論文の内容の要旨

論文題目

Non-commutative Reidemeister torsion, Morse-Novikov theory and homology cylinders of higher-order

(非可換ライデマイスタートーション,モース ノビコフ理論 及び高次のホモロジーシリンダー)

氏 名 北山 貴裕

本論文の目標は,非可換係数の Reidemeister torsion の Morse 理論的或いは力学系的な表示を記述することと,後述する '高次の'homology cylinder たちの成す monoid 及びその homology 同境群の代数構造を非可換係数の Reidemeister torsion を用いて調べることである.

向き付けられた滑らかな閉多様体 X に対して,その上の Riemann 計量と S^1 -値 Morse 関数 $f\colon X\to S^1$ であって,臨界点の安定多様体と不安定多様体が全て横断的に交わり, ∇f の閉軌道が全て非退化であるものを選ぶ.生成元 $t\in\pi_1S^1$ を S^1 の標準的な向きとは逆行するものとし, $f_*\colon\pi_1X\to\langle t\rangle$ に付随する $\mathbb{Z}[\pi_1X]$ の Novikov 完備化を Λ_f , $1+\sum_{\gamma\in\pi_1X,\deg f_*(\gamma)>0}a_{\gamma}\gamma$ と書ける元から成る Λ_f の単数群の部分群を W とする.

まず , W のある可換商 \overline{W}_{ab} を考え , '非可換な'Lefschetz 型 zeta 関数 $\zeta_f \in \overline{W}_{ab}$ を以下の式によって定義する:

$$\zeta_f = \prod [1-(-1)^{i_-(o)} [\sigma_o o \bar{\sigma}_o]]^{(-1)^{i_0(o)+1}} \ .$$

但し,積は像を 1 周だけするような閉軌道 $o\colon S^1\to X$ 全体の集合のパラメータ変換 U(1) による商集合に渡って取るものとする.ここで, $i_-(o)$, $i_0(o)$ は各 o に対して決まるある整数であり,また, σ_o , $\bar{\sigma}_o$ は任意に選ばれた X の基点から $o(S^1)$ への道とその逆, $[\sigma_o o\bar{\sigma}_o]$ は道の合成 $\sigma_o o\bar{\sigma}_o$ が定める $\pi_1 X$ の元である.任意の積の順序に対して,この無限積が意味を持つこと,更に, ζ_f はその積の順序,道 σ_o の選び方に依らないことが確かめられる.可換化写像 $\pi_1 X\to H_1(X;\mathbb{Z})$ が誘導する \overline{W}_{ab} から $\mathbb{Z}[H_1(X:\mathbb{Z})]$ の Novikov 完備化の単数群への準同型写像によって, ζ_f は '可換な'Lefschetz 型 zeta 関数に写される.

次に , poly-torsion-free-abelian である群 G と $\alpha\circ\rho=f_*$ となるような準同型写像 $\rho\colon\pi_1X\to G$, $\alpha\colon G\to\langle t\rangle$ を取る.群環 $\mathbb{Z}[G]$, $\mathbb{Z}[\ker\alpha]$ は Ore 整域であり,それぞれの商体 $\mathbb{Q}(G)$, \mathcal{K} に埋め込まれることが知られており,半直積分解 $G=\ker\alpha\rtimes_{\theta}\langle t^l\rangle$ に対応して, $\mathbb{Q}(G)=\mathcal{K}_{\theta}(t^l)$ と表わすことができる.準同型写像

ho: $\pi_1 X o G$ は Laurent 冪級数環 $\mathcal{K}_{ heta}((t^l))$ への準同型写像 $\Lambda_f o \mathcal{K}_{ heta}((t^l))$ に自然に拡張されるが,これを再び ho で表わす.群 \overline{W}_{ab} と同様に構成される $\mathcal{K}_ heta((t^l))$ の単数群のある可換商 $\overline{\mathcal{K}_ heta((t^l))}_{ab}^ imes$ を考えると,誘導準同型 写像 ρ_* : $\overline{W}_{ab} \to \overline{\mathcal{K}_{\theta}((t^l))_{ab}^{\wedge}}$ が得られる.

準同型写像 ho に付随する局所系の homology 群 $H^{
ho}_*(X;\mathcal{K}_{ heta}((t^l)))$ が消えるとき , ho に付随する Reidemeister $au_{
ho}(X) \in \mathcal{K}_{ heta}((t^l))_{ab}^{\times}/\pm
ho(\pi_1 X)$ 及び f が定める $\mathcal{K}_{ heta}((t^l))$ 上の Novikov 複体の代数的 torsion として Novikov $\operatorname{torsion} au_{
ho}^{Nov}(f) \in \mathcal{K}_{\theta}((t^l))_{ab}^{\times}/\pm
ho(\pi_1 X)$ が定義される.このとき,主定理は次の通りである.

定理 1. 上のような (ρ,α) に対して , $H_*^{\rho}(X;\mathcal{K}_{\theta}((t^l)))$ が消えるならば ,

$$\tau_{\rho}(X) = \rho_*(\zeta_f) \tau_{\rho}^{Nov}(f) \in \overline{\mathcal{K}_{\theta}((t^l))}_{ab}^{\times} / \pm \rho(\pi_1 X) \ .$$

これは可換表現の場合に Hutchings-Lee, Pazhitnov によって得られていた公式の非可換係数への一般化と なっており, Cochran, Friedl, Harvey らによる higher-order Reidemeister torsion の積分解を導く.

(空でもよい)n 個の境界成分を持つ種数 g の向き付けられたコンパクト曲面を $\Sigma_{g,n}$ と書き , Γ_m := $\pi_1\Sigma_{g,n}/(\pi_1\Sigma_{g,n})^{(m+1)}$ と置く.まず,与えられた整数 $m\geq 0$ に対して,'マーキング写像' $i_\pm\colon \Sigma_{g,n}\to \partial M$ が同型写 像 $\Gamma_m o \pi_1 M/(\pi_1 M)^{(m+1)}$ を導くような homology cylinder (M,i_\pm) として, $\Sigma_{g,n}$ 上の m 次の homology cylinder を導入する.これら m 次の homology cylinder の同型類の集合 $C_{g,n}^{(m)}$, 3 次元多様体として既約であるものたち の成す部分集合 $\overline{C}_{g,n}^{(m)}$ は , cylinder の '積み重ね' によって monoid , submonoid の構造を持つ . また , homology cylinder からの inclusion が基本群の同様の可解商の上に同型写像を導くような , 滑らかな homology 同境に よる $C_{g,n}^{(m)}$ の同境群 $\mathcal{H}_{g,n}^{(m)}$ を導入する.群 $\mathcal{H}_{g,n}^{(m)}$ は $\Sigma_{g,n}$ の写像類群の一つの拡大を与えていることが確認でき る.曲面の写像類群の Dehn-Nielsen 写像の類似として,自然な準同型写像 $C_{g,n}^{(m)} o \mathrm{Out}(\Gamma_m)$ 及び誘導準同型 写像 $\overline{C}_{g,n}^{(m)} o \operatorname{Out}(\Gamma_m)$, $\mathcal{H}_{g,n}^{(m)} o \operatorname{Out}(\Gamma_m)$ が考えられ , これらの核をそれぞれ $IC_{g,n}^{(m)}$, $I\overline{C}_{g,n}^{(m)}$, $I\mathcal{H}_{g,n}^{(m)}$ とする .

次に, Reidemeister torsion と上の Dehn-Nielsen 型準同型写像を用いて, 準同型写像

$$C_{g,n}^{(m)} \to (\mathbb{Q}(\Gamma_m)_{ab}^{\times}/ \pm \Gamma_m) \rtimes \mathrm{Out}(\Gamma_m) ,$$

$$\mathcal{H}_{g,n}^{(m)} \to (\mathbb{Q}(\Gamma_m)_{ab}^{\times}/ \pm \Gamma_m \cdot \langle q\bar{q} \rangle) \rtimes \mathrm{Out}(\Gamma_m)$$

を構成する.ここで, $\mathbb{Q}(\Gamma_m)_{ab}^{\times}$ は $\mathbb{Z}[\Gamma_m]$ の商体の単数群の可換化であり, $\overline{\cdot}$: $\mathbb{Q}(\Gamma_m)_{ab}^{\times} \to \mathbb{Q}(\Gamma_m)_{ab}^{\times}$ は Γ_m 上の involusion $\gamma\mapsto \gamma^{-1}$ が誘導する involusion である.これらは Cha-Friedl-Kim によって構成された $C_{g,n}^{(0)}$, $\mathcal{H}_{g,n}^{(0)}$ 上の準同型写像の拡張になっている.また,以下の定理が示される.

定理 2. $(g,n) \neq (0,0), (0,1)$ のとき,全ての正整数 m に対して,準同型写像 $\mathcal{H}_{g,n}^{(m)} \to \mathcal{H}_{g,n}$, $I\mathcal{H}_{g,n}^{(m)} \to I\mathcal{H}_{g,n}$ は全射ではない.

更に, $\Sigma_{g,n} \times [0,1]$, S^3 の結び目補空間を各結び目に沿って張り合わせることによって, $C_{g,n}^{(m)}$ の元を構成 する方法を与え,その Reidemeister torsion の計算を行う. 帰結として,以下の定理が得られる.

定理 3. (i) $I\overline{C}_{0,2}^{(1)} \neq I\overline{C}_{0,2}^{(0)}$. (ii) $I\overline{C}_{1,0}^{(1)} \neq I\overline{C}_{1,0}^{(0)}$.

 $(iii)\ (g,n) \neq (0,0), (0,1), (0,2), (1,0)$ のとき,全てのm に対して, $I\overline{C}_{g,n}^{(m+1)} \neq I\overline{C}_{g,n}^{(m)}$ である.

最後に , n>0 のとき , $\mathbb{Q}(\Gamma_m)_{ab}^{\times}/\pm\Gamma_m$ からある自由 abel 群への全射を構成することにより , 以下の定理 が示される.

定理 4. n>0 かつ $(g,n)\neq (0,1), (0,2)$ のとき , 全ての m に対して , $I\overline{C}_{g,n}^{(m)}$ は有限生成ではない .

この定理は合田-逆井によって示された $\overline{C}_{an}^{(0)}$ の非有限生成性の類似的結果と見做せる.