field extension N'/K of valuation ring type. Let N be an algebraic
closure of N and K the algebraic closure of KC in N. Then there exists i > 1
such that the equation over K, ypi(c®)y+d*)) = a*)y 4+ b*)  has a solution
in KC.

As a corollary we obtain

Proposition 3.8. Let K be a inversive difference field, a,b,c,d € K, and
k € Zsqo. Define the matrices A; as in the preceding theorem. Suppose b £
0 and ¥ £ 0 for all i > 1, and the equation over K, yi(cy +d) = ay + b,
has a solution f in a kLE L/K. Let L = (L,T) be an algebraic closure of L,

6



and K be the algebraic closure of K in L. Then there exists i > 1 such that
the equation over K, yg;(c®y + d*9) = a®*)y + %) has a solution in K.

This implies that if a difference Riccati equation which does not turn out
to be linear by the iterations has a solution in LFE, then one of the iterated
Riccati equations has an algebraic solution.

Next we introduce several results on irreducibility of difference equations.
A solution of the Riccati equation (1.3) satisfies the ¢-Painlevé equation of

1
type A,

¢-P(Ae):  (yay1 — 1)1y — 1)1 + qt) = ag’®yy,

with a = ¢q. ¢-P(4s) is said to be a g-analogue of the Painlevé equation of
type II and is also called ¢-FP;. When ¢ is not an algebraic unit, we find
that any solution of ¢g-P(Ag) contained in a decomposable extension, which
is generated by solutions of linear difference equations, solutions of algebraic
difference equations of order 1, algebraic elements, etc., can be represented
rationally by a solution of the equation (1.3) (see Chapter 4, 6). A similar
proposition for Painlevé equation of type II is proved by Noumi and Okamoto
in their paper [23].

This kind of study is called study of irreducibility of differential or differ-
ence equations. On irreducibility of differential equations Umemura devel-
oped an analytic explanation of the Painlevé’s irreducibility (cf. [31]). He
defined his extension of sets of meromorphic functions over a domain of the
complex plane C by the following six permissible operations.

(O) Let f(x) be a known function. Then the derived function f'(z) is a
new known function.

(P1) Let f and g be known functions. Then f+g, f—g, fg,and f/g,9g#0
are new known functions.

(P2) Let aj,aq,...,a, be n known functions. Then algebroid function f or
any solution f of an algebraic equation,

fn+a1fn—1+a2fn—2+_”+an:0)

is a new known function.



(P3) Let f be a known function. Then the quadrature [ f(z)dz is a new
known function.

(P4) Let ay,as,...,a, be known functions. Then any solution f of a linear
differential equation,

d"f dn—lf dn—2f
dx™ T dzn—1 + a2 dxn—2

is a new known function.

+otanf =0,

(P5) Let I' C C™ be a lattice such that the quotient C*/T" is an abelian
variety. Let p : C* — C"/T" be the projection. Let fi, fo,..., f. be
holomorphic known functions. We denote a holomorphic map D — C»
sending z to (f1(x), fa(z), ..., fu(z)) by F. Then the function gopo F
is a new known function for any meromorphic function ¢ on the Abelian
variety C"/I". Here we have to avoid the constant function taking the
value infinity.

In terms of the differential algebra this extension is a finite chain of
Kolchin’s strongly normal extensions and algebraic extensions (for the strongly
normal extension see [1, 14]). '

By Bialynicki-Birula [1] a generalization of the strongly normal exten-
sion was studied, which includes the difference case. The author defined
the decomposable extension of difference field mentioned above and proved
that a finite chain of Bialynicki-Birula’s strongly normal extensions and al-
gebraic extensions, where mostly taking algebraic closures, is decomposable
(cf. Chapter 4). Here is the definition of the decomposable extension.

Definition 4.1 (decomposable extension). Let K be a difference field, and £
an algebraically closed difference overfield of K satisfying tr.deg £L/K < 0.
We define decomposable extensions by induction on tr.deg £/K.

(1) If tr.deg L/K < 1, then L/K is decomposable.

(ii) When tr.deg £L/K > 2, L/K is decomposable if there exist a difference
overfield  of L, a difference overfield £ of K in U/ of finite transcendence
degree which is free from £ over K, and a difference intermediate field
M of LE/E satisfying tr.deg LE/M > 1 and tr.deg M/E > 1, such
that £LE/M and M/E are decomposable, where LE is an algebraic
closure of £L£ and M the algebraic closure of M in LE.

8



On linear difference equations we prove

Corollary 4.8. Let K be a difference field,
(4.3) Yn + Qn1Yn-1 + -+ agy = b

be a linear difference equation over KC, where n > 1, and f a solution of (4.3).

Then K{f)/K is decomposable for any algebraic closure K(f) of K(f).

To obtain irreducibility theorems the following Lemma will be useful.

Lemma 4.10. Let K be an almost inversive difference field, D a decompos-
able extension of K and B C D. Suppose that if L is an inversive difference
overfield of K and U a difference overfield of L with K(B)p C U, then the
following holds,

tr.deg L(B)u/L < 1= any f € B is algebraic over L.

Then any f € B is algebraic over K.

We say that a difference field K = (K, 7) is almost inversive if the field
extension K /7K is algebraic. For example, using this Lemma, we obtain
Theorem 7.3 as a corollary of Proposition 7.2.

Theorem 7.3. Let K be an almost inversive difference field, N' a decom-

posable extension of K and f € N a solution in N of the equation over
K,

B(y1)y2y = A1),

where A, B € K[X]\ {0} are polynomials over K such that A and B are
relatively prime, B monic and max{deg A,deg B} > 2. Then f is algebraic
over K.

Proposition 7.2. Let L = (L,7) be an inversive difference field and f a
solution of the equation over L,

B(y1)y2y = A(y1),

where A,B € L[X] \ {0} are polynomials over L such that A and B are
relatively prime, B monic and max{deg A, deg B} > 2. Then it follows that

tr.deg L(f)/L < 1= f is algebraic over L.
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This paper is organized as follows. In Chapter 2 we introduce a lemma
on algebraic solutions of difference equations and terms on the difference al-
gebra. In Chapter 3 we generalize Karr’s II¥-extension and 1LE, Franke’s
generalized Liouvillian extension, and construct a general theory on solv-
ability of differece Riccati equations. In addition we prove unsolvability of
the g-Airy equation and the ¢-Bessel equation. In Chapter 4 we define the
decomposable extensions of difference fields. We find that every strongly
normal extension or LFE satisfies that its appropriate algebraic closure is a
decomposable extension. We also introduce lemmas on the irreduciblity of
difference equation. The object in Chapter 5 is the g-Painlevé equation of

type Agl)',

Ny = =y,
_y(l—ty)
12 = ¥——2,
tly—1)

We prove that if ¢ is not a root of unity and (f, g) a solution in a decomposable
extension of (C(t),t > qt), then f and g are algebraic fucntions of the form
c/+/t, c € C. In Chapter 6 we study irreducibility and transcendence of
solutions of the g-Painlevé equation of type Aél),

(yoy1 — 1) (y1y — 1) (1 + qt) = ag’t*y1.

On the transcendence of solutions we used discrete valuations and the Hankel
determinant. In Chapter 7 we study irreducibility of systems of difference
equations of birational form, such as

_ A(?h)

hy= B(Z/l)

and A(2)
nhy = B2)

= Eyz)
1 D(yl)’

where A, B, C' and D are polynomials.

Acknowledgement. The author would like to express his gratitude to Professor
H. Sakai for his valuable suggestions and encouragement. He would also like
to thank Professor K. Okamoto for his valuable comments.
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Chapter 2

Preliminaries

Notation. Throughout this chapter a field is of characteristic zero. Terms
used here will be seen in [11, 30] and [3, 16].

We use the following to study transcendence of solutions of difference
equations.

Lemma 2.1. Let C an algebraically closed field, g € C* not a root of unity,
t transcendental over C, F/C(t) a finite extension of degree m, and T an
_1somorphism of F' into F over C sending t to qt. Then F = C(x), 2" =t.

Proof. Put P and P’ be the sets of all prime divisors of C(t)/C and F/C
respectively. As in [30] we identify a prime divisor with the maximal ideal of
the valuation ring associated with it. Define the following valuation rings of

Ct)/C,

Ou=A{f/9| f,9€CJt],t—atg} foreachacC,
Ox ={f/g | 1,9 € C[t], degg — deg f > 0},

and let P, = O, \ OF be the prime divisor associated with O, for each
a € CU{oo}.

We show that if o € C* then P, is unramified in F/C(t). Let @ € C*
and assume that P, is ramified in F//C(¢). Then there is P’ € ' such that
e(P'|P,) > 1, where e(P’|P,) is the ramification index of P’ over P,. Let
O’ be the valuation ring associated with P’. We find that for any i € Zx,,
7'Py = Pyqi € P and 7' P’ is the prime divisor associated with the valuation
ring 7’ of T'F/C. We also find that e(7*P’'|7*P,) > 1 for all i > 0. For any

11



i > 0 there is Q; € P such that Q; N 7°F = 7*P’, and we have
e(Qi|T" Py) = e(Qi|T"P)e(T'P'|T'P,) > e(t*P'|T'P,) > 1,

- which implies 7°P, = P,/; is ramified in F/C(t) for any i > 0. Since
g € C* is not a root of unity, the prime divisors P,/ (¢ > 0) are distinct, a
contradiction. Therefore P, is unramified in F/C(t).

Let g be the genus of F//C. By the Riemann-Hurwitz Genus Formula we
obtain

29— 2= —2n + > Yo (e(P|R) —1)

a=0,00 \ P'eP’, P'NC(t)=Py
<-2n+2(n-1)=-2

Y

which implies g = 0. Therefore F' = C(y) for some y € F.
Again by the Riemann-Hurwitz Genus Formula we obtain

Z Z (e(P'|Py) —1) | =2(n—1),

a=0,00 \ P'eP, P'NC(t)=Pa

which implies

> (e(P'|Py)—1)=n—1

P'EP!, P'NC (t)=Pq
for o = 0,00. Therefore P, (o = 0,00) has only one extension P, in P,
which satisfies e(P,|P,) = n.
t € C(y) yields the expression,
m
t= cH(y— o), ceC*, me Z>1, o, €C, k; € Z,

i=1

where o; (1 <4 < m) are distinct. Let @} be the prime divisor of C(y)/C
associated with the prime element y — o4, and put Q; = Q; N C(t) for each
1 <17 < m. We obtain

0 ifQ;=P,, acCX,
ki = vg,(t) = e(Qi|Qi)ve,(t) = {n  if Q; = B,

12



where v, and vg, are the normalized discrete valuations associated with
Q; and Q; respectively, which implies n | k; for all 1 < 4 < m. Put z =
IR (y — ow)R/™ € C(y). We have 2™ = t, and so [C(t,z) : C(¢)] = n,
which implies F' = C(t,z) = C(x). O

When R is a commutative ring and 7 is an injective homomorphism of
R into R, the pair R = (R,7) is called a difference ring. We call 7 the .
(transforming) operator and R the underlying ring of R. If R is a field, R
is called a difference field and R the underlying field. If R is a field, 7 is an
isomorphism of R into R. '

Let R = (R, 7) be a difference ring. For a € R, an element 7"a € R,
n € Z is called the n-th transform of a and is denoted by a, if exists. If
TR = R, we say that R is inversive. For a difference field K = (K, 7x), K
is inversive if and only if 7k is an isomorphism of K onto K. If the field
extension K /7x K is algebraic, we say that K is almost inversive.

Let R = (R,7) and R’ = (R/,7") be difference rings. A mapping ¢
of R to R' is called a difference homomorphism of R to R’ if ¢ is a ring
homomorphism and ¢7 = 7'¢." Let ¢ be a difference homomorphism of R
to R'. If ¢ is surjective, we say that ¢ is a difference homomorphism of R
onto R'. If ¢ is a ring isomorphism of R to R, we say that ¢ is a difference
- isomorphism of R to R'. If there exists a difference isomorphism of R to
R', they are said to be isomorphic. Let K = (K,7) and K’ = (K’,7') be
difference fields. An isomorphism ¢ of K into (onto) K’ is called a difference
isomorphism of K into (onto, respectively) K’ if ¢7 = 7'¢. K and K’ are
isomorphic if and only if there exists a difference isomorphism of K onto K'.

Let R = (R,7) and R' = (R/,7’) be difference rings. R is called a
difference subring of R’ if R is a subring of R’ and 7'|gr = 7. We then call R’
a difference overring of R, and say that R'/R is a difference ring extension.
A difference ring S is called a difference intermediate ring of a difference ring
extension R'/R if S is a difference subring of R’ and a difference overring
of R. We define a difference overfield, a difference subfield, a difference field
extension and a difference intermediate field by replacing ring with field. We
also use the expression R’ O R when R’/R is a difference ring extension. If
R and R’ are difference field, R'/R is a difference field extension if and only
ifR' OR.

Let R = (R, 7) be a difference ring. An element a € R is called an
invariant element of R if a satisfies Ta = a. We let Cr denote the set

13



of invariant elements of R. Cx is a difference subring of R and if R is a
difference field, a difference subfield of R.

Let R be a difference ring, S = (S, 7) a difference overring of R and
B a subset of S. The difference subring of S whose underlying ring is the
intersection of all difference subring of S containing R and B is denoted by
R{B}s. R{B}s is the minimum difference subring of S containing R and
B. Put

B = {Tnbe S | nE‘ZZO and b € B}

Then the underlying ring of R{B}s is equal to R[B’]. For brevity we use
R{B} instead of R{B}s.

Let K be a difference field, £ = (L, 7) a difference overfield of K and B a
subset of L. The difference subfield of £ whose underlying field is the field of
fractions of the underlying ring of X{B}, in L is denoted by K(B).. K(B),
is the minimum difference subfield of £ containing K and B. For brevity we
use K(B) instead of K(B) .

Let K be an almost inversive difference field and K an algebraic closure of
KC, which is defined to be a difference overfield of K whose underlying field is
an algebraic closure of K. We easily find that K exists and it is inversive. We
call the minimum inversive difference subfield of K containing K an inversive
closure of .

Let R = (R, 7) be a difference ring, n € Z>; and R[{yi(k) |1<k<n,i>
0}] a polynomial ring with indeterminates ygk)’s. Extend 7 to the injective
homomorphism 7’ of R[{ygk)}ki] to itself sending a € R to 7a and y® to

y§f31. Then the pair (R[{ygk)}ki], 7') is a difference overring of R. If we put

y® = 4y (R{yO Y], ™) can be expressed as R{y®,y®, ..., y™}. We
call R{yM,y@ .. ,y™} an n-fold difference polynomial ring over R. Any
two n-fold difference polynomial rings over R are isomorphic. Let A, B €
R{yW,y@ ... y™}. Ais called an n-fold difference polynomial over R and
“A = B” is called an n-fold difference equation over R.

Let K be a difference field, P = K{y®,y®,...,y™} a difference polyno-
mial ring and ® C P a subset. For a difference overfield £ of I, an n-tuple
a = (a®,a®,... a™) € L" is called a zero of ® in £ if A = 0 for any
A € ®, where ¢ is the difference homomorphism of P to £ over K sending
y® to o). Let {Ax}ren, {Br}rea C P be subsets, where A is a set of in-
dexes. For a difference overfield £ of I, an n-tuple a € L™ is called a solution
of the system of difference equations over I, {Ay = By}xea, in Lifa is a

14



zero of {Ay — By}aea C P in L. We say that an n-tuple a is a solution of
{Ax = Bi}aea if for some difference overfield £ of K, a € L™ and a is a
solution of {A) = By}aea in L.
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Chapter 3

Solvability

We generalize Karr’s II¥-extension and Franke’s generalized Liouvillian ex-
tension, and study solvability of difference Riccati equations. We prove the
following. If a difference Riccati equation which does not turn out to be lin-
ear by the iterations has a solvable solution, then one of the iterated Riccati
equations has an algebraic solution. In addition we prove unsolvability of the
g-Airy equation and the ¢-Bessel equation.

Notation. Throughout this chapter a field is of characteristic zero and C
denotes an algebraically closed field.

3.1 Introductiqn

In his [4, 5] Franke studied the solvability of linear homogeneous difference
equations by elementary operations. He defined ¢LE N/K (¢ € Zs), a
difference field extension having the chain of inversive difference fields,

K=KycKiC---CKy=N=(N,7), K;i=K;i_1{a;)",
where * denotes the inversive closure, and a; satisfies one of the following.
(i) 7%; = a; + G for some § € K;_;.
(i) 7%a; = aq; for some a € K;_;.

(ili) a; is algebraic over K;_;.
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qLE is called generalized Liouvillian extension (GLE) when ¢ = 1. Note
that for a gLE (N, 7)/(K,T), the extension (N,7%)/(K,79) is a GLE (see
[5]). We may say that a solution f of a difference equation over K is solvable
by elementary operations if K(f) is contained in a qLE of K. We call gLEs
Liouville-Franke extensions.

In his [13] Karr defined ITX-extensions, and introduced results on the com-
putation of symbolic solutions to first order linear difference equations and
an analogue to Liouville’s theorem on elementary integrals. The following is
a generalization of the II¥-extension and GLE.

Definition 3.1 (difference field extensions of valuatidn ring type). Let N'/K
be a difference field extension, and N = (N, 7). We say N /K is a difference
field extension of valuation ring type if there is a chain of difference fields,

’C=IC0C’C1C"'CICn—1C’Cn=Na

such that for each 1 < i < n the extension K;/K;_; satisfies one of the
following. :

(i) The extension K;/K;_; is algebraic.

(i) X; and K;_; are inversive, K;/K;_; is an algebraic function field of one
variable, and there is a valuation ring O of K;/K;_; such that 770 Cc O
for some j € Zq.

Proposition 3.5 shows that the gamma function is contained in a difference
field extension of valuation ring type over the rational function field. The
idea to use valuation rings for investigating differential equations originated
with Rosenlicht [27].

We prove

Theorem 3.2. Let K = (K, 7x) be a difference field, and a,b,c,d € K.
Define the matrices A = A; = (gg), A, = (tkAi-1)A (i > 2), and put
A = (‘c‘((g 38 ). Suppose b # 0 and c® #£ 0 for alli > 1. Let k > 1, and
suppose the equation over K, yp(c®y+d®) = a®y+b*) has a solution in a
difference field extension N'/K of valuation ring type. Let N be an algebraic
closure of N and K the algebraic closure of IC in N'. Then there exists i > 1
such that the equation over IC, yp; (c*¥)y 4 d*)) = a )y +b*) | has a solution
in K.

The application to solvability is written in §3.3.
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3.2 Proof of Theorem

Lemma 3.3. Let L/K be a difference field extension, L = (L,7), and
a,b,c,d € K. Define the matrices A = A; = (‘g g), A, = (TAi-1)A (i > 2),
and put A; = (‘;8 Z((g) Then we have

(a) A; = (T77TA)(T2A) ... (TA)A.
Let k> 1. "

(b) Define the matrices B = By = Ay, B; = (T*B;_1)B (i > 2). Then
B; = Ayg;.

(c) Let f € L be a solution of yx(c®y +d®) = a®y +b*). Then f € L

is a solution of yr;(c*¥Dy + d*)) = oy 4 b*) for all § > 1.

Proof. (a) Let ¢ > 2, and suppose the statement is true for : — 1. Then we
have

A= (TAis)A=1((T"2A)(173A) ... (TA)A)A
= (7" TA) (72 A) .. (TPA)(TA) A.

Therefore the proof can be completed by induction.
(b) Let ¢ > 2, and suppose the statement is true for s — 1. Then we have

B; = (TkBi—1)B = Tk(Ak(z—l))Ak.
= TH((TFEDTTA)(FHODT24) L (T A)A) A
= (TF1A)(TF=24) ... (TFTTA) (5 A) A,
= Ag.
Therefore the proof can be completed by induction.
(c) Case 1. Firstly we deal with the case k = 1. There is nothing to

prove in case ¢ = 1. Let ¢ > 2, and suppose the statement is true for 7 — 1.
By definition we have

a® b o™ BVY fa b

D) qe | Cgi—1) d§i-1) c d

aagi_l) + cbgi_l) bagi_l) + dbgi_l)
ac§1_1)+cd§1_1) bcgz_1)+dd§2_1) ’
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and so fi—1(cVf + d0Y) = oD f 4 b1 yields

D+ d) = ol 0+ 80,
e (af + d)+ a7V (ef +d) = "V (af +0) + b7V (ef + ),
Fi(eOf +dD) = a® f 450,

Case 2. Secondly we deal with the other case, k > 2. Define the matrices
B; as in (b). From (b) we obtain B; = Ay;. Since f € (L, 7*) is a solution
of y1(cWy +d®) = a®y + b® | Case 1 implies that f € (L, 7*) is a solution
of y;(cFy + d*)) = a® )y 4 p*) for all 4 > 1. Therefore we find that
T(F) () f + d*)) = o®) f 4 b*D) for all ¢ > 1. O

Lemma 3.4. Let L/K be a differece field extension, both L = (L,Tz) and
K inversive, and L/K an algebraic function field of one variable. Suppose
there exists a valuation ring O of L/K such that 7‘7 O C O for some j € Zwg.
Let L = (L,7) be an algebraic closure of L and K the algebraic closure
of K in L. Let a,b,c,d € K, and define the matrices A; as in Lemma
3.8. Suppose b #£ 0 and ¢ # 0 for all i > 1, and the equation over K,
v1(cy+d) = ay +b, has a solution f in L. Then for some i > 1 the equation
over K, y;(cDy + d®) = a®y + b®, has a solution in K.

Proof. Tt is enough to prove this for f ¢ K. The additional assumption
implies c¢f + d # 0, and so we obtain

af +b
cf +d

fi=

Put M = L(f)

C L. We find M is inversive. In fact, since ¢fy —a = 0
implies f =7171(a/c)

€ K, we have

fe _dhi—=b . <_7"1(d)f—7'_1b> M

cfi—a T e)f —771a

As a field, M = L(f) is an algebraic function field of one variable over K,
and so MK is an algebraic function field of one variable over K.

Choose j € Zsq such that 77O C O, and choose valuation ring @' of
MK /K such that O' N L = O. Note that 770 C O implies 770 = O.
Therefore for any ¢ > 0 the following holds.

MO'NL =790 NL) =790 = 0.
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From this we obtain #{770’ | i > 0} < oo, which implies 7*0)' = @’ for
some k > 1. Let v be the normalized discrete valuation associated with ¢,
and t € MK a prime element of . Then we have v(7%t) = 1, and so
v(rkz) = v(z) for any z € MK.

By Lemma 3.3 we find that f satisfies

(3.1) Fi(e® f +d®) = a® f 4 p®

which yields v(f) = 0. In fact, firstly assume v(f) > 0. Then we have
v(fe) = v(f) > 0. This contradicts v(fi) = —v(c® f 4+ d*)) < 0 obtained
from the above equation (3.1). Secondly assume v(f) < 0. Then v(f;) =
v(f) < 0 contradicts

v(fi) = v(@® f+0®) —o(f) > 0.
Let ¢ be the embedding of MK into K((t)), and express f and 7%t as

=) ht', heXK, hg#0,

$(rt) = eit!, e €K, el #0.

i=1

Then .
= Z Tk(hz) (Z eltl> .
=0 =1

Note that ¢ is a difference isomorphism of (MK, (7],,%)*) into (K((t)),0),
where o sends 20 a;t’ to > oon 7 (y) (32, eit)’. Comparing the coeffi-
cients of ¢ of the equation (3.1), we obtain

7 (ho) (c®hg + d®) = a® hg + b®

Therefore hy € K is a solution of the equation, yi(c®y + d*)) = a®)y +
plk) O

Proof of Theorem 3.2. We prove this by induction on tr.deg N/K. When
tr.deg N/K = 0, the equation, y;(c¥y+d*) = a¥)y 4 b*) | has a solution in
K. Suppose tr.deg N /K > 1, and the theorem is true for the transcendence
degree < tr.deg N/K.
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Let N = (N, 7). There is a chain of difference fields,
K=KyCcKiyC---CKpo1CKy=N, n>1,

such that for each 1 < ¢ < n the extension K;/K;_; satisﬁés one of the
conditions (i), (ii) in Definition 3.1. Put

no =min{0 <i:<n | K,/K; is a/lgebraic}.

We find ng > 1, and that the extension K,,/K,,—1 satisfies the condition
(ii). Choose a valuation ring O of K,,,/K,,_1 such that 77O C O for some
J € Zso. We have (7%)70 C O.

Let KC,,,_1 be the algebraic closure of Kpno—1 in N, and put A/ *) = (N, %),

0 = (g ™M)y Kt = (King1, 7|, ) and fcmf 1= Ko, I, ,)-
By the hypothesis we find that the equation over ICno, Y1 (c®y + d*)) =
a®y + b*) has a solution in N'®

Define the matrices B = By = Ag, B; = (7*B;_1)B (i > 2). By Lemma
3.3 we obtain B; = Ay;. Therefore by Lemma 3.4 we find that there exists
ip > 1 such that the equation over ICnO 1> Yip (cFi0)gy 4 dkio)) — g(kio)y; 4 p(kio)

has a solution in IC(O - Let fe K no—1 be such a solution. It satisfies
R0 (£)(ckio) f 4 kio)) = glkio) £y p(kio)

which implies that the equation over K, yp,, (cFi0)y + dkio)) = q(kio)y 4 p(kio)
has a solution in KCp,_;.

Since Kn,—_1/K is a difference field extension of valuation ring type whose
transcendence degree is less than tr.deg N/K, we find by the induction hy-
pothesis that there exists 7; > 1 such that the equatlon over K, Ykipi (c(’”"“)y-l-
dkioin)) = g(kioi)y 4 p(kioir) has a solution in K. O

The following is concerned with the case that the matrix turns out to be
triangular by the iterations.

Proposition 3.5. Let K be an inversive difference field, and a,b,c,d € K
satisfy ad — bc # 0. Define the matrices A; as in Lemma 3.3, and suppose
b*) =0 or c®) =0 for some k > 1. Let f be a solution transcendental over
K of the equation over K, y1(cy +d) = ay + b, and put L = K(f). Then the
following hold.

(i) L is inversive.
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(i) L/K is an algebraic function field of one variable.

(iii) There is a valuation ring O of L/K such that T*FO C O.

(iv) L/K is of valuation ring type.
Proof. Let L = (L,7). Since c¢f; —a = 0 implies f = 77 '(a/c) € K, we

obtain dfs— b ) "
__ =0 _7'~ -7
A ( T f = ) T
Therefore £ is inversive, which is the result (i). Since cf +d = 0 implies
f = —d/c € K, we obtain f; € K(f), which yields L = K(f). This proves
(ii).
By Lemma 3.3 we have fi(c®)f +d®) = a® f 4 p*) Put

)5 ifd®=o,
T=Y1/f ife® o0,

We find that ‘g = ag + 8 for some «, 8 € K, a # 0. In fact, if ¢¥) =0, we
have

(k) p(k)
a
k= Jr = Wf tom

Note that we obtain det Ay # 0 from det A # 0 by Lemma 3.3. If ¢*¥) £ 0,
we have b(®) = 0 and

1 d® 1 c(k)

=% =qm T am

For the algebraic function field L = K(g) of one variable over K, let O
be the following valuation ring.

O={p/q€ L|p,qc K[g], degq — degp > 0}.

For any p € K]|g], the k-th transform 7%p has the same degree as p. Therefore
we obtain 7O C O, which is the result (iii).
(i),(ii) and (iii) yield (iv). O

As a remark we introduce the following example.

Example 3.6. Let K = (K, 7) be a difference field, and put a = 1, b = 2,
¢ =1 and d = 0, which are associated with the equation over K, y1y = y+2.
This equation has solutions —1 and 2. Define the matrices A; as in Lemma

3.3. We find that b(®) # 0 and c¢® # 0 for all i > 1.
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3.3 Application to solvability

3.3.1 Preliminaries

Lemma 3.7. Let L/K be a GLE. Then L/K is of valuation ring type.

Proof. We prove this by induction on the transcendence degree of L/K.
There is nothing to prove in case tr.deg L/K = 0. Suppose tr.deg L/K > 0,
and the lemma is true for the transcendence degree < tr.degL/K. Let
L = (L, 7). There is a chain of inversive difference fields,

K=KoCKiC-CKn=2L, Ki=DKiila)*
such that a; satisfies one of the following.
(i) Ta; = a; + B for some B € K;_1.
(ii) Ta; = aa; for some a € K;_;.
(ili) a; is algebraic over K;_;.

Put m = min{l1 < i < n | tr.deg K;/K > 0}. The chain K,, C --- C
K, = L is a GLE and satisfies tr.deg L/ K,, < tr.deg L/ K. Therefore by the
induction hypothesis we find that £//C,, is of valuation ring type.

Since a, is transcendental over K,,_; because of tr.deg K,,—1/K = 0,
there are o, f € K,,,_1, @ # 0 such that Ta,, = aa,, + 8. By Proposition 3.5
we find that /C,,—1(am)/Km—1 is of valuation ring type. Note that we have
Km = Km-1{(am). Therefore the chain

KCKmyCKnCL
implies £/K is of valuation ring type. O

Proposition 3.8. Let K be a inversive difference field, a,b,c,d € K, and
q € Zso. Define the matrices A; as in Lemma 3.3. Suppose b'%) £ 0 and
9 £ 0 for all i > 1, and the equation over K, yi(cy + d) = ay + b, has a
solution f in a qLE L/K. Let L = (L,7) be an algebraic closure of L, and
K be the algebraic closure of K in L. Then there exists i > 1 such that the
equation over K, yu(cy + d@) = o @y + b®)  has a solution in K.
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Proof. Put 9 = (L,79), L9 = (L,79), 9 = (K,7%), and K@ =
(K,79k). Since L/K is a qLE, L@ /K9 is a, GLE. By Lemma 3.7 we find
that £@ /K@) is of valuation ring type.

Since we have f,(c@f + d@) = a@ f + b@ by Lemma 3.3, f € Z? is a
solution of the equation over K@, y; (c@y + d9) = o@Dy + b, Therefore by
Theorem 3.2 we conclude that there exists 7 > 1 such that the equation over
K@, y;(c@y + d@) = a@y + b4 has a solution g in K(q), which implies
g € K is a solution of the equation over K, y,;(c(®y+d(@)) = a(@)y4+p@). O

3.3.2 ¢-Airy equation

In their [8], Hamamoto, Kajiwara and Witte introduced that each of the basic
hypergeometric solutions of the g-difference equation, y(qt) + ty(t) = y(t/q),
has a limit to the Airy function. Let f € K* be a solution of the equation
over (C(t),t — qt), y2+ gty1 —y = 0, and put g = f1/f. Then g € K is a
solution of the equation over (C(t),t — qt), y1y + gty — 1 = 0, the object
here.

The outline of the proof of the unsolvability is the following. Step 1.
Define the matrices A; as in Lemma 3.3, and find that they are not triangular.
Step 2. Prove that there is no algebraic solution of the equation associated
with A; for all 4 > 1. Step 3. Apply Proposition 3.8.

Proposition 3.9. Let q € C be transcendental over Q, and t transcendental
over C. Put K = (C(t),t — qt), and let K = (C(t),T) be an algebraic closure
of K. Puta=—qt,b=1, c=1 and d =0, and define the matrices A; as in
Lemma 3.3. Then the following hold.

(i) 8@ £ 0 and c® # 0 for all i > 1.

(ii) For anyi > 1 the equation over K, y;(cy+d®D) = a®y + b(’) has no
solution in K.

Proof. We have
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and for any i > 2,

(i-1) (i-1)  (-1)
—qta +b a
A= (TAi1)A= 1 1i— 11— 1i— )
( 1) (—qtcg 1)_|_d§ 1) Cg 1))

. —gita D 4 i) _gigp-1 | j-1)
A= (r"TA) A = ( a1 pi=1) '

which imply b(® = agi-l) and c® = a0t~V for all ¢ > 2, and d® = aﬁi‘ﬁ) for
all © > 3. From these we obtain

a = —¢'tatD 4 D = —gital=V 4 o~ for any i > 3.
Note Az S Mz(C[t]) We find

(3.2) a® = (—1)iq@ti + (a polynomial of deg < i — 2)

by induction, and so dega® = i. This implies a®® # 0, by which we conclude
b® £ 0 and ¢ # 0 for all i > 1, the result (i).

Assume that there exists 49 > 1 such that the equation over K, y;, (c(®)y+
d) = qglidy 4 bl has a solution f in K. Put k = 3iy > 3. By Lemma
3.3, f € K is a solution of the equation over K, y(c®Fy 4+ d*®)) = a®y + p®).
Put £ = K(f) ¢ K. Since both of the assumptions, ¢* f, — a® = 0
and ¢® f 4+ d® = 0, yield det A, = 0, which contradicts det A = —1 by
Lemma 3.3, we find that £ is inversive, and L = C(¢)(f, fi1,..., fr-1). Put
n = [L : C(t)] < co. Then from Lemma 2.1 we obtain L = C(z) with
z" = t. Note that z is transcendental over C, f € C(z), A; € My(C[z"]),
and (5)" = q € C, which implies Z2 € C. Put r = 22 € C*.

Express f = P/Q, where P,Q € Clx] are relatively prime. The equation
fe(c®f +d*)) = a® f +p*) yields

(3.3) Po(cMP +d¥Q) = Qu(aPP +5MQ) (#0),

where both sides of this are not equal to 0. We find by induction that
a9WP 4+ b9Q and cDP + dDQ are relatively prime. In fact we obtain that
aP +bQ = —qtP + @Q and cP + dQ = P are relatively prime from the
hypothesis, P and @ are relatively prime, the case ¢ = 1. Let ¢ > 2 and
suppose the statement is true for ¢ — 1. Since we have

aDP 4+ 59Q = (—gtatD + V)P 4 (—githi-D 4 dG-DYQ
— _qzt(a(z—l)P + b(z—l)Q) + (C(i—l)P + d(z—l)Q)
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and a@VP 4+ bp0-0Q = cOP + d9Q, we conclude that a®P + bDQ and
WP+ dDQ are relatively prime by the induction hypothesis.

Therefore a® P +b®Q and ¢ P 4+ d*)Q are relatively prime. From the
equation (3.3) we obtain deg,(a®)P + b*¥)Q) = deg, P, = deg, P. Since
deg, a®) P = nk + deg, P > deg, P, we find deg, a®P = deg, b*)Q, which
implies deg, ) — deg, P = n.

Express
= 2 U B 1 Cyln 0.
f ;e (a:) e,€C,e, #

We will show f € C(t). Assume there exists ¢ > n such that n{ i and e; # 0,
and put In +m (0 < m < n) be the minimum number of them. Note

deg, a® =kn, deg, b® =deg, c® = (k—1)n, deg, d® = (k —2)n.
The first term of
a®) f+ bk

» 1 n 1 in 1 In+m
= g (en <__) + ot e, <_) + €nim (_) + .. > + p®)
x xz x /

whose exponent is not divisible by n has the exponent, —kn + (In+m). The
first term of

Fo(¢® f +d®)
_ €n 1 " €ln 1 o €in+m 1 fntm
= F;;z,- ; + e _|_ .’rm ; _|_ W ; + o e
1 n ) 1 in 1 In+m
X {c(k) <en (_l—’) +-te (;) + €intm (E) +ooe | +d®

whose exponent is not divisible by n has the exponent > (2 —k)n+ (In+m),
which is impossible. Therefore we obtain f = Y2 e,(1/z")%, and so f €
C(1/z"™) = C(¢).

Then we have L = C(t)(f, f1,..., fe—1) C C(t), which implies n = [L :
C(t)] =1,z =tand r = g. We find a®® € Z[g,¢] by induction, and so
b®, @ d9 e Z[q,t]. We will show e; € Z[g,1/q] for any j > 1 by induction.
We have

o e (55 () (£ )

i=1
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and

e8] 1 A
3.5 (k) ptk) — (k) 2 pk)
(3.5) a f+ a® Y e i

i=1

Note that the equation (3.2) yields

) = (—l)kqﬂgLDtk + (a polynomial of deg < k — 2),
bk = gk = (_1)’“—1th’“‘1 + (a polynomial of deg < k — 3).
Comparing the terms of exponent —k + 1 of the equation (3.4) = (3.5), we
obtan

0= (=1)%g" 7 ey + (—1)F1g" 52,
which implies e; = ¢7* € Z[g,1/q].
Let 7 > 2 and suppose the statement is true for the numbers < 5 —1. On
the one hand the term of exponent —k + j of (3.5) has the coefficient,
(—1)’“qk(k2+1)ej + (an element of Z[g][es, e, .. ., €j-1])
k(k+1)
€ (=1)*¢ 7 e;+Zlg,1/q).

On the other hand the term of exponent —k + j of (3.4) is the same one of

(Z “ G)) <c<k> Z G) + d<k>> & Zlg, 1/a)((1/1)) € C((1/1).

=1

Therefore we obtain
Ko(k+1)

‘ (_1)kq 2 g€ Z[Qa 1/q]7
which implies e; € Z[g, 1/q].
Let ¢: Q[g,1/q] — Q be a ring homomorphism sending ¢ to 1, and ex-
tend it to the ring homomorphism ¢: Q[q,1/q]((1/t)) — C((1/t)) sending

Yoo hi(1/t)t to 32 ¢(hi)(1/t)t. This @ is a difference homomorphism of

i=m

(Qlg,1/q)((1/%)),t — qt) to (C((1/t)),id), and so we obtain
()™ B(f) + $(d™)) = S(a®))B(f) + (™).

We find ¢(f) € C(t). In fact since f € C(1/t), there are s € Zxg
and mg € Zyo such that Fy(m,s) = 0 for all m > mg, where Fy(m,s) is
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the Hankel determinant det(emiy;)o<ij<s of f (refer to [2] for the Hankel
determinant). Therefore for any m > m, we obtain

Fo(5)(m, s) = det(@(emits) ogijzs = P(det(emritgoij<s)
= ¢(Fy(m,s)) =0,

which implies ¢(f) € C(1/t) = C(2).
Express ¢(f) = P'/Q', where P',Q' € C[t] are relatively prime, and put

a = @(a®), b = ¢(b®), ¢ = &(c®) and @' = (d®). Note
¢ =3(c®) = g(a® V) = B(af V) = 5(6®) = ¥,
d' = §(d®) = ¢(af*™?) = g(a*2) = §(a® + ¢*ta® V) = o’ + ¥,

and b’ = (—1)*~1¢k~1 + (a polynomial of deg < k — 3) # 0. Then we obtain
the following from P'(¢P'+d'Q’) = Q'(d'P' +VQ’"),

(3.6) P?+tP'Q = Q"

This equation yields P’ | @ and Q' | P2, which imply deg P’ = deg @’ = 0.
Comparing the degree of the equation (3.6), we find 1 = 0, a contradiction.
Therefore we obtain (ii). O

Corollary 3.10. Let g € C be transcendental over Q, t transcendental over
C, K= (C(t),t qt), and k € Zso. Then the equation over K, y1y + qty —
1 =20, has no solution in a kLE of K.

Proof. Assume the equation has a solution in a kLE N/K. Put a = —qt,
b= c=1and d = 0. Define the matrices A; as in Lemma 3.3. By Proposition
3.9 we have b® = 0 and ¢ £ 0 for all ¢ > 1.

Let N be an algebraic closure of A/, and K the algebraic closure of K in
N. By Proposition 3.8 we find that there exists i > 1 such that the equation
over KC, yp; (c*¥Dy+d*)) = a9y 4+ p*) | has a solution in K, which contradicts
Proposition 3.9. O

3.3.3 ¢-Bessel equation

Seeing [7], we find one of the ¢g-Bessel functions, J,53)(x; q), and the equation,
9(g2) + (z° /4~ ¢ = ¢7")gu (@) + gu(zq ") = 0,

“where g,(z) = J& (zg"/?; q?). This section deals with the Riccati equation
associated with it.
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Proposition 3.11. Let g € C be transcendental over Q, and t transcendental
over C. Put K = (C(t),t — qt), and let K = (C(t),7) be an algebraic closure
of K. Puta=—(t?/4—q"—q¥),b=—1,c=1andd =0, where v € Q,
and define the matrices A; as in Lemma 3.3. Then the following- hold.

(i) b9 £0 and ¢ %0 for all i > 1.
(ii) For any i > 1 the equation over K, y;(cPy + d®) = a®y +b®, has no

solution in K.

Proof. Put p=¢"+q77 € C. We have

_fa -1 _(aa—1 —a
A“<1 0)’ A2_< a —1)’

and for any ¢ > 2,

A= (TAi1)A= (aagi—l) + bgi—l) _agi—l))

acgi—l)_'_dgi——l) —Cgi_l)

a;_1a(~D — -1 g p(=1) _ d(i‘1)>

A= (Ti—lA)Ai—l = ( a1 pi=1)

which imply 6@ = —a™ and ¢® = =Y for all-i > 2, and d? = —a{™?

for all 7 > 3. From these we obtain

a(i)bz ai_la(i_l) — D = ai_la(i”l) — a(i_z), for any ¢ > 3.
Note A; € My(C[t]). We find
. A =1i
(3.7) a® = (=1)*2——+% + (a polynomial of deg < 2i — 2)

41

by induction, and so dega® = 2i. This implies al® # 0, by which we
conclude b@ = 0 and ¢ # 0 for all 4 > 1, the result (i).

Assume that there exists ip > 1 such that the equation over K, y;, (c(®)y+
d®)) = ql)y 4 pli0) has a solution f in K. Put k = 3ig > 3. By Lemma 3.3,
f € K is a solution of the equation over K, yi(c®y +d®) = a®y+b*). Put
L = K(f) c K. We find that £ is inversive, and L = C(t)(f, f1, .., fe-1).
Put n = [L : C(t)] < co. Then from Lemma 2.1 we obtain L = C(z) with
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2" = t. Note that z is transcendental over C, f € C(z), 4; € My(C[z"]),
and (57)" = ¢ € C, which implies 2 € C. Put r = el

Express f = P/Q, where P,Q € C|[z] are relatively prime. The equation
fe(c® f +d®) = a® f 4 p®) yields

(3.8) Po(c®P +d®Q) = Qu(a®P +b®Q) (+0).

We find by induction that a® P +b®Q and ¢ P+ d®Q are relatively prime.
In fact we obtain that aP + bQ = aP — Q and cP + dQ = P are relatively
prime, the case ¢ = 1. Let 7 > 2 and suppose the statement is true for i — 1.
Since we have

aY P+ b(i)Q — (ai_la(i—l) — c(i—l))P 4+ (ai_lb(i_l) _ d(i—l))Q
= a;—1(a" VP +pDQ) — (VP + 40D Q)
and a® VP +p0-DVQ = cDP + dDQ, we conclude that a®P + b®(Q and
cD P + d®Q are relatively prime by the induction hypothesis. .
Therefore a® P + b*)Q and ¢ P +d®)Q are relatively prime. From the
equation (3.8) we obtain deg,(a®)P + bQ) = deg, P, = deg, P. Since
deg, a¥) P = 2kn + deg, P > deg, P, we find that deg, a®) P = deg, b*Q,
which implies deg, @ — deg, P = 2n.

Express .
[ee] 1 7
fzzez<;;‘>, €i€C,€2n7é0.

i=2n
We obtain f € C(t) by the same way as in the proof of Proposition 3.9, and
so L=C(t),n=1,z=tand r =g. Note a®, @ c® d9 ¢ Q[q,p,t]. We
will show e; € Q[g,1/q, p] for any j > 2 by induction. We have

oo aenre (S5 () (2 () o)

i=2
and
B 4k — oS e (1) 4 p®
(3.1.0) a®f+b a ;e’(t> +
The equation (3.7) yields
g(k=Dk
a® = (=1) Tt% + (a polynomial of deg < 2k — 2),
g(k=Dk
b®) = (-1) —4];—_1—752(’“_1) + (a polynomial of deg < 2k — 4).

30



Comparing the terms of exponent —2k + 2 of the equation (3.9) = (3.10), we

obtain

q(k—l)k (k—1)k

0= (1) ey + (-1

T
which implies e, = —4.
Let j > 3 and suppose the statement is true for the numbers < j —1. On
the one hand the term of exponent —2k + j of (3.10) has the coefficient,
Ly gDk
4k
L gDk
4k

On the other hand the term of exponent —2k + j of (3.9) is the same one of

(g % (%>Z> (C(k) ]iei (%)’ + d(k)) € Q[g, 1/q,p]((1/t)) € C((1/t)).

e; + (an element of Q[g,p, e, €3, .. .,€-1])

€ (-1)*=——e; + Qlg, 1/, p].

=2
Therefore we obtain

L gk
(—1)* ——¢ € Qla, /g7,

which implies e; € Q|g, 1/g, p].
Let v = vy /vy, where vy € Z and v, € Z~q are relatively prime. Then we
have

Qlg,1/9,p] C Qlg*=,1/q7].
Let ¢: Q[g/*2) 1/¢(1/*2)] s Q be a ring homomorphism sending ¢/*?) to
1, and extend it to the ring homomorphism ¢: Q[q/¥2) 1/q(/¥2))((1/t))
Q((1/t)) sending 32 hi(1/t) to S22 @(h;)(1/t)". This ¢ is a difference
homomorphism of (Q[g1/*?),1/¢/*2)]((1/t)),t +— qt) to (Q((1/t)),4d), and
so we obtain

(N (@(™)B(f) +¢(d™)) = 6(a®)d(f) + (™).

We find ¢(f) € C(t) by seeing the Hankel determinant. Express ¢(f) =
P'/Q), where P, Q) € C[t] are relatively prime, and put o’ = ¢(a(k)), b =
o(b™), ¢ = ¢(c(k)) and d' = ¢(d®). Note

¢ = 3(c) = §(a* ) = 3(ai"™) = —4(t") = -,
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d = ¢(d®) = §(—al*?) = §(—a*?) = F(a® ~ aj_1a*D)

! tz /
= —— 42
a+< 4+>b,

and b’ # 0. Then we obtain the following from P'(¢P' 4+ d'Q') = Q'(a’P' +
v'Q’),

(3.11) —-P? 4 (—%2 + 2) PQ =Q"”

This equation yields P’ | @ and Q' | P"2, which imply deg P’ = deg @ = 0.
Comparing the degree of the equation (3.11), we find 2 = 0, a contradiction.
Therefore we obtain (ii). O

Corollary 3.12. Let q € C be transcendental over Q, t transcendental over
" C, K = (Ct),t — qt), and k € Zsg. Then the equation over K, y1y =
—(t*/4— ¢ —q¢V)y — 1, where v € Q, has no solution in a kLE of K.
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Chapter 4

General theory of
decomposable extensions

We define the decomposable extensions of difference fields. Every strongly
normal extension or Liouville-Franke extension, the latter of which is a dif-
ference analogue of the Liouvillian extension, satisfies that its appropriate
algebraic closure is a decomposable extension.

Notation. Throughout this chapter a field is of characteristic zero.

4.1 Introduction

In [21] the author introduced the definition and some examples of the U-
decomposable extensions of difference fields. In this chapter we define the
decomposable extensions of difference fields, which do not require the fixed
difference field ¢, and study the irreducibility of g-Painlevé equation of type
AD',

We show that some algebraic closure of any U/-decomposable extension
is decomposable in Proposition 4.4. Therefore some algebraic closure of
Bialynicki-Birula’s strongly normal extension or Infante’s is decomposable
(see [1, 9, 10, 21, 22]). Moreover Corollary 4.8 implies that any algebraic clo-
sure of the Liouville-Franke extension, a difference analogue of the Liouvillian
extension, is decomposable (see [4, 5]).

We define the decomposable extensions and the U/-decomposable exten-
sions.
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Definition 4.1 (decomposable extension). Let K be a difference field, and £
an algebraically closed difference overfield of K satisfying tr.deg £/K < oo.
We define decomposable extensions by induction on tr. deg £/K.

(i) If tr.deg £/K < 1, then £/K is decomposable.

(i) When tr.deg £/K > 2, £/K is decomposable if there exist a difference
overfield U of L, a difference overfield £ of K in U of finite transcendence
degree which is free from £ over K, and a difference intermediate field
M of LE/E satistying tr.deg LE/M > 1 and tr.deg M/E > 1, such
that £E/M and M/E are decomposable, where £ is an algebraic
closure of £E and M the algebraic closure of M in LE.

Definition 4.2 ((/-decomposable extension). Let U be a difference field and
L/K a difference field extension in U of finite transcendence degree. We
define U-decomposable extensions by induction on tr.deg L/K.

(i) If tr.deg L/K < 1 then L£/K is U-decomposable.

(ii) When tr.deg L/K > 2, L/K is U-decomposable if there exist a differ-
ence overfield £ of K in U of finite transcendence degree which is free
from £ over K, and a difference intermediate field M of LE/E such
that tr.deg LE/M > 1, tr.degM/E > 1, LE/M is U-decomposable,
and M /€ is U-decomposable.

4.2 Decomposable extension

Proposition 4.3. Let K be a difference field, and L/K and N'/L be decom-
posable extensions. Then N'/K is decomposable.

Proof. (i) If tr.deg N/K < 1, then we find that N'//K is decomposable by
the definition.

(ii) Suppose tr.deg N/K > 2.

(ii-1) If tr. deg N/L = 0, then we obtain A/ = £ because L is algebraically
closed. Therefore N//K is decomposable.

(ii-2) Suppose tr.deg L/ K = 0. Since N/ L is a decomposable extension of
tr.deg N/L > 2, there exist a difference overfield U of N, a difference overfield
€ of L in U of finite transcendence degree which is free from N over £, and

a difference intermediate field M of NE/E satisfying tr.deg NE/M > 1 and
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tr.deg M /€ > 1, such that N€/M and M/E are decomposable, where N'E
is an algebraic closure of N€ and M the algebraic closure of M in NE.
Note tr.deg E/K = tr.deg E/L < oo and that N and E are free over K.
Then we find that A'/K is decomposable.
(ii-3) Suppose tr.deg N/L > 1 and tr.deg L/K > 1. Putting U = N,
& = K and M = L, we find that //K is decomposable by the definition. [

Therefore chains of decomposable extensions are decomposable.

Proposition 4.4. Let L/K be a U-decomposable extension, U an algebraic
closure of U, and L the algebraic closure of L inU. Then L/K is decompos-
able.

Proof. We prove this by induction on tr.deg L/K. If tr.deg L/K < 1, then
tr.deg L/K < 1, and so £/K is decomposable.

Suppose tr.deg L/K > 2 and that the statement is true for ones of less
transcendence degree. Since £/K and £/L are U-decomposable, we find that
L/K is U-decomposable (see [21]). Therefore there exist a difference overfield
E C U of K satisfying tr.deg E/K < co and that FE is free from L over K,
and a difference intermediate field M of L£E/E satisfying tr.deg LE/M > 1
and tr.deg M/E > 1, such that £E/M and M /& are U-decomposable.

Let £E and M be the algebraic closures of L& and M in U respectively.
By the induction hypothesis we find that L€ /M and M /E are decomposable,
which implies that £/ is decomposable. O

The remaining results in this section are on a linear difference equation.
We include the following Lemma for readers convenience.

Lemma 4.5. Let K be a difference field, C = Cx, n € Zs1, and bV, ... b™ ¢
K. Then the following are equivalent. :

(1) 8D, ..., 6™ are linearly dependent over C.
(ii) Cas(®Y,...,6(™) =0.

Proof. Let K = (K, 7). If bV, ... b™ are linearly dependent over C, there
are ci,...,¢, € C such that (c,...,c,) # 0 and >, ¢;b® = 0. Then we

obtain )", ciby) = 0forall0 < j < n—1, which implies Cas (b, ... (™) =
0.
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Suppose Cas (b),...,b(M) = 0. We prove (i) by induction on n. The
statement is true in the case n = 1. Suppose n > 2 and the statement is true
for n — 1. There are ¢, ...,c, € K such that (cy,...,c,) # 0 and

pn .. p) o
D : t | =0.
b b1 \en

We may suppose ¢; = 1. From ) ;. , cib§i) =0forany 0 < j<n-—1, we

obtain ) 7 T(Ci)b;i) = 0 for any 1 < j < n. Therefore it follows that for any

n

Z(T - ) b(z) Z(T —¢) b(l) =0,

=2
which implies
b?) T bgn) T(Cz) — Co
P s =0.
b o p™ ) \7(en) —ca

Case 1. The case Cas (bgz), ...,b{™) £ 0. In this case we find that 7(¢;) =

¢; for all 2 <7 < n, which implies ¢; € C for all 1 < ¢ < n. Since we have
o, cib® =0, we conclude that b, ... b are linearly dependent over C.
Case 2. The case Cas (b, ..., b) = 0. We obtain Cas (b®,...,b(") =

0. By the induction hypothesis we find that 5@, ... 5™ are linearly de-

pendent over C, which implies ¥, 5®), ... ™ are linearly dependent over
C. O

Lemma 4.6. Let K be a difference field,
(41) . ’ Yn + Ap—1Yn—1 e Aoy = 0

a linear homogeneous difference equation over K, where n > 1, f a solution
of (4.1), and L an algebraic difference overfield of K(f). Then L/K is U-
decomposable for some difference overfield U of L.

Proof. We may suppose tr.deg KC(f) f)/K > 2. Let £L = (L,71) and choose
b(’) 1<i<n,0<j<n-—1to be algebraically independent over L. Put
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B={"11<i<n,0<j<n—1}, b0 =t and b = —q,_ 16(’) R

aob®). Define the isomorphism 7 of L(B) into L(B) sending b to b(ﬂ)rl for
alll1<i<nand0<j<n-—1,andz € Ltorze€L. Put A = (L (B),T).
Then N is difference overfield ofL Note the following,

n® = tr.deg N'/L = tr.deg K(f, B) /K(f) = tr. deg K(B) /K,

which implies K(f) and £ are free from K(B) over K.
Since we have

! i fa ao 0
p» M W as 0
pn-1 pn oy | | g,y 0
b pm o ) 1 0

we obtain Cas(f,61),... b(™) = 0. Put C = Cx(s,B)- By Lemma 4.5 we
find that f,o() ... ,b(" are linearly dependent over C. On the other hand
we have Cas (b"),...,b(™) # 0, which implies that b, ... b™ are linearly
independent over C’ Therefore we find that there are ci,...,c, € C such

that f=>"" 1Cz
Put M; = IC(B c,...,¢) C K(f,B) forall 1 < i < n and M, =

K(B). Note M, = K(f,B) and M; = My(cy,...,c;). Then we obtain
tr.deg M;/M;_; <1 for any 1 < i < n, and so

tr.deg KC(f, B) /K(B) = tr. deg K(f)/K > 2

implies that there is some 1 < k& < n — 1 such that tr.deg My/M, = 1.
We also find that M;/M;_; is N-decomposable for any 1 < i < n, and so
M/ My and M.,/ M, are N-decomposable. Since N'/K(f, B) is algebraic,
N /My, is N-decomposable of tr.deg > 1.

Note V' = LM, and it follows that £/K is A'-decomposable. O

Proposition 4.7. Let K be a difference field,
(4.2) Yn + An1Yn-1+ -+ agy =0

a linear difference equation over IC, where n > 1, f a solution of (4.2), and
L an algebraic difference overfield of KK(f). Then L/K is U-decomposable for
some difference overfield U of L.
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Proof. We may suppose b # 0. Let £ = (L, 7), and put a, = 1. The solution
[ satisfies 7" a;f; = b and Z?Jrll T(ai—1)f; = b;. Then we have

n+1

O—ZT a;— 1 ' Zazfz

- fn-i—l + Z az— - ——-a,)f - ﬁaﬂf-

Therefore by Proposﬂslon 4.6 there is a difference overfield U of £ such that
L/K is U-decomposable. O

Corollary 4.8. Let K be a difference field,
(43) Yn + An-1Yn-1+ -+ agy = b

be a linear difference equation over K, where n > 1, and f a solution of (4.3).
Then K{f)/K is decomposable for any algebraic closure K{f) of K(f).

Proof. Let £ = K(f) be an algebraic closure of K{f). By Proposition 4.7 we
find that £/K is U-decomposable for some difference overfield ¢/ of £. Let
U be an algebraic closure of #. The algebraic closure of £ in I equals £
because L is algebraically closed. Therefore by Proposition 4.4 we conclude
that £/K is decomposable. O

4.3 Irreducibility

Lemma 4.9. Let K be a difference field, D a decomposable extension of
K and B C D. Suppose that if L is a difference overfield of K of finite
transcendence degree andU a difference overfield of L such that K(B)p C U,
then the following holds,

tr.deg L(B)y/L < 1= any f € B is algebraic over L.
Then any f € B is algebraic over K.

Proof. Assume that there exists f € B being transcendental over K. Put

S={(L,N)|KCLCN,tr.degL/K < oo,
N/L is decomposable, K(B)p C N,
and there exists f € B being transcendental over L}.
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S # {} because (K,D) € S. Choose (£,N) € S which has the minimum
transcendence degree tr.deg N/L. If we assume tr.deg N/L < 1, we obtain
tr.deg L(B)x/L < 1, which implies that any f € B is algebraic over L by
the hypothesis, a contradiction. Therefore it follows that tr.deg N /L > 2.

Since N'/L is decomposable, there exist a difference overfield I/ of N , a
difference overfield £ of £ in U of finite transcendence degree which is free
from A over £, and a difference intermediate field M of N'E /& satisfying
tr.deg NVE/M > 1 and tr.deg M/E > 1, such that NE/M and M/E are
decomposable, where N'€ is an algebraic closure of N€ and M the algebraic
closure of M in N€.

From K(B)p C N'C N€ and tr.deg NE/M < tr.degN'/L we find that
any f € B is algebraic over M, namely B C M. Note that

K(B)p = K(B)xz = K(B)xz C M.

Then from tr.deg M/E < tr.deg N'/L we find that any f € B is algebraic
over E.

Since N and E are free over L, we find that any f € B is algebraic over
L, a contradiction. Therefore any f € B is algebraic over K. O

Lemma 4.10. Let K be an almost inversive difference field, D a decompos-
able extension of K and B C D. Suppose that if L is an inversive difference
overfield of K and U a difference overfield of L with K(B)p C U, then the
following holds,

tr.deg L(B)y/L < 1= any f € B is algebraic over L.
Then any f € B is algebraic over K.

Proof. Let L be a difference overfield of K of finité transcendence degree and
U a difference overfield of £ with X(B)p C U.
We show

tr.deg L(B)y/L < 1= any f € B is algebraic over L.

Suppose tr.deg L{B)y/L < 1. Let U an algebraic closure of U and L the
algebraic closure of £ in U. Note that £ is inversive. We find

tr.deg L(B);/L = tr.deg L(B), /L < 1,

which implies that any f € B is algebraic over L. Therefore any f € B is
algebraic over L.
By Lemma 4.9 we conclude that any f € B is algebraic over K. O
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Chapter 5
: . : (1)
g-Painlevé equation of type A-

Notation. Throughout this chapter a field is of characteristic zero, C' denotes
an algebraically closed field, C(t) a rational function field over C and ¢ € C*.

The ¢-Painlevé equation of type A;l)l, the object here, appears in Sakai’s
paper [29]. The system over (C(¢),t — qt) is the following,

Yy = 21,
y(1—ty)

2z = Tt
tly—1)

We prove that if ¢ is not a root of unity and (f, g) a solution in a decomposable
extension of (C(t),t — qt), then f and g are algebraic functions of the form

ch/t, ceC.

5.1 Irreducibility

Lemma 5.1. Let ¢ € C* be not a root of unity, K an inversive difference
overfield of (C(t),t — qt), U = (U,7) a difference overfield of K, LC U a
difference overfield of K satisfying tr.deg L/K < oo, and f € U a solution

of the equation over KC, '

Pty — 1y0y = (1 — qtyr)?
Then we obtain

tr.deg L(f)/L < 1= f is algebraic over L.
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Proof. We may suppose that L is algebraically closed. Then £ is inversive.
Assume tr.deg L(f)/L = 1. We find that f and f; are transcendental over
L. Choose an irreducible polynomial over L,

no ni

F=3"% a¥'¥] € LI, Y\ {0}, no= degy F, m = degy, F,

i=0 j=0
such that F(f,fi) = 0, and apy, = 0 or 1. Define the following three
polynomials,

ng ni

F* = Z ZT(aij)YiY'lj,
=0 j=0
. 1— qtY;)?
Fy = (@PY (Y — 1)) F (Yh q2izy(;1/1 _1>1)2> e LY, vi]\ {0},

Fo= (@Y ~ 1P (e 005 v ) € LYY (o)

Since the solution f satisfies
(L= 1) fof = (L— gtf)?,
we obtain Fi(f, f1) = Fo(f1, f2) =0, and so F | F; and F* | Fy. These imply
ny = degyl F* < degm Fy <ng = degy F' < degy F1 < ny.

Therefore we obtain ng = n;. Put n =ny =ny; > 1. Let P € L[Y,Y;]\ {0}
be the polynomial such that F; = PF. We find P € L[Y;] because degy P =
degy F; — degy F = 0.
We have :
n ~\ 1 (1 —_ th’l)2 g
P = (Y (Y1 - 1)%) > 7(ai)Y; ( E

=0 j=0

=0
=Y (PEY (Y1 — D)2 (1 — gt¥1)* ™) Y 7(a;0m) Y7
7=0

j= =0

I
NE

{(qt)%(yl — 1)%(1 - gty ZT(ai,n_j)Yf} v

0 1=0

.
I
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and
PF=P zn: i a; YV = P i zn: a;YIYi = En: {P Zn: aj,yf} Y7
i=0 j=Q j=0 =0 j=0 i=0

Therefore for all k£ € {0,1,...,n} we obtain

(xk) (@) (V1 = D)*(1 = gt¥1)* ™Y " r(an )Y = P agYy

=0 =0

The equation (*n) and (*O) are the following,

(m) @ -DT Yt =Py an¥? (£0)

(x0) (1—gt¥)™ Y r(aim)Yy = P anY{ (#0).
=0 i=0
Note that Y 7 o an; Y7 # 0 and Y7 7(aim)Y? # 0.
By (¥n) we find (Y; — 1) | P, and so by (x0), (Y1 — 1)" | 30, 7(ai) Y7.
Therefore we obtain ), 7(ain) Yy = 7(an,) (Y1 —1)*, which implies ay, = 1.
Comparing the terms of degree 0 of the equation

(5.1) > lam)Yi = (-1,
we find
(5.2) ' aon = (=1)" # 0.

By this the equation (%0) yields deg P = 2n, and so
P=pYs -1)"(1-qtY1)", peL*.
Then from (*0) we obtain
(1—qthh)" = pZGOz’Yf,
i=0
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which implies 1 = pagy and (—qt)" = pag,. By (5.2) we find p = (¢t) and
Qoo = (qt)_n

Since we have (1 — ¢tY1)" | P, we obtain (1 — qt¥;)" | =7 7(ay)Y; by
the equation (*n), and so

ZT (ain)Yy = T(ag)(1 — gtY1)" = (¢*t)™"(1 — qtY1)".

Then from (*n) we obtain

n

M=t =) anYi.

=0

Comparing the terms of degree n, we find ¢~ = a,,,, = 1, a contradiction.
Therefore we conclude that tr.deg £L{f)/L # 1, which implies

tr. degﬁ( )/L<1=tr.deg L({f)/L = 0= f is algebraic over L,
the required. d

Theorem 5.2. Let g € C* be not a root of unity, K an inversive difference
overfield of (C(t),t — qt), D a decomposable extension of K, and f,g € D
satisfy two equations,

_ fa=tf)
919 = t(f— 1)

Then f and g are algebraic over K.

flf = g%a

Proof. We may suppose f # 0 and g # 0. The two equations yield

2 _ 2
Lfif = (fh)(Af) = 6 = (geq)* = %JTﬁ?f—fll))Z_’

CE(fr =12 fof = (1— gtfi)>

If we let £ be a difference overfield of K satisfying tr.deg £L/K < oo, and U a
difference overfield of L satisfying K(f)p C U, by Lemma 5.1 we obtain the
following,

tr.deg L(f)u/L < 1= f is algebraic over L.

Therefore by Lemma 4.9 we find that f is algebraic over K, Wthh implies g
is also algebraic over K. O
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5.2 Algebraic solutions

It remains to find the algebraic solutions.

Theorem 5.3. Let ¢ € C* be not a root of unity, put K = (C(t),t — qt),
and let K = (C(t),7) be an algebraic closure of K. Suppose that f,g € K
satisfy the following two equations,

_ A —tf)
(5.4) 919 = W
Then one of the following holds.

(i) (f,9) = (0,0).
(i) (f,9) = (=1/z,—a/z), (~1/z,a/z), (1/z,—a/z) or (1/z,a/z), where

a € C* satisfies a* = g and z € C(t) satisfies > =t and Tz = o®z.

Proof. We may suppose f # 0 and g # 0. Put £ = K(f,g) C K. Then
we have L = C(t)(f,9). Put n = [L: C(t)] < oo. By Lemma 2.1 we find
L = C(x), 2™ = t. Since we have (rz/z)" = ¢ € C*, we obtain 7z/x € C*.
Put r = 7z/x € C*, which satisfies ¥ = ¢ and 7 = rz. Note that
f,g€ L =C(x) and L is inversive.

Express f and g as f = P/Q and g = R/S, where P,Q, R, S € C[z]\ {0},
P and @ are relatively prime, R and S are relatively prime, and Q and S are
monic. From the equation (5.3) we obtain

(5.5) PPS} = Q1QR} (#0),
and from the equation (5.4),
(5.6) 2"(P - Q)QRiR = P(Q — 2"P)S,S  (#0).

By these equations we find z | P(Q — z"P)S5:S, andsoz | Por z | Q.

Let vg be the normalized discrete valuation of C(z)/C with the prime
element z. We prove z | Q in C[z]. Assume z | P. Put m = vy(P) € Zso,
namely z™ | P and ™! { P. We obtain z | R from (5.5), and so x t S.
Then it follows that

2m = ’Uo(Pl.PSlz) = ’Uo(QlQR%) = ’U()(R%) = 2’00(R1),
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which implies vo(R) = m. Therefore by (5.6) we find n + 2m = m, a
contradiction.

Put m = v(Q) € Z>o. From the equation (5.5) we obtain z | S and z R,
and so v(S) = m. Then from the equation (5.6) we obtain vy(Q — 2" P) =
n —m. Since we have 0 < n —m < n, we find v9(Q) = n — m, which implies
n=2m.

Express fand gas f =2 a;2%,a_, #0and g = i=m bz, b_p #
0. Seeing the first terms of the equation (5.3), we obtain a2 = 62 ™,
On the other hand from the equation (5. 4) we obtain b2, r~™ = 1. Then it
follows that a2, = 1.

Combining the equations (5.3) and (5.4) as

2(1 — £ )2
ffif = (fof))(fif) = 6352 = (9291)* = %ﬁ—q—tfll_))?’

we obtain
(5.7) ¢ (fr = 1)*fof = (1= gtfr)*,
We prove that for any i > —m,
mii=a;=0,

which yields f € C(z™). Assume that there is i > —m such that m { i and
a; 75 0. Let

km+1l=min{i > —m | mf{iand a; #0}, 0<l<m.
The left side of the equation (5.7) is

— — +1 . km-+l 2
q2$4m( 1 Q" Mgp™m ag rkmka Qg l,r.km km + )
— — m, km m+1) . km+1

X (a_;n:c‘.m + 4 akmka + akaka"'l + - )
and the right side is
(=14 qa—mm™ ™2™ + - + Qg™ gy Rl MmN

On the one hand the first term of the right side whose exponent is not divisible
by m is 2(—1)qagmyr*™x*+2m+ - On the other hand the term of degree
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(k+ 1)m 41 of the left side is

q2x4m(2akm+l,rkm+lka+l X a_mr—-mx—m . a_mT—me—m . a~mx—m
+ akm+lr2(km+l)$km+l (a_mr—mw—m)Za_mx—m
+ G km+l (a_mr’mm_m)Qa_mr‘zmx_m)

_ q2x(k+1)m+lakm+la3lm(27,(k—3)m+l + r2((k—1)m+l) + r—4m)’

Therefore it follows that
(,r(k—l)m+l + ,r—2m)2 — ,,,2((k—1)m+l) 4+ 27,(k—3)m+l + ,r—4m — 0’

which implies ¢g?(k+1)m+) — 1 3 contradiction.
Put z = ™. Then we have f = )" | as,;2". The left side of the equation
(5.7) is '

@2 (a2 + (a0 — 1) + amr™z + -+ )?
X (e 2™ 27 + ag + apr®™z 4+ )
X (@—m2z™" +ag+ amz+ )
and the right side is
(=14 ga—mr™™2 + qag2® + qa,r™z + - -+ )%

Comparing the terms of degree 1, we find ao(r +1)2=0. Sincer™+1=0
implies ¢ = 1, we obtain ag = 0.

We prove that am; = 0 for all ¢ > 1 by induction. Firstly we deal with the
case ¢ = 1. Comparing the terms of degree 2 of the above two expansions,
we find a,,(r~>" + 1) = 0, which implies a,, = 0. Secondly we suppose
¢ > 2 and the statement is true for the numbers < . Comparing the terms
of degree i + 1, we find @, (r™+Y + 1)2 = 0, which implies a,,; = 0.

Therefore we obtain f = a_p/2 = a_,,/z™ € C(z™). The equation (5.3)
yields S? = r~™z?™R2, Since S is monic, we find S? = 2™, and so S = z™.
Then we have R? = r™ € C*, which implies R € C*. Therefore we obtain
g=R/S € C(z™).

By L = C(t)(f,g9) C C(z™) C C(z) = L we find L = C(z™). Then we
have

2<2m=n=[L'C’( )] = [C(z™) : C(z™™)] < 2,
which implies n = 2 and m = 1. Let o € C* be a root of the polynomial
X?—-reC[X]. Wehave f =a_y/r,a_;=—1or1l,and g = R/z, R= —a
or a. Note that a? =72 =gq. O

46



Chapter 6
g-Painlevé equation of type Aél)

In this chapter we will study the irreducibility of g-P(Ag), ¢-Painlevé equa-

tion of type Aél) , in the sense of order using the notion of decomposable
extensions. g-P(Ag) is one of the special non-linear g-difference equations of
order 2 with symmetry (A4; + A;)® and is also called ¢-Pir.

6.1 Iritroduction

q-P(Ag), g-Painlevé equation of type Aél) is expressed as

at’F

(FF-)(FE-1) =2,

where t is a variable, a a parameter, T = qt, t = t/q, F = F(t), F = F(qt)
and F = F(t/q).

q-P(Ag) is one of the discrete Painlevé equations Ramani and Grammati-
cos first studied in their paper [24]. The notation ¢-P(A4s) is based on the
Sakai’s classification of discrete Painlevé equations by rational surfaces (see
28)).

In their [8] Hamamoto, Kajiwara and Witte constructed hypergeometric
solutions to ¢-P(Ag) by applying Béacklund transformations to the “seed”
solution which satisfies a Riccati equation. Their solutions have a determi-
nantal form with basic hypergeometric function elements whose continuous
limits are showed by them to be Airy functions, the hypergeometric solutlons
of the Painlevé II equation.
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In Section 6.2 we prove that transcendental solutions of ¢-P(A4g) in a de-
composable extension may exist only for special parameters, and that each of
them satisfies the Riccati equation mentioned above if we apply the Backlund
transformations to it appropriate times.

In his [19, 20] the author proved Proposition 6.13 which dealt with al-
gebraic solutions of ¢-P(Ag). In Section 6.3 we prove the further result,
non-existence of algebraic solutions.

Notation. Throughout this chapter a field is of characteristic zero, C' denotes
an algebraically closed field and C(t) a rational function field over C. For

g € C%, g-Painlevé equation of type Aél) with (parameter) a € C is the
difference equation over (C(t),t — qt),

¢-P(Ae)a: (%21 — 1)(1y — 1) (31 + qt) = ag’t®ys,

where y; (yo = y) is the i-th transform of y.

6.2 Irreducibility
In this section we prove

Theorem 6.1. Let ¢ € C* be not a root of unity, K an inversive difference
overfield of (C(t),t — gqt). Furthermore let D/K be a decomposable extension
and f € D a solution of g-P(Ag), with a € C*. Then the following hold:

(i) If a # ¢ for all i € Z, the solution f is algebraic over K.

(ii) If a = ¢*** for some i € Z, the solution f is algebraic over K or
T5'f € D satisfies the equation y1y + qty — 1 = 0 over (C(t),t — qt),
where Tp is the map defined in Definition 6.5 and regarded as Bdicklund
transformation of g-P(Ag) in [8].

6.2.1 Backlund transformations

We define Béacklund transformations algebraically.

Lemma 6.2. Let K = (K, T) be a difference field lying over (C(t),t — qt)
and f € KC a solution of ¢-P(Ag), with a # 0. Then there is a unique f_; in
K such that Tf_, = f.
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Proof. f satisfies

(fafs = V)(Af = V(A + qt) = ag’t fi.

Since f1 # 0, fofy —1# 0 and f1 + gt # 0, we obtain f € C(t)(f1, f2). Thus
we conclude that there is g € C(t)(f, f1) C K such that 7g = f. (C(t)(f1, fo)
is the field of quotients of C(t)[f1, f2].) The uniqueness follows from the
injectivity of 7. O

Lemma 6.3. Let K = (K,7) be a difference field lying over (C(t),t — qt)
and f € K a solution of g-P(Ag)q with a # 0. Then

qatfi+ fif —1

: -1
Gf —0)h + Af =) Ta?a

g= .
7 fa=d

is well-defined and a solution of q-P(Ag) 2, in K.
Proof. (i) Case a = q~!. f satisfies
(fofi = D(Af = D(f1 + qt) = qt® fi,

and so f # 0 and f;f — 1 # 0, which implies g is well-defined.
Put h = fif — 1 and then g = ¢t/h. Note hih(f; + qt) = qt>f, and f # 0.
Then we obtain the followings:

gog1 =1 =1 _1=—32——1=f2+q —1=2
h2h1 qtf2 f2 f2
fa+q*t
qt
—1==
M
at 1 fafa
t=—+ag=q|—+1)=qgt=—
prEsg e (h1+> " h

Thus we find

ﬁ.ﬂ.qt@:ﬁ:q3t2
fo fi hq h1

which implies g is a solution of g-P(Ag),.

(9291 — 1)(g19 — 1) (g1 + qt) = g1,
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(i) Case a # q~1. f satisfies

(fofr = D(fif = D)(fr + qt) = a®t* fu,

and so f # 0 and f1f —1 # 0. We will show tf; + fif —1 # 0. Assume
tfi+ fif —1=0. Then it follows that f1f — 1 = —tf; and fi(f +1t) = 1.
From the above equation we obtain

(=gtfo)(—tf1)(fr + qt) = ag®t* f1,
fo(fi + qt) = ag,

l=aq, a=q7",

which is a contradiction. Thus ¢f; + fif — 1 is not equal to zero, which
implies g is well-defined.
We will prove that g satisfies g-P(Ag)2,. Put h = f1f — 1. Note

_,qatfi+h
I = htfh+h)
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hih(f1 + qt) = ag*t*f, and f # 0. Then we obtain

Ay Catfithe g
fa ho(@®tfs + ha)  fo
_ Pat? f3fa + ¢*thafa — qhiha(qtfs + hy)
a ha(q*t fafa + ha fa)
¢°at®(hy + 1) + ¢*tho fo — qa—(ffzﬁ(q%fg + hs)
fot+ g%
- ha(@Pt(h2 + 1) + hafo)
(f2 +@°)(¢°at®(hy + 1) + Ptha fo) — aq®t? fo(qPt f5 + hs)
ha(@®t(he + 1) + haf2)(f2 + ¢2t)

(fo + 1) (Pat®(ho + 1) + ¢*thafo) — aqt®(hy + 1) — ag®t? fohy

ha(q?t(he + 1) + hafo)(fa + ¢%¢)
. q5at2f2 + q2th2f22 + q4t2h2f2
 ha(@Pt(ha + 1) + hafo) (f2 + ¢°t)

4,2
°at® f» + ¢*tha f ai thfz

= 1.2 1,2 .
_ hi(¢at® fohy + ag®t® f3)
" ag*? fo(q%thy + ag*t2fy)
_ ha(hy +qtfy)
— qt(hy + ag?tfy)

_ -1
_gly

and so it follows that

9291 — 1= 2}}‘1“91 = Tt +ag’tfs)
fo fa(hi +qtfa)
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Moreover we obtain

. 1 ag’®f
t _.
glg—]_:@g:%. .M:gf.qafl—i_hl f1+qt
RO RCARER TR T a?Ph
YTh A+t

_ gt gah(fi +gqt) +ag’t
A ha(fi+qt) +ag’t
_ ¢t ga(fofy = 1)(fi +qt) + ag’t
A hi(f1 + qt) + ag?t
_at gafoff +datfofi — qafs
~h hi(fr + gt) + ag’t
— Jat fofi+aqtfo—1

ha(f1 +qt) + ag?t

and

Catfoth . datfa+Mlatf+h+1)
mgtf+ b)) 0T ha(gtf + h)
q*atfo + hi(gtfa + fof1)
hi(gtfa + hy)
_ qtfg(cfat + hi(gt + f1))
hi(qtfa + h1)

g1+qt=qt

Thus we find

(9291 — 1)(919 — 1)(g1 + gqt)
Pt tad’tfa) 5, fofitqtfa—1 f2(¢%at + hi(gt + f1))
T Ruvatf) U+ at) +agt ! hi(gtfo+hi)
= a4t hi + ag’t f
hi(qtfa+ h1)
= ag't’ g1,

which implies g is a solution of ¢-P(Ag)g2,- O
Lemma 6.4. Let K = (K,7) be a difference field lying over (C(t),t — qt)
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and f € K a solution of g-P(Ag), with a # 0. Then
at/g)f-1+ffa-1

oDt i e
g:
ﬁ_f_—l fa=q

is well-defined and a solution of q-P(Ag)s-2, in K.
Proof. (i) Case a = q. f satisfies
(fif = D(ffr = D(f +1) = ¢t

and so f # 0 and ff_; — 1 # 0, which implies g is well-defined.
Put h = fif — 1. Then we have g; = ¢qt/h and we obtain

g2gl—l=ﬁ—1=————q3t2 ot
hlh’ q3t2f1 4 fl fl’
fi+qt
q’t
93392 — 1= E
and . o
2 q 2 2,J2/1
t == - t = t_.__.'
92 t4q I +q q s
Thus we find
’t gt 543
(9502 = D)(gagn — (g + 1) = L0 L pel2h _ T8 _ sz

f2 fl-q hi ko

and so it follows that

(9291 — 1) (919 — 1) (g1 + qt) = qt®q,

which implies g is a solution of g-P(Ag),-1.
(ii) Case a # q. f satisfies

(Af = D)(ffr = D(f +1) = at*f,
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and so f #0and ff_; —1%# 0. We will show tf_; + ff_; —1 0. Assume
tf-1+ff-1—1=0. Then it follows that ff_; —1 = —tf_; and foi(f+t) =1
From the above equation we obtain

(=gt f)(~tf1)(f +1) = atf,
Qf—l(f+t) = a’?
q=a,

which is a contradiction. Thus ¢f_; + ff_; — 1 is not equal to zero, which
implies g is well-defined. _
We will prove that g satisfies g-P(Ag),-2,. Put h = fif — 1, and then we

have
a(t/q)f-1+ h_
h_l (tf-l + h-l) ‘

g=t
The first transform of g is

_ atf + h
N= gt +hy
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Note hih(f1 + qt) = ag’t®f, and f # 0. We obtain

_&z atf +h __h_1=qzat2f1f—|—q2tf1h—hlh(qtf-l—h)
DR T Thlar TR afih(gtf + h)
%ﬁff+fﬁh—afﬁﬁ@ﬁ+h)

_ q 1 1 it qt
qfih(qtf + h)

_ (i +at)(@at?fif + ¢*tfih) — ag®fi(gtf + h)
qfih(qtf + h)(f1 + qt)

_ Qa1 f + @Ptfih+ PP fih — ag®B fih

- qfih(qtf + h)(fL + qt)

_ Ctfih+ P fih + ag’t? fy

~ qfih(gtf +R)(f1 + qt)

_ag*® fr + @Ptfih(fL + gt)
 qh(gt(h+1) + fih)(f + qt)
_a?tfi + Ptfih(fL + qt)
_@MW+Mﬁ+ﬁMﬁjw)
2
a’¢*t* fi + qztflhaththfl

572
L+
_ ag’t’ fiby + ¢*tf1 - ag®t? fy
~ ghah(gthy + ag??f1)(f1 + qt)
_ hi(ag®t frha + aq*t® f2)
" ag®t2fi(qthy + ag®t2 fy)
_ (b +¢tf)
~ @2t(hy +agtfy)

-1
'-g2,

qh(gt + h

and so it follows that

hig2 _ qt(aqtfi + hy)
afi  [A(@tfi+h)

gogh — 1=
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Moreover we obtain

2 1 ag*t®fo
Gogp—1= T2 gy (L2t gt T Ryt
qfa ho(¢Ptfo+ ha)  fo Ph+ 1 ag't’fy
h f2 + q2t
_ ¢t ag’t(fofs = D)(f2 + ¢*t) + ag't?
o Btffi —1)(f2 + 2t) + ag*
_ ¢t ag’tfs fi + ag't’ fofr — ag’t fo
 fo PtEfi+ PR — Bt — ¢ + aght?
_ agt(fof1 + ¢°tfr — 1)
R+ @tfafi — fo— @?t +agt
and
2, 9, Oqtfi+h 2, 2,0qtf1 + Py (Ptfi + b + 1)
e by T T T R@th by
_ qztaqtfl + hi(¢*tfi + faf1)
hl (q2tf1 + hl)
g, aqt +hi(Pt+ f)
= T T )
1\g°tJ1 1
Thus we find

(9392 — 1)(g291 — 1)(g2 + ¢°¢)
_ag(fefitd®fi-1)  gtlagtfit+h) P hi(g’t + f)
A+ Ethfi— fo—@t+agt fi(Pth+ M) 7t hi(g*tf1 + h1)
_ aq4 3 agtfi+hy

hi(g%*tfi + h4)
= ag’t’g,,

and so we conclude
(9291 — 1)(g19 — 1)(g1 + qt) = at’gy,
which implies g is a solution of q-P(Ag)q-2q. O

Definition 6.5. Let K be a difference overfield of (C(t),t + gt), and define
the sets of solutions as S,(K) = {f € K | f is a solution of ¢-P(As), in K}

56



forany a € C and S(K) = U, Sa(K). S(K) is the disjoint union of S, (K)’s.
(In fact let f € K be a solution of ¢-P(Ag), and q-P(Ag)p. Then we obtain

aq®t fr = (fofr — V)(frf — 1)(fr + qt) = bg*t* fu,

which implies a = b.) We define maps Ty and T as follows:

atfi+fif-1 ; -
feSuk) = { ‘Tintniarn HeAaT o e
@ e ifg=gq1 "
1f-1
and
TS:  S(K)  — S(K) .

at/@)f-1+ff-1-1 :
fes.(K)y — t(ff—l—l)(tf—1+ff—1‘1) ifazq € S-24(K)
Ftﬁ ifa=gq e
—1
Those are well-defined because of Lemma 6.3 and Lemma 6.4. In their [8]
Hamamoto, Kajiwara and Witte regard T and T as Backlund transforma-
tions of ¢-P(Ag). :

Proposition 6.6. Let K = (K, 7) be a difference overfield of (C(t),t — qt).
Then Tg = T

Proof. First we prove TdT = id. Let f € S(K). There is a unique a # 0
such that f € S,(K). (i) Case a = ¢7!. Put g = Ti(f) and h = fif — 1.
Note g = t/h and hih(f1 + qt) = qt*f1. Since g € S,(K), we obtain

t
T< —
IC(g) 991 —1

qt qt qt qtf
TT<] = = prmnd = z,
Te9) = 59—1 o | htd | fitd-h h

hlh fl

which implies Tdg = f.
(ii) Case a # ¢ !. Put g = Tx(f) and h = f;f — 1. From the proof of
Lemma 6.3, we have

qh
—1==—g.
919 f1
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Since Ti(f) € Sp2.(K) with ¢%a # g, we obtain
¢’atg + %

T(Tgg) = qt 3 h ) = qtf

q qh
= tg + —
flg(qg f7
2atfy + qh
—gth gatfr +q

qatfi +h
m(qtf 1+ ¢qh)

¢*atfi + qh
qhg(qtfr + qh)

qht
= fl)

which implies g = f.

Next we prove T T = id. Let f € S(K). There is a unique a # 0 such
that f € S,(K). (i) Case a = q. Put ¢ = T,0f and h = f1f — 1. Note
g =t/h_y and hh_,(f +t) = qt®f. Since q € S,-1(K), we obtain

TK:g = = = = f’

which implies T T8 f = f.
(ii) Case a # ¢q. Put g = TJ(f) and h = fif — 1. From the proof of
Lemma 6.4, we have

gog1 — 1= El—gQ
qf1

Since g € S;-2,(K) with g~2a # g™, we obtain

atgy + hi1go
(Teg) = gt atgs + g291 — 1 _ gt qfr
(9291 — 1)(qtgs + gog1 — 1) h1gs h1gs
— | qtge + ——
qfr qf1
9 qatfi + hy
=q'th
tfi+h
h 2t aq 2t + h
= f17
which implies Ti.(9) = f. O
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Proposition 6.7. Let K = (K, 7x) be a difference overfield of (C(t),t — qt)
and £ = (L,7) a difference overfield of K. Then we obtain S,(K) C S,(L)

for alla € C, and so S(K) C S(L), moreover it follows that Tr|spy = Tk
and TL_IIS(IC) = TEI

Proof. Let a € C and f € S,(K), which means f € K C L is a solution of
q-P(Ag)q in K. We have

(T (N)r(f) = () f = 1)(7f + qt)

= (Te(H7e(f) = V(& (/) f = 1)(7& f + qt)

= ag’t’1x f

= ag*t’7f, ,
which implies f € S,(£). Thus we conclude that S,(K) C S,(£) and S(K) C
S(L).

Let f € S(K). There is a unique a € C* such that f € S,(K) C S,(£L).
Then we have

| qatT(f)+7(f)f-1 . 1
T.f = { t(T(g‘)f—l)(tr(f)+7-(f)f_1) ifa+#q }

Thi-1 ' ifa=gqg"
qattig (f)+7r (f)f-1 . 1
= t(TKt(f)f—l)(tTK(f)+n<(f)f-1) if a7 T
= (f)f-1 ifa=gq
=1Tk/,

and so T¢|gx) = Tx. From this we find that

T: sy 0 T = Tz Hsqey © Telsgey = id]see),

which implies T, 4 s =T L O

6.2.2 Proof of Theorem

We need several Lemmas for the proof of Theorem.

Lemma 6.8. Let ¢ € C* be not a root of unity, U = (U, T) a difference over-
field of (C(t),t — qt), L C U a difference overfield of (C(t),t — qt) whose
operator is surjective and f € Su(U) with a € C* satisfy tr.deg L{f)/L = 1.
Then we obtain one of the following:
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(i) @ = q and f is a solution of the equation y1y + gty — 1 = 0 over
C(t),t — qt) inU. '

(i) a=gq

(iii) There are m,n € Z such that a™™ = ¢", 0 < m < 2n, m # n and
n>1.

Proof. For a polynomial F = }=, . a;Y'Y] € U[Y,Y:], we define F* ¢
Uly,vi] as F* = 3, 7(ay;)Y'Y{. For any i > 0 we find f; is transcen-
dental over L, which is inductively proved. In fact from the assumption
tr.deg L(f)/L = 1 we have f is transcendental over L. Let i > 1 and as-
sume it is true for ¢ — 1 and f; is algebraic over L. There is F' € L[X]\ {0}
such that F(f;) = 0. Since 7|, € Aut L there exists F, € L[X] such that
F; = F. Though f;_; is not algebraic over L, it satisfies F,(f;—1) = 0. Hence
we obtain F, = 0, which implies F' = 0. This is a contradiction, and so f; is
transcendental over L.

Step 1. Because of tr.deg £(f)/L = 1 there is an irreducible polynomial

no ni
F= Zzaijylylj € LY, Y1]\ {0}, no = degy F, ny = degy, F

i=0 j=0

such that F(f, fi) = 0 and anyn, = 0 or 1. Choose such F' using the above
expression, and put ‘

1

F={MY - 1)(Y1 +gt)}" F* (Yl, Y <(Y1y iqiiz(é npn 1))

and

Fo={Y(Y = 1)(Y + qt)}™F (% <(Y1Y f“_qi';?; ot 1) ,Y) .

They satisfy Fy, F1 € L[Y, Y1]\{0} because both {Y7, yil( ~)Yand {$(...), Y}
are sets of elements algebraically independent over L.
f € Su(U) means f € U satisfies

(fofr = D(frf = D(f1 + qt) = ag*t* fi.
From f # 0 and a # 0, we have

_ 1 ag’t* f1 >
f2= f <(f1f - 1)(f1 +qt) 1
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and

_ 1 ag’t’fi )
f= fi ((fzfl = 1)(f1 +qt) 1)

Hence it follows that

F1<f,f1>={f1(f1f—1)(f1+qt>}“1F*(fl,l( gt +1))

fir \(frf = D)(fr +qt)
={filfif =D + )} F*(f1, f2)
—0
and
Fo(fi, fo) ={fi(fai = D)(fi + at)}"F (% ((f2f1 iql;f(fci p + 1) >f1)
= {fi(fafr = 1)(fr + )} F(f, f1)
=0.

Note that F' and F™* are irreducible polynomial over L and that f; is tran-
scendental over L for all ¢ > 0, and we find F' | F; and F* | Fy. Then we
obtain ' .

ny = degy, F* < degy, Fy < ng
and

ng = degy F' < degy F1 < nyq,

which implies ng = n;. Put n =ng =n, > 1.
Step 2. Express the non-zero polynomial Fy as F; = PF, P € L[Y, 1]\
{0}. We find P € L[Y;] from

degy P = degy F} — degy F = 0.

Put X = Y1Y — 1. Note that Y7 and X are algebraically independent over
L. We use

A m

> ew=>

=0 k=0 k=0 1

¢ forallm>0

NIE

I
B

in the following.
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Wé calculate F; and PF independently:

Fum 00+ a0 o {2 (%)Y
o — Y A\ XM+ )
=Y rlay)i{viX (v + qt)}""{aq2t2Y1 +X (Y1 +qt)Y
7]
J

=" 7(ai) YT X (Y + gt Z ( ) (ag*t*Y1)" X778 (Y1 + gt~

7.7 0
_ Z Z Z ( )(aq2t2 azj)iﬂ"“_”k(yi + qt)n—kzxn—k
7=0 k=0 =0
=333 () e gt
k=0 j=k i=0

n n n

= Z Z Z (n ik) (aq2t2)n_k7'(aij)an_kH_j(Y1 + qt)ka

k=0 j=n—k i=0

=S 35 35(, 0 Jrtme e

= j=n—k i=0

PF =P a;YY]

4]

(X +1\' .
ZPZG’”(T) Y’lj



Hence

for k=0,...,n. Let (k); denote the left side of the equation (xk) and (xk),
the right side. The equations (*n) and (x0) are

(xn) Y'Y + gt)” Z Z T(ai ) Y77 =P Z an; Y7,

j=0 =0

~ (x0) (ag®t?)"Y " Z 7(ai)Yy = PZ Z ag Y
=0 j=0
We will show Y7 an;¥7 # 0 and 37 7(ain)Y; # 0 to find both sides

of the above two equations are not equal to 0. Assuming Z;’:O aanlj =0,
we obtain

n n n—1 n
F= Z Z azJY’Yf = Z Z ainiYij,
1=0 j=0 i=0 j=0

which implies degy F' < n—1 < n, a contradiction. Assuming > 7"  7(ai) Yy =
0, we obtain a;, = 0 for all 0 < i < n, and so

n n n—1
F=3 Y= 3> e,
j=0 =0 J=0 =0

which implies degy, ' < n — 1 < n, a contradiction.
Choose m € Zs satisfying

Y/ | Y m(ag) Y (£ 0),

Y]

which means Y™ | 3, . 7(ai)Yy" ™ and Yyt ¢ >ij 7(ai)Y;" . Note

(62) Z ’T(aij) =0<= Z a;; = 0.

n+i—j=h n+j—i=2n—h
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Then from the above condition we find

(6.3) Z a; =0 forall2n—m < h <2n
n+j—i=h

“and

Z Q5 7é 0>

n+j—i=2n—m

which imply deg}, . ai; Y = 2n —m.
‘We will show a,,, = 1. Assume a,, = 0. From eq.(*0) and

deg(x0); <2n+(n—1)=3n—1,

we obtain
deg P = deg(*0); — (2n—m) <n+m — 1.

Hence it follows that
deg(xn), < (n+m—-=1)4+Mn—-1)=2n+m—2<2n+m,

which contradicts deg(#n); > 2n 4+ m. Since we have chosen F satisfying
Gnn = 0 or 1, we conclude a,, = 1.
From eq.(*0) we have

degP=(2n+n)— (2n—m) =n+m,
and so from eq.(*n) we obtain -

deg Y 7(ai)Yy"" 7 = (n+m)+n—2n=m.

i?j
Since the sum satisfies Y™ || >, ; 7(ai;)Y7T7, it follows that
> r(a) Y = ( > T(%‘)) Y.
9, n+i—j=m
Then the equation eq.(xn) is
(+n) Y+ )" ( > T<az~j>> Y"=P) anY{,
n+i—j=m 7=0
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from which we find Y™ | P. Put | € Zs, such that Y} || P. We have
m<[<n+m.

Step 3. Express the polynomial P € L[Y7] as P = pY}(Y; + qt)"+™,
p € L*. Comparing the terms of highest degree of eq.(*n), we obtain
Zn+i—j=m 7(ai;) = p. From Ez] 7(aij) Y7 = pY{™ we have

Z 7(a;) =0, forallm < h < 2n,
n+i—j=h

and so from (6.2) we obtain

z a;; =0, foral0<h <2n—m.

n+j—i=h
Since we have already found (6.3), it follows that 7
Zaijyvlnﬁ‘j—i _ ( Z aij) Y'12n—-m — ( Z aij) Y'12n—m
2,7 n+j—i=2n—m n+i—j=m

— (Thlp)len_m.

Then from the equations (xn) and (x0) we obtain the following two equations:

(n.1) Vr(Yi+at) " =YY an ¥y,
j=0
(01)  (ag)" Y rlan)¥y = p(rp)YI T Y: + gt
=0

Comparing the terms of degree n of eq.(*n.1), we obtain

(6'4) ‘ (qt)l_m = Apnt+m—1-

Comparing the terms of degree [ — m of eq.(*0.1) we obtain

(6.5) (ag’8*)* 7 (@1—m,n) = p(T7'p) ()" ™",
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Since we have 0 < [ —m < n, we can consider the equation (*l —m),
(1 —m) _
(aq2t2)n+m ly2n+m l(Y + qt Z Z <n o ) (aij)Y1n+i_j

j=n+m-—l =0
— pY'll(Y'l + qt)n+m—l Z Z (l ——?’ >azgYn+] 7
i=l—m j=0

From (6.4) and (6.5) we obtain ap n4m—i # 0 and aj—m », # 0. Comparing the
terms of highest degree of eq.(xl — m), we find

aq2t2 n+m—ly2n—|—m—lyl—m7_ At Yn—m+l — pylyn-l-m—lal_m nyZn—l+m.
1 1 n+ 1 141 nl1

Hence it follows that 2 = 3m and

(6.6) (ag*t*)" "% 1(an, n-m) = pam ..

Comparing the terms of degree m of eq. (*O 1), we obtain p(t7!p) =
(ag?t?)™. Then from (6 5) we have am "= =¢""7, and so from (6.4) and (6.6),
we also have (ag?t?)"~ 7 (¢*t)% = pt" %, which 1mphes p = (ag®t)" %7 (¢*t)%
Hence we obtain

(ag’t)" % ()% - (aqt)" % (qt)% = (agt*)",

from which we conclude a™ "™ = ¢™. Consequently

’

P= pY2 (Y1 + qt)"" %,

p=(ag’t)" % (¢1)%,
(6.7) ‘ § Gnpm = (q8)7,
am, = tn‘_,
[ a"T" =q".

Note 0 < m < 2n.
Step 4. We divide the problem into 3 cases according to the value of m.
Firstly we deal with the case m = 2n. In this case, from (6.7) we have

P — pY'13n7
p=(¢°t)",
ano = (qt)na
a” = q".
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By (*n.1) and (x0.1) we obtain the following two equations:

(*n-2) Yl + gt)" Zam 15

(x0.2) 7(aim) Y = Y7
=0

Since we have P = pY}*" in this case, it follows from eq.(xk) that

YR ZZ( ) aUY"HJ forall 0 < k <mn,

j=n—k i=0

which implies

£ (7 e o

j=n—k i=0

where 0 < k < n, and we find an,—r, = (,",)(qt)* # 0 from eq.(*n.2). Then
from eq.(xk) we obtain

(6.8) (@) (Y1 + gt)*7(ann-r) = (¢*t)" ZZ( >%Y"+’ i

i=k j=0

for all 0 < k < n. Comparing the terms of degree 0 of the above equations,
we find

(aqztz)"_k(qt)kT(an,n_k) = (¢*t)" (Z) ano forall0<k<n.

Hence for all 0 < k < n we obtain
2. 20n—k k[ T 20Nk _ (2nn [T n
(ag”t*)""(qt) (n_ k) (¢°t)" = (¢°t) (k) (qt)",

which implies a™* = ¢"*, especially a = q.
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We will calculate the polynomial F' using (6.1) and (6.8):

P35 (o)

i=k j=0

-E(E (e

k=0

}}n Xn: (Z) {(Ys + gt) X }*(at)"*

1 k=0

=¥ (Y1 + gt) (V1Y = 1) + ¢t}"
= (VY +qtY — 1}"

Since we have chosen F' satisfying F'(f, fi1) = 0, we obtain (f; f+q¢tf—1)" =
which implies f; f+qtf—1 = 0. Thus in this case the condition (i) is satisfied.
Step 5. Secondly we deal with the case m = 0. In this case, by (6.7) we

have
P = p(Y1 +qt)",
p = (ag’t)",
Aop = tna
a”"=q".

From (*n.1) and (%0.1) we obtain the following two equations:
(¥n.3) Y9 =Y anYy,
=0

n

(x0.3) > ram)Yi = (Vi +gt)™

i=0
Since we have P = p(Y; + ¢t)", it follows from (k) that
Y2k | ZZ <Z>awY"+J " forall0 <k <n,
i=k j=0
which implies

Z Z (;) a7 = ap, YR forall0< k <.

i=k j=0
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Then from eq.(xk) and eq.(x0.3) we obtain

(aq2t2 n—k Y +qt Z Z <n_ ) 0’1] Yn+z—J

j=n—k i=0
= (ag’t)"(Y1 + qt)" ( k) ek

for all 0 < k < n. Comparing the terms of degree 0 of the above equations,
we find

(ag®t?)" " (qt)* (n ﬁ k)T(aon) = (ag’t)"(qt)" (Z) t"* forall0 <k <n.
Hence for any 0 < k£ < n we obtain

(ag®t?)"*(qt)* (gt)" = (ag®t)"(qt)"t",

which implies a* = ¢7*, especially a = ¢!, the condition (ii).

Step 6. Finally we deal with the case 0 < m < 2n. If we assume m = n,
it follows that ¢" = 1, which contradicts the assumption, g is not a root of
unity. Thus we conclude m # n, which implies the condition (iii). O

Lemma 6.9. Let U = (U,7) be a difference overfield of (C(t),t — qt),
L C U a difference overfield of (C(t),t — qt) whose operator is surjective
and f € So(U) witha € C*. Iftr.deg L(f)/L =1 then tr.deg L(T} f)/L =1
foralli € Z.

Proof. We prove this by induction. Let k£ > 1 and suppose tr. deg L({T}; f)/L =
1 for all 7 satisfying |i| < k.
Since we find T f € L{T ™ f) by the definition of Ty, it follows that

tr.deg L(TEf)/L < tr. degC(Tuk_lf)/L' =1

By Lemma 6.2 there is 77}(T}5f) in Y. Assuming T}t f is algebraic over L,
we obtain 77(T}} f) is also algebraic over L, which implies Tuk_l f is algebraic
over L because .

T f =T ' T} f € L(r (T ), T f),

a contradiction. Thus T} f is transcendental over L, and so we conclude
tr.deg L(TEf)/L = 1.
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By Lemma, 6.2 there is 771(T;;** f) € L(T;;**' f). Since we find T;;*f €
L{T;;*** f) by the definition of T, it follows that

tr. deg L(T;* f)/ L < tr.deg L(T, ;"1 f)/L = 1.

Assuming T;; kf is algebraic over L, we obtain T, k1f = T, K f is also
algebraic over L, a contradiction. Thus T;; * f is transcendental over L, and
so we conclude tr.deg L(T;*f)/L = 1. O

Lemma 6.10. Let ¢ € C* be not a root of unity, K a difference overfield of
(C(t),t — qt) whose operator is surjective, U = (U,T) a difference overfield
of K and L C U a difference overfield of K satisfying tr.deg L/K < oo.
Then for any a € C* and f € S,(U) satisfying tr.deg L{f)/L = 1, there
is i € Z such that a = ¢** and T;;'f € U is a solution of the equation
11y + gty — 1 =0 over (C(t),t — qt) inU.

Proof. 1t is enough to prove this for algebraically closed L. In fact sup-
pose this is proved for the case, and let a € C* and f € S,(U) satisfy
tr.deg L({f)/L = 1. The operator T of U can be extended to an isomorphism
7 of an algebraic closure U of U into U. Put U = (U,7). For any difference
subfield F of U, we find that F = (F,7|) is also a difference subfield of i,
where F is the algebraic closure of F in U. It follows from tr.deg L{f)/L =1
that tr.deg L(f)/L = 1. Since we obtain f € S,(U) by Proposition 6.7, there
is i € Z such that a = ¢**! and g = Tz;i f € U is a solution of the equation
1y +qty — 1 = 0 over (C(t),t — qt) in U. We find g = T;;'f € U by
Proposition 6.7. We have

7(9)g+qtg—1=T(g9)g +qtg—1=0,

which implies g is a solution of y1y +qty —1 =0 in Y.

Suppose L is algebraically closed. Then the operator 7|z, of £ is surjec-
tive. In fact note tr.deg L/K < oo and 7|x € Aut K. Since tr.degL/K =
tr.degTL/K, it follows that

tr.deg L/TL = tr.deg L/K — tr.deg7L/K =0,

which implies L/7L is an algebraic extension. By theorem of Steinitz there
exists an isomorphism 7 of L onto L such that ¥ = 7|y = 7|r. Thus 7|, is a
surjective operator.
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Let

®={(a,j) €C* XZxp | a # ¢ forallicZa = ¢’ for some |i| € Zxy,
and there is f € S,(U) satisfying tr.deg L(f)/L = 1},

and assume ® # { }. We will derive a contradiction. Choose (a, j) € ® whose
Jj is minimam, and then choose i € Z and f € S,(U) such that |i| > 2, a* = ¢/
and tr.deg L{f)/L = 1. Since we have a # ¢,q7?, it follows from Lemma
6.8 that there are m,n € Z such that a™™ = ¢", 0 < m < 2n, m # n and
n > 1. We find ¢" = a{™™™ = ¢/(™=")  which implies in = j(m — n), and so
j>0.
Firstly we deal with the case 0 < m < n. From

()’ = ¢¥al = ¢¥gf = g2,
we obtain (¢%a)’ = ¢/%* or (¢%a)~* = ¢/**I!. Since we find tr. deg L(Ty, f)/L =
1 by Lemma 6.9, it follows that (¢%a,|2i + j|) € ®. From 0 < m < n we
obtain |27 + j| < j by the following calculation:

—-n<m-n<0,

Ly dm=n) g
n
—j<i<0,
—2j < 2i <0,
-] <2i+75<j.

This contradicts the minimality of j.
Secondly we deal with the case n < m < 2n. From
(%) = ¢~ Yal = g Yigl = ¢~
we obtain (¢~2a)’ = ¢I=%*l or (q 20)7" = ¢/=%%Jl. By Lemma 6.9 we find
tr.deg L(T;;' f)/L = 1, and so (¢72%a,| — 2i + j|) € ®. From n < m < 2n we
obtain | — 21 + j| < j by a similar calculation to the above. This contradicts
the minimality of j. Thus we conclude & = { }.

Let a € C* and f € S,(U) satisfy tr.deg L(f)/L = 1. Assuming a # ¢*
for any ¢ € Z, we find by Lemma 6.8 that there are m,n € Z such that
a™ ™" =¢q",0<m<2n, m#nandn > 1, which implies (a,n) € @ because
of |m — n| > 2. Hence there is some j € Z such that a = ¢’.
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Assume j = 2i for some i € Z. Then we have T;;'f € S;(U). Since we
obtain tr.deg £(T;;f)/L = 1 by Lemma 6.9, it follows by Lemma 6.8 that
1 = ¢" for some k € Z \ {0}, a contradiction. Thus 7 is odd.

Choose i € Z such that j = 2i + 1. Then we have a = ¢**+! and T;;'f €
Sq(U). Since we obtain tr.deg £(T;;*f)/L£ = 1 by Lemma 6.9, it follows by
Lemma 6.8 that T, “f is a solution of y;y + gty — 1 = 0 in U. Note that
g™ " = q™ denotes m = 2n. O

Proof of Theorem 6.1. (i) Suppose a # ¢**! for all i € Z. By Lemma 6.10
we find that for any difference overfield £ of K with tr.deg L/K < oo and
a difference overfield U of £ with K(f)p C U, tr.deg L{f)y;/L < 1 implies
that f is algebraic over L. Then we conclude that f is algebraic over K by
Lemma 4.9.

(ii) Suppose a = ¢**! for some i € Z. Choose such 4, and suppose: f is
transcendental over K. By Lemma 4.9 there are a defference overfield £ of
K with tr.deg L/K < oo and a difference overfield U of £ with K{f)p C U
such that tr.deg L(f)y/L = 1. By Lemma 6.10 there is j € Z such that
a = ¢¥*! and T;,7f is a solution of y;y + gty — 1 = 0 in Y. Note that
¢*** = ¢**! implies i = j, and we conclude that T};"f = T5"f is a solution
of yijy+qty—1=01in D. O

6.3 Transcendence of solutions

Notation. Throughout this section we define ) . a; = 0 for n < m.

We prove

Theorem 6.11. Let g,a € C*. Put K = Q(q,a), and suppose there is a
normalized discrete valuation v: K — Z U {oo} such that v(q) > 0. Then
q-P(Ag)a has no solution algebraic over C(t). '

A discrete valuation v is a mapping of a field K to Z U {oo} such that
(i
(ii) v(a)+ v(b) = v(ab).

) v(0) = oo and v(a) € Z for a # 0.
) o ‘
(iii) v(a+ b) > min{v(a),v(b)}.
) o

v

(iv) v(a) # 0,00 for some a.
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A discrete valuation v is called to be normalized additionally if v(K*) = Z.
We also prove

Corollary 6.12. Let ¢ € C* transcendental over Q and a € C*. Then
q-P(Ag), has no solution algebraic over C(t).

Remark. We obtain the same result for any algebraic number ¢ which is not
a unit because a solution of ¢-P(Ag), is also a solution of (1/q)-P(Ag),.
We have

Proposition 6.13 (Proposition in [19, 20]). Let ¢ € C* be not a root of
unity. Let f be a solution of ¢-P(Ag), with a € C*. If f is algebraic over
C(t) then f can be expressed as

tP
Q 3

We need the following two lemmas.

f= P,QeC[t}], ttP and t1Q.

Lemma 6.14. Let K be a field and g,a € K*. Let {a;};>0 C K be the
sequence such that ag = —1 and .

i—1 (1-2 j 1—2—j
4k—2j
a; = ad;—1 — E E E araj_rq I E ApQ)—2—j—k
=1 \j=0 \k=0 k=0
-1

- Z al_l_kak(qzk"'l + q_(2k+1))} ;] fOT‘ all i > 1.
k=0

Letv: K — ZU{oo} be a discrete valuation such that v(q) > 0 and —v(q) <
v(a) < v(q). Put

_ i1 i 291
n; = i(izl)v(q) * ffl(a) Z,f | Z,’ for all i > 0.
—=v(g) + Fv(a) 21

Then for any i > 0 we obtain

v(a;)) =n; if 2¢14.
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Proof. We prove this by induction on ¢. We have v(ag) = 0 = ng, the case
i = 0. Since we have a; = —a, it follows that v(a;) = v(a) = ny, the case
i =1. When ¢ = 2, we have ay = —a® — (¢ + ¢ 1)a, and so

v(az) = min{2v(a), —v(g) +v(a)} > —v(q) + v(a) = ns.
Suppose ¢ > 3, and the lemma is true for numbers < i — 1. We show that

the following holds for all 1 <1 <7 —1,

-1

U(Z A1k (q2k+l + q—(2k+1)))
k=0

= —%v(q)(l2 +1) + %v(a) if 21
> —2(q)(P+1) + Sto(a) if241

Firstly we deal with the case 2 |I. Forall 0 < k <[ — 2, we obtain

1
< —év(q)ﬂ.

U(al—l—kak (q2k+1 + q—(2k+1)))

l-1-kK(l-1-k-1) LElobtly(a) if 2]k
= 2 ”(q)+{ =1k (a) if2fk}

HE= 1), +{ %l”fzza) g% }— (2% + 1)o(q)

2

= —%v(q){2k2 — (21 —6)k+ 1> -3l +4} + év(a)

- {2 (r-152) +3- 1)} +20(a)

> 2o~ 1) + Lo(a),

and for k =1—1,
1 l
v(aga_1 ("I 4 g U = —§U(Q)(lz +0)+ 5“(0)’

which imply

-1

1 l
v(; a1k (@ + 7)) = —So(@) (I +1) + Su(a)

< —5v@( +1) + 50(e) = ~50(@)"
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Secondly we deal with the case 211. For all 0 < k <[ — 1, we have

U(al—l—kak (q2k+1 + q—-(2k+1) ))

(—1—k)(-2—Fk) Elkya) if 2|k
> 5 v(q)+{ =k (a) if2’(k}
LR N +{ %”fii@ 21k }‘ B+ 1)

pof(- ) e {2 E)

Therefore we obtain that for all 0 < k <1 — 2,

—-(2k+1))

2k+1 2 _ 2 !
v(a-1-kae(¢™ + ¢ ( (=1 + { Hly(a) if2tk

)>
>~ -0 -{ LYY ﬁ;}’; b2 —Juoe +),

and for k=1-1,
,U(aoal_l(q2(l—l)+1 +q—(2(l—1)+1)))

> —2o(@)(+ 1)+ (o)

1 -1 1
< =59 +1) + ——v(g) = —5v(@)(* + 1),
which imply
-1
Zal l—kak(q 2k+1 + q—(2k+1)))
k=0

> —’-;—v(q)(l2 +1)+ ; v(a) < —%v(q)(l2 +1) < —%v(q)lQ-

For all 0 < 5 < i — 3, we obtain the following,

j .
X 1 . .
v()ara;pg* ) > —EU(Q)(JZ +4j+2).

75



In fact,let 0 < 5 <i—3. For all 0 < k < 7, we find

v(akaj_kq4k"2j)

> My - B Ly

1 . .
> —5v(@)(J* + 45 +2),
which yields the above. In the same way, for all 0 < h < 7 — 3, we obtain

v(z agap—r) > —%v(q)(h2 +2).
k=0 ‘

Therefore, for all 2 <[ <i— 1, we conclude
-2 / § 1—2—j 1
U(j=0 <k=0 i ) <k=0 akal*2_3_k>) o Qv(q) ’

since it follows that each element of the sum of the left side has the value
greater than or equal to

- U@ +45+2) — 0@ -2 5 +2)

1 ol =4\?*
=30 {2( "T) f?}
2—%v(q)l2.

Put

-2 /[ j 1—2—j
b = z (Z akaj_kq4k‘2J> ( Z akal‘_z_j_k>
k=0

J k=0

I
- ©

1
- al_l_kak(q2k+1 -+ q"(%“)) for all I > 1.

>
Il
=)
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Then we find that forall 1 <1 <i—1,
o(b) =—2v(Q)(®+1) + tv(a) if21,
> —30(q)(P+1) + Sto(a) if211L
We show

> —30(g)(@® ~ i) + o) if2]5,
= —20(q)(@® — 1) + Zo(a) if 244

Firstly we deal with the case 2 | i. For all 1 <[ <4 — 1, we obtain
v(blai_l)
if 2 |

1
> @+ +{ 10, lmﬁ
_ 5 v(q)+{ zz+1 1f2+l}

v(a)

1 i—1\% 1 i
_——2-v(q){2<l—— 5 —|—§Z -—1} 57)0/

> ~20(6)( ~ ) + 2v(a),

which yields the required. Secondly we deal with the case 2 {¢. Note that

i+1
5 v(a).

oes0) = —50(0) (@ — i) +
For all 1 <[ <i— 2, we obtain |
v(bia;—;)
v+ 121
(t=D@E—-1-1) Hlo(a) if2]1
T3 ”(q”{ Lo (a) 1f2u}
1 1—1 5 ’+1 v(a) if2]1
=—§v(q){2.<l— 5 > +§(z —1)}+{ i1y(a) if2)[l}

1 .. Hlo(a) if2]1
> —50(q)(@ —3Z+4)+{ i_gl.vga§ if21|'l }
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which implies
’U(blai_l) — v(bi_lal)

> s s+ 9+ { 500 121
1 9 o i+1
+ §U(Q)(Z —1) = 9 v(a)

1 0 if 2|1
=§v(q (21f4)+{ —v(a) if?Jfl }

> v(q) + min{0, —v(a)} > 0.

Therefore we conclude that

v(i biai—) = v(bi_1a1) = —%v(q)(i2 —1)+ : 5 1v(a).
=1

Since we have

we find

v(a;) {Z —2u(g)(i® — 1) + %v(a) =n; if2]4,
Z Lo(q)(i® — i) + Hlo(a) = n; if 211
| O

Lemma 6.15. Let K be a field and g,a € K*. Letv: K — Z U {oo} be a
normalized discrete valuation such that v(q) > 0 and —v(q) < v(a) < v(q).

Put i '
. {—w;—%(q) +30(@) 210
=

it : ‘ . forallt >0,
—Fo(g) + Ho(a) if 21
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and choose {b;};>0 C K* such that v(b;) = n;. Let S; be the symmetric group
of degree i. Then for any s > 0, m > 0 satisfying 24 m and o € Sq;1 \ {id},

we find
U(H brtita(i)) > U(H brmy2:)-
=0 =0

Proof. We prove this by induction on s. When s = 0, we have S,y = {id}.
Suppose s > 1 and the lemma is true for s — 1. Let m > 0 satisfy 2+ m and
o € Sg11\ {id}. Choose ¢’ € Ss which is associated with (c(s),s) oo € S,11.

Firstly we deal with the case o(s) = s. We obtain ¢’ # id from o # id.
By the induction hypothesis we find

s—1
U(H bm+z+o z) =v H bm+z+a’(z)) + v(bmt2s)
=0 = 0
]:[bm+2't + ’U m+2s =v Hbm+21

" =0

Secondly we deal with the case o(s) # s. We have ¢'(i) = o(i) for any
0 < i < s—1 satisfying o(i) # s. Noting

0’007 (s) = (0(s),8) o007 (s) = 0 (s),

we obtain
U(H bm+i+a(i))
H bm+z+o"(z v(bm+a—1( )+o'oo—1(s )) + v(bm—i—o—l(s)—l—s) + v(bm+s+a(s))

> U(H bm+2i) - U(bm+a—1(s)+o(s)) + v(bm-l-a"l(s)-l-s) + U(bm+s+a(s)))

which yields

H bm+z+g' H bm+2z

Z (_U(bm+2s) + v(bm-l-s-l—a(s))) - (—U(bm+a—1(s)+s) + v(bm+tr—1(s)+a(s)))-
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The right side of the above is equal to the following,

l:(m+ 2,%)(1"21+23 - 1)v(q) N m+;s+ 1v(a)
_(m+8+0(8))(7721+8+0-(8) — 1)’1)((])

N mistol)ltly(q) if 2| s+ o(s)
——m+s;”(s)v(a) if 2ts+o(s)

3 [(m +o71(s)+s)(m+o71(s)+s—1)

(6.9) 2 w)
| w0y if 2] 07N (s) +
%%smv(a) if2t07(s)+s
B (m +o71(s) + 0(8))(7121 + 07 (s) +o(s) — 1)v(q)
. m+ﬂ‘i<82>+°<3>+1v(a) if 2| o7(s) 4+ o(s)
mto ety (q) i 240 L(s) +o(s) ||
Using

F+y)z+y—1)—(@+2)(c+z-1)=@y-2)QRr+y+z-1),

we find that equation (6.9) is equal to the following,

=2l (a)
1 2
50(a)(s = o(s)2(m+ ) + s +0(s) = 1) — { or }

— 1
s cr(;)-{— v (a)

=5u(a),

| o 220ty (g)
= S0(@)(s = o) 2m+ 07 (s) +s+ols) — 1) +{ 2

—u(g)(s — o(8))(s — o7M(s) +{ Iv(a)

—v(a)



Therefore we obtain
(equation (6.9)) > v(g) + min{0, —(1/2)v(a), (1/2)v(a), —v(a)} > 0,
which implies . : .
U(H bm+ito(i)) — ’U(H bmt2i) > 0,
. i=0

i=0
the required. O

Proof of Theorem 6.11. We may suppose —v(q) < v(a) < v(q) because the
Béacklund transformations defined in Definition 6.5 shift the parameter from
a to ¢**a for any k € Z. Assume g-P(Ag), has a solution f algebraic over
C(t). Note that ¢ is not a root of unity, which is obtained from v(g) > 0.
Then it follows from Proposition 6.13 that

f= %, P.QecCl, ttPandt}Q.
Put g = f/t = P/Q and z = t*>. We have P,Q € C[z], 1 P, x4 Q and
(6.10) (gzg19 — 1)((z/9)99-1 — 1)(g + 1) = axg.

Express g as
[eo]
g= Zaixi, a; € C,ag # 0.
i=0

Comparing the terms of degree 0 of equation (6.10), we obtain ag = —1.
We show the following for all ¢ > 1,

i-1 (1-2 j 1-2—j
4k—2j
a; = atij—1 — E E E araj;—kq 7 E Q) —2—j—Fk
=1 k=0 k=0

=0
-1

_ Zal—l—kak(q2k+1 + q—(2k+1))} Qi

k=0

Firstly we calculate

(gzg19 — 1)((z/q)99-1— 1) = 9991929-1 —zg(qo + (1/9)g-1) + 1.
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We have

and so

919°9-1 = i {XZ: (ZJ: ara;-xg"* ™Y ) (i akai_j_k> } '

i=0 \ j=0

We also obtain

9(qg1 + (1/q)g-1) Z (Z ai—kag (g + q_(2k+1))> z'.

=0

Secondly express

o0

(qz919 — )((z/q)99-1—1) = Y cir’, ¢ €Croo=1.

1=0

Then we obtain

(qzg19 — 1)((z/q)99-1 — 1)(g + 1) Z (a@ + anz z)

=1

Therefore if we compare the terms of degree i > 1 of equation (6.10), we find

i-1
a; = ad;—1 — E Cai—
i—1 -2 J 1—2—j .
4k—2j
= at;—1 — E E _S_ Qpaj—-rq 7 E Apai—2—j—k

j=0

- Z al—l—kak(q2k+1 + q_(2k+1))} 1.
k=0
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Note that a; € Q[g,1/q,a] C K for any ¢ > 0. Put

n; = {—i(i;)v(‘n +30(a)  if2]4

(i=1) for all ¢ > 0.

—u(q) + Ev(a) 241

Then it follows from Lemma 6.14 that for any 7 > 0,
v(a;) >n; if 2|14,
v(a;)) =mn; if 214,

Choose a sequence {b;}i>o C K* such that v(b;) = m;. Let S; denote the
symmetric group of degree . By Lemma 6.15 we find that for any s > 0,
m > 0 satisfying 21 m and o € Ss11 \ {id},

U(H Umtito(i)) = U(H bmtito)) > U(H bm+2i) = U(H Umt2:)-
i=0 i—0 i=0

=0

Therefore we obtain that for any s > 0 and m > 0 satisfying 2 t m,

Am Am+1 o Qm+s
g Am+1 Am+2 ot Gmdi4s
o(Fy(m,s)) =v || " -
Om+s Amis+1 " Am4-2s
s .
=v E : (Sgn 0) H Amtito(s)
UGSs+1 i=0

s
=v (H rm2:)
=0
S
= Z Nmt2i € L,

=0

where Fy(m,s) is the Hankel determinant of g (refer to [2] for the Hankel
determinant). This implies that for any s > 0 and m > 0 satisfying 2 { m,
Fy(m,s) # 0, which contradicts g € C(z). O

Proof of Corollary 6.12. Firstly we deal with the case, a is algebraic over
Q(q). Put
O={f/g|f g€Q(q) andqtg},
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and let v be the normalized discrete valuation of Q(g)/Q associated with O.
Then we have v(q) = 1. Choose a valuation ring O’ of Q(g, a)/Q such that
O'NQ(g) = O. Let v be the normalized discrete valuation associated with
O’ and e the ramification index of O’ over O. We obtain v'(q) = ev(q) = e >
1. Therefore by Theorem 6.11 we conclude that ¢-P(Ag), has no solution
algebraic over C(t).

Secondly we deal with the other case, a is transcendental over Q(q). In
this case, ¢ is transcendental over Q(a). Put

O={f/g|f 9<€Qa)lg) and gt g},

and let v be the normalized discrete valuation of Q(a, ¢)/Q(a) associated with
O. Then we have v(q) = 1. By Theorem 6.11 we conclude that g-P(Ag), has
no solution algebraic over C(t). O
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Chapter 7

System of equations of
birational form |

In this chapter we study irreducibility of systems of difference equatidns of
birational form, such as

_ A(yl)

"7 Bly)

and A(2)
nhy = W,

212 = Cly)
1' D(yl)7

where A, B, C' and D are polynomials.

Notation. Throughout this chapter a field is of characteristic zero.

7.1 Single equation of birational form

Lemma 7.1. Let L be a field, m,n € Z», and A,B,P,R,R',S,S" € L|X] \
{0} polynomials over L such that A and B are relatively prime,

max{deg R, deg R',deg S,deg S’} < n,

A™R = PS and B™R' = PS’. Then deg A < 2n/m and deg B < 2n/m.
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Proof. 1t is sufficient to prove that deg A < 2n/m. For polynomials C, D €
LIX]\ {0} we let (C, D) denote the monic greatest common divisor of C' and
D. Put C = (A™,S). From A™R = PS we obtain

(A™/C)R = P(S/C), A™/C,S/C e L[X].

Since A™/C and S/C are relatively prime, we find (A™/C) | P, which implies

m

deg(A™, P) > deg % =mdeg A — degC
> mdeg A —degS > mdegA—n.
We obtain (A™, P) | B™R' from B™R' = PS’' and (A™,P) | P. Since
(A™, P) and B™ are relatively prime, we find (A™, P) | R’, which implies
deg(A™, P) < deg R' < n.
Therefore we conclude that deg A < 2n/m. O

Proposition 7.2. Let £ = (L,7) be an inversive difference field and f a
solution of the equation over L,

B(1)y2y = A1),

where A, B € L[X]\ {0} are polynomials over L such that A and B are
relatively prime, B monic and max{deg A,deg B} > 2. Then it follows that

tr.deg L({f)/L < 1= f is algebraic over L.

Proof. To obtain tr.deg L{f)/L # 1 we assume tr.deg L{f)/L = 1. Then f;
is transcendental over L for any ¢ > 0. Since it follows that tr. deg L(f, f1)/L =
1, there exists an irreducible polynomial F' over L,

ng ni

F = Zzaijyi}/lj S L[K Yi] \ {O}a a;; € L’

i=0 j=0

such that F(f, f1) =0, ng = degy F' > 1, ny = degy, F > 1 and anen, €
{0,1}. Put '

F, = (YB(Y}))" F* (Yl’ YAI?(Q)> ’

Fy = (MB(Y))"F (YA;Q)Y) ,
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where F* = 37 5™ 7(a;;)Y'Y{. Tt is seen that Fy, Fy € L[Y,Yi]\ {O}
We find

Fy(f. /1) = (fB(f))"F* (fb fg{}3>)

= (fB(fl))an*(f1, f2) =0

and

i = (7481

= (f2B(fl)>n0F(f7 fl) = Oa
which imply F | F; and F* | Fyy. Therefore we obtain
ng = degy F' < degy F1 < ny = degy, F* < degy, Fy < ny,

and song =n;. Putn=nyg=n; > 1.
Let P € L[Y,Y1] \ {0} be a polynomial satisfying F; = PF. We find
P € L[Y;] by degy P = degy F; — degy F = 0. We have

= (YB(}1)) ZZT( a;;)Yi (YL%/)))J‘

=0 7=0

=3 (e Yi(Y BA)" ALY

i=0 j=0

= 33" T(@inmy) i AY) B(V2) Y

i=0 ;=0
=) {A(Yl)"“j B(v1) ET(ai,n—j)}/li} Y7
7=0 =0
and
PF = Pi iaininj = P'zn: iaﬁYij = i {PiaﬁYf} Y’
i=0 j=0 §=0 i=0 §=0 i=0 ‘
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From F; = PF we obtain

(7.1) AW Y m(@n)¥] = Py aoY] (#0),
(7.2) B Y rlan)Yi = Py end! (#0)

By Lemma 7.1 we find deg A < 2 and deg B < 2, which imply
max{deg A, deg B} < 2,
a contradiction. Therefore we conclude that tr.deg £(f)/L # 1, which yields
tr.deg L(f)/L < 1= f is algebraic over L, |
the required. O

Theorem 7.3. Let K be an almost inversive difference field, N' a decom-

posable extension of K and f € N a solution in N of the equation over
K,

B(y1)y2y = A(1h),

where A, B € K[X]\ {0} are polynomials over K such that A and B are
relatively prime, B monic and max{deg A,deg B} > 2. Then f is algebraic
over K. ' \

Proof. Let L be an inversive difference overfield of K and U a difference
overfield of £ with IC(f)»r C U. Then by Proposition 7.2 we obtain -

tr.deg L(f)u/L <1 = f is algebraic over L.

Therefore we find that f is algebraic over K by Lemma 4.10. O

7.2 System of two equations of birational form

Lemma 7.4. Let L = (L, T) be an inversive difference field and (y, z) = (f, g)
a solution of the system of equations over L,

{ B(z)yly = A(Z),
D(y1)z12z = C(11),
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where A, B,C,D € LIX]\ {0} are polynomials over L such that A and B
are relatively prime, C and D relatively prime, B and D monic, deg AB > 1
and degCD > 1. Then

tr.deg L(f)/L =1 tr.deg L{g)/L =1 & tr.deg L(f,g)/L = 1.

If we suppose tr.deg L(f,g)/L = 1 then we find that there are polynomials
over L with indeterminates Y, Z,

no ni

F=Y" a,;YZl € LIY,Z]\ {0}, ;€L
i=0 j=0
no ni

G=> Y p,Y'Z eLly,Z]\{0}, BelL,

=0 5=0

P e LIZ]\ {0} and Q € L[Y]\ {0} such that F(f,g) = G(f1,9) =0, both F
and G irreducible,
ng = degy F' = degy G > 1,
ny =deg, F'=deg, G > 1,
'anbnlaﬁnonl 6 {07 1}7

no

(7.3) Z{A(Z“o ‘B(Z Zano_,JZJ}w Z{PZ@J }

i=0 i=0
and
n1 ; ni no ‘
R L Y PR I Hp
=0 i=0 §=0 i=0

Proof. (1) Firstly, we prove
tr.deg L(f)/L =1 tr.deg L{f,g)/L = 1.

g is a zero of the polynomial f; f B(X)—A(X) € L(f, f1)[X] because B(g) f1f =
A(g). If we assume f; fB(X)— A(X) = 0 then we find that A(X) and B(X)
has a common divisor in L(f, f1)[X], a contradiction. Therefore we have
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fif B(X) — A(X) # 0, which implies that g is algebraic over L(f, f;). We
obtain the required from

tr.deg L(f, )/ L = tr.deg L(f, g)/L{f) + tr.deg L(f)/L
=tr.deg L{f)/L.

(2) Secondly, we prove
tr.deg L{g)/L =1 & tr.deg L{f,g)/L = 1.

f1 is a zero of the polynomial g19D(X) — C(X) € L(g,91)[X] because
D(f1)g19g = C(f1). If we assume g;9D(X) — C(X) = 0 then we find that
C(X) and D(X) has a common divisor in L(g, g1)[X], a contradiction. There-
fore we have g19D(X) — C(X) # 0, which implies that f; is algebraic over

L (g ) gl) . ’
We may suppose that f is transcendental over L because we have

tr. deg L(f, g)/L = tr.deg L(f, g)/L{g) + tr.deg L{g) /L.

Since L is inversive, we find that f; is also transcendental over L, which
implies that g is transcendental over L. Then from B(g)fif = A(g) we
obtain

f: | eL(flag),
and so

tr.deg L(f, g)/L = tr.deg L(f1, 9)/L
' = tr.deg L(f1, 9)/L{g) + tr.deg L{g)/L
= tr.deg L(g)/L,

which yields the required.

(3) Finally we suppose tr.deg £(f,g)/L = 1. By (1) and (2) we find
that f; and g; are transcendental over L for all ¢« > 0, where note that L is
inversive. Since it follows that tr. deg L(f, g)/L = 1, we find that there exists
an irreducible polynomial F' € L[Y, Z] \ {0} over L,

no ni

F= Z ZainiZj, Qi € L,

i=0 j=0
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such that F(f,g) =0, no = degy F > 1, n; = deg, F > 1, and apyp, €
{0,1}. By tr.deg L(f1,g)/L = 1 there exists an irreducible polynomial G €
L[y, z]\ {0},

ng n3

G = ZZIBZ]YZ ) ﬁij € L7

=0 j=0

such that G(f1,9) =0, ny = degy G, n3 = deg, G and By, € {0,1}.
For any P = ). p;X* € L[X] we define P* as P* =Y, 7(p;) X", and for
any P =3, .p;;Y'Z7, we define P* as P* =}, . 7(p;;)Y'Z’. Put

Fos ) € LY 21\ (0%
)

G1 = (VB (2)}G" (YA;E(ZZ) , z) e LY, 7]\ {0}.

F = {zp(yj}nlp* (Y,

Then we have

Fi(f1,9) = {gD(f1)}" F* (f i g%(&)))

= {gD(f)}"F*(f1, 1) = 0

and

Gilfrn) = 118" (0)176 (S o)

= {f1B*(91)}"*G*(f2, 1) = 0,

which imply G | F; and F* | G; respectively. Put
Fo={YB(Z }”°F< ),Z>GLYZ]\{O}
Go = {ZD(Y }ns@( Z/ )eLYZ]\{O}

Then we have

Fo(f1,9) = {f1B( }"°F(f‘(g; )
— (LB} F(f,g
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and

Go(f1, 1) = {nD(f1)}G (fl’ glclgj(c}i))

={aD(f1)}"G(f1,9) =0,

which imply G | Fy and F* | G, respectively. Therefore we find ng = n, and
ny = ng by

= degy F* < degy G1 < ny = degy G < degy Fy < ng

and
ny = deg, F* < deg, Go < ng = deg, G < deg, F1 < ny.
Let P,Q € L[Y, Z] \ {0} be polynomials such that Fy = PG and Gy =
QF*. Since we have
degy P = degy Fy — degy G =0,
and
degy @ = deg; Go — deg, F* =0,
we obtain P € L[Z] and @ € L[Y]. Calculate Fy and PG as follows,

F= YB(Z))* 33 ,J(A(Z )ZJ

=0 7=0
=33 0y A(2) 2 (Y B(Z))™
i=0 j=0
=5 i A2 2 (Y B(Z))
=0 j=0
=§j{ (27 B(Z)' Y tngi }Yz
i=0 j=

PG = Pf:iﬂ”}”zf Z {Pi@]zﬁ} Y,

=0 j=0 =0 3=0
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Then we obtain the equation (7.3). To obtain the equation (7.4) we calculate
Go and QF™ as follows,

Go = (2D} 303 iy ( o) )j

‘ =0 j=0 2D(Y)
=YY g Yoy (zD(y))m
i=0 j=0
=S B YO (ZD(Y))
i=0 j=0
— Z {C(Y)nl‘JD(Y)] Z ﬂi,n1—jyi} Zj7
§=0 i=0

QF* = QEOZIT(aij)YiZj = 21: {QZO:T(OQJ)Y%} Zj.

i=0 j=0 §=0 i=0
]
Proposition 7.5. Let £L = (L, T) be an inversive difference field and (y, z) =
(f,g9) be a solution of the system of equations over L,
{ B(z)yry = A(2),
D(y1)z12 = C(y1),
where A, B,C, D € L[X]\ {0} are polynomials over L such that A and B are
relatively prime, C and D relatively prime, B and D monic and
max{deg A, deg B} - max{deg C,deg D} > 4.
Then it follows that

tr.deg L(f,g)/L < 1= f and g are algebraic over L.

Proof. To obtain tr.deg L(f, g)/L # 1 we assume tr.deg L(f,g)/L = 1. By

Lemma 7.4 there exist polynomials F,G, P,Q € L[Y,Z] \ {0} over L such
that

no mni

F= ZZain’ZJ, Qg S L,
i=0 j=0
ng ni

G=3 % 6,Y'Z, Byel,

i=0 j=0
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PelLlZl,QeLY], F(f,9) = G(f1,9) =0, F and G are irreducible,

ng = degy F' = degy G > 1,
ny =deg, FF =deg, G > 1,

an0n1718n0n1 e {O’ 1})

70

(7.5) Z{ Z)y™ i B(Z Zanow} Z{PZ@J}

=0 =0
and
(7.6) nz {C’(Y)”l‘jD(Y)j i ﬁ,,nl_jyi} 7 = Z {Q > rlay) }
=0 i=0 =0
From the equation (7.5) we obtain the following two equations,
(7.7) Z)no Zawz = PZﬂOJZJ (#0),
(7.8) Bz Z 0 20 = PZ BoiZ? (£ 0).
From the equation (7.6) we obtain the following two equations,
(7.9) | cy)™ i Bin, Y = Q iT(aio)Yi (#0),
=0
(7.10) )™ Z BiY? = QZT 0in)Y? (#0).
=0

By Lemma 7.1 we find that

deg A < %}1’ deg B < %
2n0 2n
degC < —ng, deg D < —0
m m

which imply |

2 2

max{deg A, deg B} - max{deg C,deg D} < — e :0 =4,
N 1
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a contradiction. Therefore we conclude tr.deg L(f, g)/L # 1, which yields
tr.deg L(f,g)/L < 1= f and g are algebraic over L,
the required. O

Theorem 7.6. Let K be an almost inversive difference field, N a decom-
posable extension of K and (y,z) = (f,g) a solution in N of the system of

equations over K,
{ B(z)y1y = A(2),
| D(y)z1z = C(),

where A, B,C,D € K[X]\ {0} are polynomials over K such that A and B
are relatively prime, C' and D relatively prime, B and D monic and

max{deg A, deg B} - max{deg C,deg D} > 4.
Then f and g are algebraic over K.

Proof. Let £ be an inversive difference overfield of K and U/ a difference
overfield of £ with K(f, g)» C U. By Proposition 7.5 we obtain

tr.deg L{f,g)u/L < 1= f and g are algebraic over L.

Therefore by Lemma 4.10 we conclude that f and g are algebraic over K. [
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