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Abstract

In this paper, we consider coefficient inverse problems in the viscoelasticity,
the material science and the population studies and prove the stability of
these problem by an o prior: weighted L?-norm estimate which is called a
Carleman estimate.

In Chapter 1, an inverse problem of determining coefficients in a vis-
coelastic model which is called Kelvin-Voigt model is discussed. The data
available to us is a Cauchy data on subboundary. We prove that with two
appropriate measurements, we can obtain a Holder stability estimate of the
inverse problem. .

In Chapter 2, we discuss the determination of a thermal conductivity and
a mobility in the linearized phase field model with measurement of only one
component in a small domain. Our result is the Lipschitz stability estimate
of this problem.

In Chapter 3, we consider the coefficient inverse problem of the struc-
tured population model. In the structured population model, an age and
an individual size as well as a spatial position and time are considered as
indepenent variables and then the equation has a special form. We prove a
Carleman estimate for this equation and obtain a stability estimate for the
inverse problem.
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Chapter 1

Inverse problems for some
system of viscoelasticity via
Carleman estimates

1.1 Introduction

In recent decades non-invasive measurement methods of the viscoelastic
properties of the human body (so-called the elastography) have been de-
veloped. These properties give important information for a diagnosis of
diseases such as cancers. The elastography finds the viscoelastic proper-
ties by measuring propagation of the mechanical wave in human body. In
these points of view, it is very important to consider inverse problems for a
viscoelasticity system, which is our main subject in this paper.

There are many kinds of the models for viscoelastic materials and the
simplest model is so-called the Kelvin-Voigt model. This model is used
frequently in elastography (e.g [4, 25]).

Here and henceforth, ¢t and = (21, z2, z3)} denote the time variable and
gpatial variable respectively and we write 2’ := (22, 23) in short. Derivatives
with respect to £ or x are denoted as follows:

Moreover for a multi-index o = (a1, a0, a3) € (N\ {0})3, we set 8% :=
87105205° and |al == a1 + ag + a3. -7 denotes a transpose of a matrix.

We now state the equation of Kelvin-Voigt model. Let € be a domain in
IR? with a smooth boundary and T > 0 fixed. First, in general, the governing
equation of continuum is

3
p(z)dFu,(x,t) — Zé‘kcrjk(:c, t) = f(z,t) (z,1) €2 x (0,7) (1.1.1)
k=1



where u = (ug,up, us)? € R® is displacement and (oik)i k=123 is a stress
tensor. In the Kelvin-Voigt model, we suppose that the stress tensor can be
written as follows:

3 3
Tjk = Z KjlkmEtm + Z NitkmOEim (1.1.2)
I;m=1 I,m=1

where (€im)im=123 is a strain tensor:

1
Em = 5 (O, + Omur) (1.1.3)

and prtm and 7k i called an elasticity tensor and a viscosity tensor.
Relation (1.1.2) is called a constitutive relation. If we additionally assume
that the material is isotropic, then we can write equation {1.1.2) as

3 3

Tik = 2pg5k + Ajg Zsu + 208k + Yo Z&Eu, (1.1.4)
=1 =1

1 ifj=k
Sk = N .
0 ifj#k

By (1.1.1}, (1.1.3) and (1.1.4), we obtain the equation of the Kelvin-Voigt -
model:

where

p(x)0]u; (2, t)
3

—Z Oy (p(z)ejn(z, 1) + A2}V - ulz, t) + n(x)deju(z, 1) + ()85 V - (Opu) (2, )]
k=1

= fi(z,2). (1.1.5)
The equation (1.1.5) can be written as the following shorter form:
Pu(z,t) := p(x)diu(z,t) — Ly yu(z,t) — Ly (Bia)(z, ) = £(z,2), (1.1.6)
where l ‘
Ly = pAu+ (g + ) Vdivu + (divu) VA + (Va + (Va)T) Ve (1.1.7)

and Vu = (Opts)1<5 k<3
‘We now consider the following initial value problem

Pu{z,t) = f(z,t) (z,t) € Qx{(-T,7T)

uw(z,0) =plz) zef . (1.1.8)
Ouu(z,0) =q{z) zefd



Let u = u(A, p, 7,7, o P, q) satisty (1.1.8).
For the problem (1.1.8), We formulate the inverse problems as follows:

Inverse Problem Let I be a open subset of 82, and p®,q®) 1 < k <
N be appropriately given. Then determine the coefficients X, p1, 9,7y, p by

u(X, 1,7, 7, 5 2®, d N ey, B, n,7, 0™, ¥ oy -

To state main results, we give some notations. Let us assume Qg € QUT.
For fixed smooth functions Ag, o, v, 10, we set

W= {(/\u'mp e {C* @Y\ w7y mp > 00
p=po,)\=)\o,n=,uo,')r='ro,n=noonI‘}. (1.1.9}

Let I, be the n x n identity matrix and {a}; dencte the matrix or vector
obtained from a by deleting the jth row. Espec1ally for an (n+1) x 7 matrix

A, det; A mean det{A};.
Now we are ready to state the main theorem:

Theorem 1.1.1. Let w C QUT be an arbitrary subdomam with dist{w, 80\

Ty>0 and T > 0 be arbitrary. For p®) = (P1 , pg"), pgk))

(qi’”),qg"), a3 )(A, = 1,2), we assume that there exists j1,...,Ja € {1,2,...,12}

such that for eny point z < £,

and q%) =

det ;, (a(z), B(z), D(z), G(z), H(z){A2, )T #
. (alx T T z 2)( A2 )T
det 3, (a(z), B(z), D(z), H{z), G( )(Az, ,)T) (11.10)
det 3, (a(z), G(z), H{z), D(z), B(z)(A%,z")T) #
det ;, (a(z), G(z), H(z), B(z), D(z) (A2, )T) #



where we denote

( _% (LA,AP(I) + Lm’rq(l))
_% (LipP® + Ly 4q®)

a: ,
—,Tl) (Zppn@® + Ly ,xM)
u% (Lupq® + Ly ,x®)
div p(l)fg div q(l)I3
div p{z) I3 div q(z) I
B := (b1, ba, bg) = y D= (d1,ds,d3) = . . y
{ ( 1, D2 3) div q(l)IS ( 1,42 3) div I‘(l)Ig
div g3 divr® I
vpl + (vpM)T Va4 (VgT
vp + (VpEHT Ta® 4 (VqNT
G :=(g1,82,83) = P (Ve™) ,H = (hy,hs,h3) = d (Va'¥) ’

Vgt + (VghT Ve 4 (veW)T
Vq(z} - (Vq(z) )T VI'(z) -} (Vr(Q))T
\r(k) (z) = 3fu(k) (,0) = LA,up(k) + L'y,nq(k)- ‘

(1.1.11)
Set ul(k) =u ()\g,m,m,’n,pg;p(k),q(k))(l =1,2,k =1,2). Then there exist
constants
C = COMT, Qw, A1, 7,7,p) > 0

and

ﬁ = K(W’ I" Q,F’J,A, lLL, ’Y’n?p) G (0’ 1)
such that
| Ae=A1ll g2yt e =1 a2+ 12—l g2 @) Hime—mil 2w+ o2—o1 |1 )
<C(M™*B*+B) (11.12)

provided that (A;, 43,75, 7, p5) € W and

M= 3" ST [l g ey < oo,

§=1,2k=1,2

where we set

B = Z (||ugk) - u:(Lk)||H5(—T,T;H2(I‘)) + ||}1gk) - ugk)”Hﬁ(—T,T;Hl(l")))
k=12

In Theorem 2.1.1 we establish the local Hélder stability by two times
measurements on the part I' of boundary if the initial values can be chosen
appropriately, that is, as satisfying the assumptions (1.1.10).



By changing the constitutive relation (1.1.2), we can consider many kinds
of models for viscoelastic materials as well as the Kelvin-Voigt model. Espe-
cially, major one is the model which has the following constitutive relation:

oir{z,t) = Z#jktm(w)slm(wat) + fe > Nikim (2, T)em(z, t - ) dT

lm lm

or a simplified hyperbolic integro-differential equation
‘ t
Ofu—V - (uVu) — f n{-, T)ulz,t — 7) dr = F(z,1).
0

We can refer as the inverse problems for the equation of this type to Ca-
vaterra, Lorenzi and Yamamoto [5], Grasselli [10, 11], Janno and Wolfers-
dorf [17, 18], Lorenzi, Messina and Romanov [20] and Lorenzi, Ulekova, and
Yakhno [21]. In these, [10, 11, 17, 18, 20, 21] are related to the reconstruction
of the coefficients and the integral kernel K and [5] to the stability estimate
of the inverse source problem via Carleman estimate. Our system is, how-
ever, essentially different since equation (1.1.6) does not have the integral
term and has 3rd order differential term Adyu. Moreover, our proof is based
upon the fact that we can derive a parsbolic integro-differential equation
from (1.1.6).

As far as inverse problems for system (1.1.5) with v+ = 0, 5 = 0, that
is, non-stationary Lamé systems is concerned, we notice that in [15, 16]
Carleman estimates are established to prove the uniqueness and stability of
the Lamé coefficients.

In this paper, we prove Theorem 2.1.1 as follows., First we prove a
Carleman estimate of P and prove Theorem 2.1.1 when w is a part of a
paraboloid. Next, we prove the theorem for general why using the stability
estimate of unique continuation for the equation Pu =1f.

1.2 Proof of the theorem

1.2.1 Case I: w is a paraboloid.

First we consider the case that w is a part of a paraboloid.

We remark that we can assume that the axis of the paraboloid is parallel
to ;. Indeed, a rotation does not change a form of the operator P up to
the coeflicients u,1,v, A and p.

Let us define the function
| I|2 tz

R

1
t) = —
V@) =nt ottty

and the domain

Gs = {(m,t);w(x,t) < 2—5}, 5> 0.

6



and
Q5 =G5 N {t =0}.

" We assume Go C Q@ x (—7,TYUT.
Under these notations, we state the Carleman estimate of the operator
P

- Lemma 1.2.1. There ezist so > 0, v > 0 and C = C(s9) > 0 which are
independent of u such that

/ [84 (Ja|* + |divul® + Jrot u|?)
Go

+8? (|Vul? + |Vdivuf® + |Vrot uf?) + E |8§‘u|2] eV dz dt
|a|=2

< f (IEP + |div£]? + |vot £]) 2% du dt
Go

+Ce" (”u“%fl(—T,T;HZ(F)) + ”u”2H2(—T,T;H1(1"))) o (L2.3)
holds for any s > sq and for any u € H3(Gy) such that
Pu=f, u(-,0)=38u(-,01=0
and u =0 on 8Gp \ (8Q x (—T,T)).

Proof.
‘We use the following Carleman estimate for the parabolic operator.

Lemma 1.2.2. Let v > 0 be sufficiently farge. Then there exist constants
sg > 0 and C,Cy > 0 such that for any s > sp,

| (p(x)0: — p(x)A) w(m,t)|2ezs¢_”

< % E 102w (z, )% + C (s|Vw(z, t)|? + s*|lw(z, t)*) e2¥ "
|| =2
+ (VU (z,t) + 8,V (z,1)) (z,t) € Gy (1.2.2)

where the vector function (U, V') satisfies the estimate

(V)< % 3 02w(e, ) + Cs® (19w ]? +- [Vl + [w[2) 2%
|e|=2
(1.2.3)

Moreover, this estimate also holds when Cy = 0.

The proof of this theorem is referred to Klibapov and Timonov [19].

We first prove the Carleman estimate of an operator of the following
type: :
Lu = pd2u — pAu — qAdyu



Lemma 1.2.3. There exist so > 0 and C > 0 such that for any s > so,

/ (s*ul? + 2| Vul?) 2V da dt

Go

< / | Lu|?e®* " dxdt + C’ecsf (182ul* + |VOul® + |Bpu|?) dS
Go I'x (-1

(1.2.4)

holds for any v € H*(Gy) which vanishes on 8Gyp \ 8.
If u ¢ H3(GYy), then for any s > 3o,

|ax]=2

f (s4u|.2+52|Vu2+ Z ]8§u|2) eV d dt
Go

< / |Lu|?e®V™" dz dt + Ce©® / OFul® + Y |6%0w|? | dS
Ga 'x[-T,T] la|<2

(1.2.5)
also holds.

Proof of Lemma 1.2.3 Let us set F' = Lu. By setting v = dyu, we
have the integro-differential equation

t
Ov — pAu — f gAv(-,7)dr = F. (1.2.6)
0 ° .
We now introduce the new auxiliary function

¢
W= pu + / qu dr. (1.2.7)
0

The simple calculation shows
dyw = poyv + qu

and
: ¢
Aw = pAv +2Vp - Vv +vAp + f (qAv 4 2Vg - Vv +vAg) dr, (1.2.8)
0

thus we see that w solves the equation
dyw — pAw = pF — L(v) (1.2.9)

where

¢
L(v) :==2Vp- Vu +vAp+ f (2Vg- Vv +vAg) dr. (1.2.10)
0

8



By applying Lemma 1.2.2 to {1.2.9) and inﬁegrating on Gy, we obtain
] (s|Vw|? + s3|w|?) 2™ dx dt
Go

< C’/ \pF\zezs‘f’_'u dzdt+C lL(v)Fer"b_” dx dt
Go Go

+ CeCs fr gy (V0P 100 b7 a5 (L2.11)
X[=1,

Now we need to show the following lemma.

Lemma 1.2.4. For all f € L?(Gy),

t 2 '
f (/ |f(a:,7)[d'r) g2sv™" dxdtﬁg/ |f(z,7) 2% da dt.
GO -0 & Gl)
(1.2.12)

- Thanks to the factor 1/s in Lemma 1.2.4, we can estimate the inte-
gral term. We note that this lemma is proved in Cavaterra, Lorenzi and
Yamamoto {5]. Lemma 1.2.4 will be proved in Appendix A.

By (1.2.7), We have

Hence, by owing to Lemma (1.2.4), we have

» » C -
/ |v|?*¥ ™" dz dt < Cf |w|2e*¥ ™" dzdt 4 — lo|2e25% " dr.
Go G ' § JGo

absorbed into the left hand side, and we obtain

For sufficiently large s > sp, the second term on the right hand side is

/ lu|2e®¥ " dedi < C’f |w|?e®¥ ™" dzdt (1.2.13)
GQ GU

for any s > sp. Similarly, we also have

/ Vot drdt < C | (|Vw)® + [w]?) 2V dadt (1.2.14)
Go Go

for any s > sg. Moreover Lemma 1.2.4 yields the estimate of L{v):

/|L(v)|2e23¢"’d;cdtgc/ (IVo|? + |v]?) XY™ dadt. (1.2.15)
Go GD



By combining (1.2.11), (1.2.13), (1.2.14) and (1.2.15), we obtain
/ (s|V[?> + $3Jv|?) ¥ dz dt
Ga
< f (s|Vw|* + Blw?) %" dx dt
Go
<C [ |FPV  dzdt + |L(v)[2e®¥™" dadt
Gu Go
+ CeCe / (IVol? + 18 + [ol?) dS
PX[—T,T’]
<C | |FP2¥ " dzdt+C f (IVo? + o) ¥ dadt
Go Go

+CeCe / IV + 850l + Jol?) dS.
I'x[-T,T]

By taking s > 0 sufficient large, we absorb the second term on the right
hand side into the left hand side, and obtain

/ (| V)% + s*|u|?) 2V de dt
Go

<C | |FPY dpdt+ CeC* / (IVo]* + 0| + [of*) dS.
Go T'x{—T,T]
(1.2.16)

By applying Lemma 1.2.4 to ‘ *

u(z,t) = '/:v(a:,”r) dr,

we have o
f lw2e®¥ " dzdt < = | |u]2e®¥ " dudt (1.2.17)
G(} 5 GD
and o
/ [Vul?e®¥ dzdt < = [ |Vu|?e®¥ " dz dt. (1.2.18)
Gn & GO

Then we obtain

. / (s*|Vul* + s*|ul?) 2V dadt < / (s|Vul? + s®uf?) eV drdt.
Go Go

(1.2.19)
Combining (1.2.16) with (1.2.19), we complete the proof of the first inequal-
ity of Lemma 1.2.3. The second inequality of Lemma 1.2.3 can be proven in
similar ways. :

10



We now prove Lemma 1.2.1. By setting v = divu and w = rotu, we
have the following system of equations of u, v, w:
p02u — pAu — gAdu + Li{u,v, du, 8w) = f
p82v — (A + 2p)Av — {7+ 2n)ABw + La(u, v, w, du, 8w, fyw) = div f
p@fw — pAw — nAdw + Li(u,v, w, 8u, v, Opw) = rot f

where L1,09,03 represeﬁt linear combination with L™ (Gp)-coeflicients. We
apply Lemina 1.2.3 to this system and obtain

f [34 (Juj? + |div ul® + jrot u|?)
Go

+8% (V] + |Vdivul? + [Vrotu?) + > |agu|2] 2V da dt
=2

< / (If]* + |divE[* + [rot £[?) €2 dz dt
Go
+ GeCS”u”%fS(FX[gT,T])- (1.2.20)

Then the proof of Theorem 1.2.1 is complete.
Proof of Theorem 2.1.1 when w is a paraboloid
Here and henceforth, we set

k . ; ;
u.g = u(’xj:“j}nj:'Tjapj;p(k)aq(L)):_ J=12,k=12,

and

ﬁ(k) = ugg) - U‘Ek)s Z)J: P2~ M, X = A2 - A11 ﬁ = M2 — b1,

T=m-—-m,7=%—n.
Then we have

p2820®) = Ly, TG0 + Ly, 1,88% + Gu, (2,t) e 0 x (—T(, T) |
‘ 1.2.21

i*)(z,0) = 8% (2,00 =0, zcQ (12.22)

where
cul? = —patul® + L; ul + Lyzol®.

In order to apply Theorem 1.2.1 to the equation (1.2.21} and (1.2.22), we
introduce the cut-off function x € C§°(£2) which satisfies

1 (3?, t) € Gos

0 < x(z,t) <1 on Gy, A=< .
<x(@t) <1onGo, X {0 o e\ G,

11



Calculating P(x8/a®)) (§ = 2,3,4), we obtain from (1.2.21) the equation
P28} (xD]T) =

Lng yus (0BT + Ly, B (307 ) — (8 L (&w)
~ PL(x)V& M - Po(x) 0~ Q1 () VT — Qo)

- 200(8x)3 T + p2 (978 )+XG(5‘€u1)- (1.2.23)

Here 1 denotes either fitY) or #® and Py, A1, Qo, Q1 are at most first order
linear differential operators with L™°-coefficients. Then Lemma (1.2.1} yields

Z/ ( 4| 4 AVl + Z |6“6‘3u|2)x2323"’ dz dt

=2

< C‘Z (LVG w)* + |G(83u1)|2) 22 dr dt

w0 [ (Z (16202 + |a;:x!2))
(1]

|or| <2

5
X (Zﬂdiv (HW) + [rot (BTD)* + |3§ﬁ|2)) 2V dr dt

=2

’ 5

+C (Z (l628ux|” + |8;;‘x|2)) (Z S jozaful? + |Va§'ﬁ[2))e25¢"” dz dt
Go Maj<a =2 |a=2

+ Ce“ B,

Here we write

= sz + 1@ 3sr i oy)-
Since 8%0;x # 0 only on G5 \ G5 and

’l,[)_v < (% — 26) on GJ \G257

we obtain
4 . - -
Z-/ (sﬂé‘gﬁlz + s*|Valu® + Z |3§3§ﬁ|2)x2623’*"’_v dz dt
j=27Co :

o=
<c f

Z |VG(8‘7u1)|2+|G(6‘Ju1)|) 2V dp dt+Ce*B/4-20)"" A1 0eCB,
03—2
(1.2.24)

12



where

M = |l s _rra0))-
From y = 1 on Gag and from 0 < x < 1, it follows that
4

> f (s4|agﬁ|2+52|vagﬁ|2+ > |a§agﬁ|2)ezs¢*" dx dt
Go

j=2 |ex|=2

4 .
9 f + f ) (34|aga|2+32|vagﬁ|z+ 3 |agag'ﬁ|2)eﬂs¢"’ da dt
=2 \/Go\Gas Gas

lof=2

4
<M f .(s4|agﬁ|2+s2|vag'ﬁ|2+ > |agag'ﬁ|2)x2e2s¢"’ dz dt
j=2Go

|x|=2
4
+ Cste?e /4207 % " f (|agﬁ|2+ivag'ﬁ|2+ > |agagﬁ|2)em"" dz dt
j=27Co lorl=2

4
<0 [ > (Ive@imP + @) e wa
[ |

0 j=2

+ Cs*e® G207 M 4 CePoB.

(1.2.25)
By definition of G, we have

4
|3 (Ve @i + 1G@u)) x?ev ™ st
Gﬂ 3:2

< (Z(15§‘ﬁ|2+|83‘1i2+18§ﬁ|2+Iﬁﬁ!z)JrlﬁFHsz)em'" da dt.
Go

|| <2

(1.2.26)

13



Then (1.2.24) and (1.2.26) yields

f |828%(z, 0) 2V (=0 gy
o

0
-T Gonft=r} .

[ 2(B202T) - (B2B3TN2e2™ ™ do d
Gon{t<0}

2 [ ey ) dods
Gon{t<0}
[ werpaceen s
Gon{t<0}
SCS/ (18082 |2—|- lc’-)aaa i2)X26231,b7V dmdt+ce2s(3/4_25)—pM
Go

<05 [ (3 (o5 + 102X + g + o )+ 13+ (V3R )V da
Go

o] <2

+ 034625(3/4—253_”M + CECSB.

(1.2.27)
for any {a| = 2. Similarly, we have

/ VO2ii(z, 0) |22 ¥ @0 gy

< [ (32 ot + 520+ P + ) + 15 + VB )7 doa
G0 Naj<z

+ Cs2e28B/1-20"Y pq L CeCoR

(1.2.28)
and
/ |92 (z, 0)[2e2¥ =07 g
Qo
<5 - (%2(163&12 + (02 + 1027 + 027 + 71 + va) ™ do di

+ CeXBA=2) pp 1 CeCEB,

(1.2.29)

Now we find first-order differential equations of [, A, 7 and 5. From (1.2.21)
we have

p2 208 (g, 0) = Gu%k} (z,0) (1.2.30)

L er® () + G(8uM)(2,0). (1.2.31)

14



we can rewrite (1.2.30) and (1.2.31) as

aj+ BVA+DVF+GVE = K — 1815 — hyda — habsi.  (1.2.32)

where
702 (z,0) — APY — (f+ NV (divp®) - FAqW — (F + 7)V(divq™)
K . | PO2(w,0) = Eap® — (T + N)V(divp®) - FAq® — (7 + ) V(divq®?)
| P}z, 0) — EAQW — (3 4+ )V (divgW) —FAr® — (§ + ) V(divr®)
702 (z,0) — EAGR) — (B + AV (div @) —FAr® — (5 + 7)V(divr)

Hence for any index 1 < j1 < 12, we have
{a};, +{B};, VI+{D};, Vi+{G};, Vi = {K};; — {1 };, 15— {ho};, 827i—{hs};, 0.

This system has ten unknowns 3, (8;5\);6:1,2,3, (Ok¥)k=1,2,3, (Buli)k=1,2,3 and
‘In order to exist a solution, we need the following conditions:

det;, (a, B, D, G, K — h1617 — ha8s7] — hsds}) = 0, (1.2.33)
that is,

3
> det;,(a, B, D, G, ;)87 = det j, (a, B, D, G, K).
k=1

Here we used the linearity of the determinant. We regard (1.2.33) as a first
order partial differential equation.

In order to estimate the coefficients, we need the following estimate for
a first order differential operator. '

Lemma 1.2.5. Let (Pg)(z) := B{z) - Vg(z)} + Bo(x)g(z) be o first order
differential operator with B = (b1,ba,b3) € {W5%°(Q)}® and By € W™,

We assume .
5@ (1142

Then there exists a constant v > 0, sg > 0 and C > 0 such that for all
8 > 8q, :

?) ( > |agg(m)|2) PO gy < 0 (Z |5§(Pg)(w)|2) PO g
Qy Qo
|

<2 lef=2

>0, ze0g. (1.2.34)

| (1.2.35)
Jor all g € H3(Qo).

We will prove it in Appendix B.
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Noting that =1 — 72 = 0 on I, we apply Lemma 1.2.5:

/ Z |6aﬁ|2 289(z0)™ g
Q

28 |a|<2
< 52 Z Iaa |2 231/){.7;,0)_” dz
o |41<2
<0 [ (3 (10502 + 03X + 0P + |657P) + |57 + V52 )40 da
Qo
|| <2

+0 [ 30 3 (1050, 0)F + 0205 (2,0 ) 2o o

D j=2,3]al<2
< Cf ( 3“ﬁ|2+|3£‘3\2+ |67 + |87 )+ 112 + |v512)e25¢<3,°)‘” dz
|a]<2
+Cs f (Z (|3§ﬁ|2+ EB§XIQ+|3§?’?I2+I6‘£?I2) +[3|,2+|V,5|2)625¢_y dx dt
| <2 -

+ Cste25(3/4-2007" pp 4 05,
(1.2.36)

Similar arguments hold for 7, X and %. Hence we have

f S (08T +10SX? + (6% + |927(2)e2 V=0 az

26 || <2

/ (|a|<z
L C / (

1 Os2e2s(3/4-28) " pq 4

(1057 + 923 + 08777 + 07F) + 7P + V71 ) 1=~

(1020 + 1082 + 03P + 1057F) + 57 = (VAP )28 d
|| <2
CeCs

B
(1.2.37)

for arbitrary ¢ > sg. By taking sufficiently large s, we can absorb the first
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term of the right-hand side into the left-hand side:

f > (0281 + 105 X7 + 1957 + 957 2)e* =0 da
LY

2 le| <2

<3 f (1817 + [VAI%) 207 g

L

+CS2€25(3/4 —26)~ M+

S (105 + 08X + o5l + 07°) + P + VPP )&V
|| <2

eCs

B.
(1.2.38)

Finally, we give the estimate of g. By (1.2.32), we have
ag = —BVA— DVy—-GVji+K— HV7
It follows from the assumptions that |a(z)! > 0 holds for € \ T', then
7= KiK + K5(VA, V7, VI, V7)

where K1, Ko is first-order differential operators with W1°_coefficients.
Then we have

\ |
V)| < S (V@) (e, 0)| + |8 iz, 0))

3=2 (1.2.39)
> (102%(=)] + |27 ()| + |82 75(z)] + (027 ())).
- lofs2
and
3 .
B(z)| <Y 18]ii(=, 0)|
j=2 (1.2.40)

+ > (182X(@)] + 195%(=)| -+ |05 (@) + |857i(=))-
|of<2

In order that =0 on Qp \ T', we obtain

[ (B@) + V3@ e o
Qo

</, (Z (102X(a) + 027(2)| + 1927 + |a::ﬁ(x)l>) Ve do

al<2
3

<, (z"ag (e, O)F + lwafﬁ)(w’on?) VD

=2
(1.2.41)
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By substituting (1.2.29), (1.2.28) into (1.2.41), we obtain
| (@) + VH@))e 0 i
o

= /Q (E (18 X(@)| + 1057 ()] + 10275(=)]| + agﬁ(:cm) V@0 gy

lar|<2
+Os f ( > (853 + 1852 + oz7l + 05717 + |” + |v5]2) ¥ dedt
Go
lol<2
+ Ce®B/M=2) A 4 CeCeB.

(1.2.42)
By using the estimate
/ (@)D ™ dg dt
Go .
i Y I(z) Y .
= f g(m)egs"b(m’o) f g28(#(xt) T —¥(2.0)7") g1 | dx
o @ (1.2.43)
o0
< [ atemenr ([ s Y i
= Joo -
c 23 (x,0)~Y
< — x)etEN T dy
<75 Jo, g(=)
for arbitrary function g(z) which is positive on €, (1.2.38) yields
f > (18R + 95N + 1927 + [0271) eV =" do
0 |oj<2
< DT (102ER + (88N + 1827 + (827|220 dg 4 Ce? B2 g
28 o) <2
<5 [ P +1viR) =0 o
8 Qg
c Im ¢ =~ ~ ~ ~ —u
T (Z (|5§ﬂ|2+ |32 AP + 19g71* + |3f.:?'7|2) + 18P+ |Vp|2)e23¢ d dt
# JGo \af<p
'_V ! CeCs i
4 (g2e28(3/4-28)7 a4 B4 Ce2sB3/4-28" ¢
8
c a~2 a2 a2 a2 251[:(:1:-0)_”
<—= ,
=5V /Q [a‘zgz(l@mnl - 102X + |927[2 + [857|2)e dz
C -
+ ? (lﬂz + |vﬁl2) e?svj;(:c,o) dx
Qo
_V CeCs Y
+ Cg2e28(3/4-20)"" pq o B+ Ce2s(3/4-20)"" ¢
s

(1.2.44)
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where we set
£i= [ S (5P + 102XP + 1657 + 0871) o
0 |o|<2
Then for sufficiently large s > 0, we obtain

|3 ueza e 4 BRI + D)V
% o<

(1.2.45)
< Cs2e25B/4-28 pq 4 CeC* B 4 Ce2s(3/4-28)"" ¢
3 .
As for the estimate of p, combining (1.2.42) and (1.2.45) yields
- / (lvﬁ|2 + |’a‘|2) e2s¢[m,0)7" dr
flo (1.2.46)

CC’s

< Cs2e2B/4-20 a4 ¢ B 1 Ce28(3/4-28)"" ¢

Here with (1.2.38), we obtain.

/ (Z (|a§ﬁ|2 + |3§X|2 + 1837)* + 1827 i2) + 1512 + {v5|2) 259(@0)~ g
© Mef<z

Lz

1 Ogles(3/4-20)7" CeCs 25(3/4-26)"" ¢
8

52 (1057 + 1053 + 10871 + 077) + 7 + VB2 )2 * dac
|| <2

(1.2.47)
We have

f (Z (102 + 102X + 102 + 10531 + 1 + |vﬁ12) VO gy

0 Mel<2

< (52c2e(3/4-28)7" CeC? 2s(3/4-26)7" ¢
- s
(1.2.48)
for any large s > (. From definition of 1,

P > (% - 35) on (g

holds, and then

o26(8/4-38)" ¢

<Jl

S (105 + 102X + 9272 + 025 )+ [P+ VAT | 240
e} <2

(1.2.49)
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By combining (1.2.48) and (1.2.49), we obtain

c
(823(3/4—35)7" B 0825(3/4—25)**') £ < C2e2534-28)" oy 4 Ce™®
S
By taking sufficiently large s > 0 such that

(25(3/4-36)" _ (1,26(3/4-26)" < % (25(3/4-38)7

we have

' \ Cs—25(3/4—38) "
£ < C2e2B/1-26)7" = (3/4-38 "} pp 4 CeCs—2s(3/4-36)

< Ce™ 25 M 4 CeCoB

for suitable C' > 0 and ¢ > 0. Assume that M > B. By taking s >
ﬁ log % > 0, we obtain

E< CMC’/(C+l25)B2E/(C+25).

If M < B, the proof is already complete. Thus we have proven Theorem
2.1.1 when w is a part of a paraboloid.

1.2.2 Case II: a general case

Now we prove Theorem 2.1.1 for general w. Our proof consists the following
steps:
(1) First we prove the Holder type estimate of unique continuation. Thanks
to this estimate, the stability estimate on G5 can be extended to the estimate
on wider domain Q5 x (-7,T).
(2) We prove Thorem 2.1.1 on a domain which is a union of paraboloids.
(3) We take the covering of w by domains in (2). By compactness of w, we
obtain Theorem 2.1.1 for general w.

Now we will state the Hélder estimates of unique continuation.

_Lemma 1.2.6. Letw C QNT be a part of a paraboloid. Then for any
gg > 0, there exist constants :

C= C(Q,W,anﬁ,ﬂ,’}’;)\,}?) >0

and
k= K(Q:W:EO,N:"‘T: Y, )\: .0) € (0: 1)
such that
lallz2(-7peo -eoitrzy < C (“u”}p]_l?_T,T;H%Q))”u“nH3(l"x(—T,T)) + Hu”HS(Fx(—T,T)))

(1.2.50)
holds for any u € H2(Q x (—T,T)) which satisfies Pu = 0.
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Proof. Let us introduce a cut-off function x € C§*(Gop) such that

1
x=41 oo Cu (1.2.51)
0 on Go\Gs

and 0 < x < 1 on Gp. Calculating P(xu), we obtain

pBF(xw) = Ly w(xu) + Ly y85(xu) — (85x) Lnqu
=-F (X)Vc’itu — Pg(x)c‘?tu - Q]_ (X)Vll - Q[)(X)T.l (1252)
+2p(Bx) 8 + p(BFx)u.

Applying Theorem 1.2.1 to 1.2.52, we have

/ [34X11|2 + 2|V (xu)|? -+ Z ]63(xu)2] 2% do gt
Go

|ee|=2
i 2 o 2 .12 2s:p™Y
f Z > ezaxl® | | DoUogaml® + (8gul’) | 2V dadt
=0 |a|<2 as2
+ Cebs ||11||H3(rx{—T,T))
(1.2.53)
for any s > sp. Thus
AT N 102l )
jo| <2
f [Iul2+ [Vl |‘9au|2] e

a=2

ul + [Vul?+ ) {o%u 2] V™" de dt
(/;26 ~/G0\G25) |:1 | | l O:Z=2 E E (1-2.54)

< [ |t bl + LGP+ 3 a2 ds
Go _
‘ fa]=2

+ SO )2, )
< CBM20 w1 ey + CeP Il oy oy

Dividing it into eX1/4)7"¢ and taking sufficient large C, we have

Z ”8au”L2(G’u} < Ce” 53“11”%11(_1";11;[{2(9)) - Cecs“uH%{?o(I‘x(—T,T))
|| <2
(1.2.55)

I lull g -rm2@)) > lllzs@x-T.m)s choosing

1
$=Core (log lull gr(-77m2(0)) — log |ullmrarx(-my)) > 0,
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we obtain

C/(C 2/ (C
> l168ulagy < Clullsm rm gz i oy (1.2:56)
leo]<2

I lull g gy < lullas@ex(—rry), then

> 183l 2 gy < Clullbsex ety (1.2.57)
x| <2

holds. Combining (1.2.56) and (1.2.57), we obtain

> lazulta gy < € (IalF Dy ursiay oy + 0l oxziry)
la|<2
' (1.2.58)

By definition of Gy, there exists § > 0 such that Qs x (—=¢,&0) is con-

tained in (9. Thus the same estimate as (1.2.58) holds for ful| 22(_eg 0,22 (025)) -
“Since we can cover {35 X (—1"+£g, T —~ &g) with finite intervals Q5 % (neg, (n+
1)eg) (n = —N, ..., N — 1}, we conclude the proof of Lemma 1.2.6.

Now we will prove Theorem 2.1.1 for general w which is compactly em-
bedded in QUT. Let z € w\ I and zp € I’ be arbitrary fixed and take a
polygonal line L in « which connects x and xg. And let L consist the finite
line segment {I;}}', such that I; connects x;_; and z;, where zy := z. Thus

we can construct open sets {w; }:*:\;1 which satisfy the following properties:
¢ Fach w; is a part of a paraboloid whose axis is {;.
¢ Each z; is contained in w;. -

s w1 C QUT and for any 7 > 2,

em (ro(0u))

In fact, The assumption dist (w, 2 \T) > 0 means that dist (;, 2 \T) > 0
for any j > 2. By taking the sufficiently small width of paraboloid, we can
construct {w;}.

Since w1 is a part of paraboloid, we can apply the estimate (1.1.12} to
wq and obtain '

”A2 - )\1 HHz(w]_) + ”Mz - #’1”H2_(w1)

+ e = ml g2y + 12 — 20 + 02 — p1ll 10y < C (MY B} + By)
(1.2.59)
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for some C' > 0.and « > 0, where

M=% )" (||u§k) || o (-T2 (00) + ||11§-k}|[m(_T,T;H1(9)))
k=124=1,2

Bii= ) (||ﬁ(k)HH5(uT,T;H2(P)) + ||ﬁ(k)||H‘”’(-T=T;H1(F))) '
k=12

Moreover, Lemma 1.2.6 implies that for arbitrary fixed £ > 0, we have

10]| gt (e T—es B2 (1)

< C{HUH}J_{E_T,T; H2(w1)) (“u”H5(AT,T;H2[1")) + ”11i|H6(—T,T;H1 (1"},))"i

+ (llull s (-7 m200y) + Il oo () }
' (1.2.60)

for some C > 0 by changing & > 0 if necessary.
Now we divide dws into the following two surfaces:

Gag 1= Owy M wy,
o2,1 = Ows \ Bwy.
Then we can apply Theorem 2.1.1 to wp and obtain
A2 — Al g2y + 2 — 1]l 2 (un)
+ vz = 1l 2 gwg) + 12 = Ml zr2g0g) + Nl02 = P11l 21 (0) (1.2.61)
< C(M'"™"B§ + Bs),
where -

Byi= > (“ﬁ(k)||H5(—T+5,T-5;H2(cr2,u))+“ﬁ(k)|EH5(—T+6,T—E;H1(02,0)))‘
k=12
From (1.2.60), (1.2.61) and Sobolev’s interpolation theorem, it follows
that

(k) 1/8 ~(k)|(5/6
Ba < Z ¢ (liU( )“L2(~T+5,T75;H2(w1})“u( )I!Hs(—T+s,T—6;H2(w1))
k=12

+ 1% 2

~(k)16/7
L2(—T+e,T—g;H(w1)) “u( ) ”H7(

—T4e,T—g;HL (wl)))

< Y e[l @B+ B) I8P ryer—enrion
k=12

—K DK T (k) 16/7
+(C (0B + B IO it o)

<C (Ml—n/ﬁB;ﬁfs + M"’/GBilﬁ n Ml—n/TBflﬂ/T -I—Mﬁ/TBi/T)
C (M'~" B 4+ M By?)

IA

(1.2.62)
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]
where we define

. K
K1 = m.m{l— 3

K
=maxql— —,
Ka { 6

| en
=
I
~| =
~1| o
L_V_.J

(1.2.61) and (1.2.62) yields

A2 = Xl g2 (ug) + 2 — pallzr20m)

+ 2 — Mllme(wsy + 172 — mll 22wy + o2 — Pl )
< CO(MYR (MITRBE 4 MR BRYE L MM B 4 MR B2)
< C(M'Tr3 B 4+ M B)

(1.2.63)
for some k3, %4 € (0,1).
We can repeat this argument for ws,...,wy and thus we see that there
exists the constants C(z) > 0 and x(z), &'(z) > 0 such that
A2 — Al ey + 2 — ol 2 (o)
+llv2 = mllazee) + 172 = mllaze@) + o2 — llmwe)  (1.2.64)
< C(a) (MA@ B 4 a1~ @ By @),
where w(z) = U.t,}-v=1 wg. {w(z)}rew covers w and by a,ssufnptious wis a

relatively compact set in Q. Hence, we can choose a finite sub-covering

{w(z1),...,w(z)} of w from {w(x)}ze,. By taking &,&" € (0,1) and C > 0
as

k:=min{k(z1),...,6(2),& (z1),..., 6 (z)},
k= max{r(z1),...,8(z1), & (z1),. .., ()},
C = max{C(z1),...,C(zp},

~ we obtain from (1.2.64)

“Ag - M HH:.’(Q,)) + “.U‘Z - .U'llle(w))

+ llv2 — mllgzyy + Im2 — mll g2y + o2 — 211l (W)

(1.2.65)
<c(MIBY + M By).

and thus the proof is complete.
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Appendix A: The Proof of Lemma 1.2.4

By Hélder’s inequality, we have

( / i) da—)Q <tf t e,m)Par.
I(z) = T\/l - (2:1:1 + E“Xf),
we have

/GD ([:f(w,f)ldr)2e23‘f’""dxdt—/ (le:) (/ |f(, fr)[dfr)2 =4 dt) dz.

(1.2.66)

By Setting

Since :
a (ezsw(z,t)w) o Avst oy
¢ T2z, £

we estimate

I{z} t 2 —
f U |f($,1’)|d'r) 2V gy
0 0
l(z) t .
S/ (/ |f(z, 7|2 d’r) e25V " dt
0 0
i(x) t .
<[ t( / |f.(a:,r)|2dv-) ¥~ gt (1.267)
0 0
T2 H=) w+1 g 2 2sth™V
< 4%/0 ¥ Ug 1 (z,7)] dr) 8, (e27") at
T2 |:c’|2 v+l i) P t y
< e (wl + ) [0 O (e ) (/0 | f(z, 7)) dT) dt

where in the last equation, we use the fact that ¢(z,?) is decreasing on
[0,i(x)] as a function of ¢ for arbitrary fixed z € £p. An integration by parts
yields

U(z)
8,3 e?sv™" (/ |f(z, 7 |2d7‘) dt
0

i(z) z) ‘
— sl i(x)) ™ / : |7 (e, 8) |2t — / ’ |Fz, ) Pe®¥@0 ™ gt (1.2.68)
0 [¢]

i I(z) I{z) b
= s / i, 8)Pdt - [ |z, )P0 ™ gy,
0 0
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By (1.2.67) and (1.2.68), we obtain

i(x) t : 2
259~ .
'/(; (/(; [f(a:,7)|d7‘) e dt

2 Y i(z) I(x) Y
< (_32 = [l [ 1@ pesed dt)
0 0

T 4us

T2 2N v+l () —
< — (371 + la;le ) /0. |F(z,8)|2e®¥ " dt

~ dvs
72 i) .,
< m/@ |F (. t)Pe*¥ " dt.
Similarly, we obtain

0 ¢ 2 2 T2 0 -
z,7)|dr ) ¥ dt < / z,t)|%e®¥ " di.
[, ([ vt mner) s [, e
(1.2.69)

Therefore

t 2 v T2 i(z) Y
L ([ i) e aas [ (G [ ieopes ) b
Go \Jo Q0 \2"7°8 J i)

T2 2 2sp—v
= —0 i ¥ dx dt.
i |, e e ae

The pi'OOf of Lernma 1.2.4 is completed.

Appendix B: The Proof of Lemma 1.2.5
Set h{x) = g(x)e*¥®0)™  Simple calculation shows
eV Pg=eV"P (he"’f‘[’_'})

_ (1.2.70)
= B.Vh+ [Bo+svp™""Y(B . V)] h.

Then

|Pg2e2™ 4 > f (Bo+ sop=1(B - V) |1 do

Qo S

+/Q (Bo + slm,b"’_l(B V) (B V(|R[*)) dz

+ B-V (Bg + Sm/)_"_l (B- V'&,b)) |h|2 dx
(o

+ / (Bg + SV@b“”_l(B - V’q&)) (V- B)|h|2 dz.
Qo
(1.2.71)
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By assumption, we can take sufficient large s > 0 such that
By +svp Y B V) > Cs, =€

for some constant C > 0. Hence we obtain for large s > 0,

|Pg2e® 0" dp > ¢ | |g|2e?¥00" g, (1.2.72)
Qg ﬂo )

Next we have

P(0;9) = 0;(Pg) — (8;B) - Vg — (8;B0)g-
Then (1.2.72) yields

52f 18591%e*¥ 0" dz < © / |P(@9)P*¥0) " da

Qg QIZI

<c / 16;(Pg) P20 gy (1.2.73)
Qo
+ C/ (IVgl]? + |g2)e?¥ -0 dz.
o

From (1.2.72) and (1.2.73}, it follows that

32/ (’|Vg|2+|g|2)e25¢('*°)"’dm£0/ (Zm(azgf) 20 g

|ex|<1
(1.2.74)
Similarly, we have

P(0;0rg) = 9;01(Pg} — (8;B) - V(8rg) — (0 B) - V(8;9) — (8;0:.B)g
— (8;Bo)(81g) — (8kBo)(839) — (8;0xBo)g, (1.2.75)

so that from (1.2.74}, we obtain

s? f |0;0kg2e® 0 dz < C f 18;0(Pg) 2200 gy
Qg Qo

ol () 00
Qo

Jeri<2
(1.2.76)

By combining {1.2.74) and (1.2.76), the proof is complete.
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Chapter 2

Inverse problem for the
phase field system by
measurements of one
component

2.1 Introduction

The phase field model, which was first introduced by Caginalp [3] and Fix [§],
is used as the model of phase transition phenomena, such as crystallization.
In the phase field model, a state variable is introduced in order to describe
two phases, and the phase transition is considered as the system of partial
differential equations of the state variable and other conservative quantities
(for instance, temperature). For this reason, an interface between two phases
are described as “diffuse interface” which is a narrow region covering the
actual interface.

- The phase field models are derived from the free energy functional which
contains an interfacial energy and a latent heat and so on. (see Penrose and
Fife [23].)
~ In this paper, we consider the linearized phase field model which de-
scribes the phase transition of two phases and analyze the inverse problem.
Let © ¢ R? be a bounded domain with smooth boundary and T > 0. We
consider the following generalized system: '

Ou+ 16w =V - (KVu) + an1u + a1gv + Ay - Vu+ A - Vo + fi
on Qp = (0,T) x  (2.1.1)
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O =V - (MVv) + ag 1t + agov + Agy - Vu+ Asg - Vo + fo
ou Qr (2.1.2)

with boundary conditions
u="hy, v=hyonXr:=(0,T)xQ, (2.1.3)

where K, M and a;i (7, k = 1,2) are scalar functions and A;;.(7, & =1,2)
are vectorial fields both defined on €. Let us fix the Dirichlet data hq, ho
and the source term f;.

We will explain the physical meaning of our system. u describes a tem-
preture and K a thermal conductivity coefficient and I a latent heat. Mean-
while, v is a state variable and M is called a mobility coefficient, ‘which
represents how easily the interface can move.

Now our inverse problem is formulated as follows:

Inverse Problem Let w C €2 be a non-empty subdomain and fix 8§ €
(0,T). Determine the thermal conductivity M and the mobility X from the
measurements

ul(O,T)xw: ('u,, U) |{8}XQ-

We note that we have the extra data on w only for ». 'This means that we
can measure only the tempreture continuously in time on small domain and
this inverse problem is whether M and X can be determined simultaneously
in such a limited observation (if you can obtain the whole profile (u,v) at
tine #). In practical viewpoint, this inverse problem is desirable, because
the teinpreture u can be measured much more easily than the state variable
.

To state our result, we prepare some notations. Let (K, M;) and
(Ka, M2) be two pairs of mobility and thermal conductivity coefficients and
let (uj,v5) solve (2.1.1), (2.1.2) and (2.1.3) with K = K; and M = M; for
§=1,2. We set wr :=(0,T) x w. By WP (), we denotes usual Sobolev
spaces for m € N and 1 < p € 00, For any Banach space X, We denotes
by I (0,T;X) the space of X-valued p-Bochner integrable functions. We
write L? (Q) := WO (Q) and H™ (Q) := W™2 (Q).

Let d € C? (@ satisfy

d>0inQ, |Vdl>00onQ, Vd-v<0ondQ\y.

The existence of d is guaranteed in [12].
We pose the following assumptions:

¢ ”ajk”f,m(g) ; ”Kj”Wl.oo(Q) ) HMjnwl.oo(-g} <R (4,k=1,2),
o K = Ky and My = My in w and a neighborhood of 84,

. ”Aij(Loo(Q))ﬂ <R (j,k‘ = 1,2) ,
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Sw NI = v and |y] # 0, where |y| is a measure of 7. and dw is of
class C2,

[ A1z - v[ £ 0on 7,
|Vug (8,-) - Vd|, [Vuy (0,-) - Vd| > &y on § with some g > 0,

luzllez) » lv2l ooz < B-
We can now formulate our main results as follows:

Theorem 2.1.1. Let § € (0,T) be fized. Suppose that assumptions listed
above are satisfied and uy (8,+) = u (8,-) and vy (0,-) = v2(0,-) in Q. Then
there exists a constant C > 0 such that

| K1 — Kall g2y + 1M1 — Mal|z2qy
<C (Hul — vzl gao.ryr2eay + llur — “2”32(0’9’;11'2(“’})) - (214)

The key gradient of Theorem 2.1.1 is a global Carleman estimate for
system (2.1.1}, (2.1.2) and (2.1.3).

Carleman estimate is successfully used for the inverse problems since
Bukhgeim-Klibanov [2]. As far as parabolic equations is concerned, the
uniqueness and the stability in determining coefficients are proved in many
situations in terms of Carleman estimate. See [13, 28, 29] and the reference
therein. Especially for a 2 x 2 parabolic system, the stability estimate for
determining coeflicients by means of only one component is established in
Cristofol, Gaitan and Ramoul [6] and Benabdallah, Critofol, Gaitan and
Yamamoto [1]. Compared with these works, however, our equation has the
term (3w in (2.1.1) and we need some modification in the proof.

This paper is organized as follows. In Section 2, we prove a Carleman
estimate for the system (2.1.1), (2.1.2) and (2.1.3). In Section 3, we prove
the stability estimate by means of the Carleman estimate proved in Section
2 and Bukhgeim-Klibanov method.

2.2 Carleman Estimate

In order to prove the Carleman estimate for equations (2.1.1} and {2.1.2),
we impose the following assumption

* wC Qwith dwnN oL = and |y| #0.
o |[A12-v| #0onyr:={(0,T) x v.

. [ Av2ll 2@y s o1zl o2y » 1Al o2 (@gyn < M for some constant M >
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We define the weight function as
(=) (t.2) = erd(z) _ e2f\lldllc(ﬁ}
T —g YT TTT

Under these assumptions and notations, we prove the following Carleman
estimate.

ot z) =

Lemma 2.2.1. Let w be a subdomain of Q and the assumption is fulfilled.
Then there exist Ag > 0 such that for any A > Mg, there exists sp{A) > 0
such that for any s > sg, the estimaie

1 -1
f (-_ 18 + 8,2 + = |Auf + [Avf?
ar \ 5@ st
+3x20 [Vul? + 822262 |Vul? + S04 |uf® + stapt |v|2) e dtdx
<c [ (1P +splnft) = dtds
Qr

+ Ce% s\ (113 + Nl oz + el Z20 mamen) )
‘ (2.2.1)

holds for any v and v which solve (2.1.1) and (2.1.2) with boundary condition
u=v=0 on Xr.

We will remark some points. Lemma 3.2.2 is a Carleman estimate with-
out extra data in wyr of ¥. Benabdallah, Cristofol, Gaitan and Yamamoto
proved a similar estimate in [1] for the case when [ = 0 on £, Our proof
of Lemma 3.2.2 is done similarly as {1]. Tn our case, however, 8w term in
(2.1.1) does not vanish, namely [ # 0 on ! generally. Therefore we need
.some modification.

In order to prove Lemma 3.2.2, we need the following lemma.

Lemma 2.2.2. Consider the equation

. n
Pult,z) := polt,z)0pu(t, ) + Zp_,- (¢, z)05ult, x) + q(t, Thult, z) = f,
i=1
(2.2.2)
with the boundary condition ul( 1)y = 0. We additionally essume that

S pi(t, wyvi(z)| £0 (4,2) € (0,T) x 7,

=1

where v(z) = (v1(x), ..., v, (x)) is the unit outward normal vector to Sw
at z. Then there exist a subdomain w' C w and a constant C > 0 which is
independent of p;, q and f such that

||’U||L2(w;r) <C Hf”iz(w}) .
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Here we denote wh == (0,T) x w'.

Proof. We will modify the argument in [1] to prove it. Without loss of
generality, we may assume that w is written as

w = {(2's2); M (2') < zn < ho(a'), o] < p}

where h1,he € C({|2'| < p}) with hy = kg on {|&/] = p} and v =
{(z', zn) ; 2p = ha(z”), |2'| < p}. We introduce the independent variables
(¢, yn) defined as

'y, = xf: Un = Tn — hl(xf)'
Then w is transformed into
B={,n); 0 < yn < ho(y) — M(¥), || < 0}
Let us set
Ty = {(,0); || < p}
Lo = {( %) ; yn = ha(y/) — iy}, [¢/| < 0}

and note that dw = fl U fg.
By the coordinate change, P is transformed into

Pi(t,y)
n—1 -
= o (ta y)atﬁ(ta y) + Z ﬁj (t: y)ayjﬁ(t: y) + F(t7 y)aynﬁ(t1 y) - &(ta y)ﬁ(t: y)
=1

= f(tay)a (2-2'3)

where Fo(t,y) = po(t, @), B (6 y) = p;(t,2), 3t %) = q(t,2), B(t,y) = u(t, ),
ft,y) = f(t,z) and

n—1

F(tz y) = ﬁn(tsy) - Zﬁj(t:y)ayjhl (t:y)'
=1

Moreover the boundary condition u'(D,T)X'y = 0 is interpreted as
ﬁI(U,T)Xfl =10 (2.2.4)

The unit outward normal vector v(x) to duw is parallel to (81 ('), . . . Fp—1h1(2), —1)
on {{z’, zn) ; Tn = h1(z’), |&'| < p}. Therefore the assumption |p(¢, z) - v(z)| #
0 on (t,z) € {0,T) x 77 implies that we may assume that 7(¢,7’,0) > 26 for
¥'| < pand 0 <t < T. By choosing p > 0 sufficiently small, we also assume
that '
(t,y) >4, (t,v) € (0,T)xm. (2.2.5) .
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Let ¥(y) be the unit outward normal vector to 8w. #(y) is parallel
to (0,...,0,—1) for y € I'y and (—8y, (ha — h1), ..., —8y,_,(ha — k1), 1) for
y € I'a. Then by using {2.2.5),

Sy (4,9 () + T, 9P(y) = ~City) <0 ify e o (226)
i=1

Moreover taking hi, hy such that [|hz — Rallg1 gy <,y IS suficiently small
if necessary, we have

,
n—1

Zﬁj(t: )7{(y) + 7L y)Pa(y) < 0ify € To, (2.2.7)

In order to prove the lemma, we prove a Carleman estimate for (2.2.2).
We set

n—1 :

Pyl := P — G = Po(t, v)O5E(t, y) + > B(t, ¥)0y,U(t,y) + F(t, 1)y, U(t, y)
j=1

and w = Ue* ¥ ) where 14y (t) = —A(t—6)2. We will choose the constant
A > 0 later. Then '

eSlm+iolt) B, (e_s(y“"'%(tnw) = Pow — s7(t,y)w — 524 (6 — t) Pow

=: 13011) — Sgow
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By integration by parts, we obtain

—~ 2
/ ||| e2otom 4o gt (2.2.8)
wr

-
-k

n—1
P f S0 (ﬁg@tw S Fo,w ?a%w) dt dz
w 1

j:

et (e—s(yn+'v”0(t))w) ’2 dt dz

~ 2
Pgw| dtde+ | sPgdw?dtdr

o

2[_ slgew? dt dz

i

-1
(/ - +/ H)sgo (Zﬁ}%-ﬁ-?’ﬁn) w? d¢dS
(0.T)xI" (0,T)xT2

i=1

+ [ 5 (30100, @O = FolT, NaoT) (w(T,0)") s

n—1
+ 30 (Pogo) w? dt dz + / s (Z By; (Bigo) + Oy, (Fgg)) w? dtdz.
. o |4
i=1

&
(2.2.9)
Then we choose A > 0 such that the following inequalities are fulfilled:
P0(0,%)90(0,4) 2 0 (2.2.10)
Po(T,y)go(T,y) < 0. (2.2.11)

Indeed by definition of gg := 7+ A(T — 2t)5), we can rewrite these condition
as

7(0,y)
Af > ——
— po(0,y)
(T, y)
AT -0 < ——= .
( = Po{T,y)
Since we assume that |pg| # 0 in @, we have
E(O,y) ’ I(T,y) ‘ <x
Po (0: y) pO(T: y) )

for some constant x > 0. Then if we choose 4 as A > max {x/8,x/(T - )},
the conditions (2.2.10) and (2.2.11) are satisfied.
Hence by {2.2.9) and (2.2.16)}—(2.2.7), we obtain

f Sgﬁzezs(yn"'"abo(t)) dtdx S |ﬁ0:€l|2 825('yn+¢0(5)) dt d.’ﬂ

[
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By definition of 130, we have

/ SZ&'QezS(yn-i-'gbo(t)) dt dm
<C ﬁoar el tol) 4t dy

wr
<C ﬁar‘ 25l tdo®) 4t dz - C / |gai|? e2slm+hol) qr 4z

wr E-UT

~ |2 ’
<C Pa‘.eQS(yn+¢ﬂ(t)>dtdm+cnanéw ﬁ 7] e2sum 0l gt .
Wy

r
By choosing sufliciently large s, we finally obtain

/s%WWﬁwmamsc Bl 2sntto® g 4z

‘2
w W

for large s > 0. Since 1 < ¢2sWni¥0(d)) < 208 in Fr for some C > 0, we
have

~ 12
&2 / @ dtdg < Ce?C / Pﬁ‘ dt dz.
_GT aT

By fixing large s > 0, we conclude the lemma. O

We now return to the proof of Lemma 3.2.2. We can rewrite (2.1.1) as
Az - Vu+apov — (2)0w = Ou — V - (K (2)Vu) — anu — A - Vu — fi.

Applying Lemma 2.2.2 to it yields
/ Juf? dtdx < C'/ |8su — V - (K (z) V) — agqu — Ay - Vu — f1]° dtde
Wi wh

< € (1132 g + Nl o mizeon + Il Bao ey ) -
(2.2.12)

By [9] and [12], there exists Ag > 0 such that for all A > Xp, there exists
sp > 0 such that

/ (|c';v‘,gul2 + 1 Au? + 22267 |[Vo)? 4 statpt |v\2) % dt dz
Qr

< C’/ s (Ef2|2 +ju® + |Vu]2) e? dt da:—l—C'f s* 2t ju® e dt de
Qr wh,
(2.2.13)
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and
1 2, 1 2 2 2, .3y4,.31,.2 ) .28
;E|8tu| -I—@V_\ul + sX%@ |Vu|” + s°X*¢° [ul* | e*** dtdx
Qr

< C/ (|f1|2 -+ |3t’U|2 - |‘U12 -+ |V’U|2) e2soz dtd$+6/ S3A4(,03 |u|2 e2sa dtder
Qp wé‘

(2.2.14)

for all s > sp.
Combining (2.2.13) and (2.2.14) and taking sufliciently large s, A > 0,
we obtain

1 1.
/ (— |8tu|2 + |8tv[2 + — |A’u.|2 + |Afu|2
r \5¥ s
+SA299|VU|2+ 32/\2@2 |V’U|2 + 83)\4903 |u}2 + S4A4(,04 |”U|2) 259 4t d
<C / (|f1|2 + sfﬂlez) e dt dz+C f (33)\4(,03 uf? + sttt I'U|2) e
or ol
(2.2.15)

Since |32m| < €% on 07, we have

/’ (53)\4903 lul® + s*atpt |vi2) 2% dtdz < CeCs* ! (||u||iz(w%) + ”U”iz(w&_)) .
w

(2.2.16)
Then combining {2.2.12}, (3.2.3) and (2.2.16), we deduce that

/ (é@u\z + |6w]? + é [Aul® + |Av? (2.2.17)
Qe . !

+-5A%0 [Vul? + s2 X207 |Vl + BA%08 Jul? + s*A%p? |v|2) ¥ dt dx
(2.2.18)
< C’f (|f1|2 + s Ileg) e dt dx (2.2.19)
Qr

+ Ce% s\t (IAilagury + Nl ozszzry + Il e )
(2.2.20)

which prove the lemma.

2.3 Proof of Theorem 2.1.1

Let (u;,v;) for 7 = 1,2 satisfy (2.1.1) and (2.1.2).
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Weset U=u;—ug and V =v; —vs. U and V solves

U+ l(x)atV =V (1{1 (x)VU) +anU+apV +A1 -VU+ AR VV
+V - (R(@)Vu) (23.1)

GV =V - (M1 (2)VV) + aaiU + apoV + Aoy - VU + Agg - VV
V- (M(ﬁ)vw) . (2.32)
and U =V =0 on Sr. _ '
Set y; := &)U and z; := &V (§ = 1,2). Then we obtain
8tyj + llath =V- (K1Vyj) + any; + a12z; + Al - Vyj + A - VZj
+V- (RVou) (233)

Byz; =V - (M1 Vz;) + as1yj + ago%; + Aoy - Vyj + Aag - V7,
+V. (I\"/fvaguz) (2.3.4)

and boundary conditions ¢; = z; = 0 on Zp.

Step 1 We will estunate the L2-norm of z in a subdomain of Q in terms
of y. By using @ = fﬁ ) dr and T = fa z(7,-) dr, we rewrite (2.3.3) as
— Zlatzj + Ao - VZJ' + a127;
= Oy — V- (K1 Vi) — oary; — An - Vi = V - (RV8]up)

= Qy;)(t, %) - V - (Bvoiu). (235)

By Lemna 2.2.2, we have

/ 2 lz |2 25(990—A(t—9)2) dtde
wh

T

= O/ Q) 2o(e0=46=0)%) gt 4z + C / , ly;|? e2(Po—AW=0)%) gt g4y

T

2
+C Kva’uQ)’ e25(20-46=0%) qrdz. (2.3.6)

]
W

Since

T
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-and K =0 on w, we obtain

A2
/.’ g° ]Zjl2 623("90 A(t-8) )dt dz < Cebs (”yj]|2H1(0,T;L2(wf}) + ||yjH?_-,2(O’T;H2(wr)))
W

(2.3.7)

By fixing sufficiently large s > 0, (2.3.7} gives
“szQLZ(w'T) < Ce®* (”yj”?{l([),T;Lz(w’}) + ”y.’iH2L2{O,T;H2(w’))) - (238)

Step 2 We apply Theorem to (2.3.3) and (2.3.4) for (§,T — &) x £ with

M P2Allegm)
E-0T-5-1)

Y =

and have

1 2 2, 1 2 2
— |Beys 1" + |Oezi|” + — |Ay;|” + Az
/(5,T—6)><Q (w' ittt Ol 1R o
187320 |Vy;|2 + 822207 | V252 + S010% |y ° + 'A%t £zj|2) e?*e dt dz
12 2
<c (|K’ + |VE| )ezsadtdz
(5,T—8)x
2 —2
+C s (|M‘ +|VM| )ezsadtdm
(8,T—-8)x&2
+C (5,2 (lilipozeey + Willko ) - (2.3.9)
We set the cut-off function x € C§° (0,T) defined as

1 3b<t<T—30

0<y<1 1) =
sxsl x® {0 0<t<26,T—-26<t<T.

Then we have
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/ 1B,U (6, 2)[? 220 4

T—5 d )
[ ( f |0.U (¢, z)? x2e2se(t) da:) dt
8
<2 / (8:U) (87U) X2 > dtdz
(0.T—6)%Q
e _ Aelom)
+ 25 / 7 >
@r-8sxa -8 (T—6—1t)
+2 f 18U x (8yx) €2 dt da.
(8,7—6)x0

(t — T+ 28) |3,U | x2e®* di du

<Cs [ (lnP+huf) e aas,
(5,T—8)xQ

f |8, VU (8, 2)|? 25000=) g
Q

. T—§
< f 4 ( / |8, VU (¢, z)|* x2e2oeE) dx) dt

< 2/ (6:VU) - (3?\7[]) x 20250 J4 dp
(8. 7—-8)x5 |
Mg _ 2)\”99"(,-(5) ‘
+23/ - 2 - 5 (t— T +28) |8, VU|? x*€** dt dzx
@T-8yxq (t—8)* (T —d—1t)

+2 / 18, VU2 x (8x) e2** dt da.
(6,T—56) %%

<Os [ (93?4 [Vaal) 2 asds,
JET-6xn
Similarly we can prove _
/ (|atv 0, z) + |8,V (8, :c)|2) e2a(0) gy
Q
< Cs / (|z1|2 + Va4 |2t + |v,»;2\2) e**dtdr. (2.3.10)
(6,T-38)x2
By using (2.3.9), we have
/ QatU 6,2) + 8,V (8, %) > + |8VU (8, )% + |8:VV (6, z)| ) 2s0(6:2) iy
< C(s, A) (”U“H3(O,T;L2(w’)) + “U”H2(D,T;H2(w’)))

~ 2 ~ 2 |2 |2
+C OK| +I\7K| -I-scp|M‘ —|—'sqa|VM‘ )ezsadtd;c.
(0,T)x
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Substituting ¢ = ¢ into (2.3.1) and (2.3.2) yields
V- (RVw) =80 (6,) + LaU (0,7,
V. (A’Iwg) —8,U(6,).
Since &3 is bounded in €2, we finally obtain
/g; <|v- (Rvu) |2 +|vv. (kvm)r + |V (3Ver) f +|vv - (M) ‘2) eo0) gz

~l2 ~|2 —
<C (|K1 +|VK| + s |37

(0,T)x$

2 —_2
—+ sp |VM‘ ) e?% dt dz
+ C(Sr)\) (”315U||§11(0,T;L2(w:)) + HatU||i2(0,T;H2(w’))) . (2311)

Step 3 In order to derive the estimate for. & and M. , we need the following
lemima:

Lemma 2.3.1. Consider the operator
Lf(z) =V - (f(z)Vb(z)).
Suppose that b € W%2(Q) and
|Vd(z) - Vb(z)| £0 z €.

Then there exists Ap > 0 such that for any A > Mg, there exisis 59 > 0
such that for any s > s, ’

[ #006.07 (£ +1V1F) 0 az < 6 [ (ILiP+ 1V EHP) 90 az

for any f € HZ (Q).

Proof. Set g = e*?®) . Then we have

e8], (e—sw("v) g) = V- (gVb) — shp(0,) (Vd - Vb) g.

Integration by parts yields
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e L f 2

L39)

> /Q 2220 (8,)? |Vd - Vb|* g? dz — /ﬂ 2sh (8,-) (Vd - Vb) gV - (gVb) dx
> ,/gz 2220 (0,-)IVd - Vb|* g dz
- /g ship (0,7) (Vd - Vb) (V- (¢*Vb) — g°Ab) dz
> fgsz,\zap(a,-) |Vd- Vb ¢* dz
+ fn s\ (8, ) [Vd- VB2 g2 dz + fg s (6,) VbV (Vd- Vb) ¢ dz
+ fﬂ shp (,-) (Ab) (Vd - Vb) g* dz
> /ﬂ X0 (0,-)|Vd- Vb|? g*dz — C /Q s\l (8,-) g* dz.
Hence by assumption |Vd - Vb| # 0, we have
/ﬂsz}\zrp (6, w)2 FRe20(05) qg
<C fn \Lf|* e dg + ¢ /a sXe(6:) Frete@a 48, (2.3.12)
In order to estimate V f, we use the identity
L(8:f) = 0 (Lf) — V - (V).
By applying (2.3.12) to this identity, we see that
/932)\250 (0, 2)% Vf|? 290} 4
<C /ﬂ IV (Lf)? 2% dz 4- C fa . sk (8,-) [Vf[2e?l0m) a4
+C fﬂ (177 +1V7P) 2902 s, (23.13)

By combining (2.3.12) and (2.3.13) and by taking sufficiently large s, A >
0, we complete the proof. |

Since X = M = 0 near 0% by assumption, Lemma 2.3.1 and (2.3.11)
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- yields
[ #3262 (|RE + [OR] 4 [ + [oF ) 00
: ~12 ~|2 —2 2
<C (|K} + |Y7K‘ +scp‘M| +sgo‘VM| )ezmdtdx
{0,T)x&2
+C(s,A) (“U”%F(O,T;L?(w’)) + ||U||?12(0,T;H2(wf))) . (2.3.14)

Since (8, z) > aft,x) for any £ € (0,17, we have

~2 ~12 —2 2
c (|K| +|VK| —I—S(le| +sc,o|VM‘ )ezsadtdw
(0,T)x$ :
~ |2 ~12 —_2 —12
501”/0 (]K| +|vE| —|-S<,0‘M‘ + s |V >32mdm. (2.3.15)

Combining (2.3.14) and (2.3.15), and choosing sufficiently large s > 0
and A > 0, we finally have ' .

[ 82)\2{102 (‘K| —+ ‘VK| + IM’ + ’VML )626‘&(9,37) dx
Q .
S C(S’ A) (”U||2H3(U’T;L2(wl)) + ”U”?fz(O’T;Hz(wf)}) . (2316)
Now there exists C' > 0 such that eCs < ?sa(02) for 7 ¢ (7, we have
2,Cs (H Ifg‘

By dividing it by s2¢C% and by fixing sufficiently large s > 0 and A > 0,
the proof is completed.

2 —2 2 2
m) T HM| HI(Q)) < C(s,2) (“U||H3(D,T;L2(w'}) + ”U”H%O,T;HZ(W’))) :
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Chapter 3

Inverse problem of a
structured population model

3.1 Introduction

Structured population models describes the change of distribution of indi-
viduals in & population. In these models, individuals are described by using
several parameters— for example, age, size and so on— and a population den-
sity is considered as a function of not only time and spatial position but
‘these individual parameters. In this meaning, we can say that structured
population models describes “the detail structure of population.” These
models originated in Sharpe and Lotka [26] and McKendrik [22] and have
been widely studied in the mathematical biology.

In this paper, we consider one of structured population models stated
in Webb [27] in which age and size are considered as individual parameters.
The model is described as follows: Let © < R® be an open set which rep-
resents an inhabited area and ay, §1, 9,7 be positive real constants. Then
the main equation of our model is

Bult, x,a,8) + dqult, z, a, 8) + &5 (¢(s)ult, 2, a, s))
= a(x)Ault, z, a,$)—V-(v{@)u(t, 2, a, 8))—pn (2,0, s,u(t, 2, ¢, 8)) ult, 2, q, 8)
(t,z,a,8) € (0,T) x 2 x(0,a1) x (s1,82) (3.1.1)

with initial and boundary conditions

[-3] sz
u(t, z,0,8) = / [ Bz, a,5,5)u(t, z,q,3) dsda
0 51
(t,2,38) € (0,T) x 2 x (s1,82) (3.1.2)

u(t,z,a,81) =0 (t,z,0) € (0,T)x2x(0,a1) . (3.1.3)

u(0,z,a,s) = p{z,a,s) (z,a,8) € Q2 x(0,a1) % (51, 82) (3.1.;1)
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du=0 on (0,7) x 902 x (0,a1) x (s1,2) {3.1.5)
where

1o,
aa
and s, 3, are defined similarly.
Interpretation of equation 3.1.1 is as follows: a is age of individual and
s a size. u(t,x,a,s) can be interpreted as the population density at time £,
at position z, at age a and at size s. Moreover

& = V = (821,005, 0zy)T s A =082 +02, + 82,

o Jult, z, a,s) represents aging effect. (The coefficient is always exactly
1 because age increases exactly 1 per a year.)

o 0; (g(s)ult,z, a, s)) represents growth effect with g(s) a growth modulus
(that is, [ 1/g(c)do is a spending time to grow the individual from
size s to size ).

o oz)Au(t, z, a, s} represents diffusion with a(z) > 0 a diffusion coeffi-
cient.

o —V-(v(z)ult, z, a, s)) represents tazis with v(z) = (1 (), v2(x), va(z))"
a taxis coefficient.

e —u(z,a, s, u(t, T,a,s)) u(t, T, a, s) represents mortality with mortality
rate p(z,a, s, u).

e The initial condition (3.1.2) of u(t,z,0, s) represents birth with birth
rate 3.

In Webb [27], the existence of the solution of the system (3.1.1)—(3.1.5) is
considered and proved by the semigroup theory.

Qur interest lies in inverse problems. To state the problems precisely,
we have to make more preparation. First, although the original equation is
non-linear, we consider the following “linearized” version for simplicity:

Lu(t, z, a,8) = Bwult, z,q,5) + Oult, z,a,8) + 8 (9(s)ult, z, a, 5))
— a(z)Ault, z,a,8) +vy(z) - Vult,z,a, s) + p(z)u(t, z,a,8) =0
(t,z,a,8) € Qr = (0,T) x Q x (0,a1) x (81,82) (3.1.6)

Second we introduce more notation. Let I' C 90 be an open subbound-
ary of  and set 7 = (0,T) x I x (0,a1) % (81,82). & € (0,7) is fixed.
-Then our inverse problem is stated as follows:

Inverse problem (IP): Let u(t,z,q, s) solve the equation (3.1.6) with
g known and @, v and g unknown. Determine ¢, vy and p from the (possibly
several time) observations of

ulET’ BVU|ET, u|t=9-
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In order to state the main theorem, we need same preparation. Let ug
and us satisfies (3.1.6) associated to the diffusion coefficients c; and ap
respectively. W™P and LF denote the classical Sobolev and Lebesgue space.
We write H™ := W™2, We denote

HY (Qr) :== HY((0,T) x (0,a1) x (s1,82) ; H™ () .
u; (¢, %, @, 8; ) solves the following equations:
Oyu; + Bquy + 85 (guy) — ajAu; + v - Vuy +pu; =0 in Qp
ui{0,z,0,8,q) = q(z,q,9) : on 2 x (0,a1) % (s1, $2).

We takep; € C% () ( = 1,2,...,5) and pose the following assumptions:
Assumption:

1. g € L™ (s1,82) and there exists M > 0 such that ||g|zeo(s;,s0) < M.
2. o, 0, p1, p2 € L2(Q), m, 72 € (L? (Q))3
3. |e|, ez %0 om £2.
4 ooq =ag, M1 =", =ponl.
5. The matrix
Apy dip1 Gepr Osp1 pa
Aoe Apy Oipp Oopa O3p2 P2

Aps hips Oaps Osps Ds

is invertible on © x (0,a1) % (s1,82) -
6. “uj‘(: R ,Pk)ch(QT) <M.
Our main result is the stability estimate for (IP):

Theorem 3.1.1. Let 8 € (0,T) be o fizred constant and suppose that As-
sumptions are satisfied. Letw be an arbitrary domain which satisfies Ow N QL C

[' and dist (w,BQ\F) > 0. Then there exist constants C = C(T\w) > 0
and x € (0,1) such that

lon — ezl -+ llva — Y2llzzeonz + i — p2llrz@
5

< CM™F | > (llua(ps) — wa(ps)limoz(zy) + |1 (p;) - ua{ps) | masyy)
s

(3.1.7)
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Example 1. We will give an example which satisfies the assumptions of
Theorem 3.1.1. Let us take p1 = 3, ps = 1, P3 = T2, P4 = I3, P5 = L.
Then the matrix A is written as

o
1
o
T3
1

2:1'71

I

[l
cCOoOOoOoN
oo o
c o= OO
oo oo

and the determinant of A does not vanish (det A = 2).

The key ingredient to prove Theorem 3.1.1 is Carleman estimate and
Bukhgaim-Klibanov method.

Since Bukhgaim and Klibanov’s pioneer work [2], Carleman estimates
have been widely used to prove uniqueness and stability of inverse problems.
Especially, for parabolic equations, see and [28] is a review for Carleman
estimates and parabolic inverse problems.

In our case, however, The operator L in 3.1.6 is different from an ordinary
parabolic operator, & — aA for example, because L contains not only ¢-
derivative but also a- and s-derivatives. For this reason, we have to make
an original Carleman estimate for operator L.

We remark about assumption for Theorem (3.1.1). In order to prove
the stability for the inverse problem by Carleman estimates, A positivity
condition such as 5 is always needed. Moreover, we cannot choose # = 0
in our method and This case is a long standing open problem even for an
ordinary parabolic equation.

The article is organized as follows: In Section 2, we establish the key
Carleman estimate for operator L and in Section 3, we prove Theorem 3.1.1
by using the Carleman estimate and Bukhgeim-Klibanov method.

3.2 Carleman estimate

In this section, we prove a Carleman estimate for operator L. Let us write
down again the definition of L:

Luft,z,a, s) = Swult, z,a, s) + Oult, z,a,8) + 0 (g(s)u(t, z,a, s))
— az)Ault,z,a,8) + V - (y(z)ult, z,a, 8)) + p(z)u(t,z,ae,8) (3.2.1)

To state the Carleman estimate, we set some notation. We denote
Lou := Byu + 8qu + 95 (g(s)u) .

we write in short

T
Va5t = (@u, (V)T , 1, 8371,) ,
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and similarly in V,; , Vi, s+ and so on.
Next we define a weight function. We use the following lemma:

Lemma 3.2.1. If Q has a smooth boundary, then there exists d € C? (—ﬁ)
such that

diz)>0,2€9Q, dz)=0zcdQ\I, [Vd()|>0,zeQ. (3.22)

For the proof of Lemma 3.2.1, see [28].
Now we state the Carleman estimate.

Lemma 3.2.2. Let ap € (0,a1) and sg € (81, 82) be a fired constant. Set
v,b(x,a,s,t) = d(ﬂ)) — ﬁl |G. — a0|2 — ﬂz {S - SU|2 — 63 |t‘ - 9i2,

where d(-) € C2(R3) satisfies |[Vd| # 0 in Q, and @ == e*¥. Then there
emists o constant Ag > 0 such that for arbitrary X > Ao, we can choose a
constant To(\) > 0 satisfying: there exists a constant C = C(w, o) > 0
such that :

/Q (% (|L0u|2 + |Au|2) + 7% |Vul? + 73)\4@31,52) e?™% dx dads dt
< C/ |Lul® e*™ dz da ds dt—!—CeC(A)s/ (|Vx,a,s,tu{2 + |u|2) dS da ds dt.
¢ N (3.2.3)
for anyw € H2(Q) withu =0 on (0Q\T') x (0,a1) x (s1,52) x (0,T).
Proof. Let u = e ™y and Pv := ™ L (e""%v). Simple calculation yields
Pv = Lov—aAv—72220%a |V |? v+72%001 (z, v+ 27 AeaVi-Vo. (3.2.4)

Then we divide Pv as follows:

Piv = —alAv — 72 2%0% [V 2 v + 702 pas (2, ),
Pov = Lov + 27 ApaVy - Vu.

Since (Lu) €™ = Piv + Pyv, we have

2 f (Pv} (Pov) dedadsdi + ||P2'u]i%z(Q) < / |Lul? €27 d da ds dt.
Q Q
, (3.2.5)
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Next we will estimate fQ PruPyvdrdadsdt. Expanding the product
PivPyv, we obtain

/ (P1v) (Pyv) dzdadsdt
Q -

= / o (Av) (Lov) dzdadsdt — / 72220% |V |? v (Lov) dxdadsdt
Q Q
(3.2.6)
+ / 202?010 (Lov) dz dads dt — f 27 hpa? (Av) (V4 - Vo) de dads dt
Q Q

- / 20903302 VY2 v (Vzb -Vv) dedadsdt
Q

+ / 272)\3(,020:@.1) (VY - Vo) dodadsdt
0 :
6
= > Is. (3.2.7)
j=1 .
L] = ‘—/ a (Av) (Lov) dwdadsdt‘
Q

< '—/ (Va Vo) (Lov) dzdads dt‘ + f aVu - Ly (Vv) dz dsdadt’
Q . Q _

+ ‘ ff o (Oyv) (Lov) dx dads dt‘ ' (3.2.8)

B =

= 1]@ (V- V) (Lov) dz dads dt‘ + /Qong ([Vv|2) dz ds dadt‘
+ U:fa(@,,v) (Lov) dxdads dtl (3.2.9)
< C/Q |Vu| | Lov| dz dads dt + O[f |V;E,a,s¢v|2 dSdadsdt. (3.2.10)
Next
ol = ’.— —LTZAQ@QQ|V¢|2U (Lov) dzdads dt’
_ ‘_% /Q 720220 |V (Lov?) d dads dt‘
< C/QTQAS(,D%Q dx dadsdi, ' (3.2.11)
and similar arguinent yields

| 73] SC’/ 2\3¢%0? drdadsdt. (3.2.12)
Q
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Integration by parts yields

Li=- fQ TAPCAV (V1,b : |vu\2) dz da ds dt
> /QT)\z(pOdz |V |? |V dzdadsdt+ Z/Q'r)\(pa (Va - Vi) |[Vol* dzdadsdt
-I—/Q'r)\t,aa2 (A) |V dx da ds dt — C/ﬁT}\go[VUF dz dadsdt

> /C;T)\zgoaz Vep|? |Vul? dz dadsdt — C’/Q'r)\tp |Vu|? de da ds dt

-C f~ TAe |Vo|* dS dads dt, (3.2.13)
r

Iy = — / 3 X30%? |V P (Vo - V (v?)) dedadsdt
Q
> 3/ X8 a? |Vt v dr dads di
Q
+ ] A3 (v (a2 |w|2) -w) v dz dads dt (3.2.14)
Q . -
+f NG a? |V (A) v? dmdadsdt—Cﬁ’ra’)@go%z dzdadsdt
@ r
23/ X a? |V¢|4v2dmdadsdt—0/ 3230302 dz dads di
Q Q -
(3.2.15)

-C /~ X2 dSdadsdt : (3.2.16)
T

and
76| = 1/ T Ng’aa; (Vi -V (v?)) dadads dt‘
Q
< f Xt drdadsdt + C ﬁ 2 %2 dSdadsdt.  (3.2.17)
@ JT

Hence combining (3.2.10)-(3.2.17) and (3.2.7), we finally obtain
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f (Puo) (Pyv) dasdads
Q

> 3/ X0 V| v? dx dads dt + / 22002 V|2 |Vu|? dz dads dt
Q Q
(3.2.18)
-C f |Vv| |Lov| dedadsdt — C f (T333¢° + 720192 w2 de dads dt
Q Q _
+C /~ 333 |V 0s1v|? dS dads dt. (3.2.19)
i
Next we estimate the norm of Py,
1P laon > | — |Powf? d dads dt
1 .
= / — (Lov + 21 ApaV - Vo) dedadsdt
QTY¥
> 1/ L |Lv|? dz dads dt — C/ T2X2y |Vo|? dz dadsdt,
2JgTy Q

where we used an mequality |a + b|2 > %az — b?. This implies

1
e[ o |Lov|* dzdadsdt < “PQ'U“%z{Q) + Ce/ 220 |Vo|* dedadsdt
Q : Q

(3.2.20)
for any € > 0. By (3.2.5), {3.2.19) and (3.2.20), we obtain

e/ 1 | Lov|? da:dadsdt—i—S/ X430 V| v? de da ds dt
R_TY¥ Q
+f 220 VY| |Vo|? da dads dt — CE/ A2 |Vul? da da ds di
@ Q@
5/ §L0u|2827""da:dadsdt+0/ (PN + 2N ) v dadadsdt
Q Q

+ C'f |Vu| |Lov| da dads dt + G/~’T3)\3(p3 V.00 dS dadsdt.
Q r
(3.2.21)

Next we have to estimate fQ |Vo||Lov| dz da dsdt. By Cauchy-Schwartz
inequality, we have

Vo | Lov| = 7Y/2AY201/2 |7p| 712012012 | L) < -%T)\go |Vl +- 1/\(,0 |Lov|*.

2T
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Then taking sufliciently large A > 0, (3.2.21) yields
€ f 1 |Low|* dedadsdt -3 / XPa? [V v? de dads di

QT¥ Q

+ f 22002 |V |V de dadsdt — Ce/ 220 |Vo|® dz dads dt
Q Q

< f |Lou|? ¥ du da ds dt + C’/ (X33 4 720%p?) v dudads dt
Q Q@

4+ C /; 330 !Vz,a,s,,gv|2 dSdadsdt
r

for Iargé A > Ao and T > 1o{}). We choose sufficiently small € > 0 such
that infg a? |V4p|* — Ce > 0 and then it follows that

1
[ — |Lov|* dz dads dt—l—f A% dedads dt—i—/ A2 | Vol dzdadsdt
QT¥ Q Q
< f |Lou|® e*™¢ dx dads dt + C f (73033 + 2X%%) v? du dads dt
Q@ Q
+C /_ X803 Vg 0,520 dS dads dt.
G
Substituting v = e"%u into it, we have
1
f — |Lou|? ¥ dz da ds dt—l—/ A p3u2e?™ dr dads dt+f T2 |Vul*&®™ dzdads dt -
QTY Q Q
< / | Lou|? €7 da: da ds dt + C'/ (T3X%° + 2 \?) u?e®™? dz dads dt
Q Q
+ CeCNT f_ 3033 Vg aspul® dSdadsdt. (3.2.22)
G
Since L = Lo + (0s9) u + V - (yu), The estimate of Lu is given by

/ |Lu? *™ dx dads dt < Cf |Loul® €27% dz: da ds dt—l—C] (u2 + |Vu|2) e*™ dx da ds dt.
Q Q @Q

(3.2.23)
Using (3.2.22) and (3.2.23), we obtain

/ L |Lou|? €™ da da ds dt-l—/ 2 X %u?e®™? dr da ds dt+/ X2 | Vul? €% dx da ds dt
QT¥ Q Q
< f |Luj? 7% dz da ds di -+ C/ (73230% + 72A1?) w?e®™ du da ds dt

Q

Q
L GO f_ T3N3 |V g0 l? dS da ds dt.
G
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Finally we estimate the term Au. . By (3.2.4), we have
la(z)Auf® < C ([Pv|2 + Lot + 72Xt u]® -+ T2A2p? |V’u|2) .

Then
f L a@)Av]dtdzdads < C (i ILovf? + 732\G® [uf? + A% |Vv|2) dtdedads
Qr T¥ Qr \T¥
+/ |Po|? dt dz dads
Qr
< C/ |Pv|? dtdz dads.

Qr

Since ¢ > 0 in 2, we complete the proof. : O

3.3 The proof of Theorem 3.1.1

Let w1 and us solve the following problem: -

Lyup, =0 in @=0x(0,T) x (0,a1) x (1, 82) (k=1,2)
up(®, ) =pr on Q2 x (0,a1) % (s1,82) ’
where

Lyv = Lov — ag(2)Av + () - Vv — pup(x)v,

Lov = v + dgv + 35 (g(s)v) -
Set y := w1 — uo. y satisfies

Loy —aa(z)Ay+7:1-Vy— 1 (z,0)y = 8(w)Aug —F- Vg +i (&) ug: (3.3.1)

Let us define w = xLoy. Then w; satisfy the following equations:

Low — a1 Aw + v, - Vw — paw = x&LoAus — X7 - LoVug + xiiLoug + 26V - VLgy
| +{Oex + Bax + 10sx — a1 (Ax) + 71 - V) Loy
By applying Theorem, we obtain

/ (L(P |Low|* + A% |Vu|® + r8A%° |’wi2> e’ dtdzdads
Q@ \7 _
< O/ (|a|24w A+ |;z|2) X*€*™ dtdz dads
@
2 2 ¥ 2 J 2 27
+C (IVz,m,a,sxl +|Axl) ‘Loy‘ +|VL0yL *? dt dz dads
Q

+Ce [ (IVemamos? + ) dtdSdads, (5 = 1,2).
=
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By Low = LixLoy + xLiy and Vw = VxLoy + xV Loy, we have
/Q (% |_Lgy|2 + 720 [V Loyl + 732%° [Loy|2> x2e¥? dtdz dads
<cC /C; (13 + 12 + ) x2e* dt dzdads
+C /Q (|v'¢,m,a,sx|2 + IAX|2) (|L0y|2 + [VLgy|2) e”™? dt dz dads + Ce”TF*
<c /Q (18P + FP + [BP) 22" dt dz dads
+ Ce?mexp(3Xe) [Q (|L0y|2 +.|VLoy|2) dtdzdads + Ce"F2 (j =1,2).

By Stokes’ theorem and x = 0 on Q x (0,T) x (0,a1) x {s1,82} and on
0 x (0,7) x {0,a1} x (51,52) , we estimate

/ |Loy(8, )|* x%e*? dz dads
Qn{t=t}
< / Ly (|Lgy|2 xzezr“") dtdz dads (3.3.2)
Q .
< f (2 (Loy) (L) x* -+ 2 Loyl xLix + 22 L | Loyl x? ) ¥ dt dzdads
Q

1
< 0/6272)\2(,02 {Loyl® x2e¥%dt dz dads + CfQ TN |L%yl2 x’e*™“dt dzdads

2 =2 ) o} Ce®”
< g/ (\culz + |";f|2 + |,u|2) x2e?™¥ dt dz dads + —e?7 =P pr? o ¢ 2.
T Q T T
(3.3.3)
Substituting ¢ = 8 into (3.3.1), we have
L‘Jy(ga BN ) = &(x)Ap - ? : Vp + }I(SL‘) p.

Then we can write this equation as the following matrix form:

o
Y1
A ;?2 = G:
¥
I
where
LOy(ga R '?2‘31)
L Loy(61'1'1';p2)
LOy(B: EN ';p5)
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Hence, if |det A| # 0, then we have

Y2 = A_lG'.

Then

[ (|&|2 + W|2 + [ﬁ\?') x2 e dxdads
QTn{t:Q}

< C/ IG|? x2e*™ dzdads
Qrn{t=0}

F2

C g @ s e ' C CeC™
< —f (1817 + 517 + [ 126> dt do dads + Ze2r @ g2 4 =2
T Jor T T
(3.3.4)
Since ¥(8, z, a, s) = ¥({{,x,a,s) for any (¢, z,a, 8) € Qr, we obtain

/ (182 + FP + |B) x?e* e dt dz dads
Q

<CT f (@2 + 3P + [P 327 dzdads. (3.35)
Qnie=0} |

Then by (3.3.4) and taking sufficiently large 7 > 0, we have

_ 5 _ - o Cr
/ (|o¢f|2 + 7] + |u|2) x2e¥™ dzdads < — 2P g2 4 Ce—Fz.
Qnit=0} T 7

(3.3.6)
Since ¥ = 1 on QQ4e, we obtain

Cr
eZ’rexp(tl/\s)./\ (|a|2 + |ﬁ'|2 + |ﬁ|2) dzdads < _quTexp(&\s)Mf_Fg__e___FZ'
QaN{t=6} T T

By dividing this inéquality into e27exP(426) we have

2, =2 2 C 2 Ce®"
f (187 + 5% + B dadads < Ze2a + YR (33)
QueN{t=0} T T

for any 7 > 7o, where p = exp (4Ae) —exp (3Xe) > 0. By replacing CeC™
with C, we obtain (3.3.7) for any 7 > 0. We choose 7 as

c
98—2WM12 _ L
-

b

T
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that is,
2 My

2u+C e

Then

f (& + 312 + [i?) dedads < OM}~*F",
QacN{t=0

4
where k := _L2#+C'

Next we need to estimate “&”%2(55) + ||§||%2(55) + ||,t'1||%2(55) by

] (182 + 152 +14?) dzdads
Q45ﬂ{t=9} ]

By definition of ¢J5, we have
Que N {t =0} = {(,0,5) € Qr; d(z) = By lo — a0l = B |s — 5ol 45}.
Then

Qee X (ao—é",ao -|—.E) X (30—5,80—]—'5) CQ4gﬂ{f;:9},

. . \1/2
where £ 1= (m) : Hence

42 (180aq0e) + 130y + 1By

< / (18 + 5P + i) dedads < CM} " P*,
Qaen{t=0}

Then the proof is completed.
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