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Extensions between finite-dimensional simple modules
over a generalized current Lie algebra

Ryosuke Kodera

Abstraet

We calculate the first extension groups for finite-dimensional simple modules over an
. arbitrary generalized current Lie algebra, which includes the case of loop Lie algebras and
their multivariable analogs.

1 Introduction

In this article we are concerned with finite-dimensional modules over a generalized current Lie
algebra A ® g, where g is a finite-dimensional semisimple Lie algebra defined over the complex
number field C and 4 is a nonzero finitely generated commutative C-algebra. This class of Lie
algebras includes loop Lie algebras, current Lie algebras and their multivariable analogs. Since
the category of finite-dimensional A ® g-modules is not semisimple in general, we need to study its
homological properties. The purpose of this article is to give an answer to the following problem
which naturally arises during the study.

Problem 1.1. Calculate Ext' (¥, ¥”) for any finite-dimensional simple 4 ® g-modules ¥, V',

Some results are known for special cases so far. Fialowski and Malikov [FM] give an answer
for the case of loop Lie algebras or current Lie algebras under the assumption that ¥ and }’
are so-called evaluation modules. In fact they calculate Ext'(V,V”) for any finite-dimensional
simple evaluation modules 7, ¥’ and all i > 0. The first extension groups for any finite-dimensional
simple modules over a current Lie algebra are calculated by Chari and Greenstein [CG]. Our main
theorem is regarded as a generalization of the result in [CG] although the approach is different.
See Remark 3.5 and 3.7 for a more precise explanation on their result. Our approach is based
on a work by Chari and Moura [CM], which determines the blocks of the category of finite-
dimensional modules over a loop Lie algebra. One of the main tools used in [CM] is a family
of the universal finite-dimensional highest weight modules called Weyl modules. In [CM] some
knowledge on composition factors of Weyl modules is established (See Corollary 2.8) and they use
it to determine the blocks. The notion of Weyl modules is generalized by Feigin and Loktev [FL]
for an arbitrary generalized current Lie algebra. They also prove the properties of Weyl modules
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mentioned above in the general situation. Then techniques used in [CM] are applicable for the
general case and in fact yield a stronger result than the block decomposition of the category.

Now we state the main result. For each maximal ideal m of 4 and the finite-dimensional simple - -

g-module ¥ (A) with highest weight A, the 4 ® g-module structure is defined on ¥ (4) through the
natural morphism 4 ® g — (4/m) ® g ~ g. We denote by F;(4) the resulting 4 ® g-module and
call it the evaluation module associated with ¥'{A) at m.

Theorem 1.2. Let V, V' be finite-dimensional simple A ® g-modules.
() IFExt'(V,V") # 0 then

Vo~V (M) @V, (A1) @ Vi, (Ar)
and
= me (2'1) @@ er-l (ar—l) @ er(l;)
Jor some nonnegative integer r, maximal ideals wy,...,m, of 4, and dominant integral
weights Ay, ..., Am Al
(ii} Suppose that
V=V (M)® - @V _ (Aro1) ® Vi (A,)
and
V=V ()@ @F, (A1) @V, (A7)
where A, and A are possibly equal to zero.

If &, # A then

Ext! (V, V") o Ext! (Vn, (Ar), Vi, (4,))
=~ Homy (g ® ¥ (A), ¥ (4/)) ® Der(d, 4 /m..).

If A = A/ then

Ext! (¥, V') ~ éaExt‘ (Vi (A4), Vi (A4))
=1

~ é (Homy(g @V (A:), V() ®Der(A,A/m,—)) .

i=1
Here Der(A, A/ m} is the C-vector space of derivations of A at m.

By this result, it turns out that extensions between simple modules rely on the choice of a
vector of the Zariski tangent space Der(4,4/m) ~ Homg(m/m?,C) at each point m of Specm 4,
the maximal spectrum of 4. It should be noted that known results on the extension groups for
A ® g-modules are limited so far to the case where Der(4,4/m) is one-dimensional. Hence the
appearance of Der(4,4/m) in our work is a new feature. '

The article is organized as follows. Section 2 is devoted to recalling some definitions and
fundamental facts. It contains the definition of generalized current Lie algebras, the classification
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of finite-dimensional simple modules, various properties of Weyl modules and a reminder on some
generality for the module category of a Hopf algebra with certain conditions. By using the notation
introduced in Section 2, the main theorem is restated (Theorem 3.6) and proved in Section 3. In
Section 4 we consider the block decomposition of the category of finite-dimensional modules over
a generalized current Lie algebra. This generalizes the result by Chari and Moura [CM].
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2 Finite-dimensional modules over a generalized current Lie algebra

2.1 Semisimple Lie algebras

Let g be a finite-dimensional semisimple Lie algebra over the complex number field C. We denote
by h a fixed Cartan subalgebra and n the nilpotent radical of a fixed Borel subalgebra containing
h. Let I be the index set of simple roots. We choose Chevalley generators e;, 2, f; (i € I) of g.

We denote by P the weight lattice of g with respect to ) and Q the root lattice. The set of
dominant integral weights Pt is defined by P* = {A € P| (h;,A) > Oforany i€ I}. For A,u € P
we say that A > p if A — it is expressed as a sum of simple roots whose coefficients are all
nonnegative infegers.

Let ¥ (A) be the finite-dimensional simple g-module with highest weight 4 € Pt. The highest
weight of the dual module ¥ {1)* of ¥ (4) is denoted by A*.

2.2 Generalized current Lie algebras

Let a be an arbitrary Lie algebra over C. For a given nonzero finitely generated commutative
C-algebra A4, we define the Lie algebra structure on the tensor product A ® a by

[a®x,b®@y] =ab® [x,)]

fora,he dandx,y € a.

We call the Lie algebra 4 ® g the generalized current Lie algebra. The most familiar examples
in this class of Lie algebras are the loop Lie algebra for 4 = (C[t,t‘l], the ring of Laurent poly-
nomials in one variable and the current Lie algebra for 4 = C[t], the ring of polynomials in one
variable.



2.3 Simple modules

We recall the classification of finite-dimensional simple 4 ® g-modules given by Chari, Fourier and
Khandai [CFK]. For each maximal ideal m of 4, there exists the canonical isomorphism 4/m =~ C
as C-algebras since we assume that 4 is finitely generated. We denote by ay, the image of an
element a € 4 by the natural morphism 4 — 4 /m ~ C and all C-vector spaces will be regarded as
A-modules via this morphism. We define the evaluation homomorphism atm

eVm: AQg—g

. by
eVn(a®x) = apx

for @ € 4 and x € g. For a g-module ¥ and a maximal ideal m of 4, we can define the A Q g-
module structure on ¥ through the Lie algebra homomorphism ev,,. We call it the evaluation
module associated with ¥ at m and denote it by ev, (V). We denote by ¥n(1) the evaluation
module ev; (F(4)). This module V(A) is simple since the evaluation homomorphism evy, is
surjective. The following proposition is proved in [CFK, 6.2].

Proposition 2.1. (i) Suppose that Ay,...,A, € PT are nonzero. Then the module @/_; Vi, (A:)}
is simple if and only if my,...,m, are all distinct.

(ii) Suppose that @_, V(%) and @i_; Ve (A]) are simple and Ay, ..., A Al,...,A{ € Pt are
nonzero. Then @i_1 V(%) and Qi_ Viu(4]) are isomorphic if and only if r = s and the
tuples ((m;, A:))1<i<r and ((m}, A]))1<i<» are the same up to permutation.

(iii) Any finite-dimensional simple A ® g-module is of the form @/ Ve, (A:).

Let & be the set of all functions from Specm4 to Pt with finite supports, where Specm 4
denotes the set of all maximal ideals of A. For a given 7 € &2, the isomorphism class of the simple
module @ equppr Vm (72(m)) depends only on , not on the ordering of the factors of the tensor
product. We denote by #'(x) this simple module. Note that #'(0) is the one-dimensional trivial
A ®g-module by definition, Proposition 2.1 implies the classification of finite-dimensional simple
A @ g-modules given in [CFK, 6.2 Proposition].

Theorem 2.2. The assignment
n— V(%)
gives a one-to-one correspondence between P and the set of isomorphism classes of finite-

dimensional simple A @ g-modules.

For m € &2 we define n* € & by n*{(m) = w(m)* for m € Specm 4. Recall that #{m)* is the
highest weight of the g-module ¥ (7r{m})*. Then it is obvious that the dual module ¥ (x)* of ¥ ()
is isomorphic to ¥ (x*).



2.4 Weyl modules

Definition 2.3. Let ' be an 4 ® g-module. A nonzero element v € ¥ is called a highest weight
vector if v is annihilated by A ® n and is a common eigenvector of A ® h. A module is called a
highest weight module if it is generated by a highest weight vector. For a highest weight module
¥ generated by a highest weight vector v, there exists A € (4 ®§)* such that

= {x, Ay
for every x € A® . This A is called the highest weight of V.

Remark 2.4, The definition of highest weight modules above is consistent with the usual one
for the case 4 = C. They are called /-highest weight modules for the case A = C[t,#~'] in the
literature.

Any finite-dimensional simple 4 ® g-module is a highest weight module. Recall that such a
module is of the form ¥ (x) for some & € £. We use the same symbol 7 for the highest weight
of #(x). In other words we regard & as a subset of (4 ®§)* via the classification of simple
modules. To be explicit z is determined by

(a®h,m)= 3 am(h,n(m))

mesupp A

for a € 4 and h € §. We identify 1 ® b with h. Then the restriction & to 1 ®  is identified w1th the
element ¥ cqupnx #(M) € PT, We denote by 7|y this element.

Definition 2.5. Let r be an element of .@ . The Weyl module # (x) is the A ® g-module generated
by a nonzero element v, with the following defining relations:

(A@n)v, =0,
xve = (X, W)ve
forxedA®h,
(1 ®ﬁ)(hs,ﬂln)+1vﬂ: =0
foriel

By the definition of the Weyl module %#'(x), any finite-dimensional highest weight module
with highest weight 7 is a quotient of #/(x). In particular the simple module ¥ () is the unique
simple quotient of #'(x). We denote by W, (1) the Weyl module which has the simple quotient
Vm(A). The notion of Weyl modules for the case 4 = C[t,#~!] is introduced by Chari and Press-
ley [CP] and the following fundamental results are proved. They are generalized by Feigin and
Loktev [FL] for a general 4.

Theorem 2.6. (i) Any Weyl module is finite-dimensional.

(i) We have an isomorphism

CH(m) = Q) Walm(m))

MESUPP A

Joranyme 2,



The following proposition is proved for the case 4 = Clt,#~1] in [CM, Proposition 3.3 (ii)] and
for the general case in [FL, Proposition 7].

Proposition 2.7. For a sufficiently large k, we have
(m* @ ) Wn(A) =0.
Corolary 2.8. (i) Any composition factor of We (L) is of the form V() for some u € PT.
(ii) Any composition factor of W (%) is of the form ¥ (z') such -that suppn’ C supp 7.

Proof. The assertion of (i) is deduced from the following fact: for distinct maximal ideals m and
w’, we have m* ¢ w’ for any k.
The assertion of (ii) is an immediate consequence of (i) and Theorem 2.6 (ii). O

Remark 2.9. The assertions of this corollary for the case 4 = Cfz, t“] are proved in [CM, Proof of
Proposition 3.3 (iii)] and used for the proof of vanishing of the extension groups for certain mod-
ules. We will also use it to prove vanishing of extension groups (Lemma 3.3) under an assumption
slightly different from that in {CM].

2.5 Adjointness

We denote by Ext! the first Yoneda extension functor for finite-dimensional A ® g-modules. We
recall an important fact (Corollary 2.11) which will be used repeatedly in the sequel. Let M be a
finite-dimensional 4 ® g-module. Then the exact functor M@ — is defined.

Propeosition 2.10. The functor M* ® — is a right and left adjoint functor of M & .
The proposition immediately implies the following. |
Corollary 2.11. We have natural isomorphisms
Ext'(V,M®V') ~ Ext'(M* @V, V"),
Ext'(MQV,V') ~ Ext!(V,M* Q V")
Jor any finite-dimensional A® g-modules V,V' | M.

Remark 2.12. Proposition 2.10 and Corollary 2.11 are general facts which hold for the category
of finite-dimensional modules over a Hopf algebra with an involutive antipode defined over a field.
We give an explicit description of the morphisms in Corollary 2.11. The morphism

Ext'(M*QV, V') — Ext!(V,M® V')
1s described as follows. Let

0 V! —E M@V ——0




be an exact sequenbe which represents an extension class in Ext!(M* ® ¥,¥”). Then the corre-
sponding element of Ext! (V/, M ® V") is represented by the first row of the diagram

00— MV E —V 0

| l

00— MV —MQE — MM QV —>0

where E' is the fiber product which makes the right square cartesian. The other morphisms are
obtained in similar ways.
3 Extensions between simple modules

The purpose of this section is to calculate Ext!(¥,¥”) for any finite-dimensional simple 4 ® g-
modules V, V.

3.1 Extensions between evaluation modules

A derivation of 4 into an 4-module M is a C-linear map D: 4 — M satisfying
| D{ab) = aD(b) + bD(a)

for a,b € A. We denote by Der{4,M) the C-vector space of all derivations of 4 into M. There
exists the canonical isomorphism

Der(4,4/m) ~ Homg(m/m?2,C)

for each m € Specmd. The following proposition is a special case of the main theorem and gives
a generalization of the result by Fialowski and Malikov [FM, Theorem 5 (ii)].

Proposition 3.1. We have an isomorphism
Ext! (Vi (1), V(1)) = Homy(g ® V(A), V(1)) ®Der(4,4/m).
Proof. Itis obvious that
- Homg(g®V(A),7 (1)) ® Der(d, 4 /m)
is canonically isomorphic to
S={¢: 4A— Homy(g® V(l),-V(,u)) | @ is C-linear, ¢p(ab) = an@(h) + bno{a)}
as a C-vector space. Hence it suffices to prove that |
Bxt! (Vi A), V(1)) =~ S.

We prove the assertion by the following steps.



(Step 1) Define a map
Ext! (Va(A), V(1)) — S.

(Step 2) Show that the map is bijective by constructing the inverse map.
(Step 3) Show that the map is C-linear.

We start proving Step 1-3.

(Step 1) Suppose that an exact sequence

0 —> Va(B) -+ E—E Ho(d) —0

is given. Take a splitting j: Viu(1)} — E as g-modules. We identify Vin (1) with ¥ (A) and V(1)
with V(i) as g-modules by restriction. Then we can define the C-linear map Pa: g RV (A) —
V{u) for each a € 4 via the action of A ® g on £ so that

(a®x)j(u) = jlamxu) +i(@a(x@u))
for x € gand » € V(A). Indeed, since
(a@x)j(u) — j(amxu)

belongs to Kerp = Imi, we can take the unique element in its preimage by i as @,(x®u). Note
that @ — ¢, defines a C-linear map and ¢; = 0. We claim the following:

(*-1) @, does not depend on the choice of a splitting,
(*-2) ¢, depends only on the extension class of a given exact sequence.

To show (*-1), take another splitting /' and let ¢, be the corresponding C-lincar map. Then we
have

i((9a— 9a)(x®u)) = (@®x)(j — ' )(u) — anx(j — J')u).
The right-hand side is equal to zero since (j — j*)(u) € Ker p = Imi. This shows (*-1). We show
(*-2). Take two exact sequences which are equivalent: .

00— Vulp) ——E—5 V() —>0

|k,

0—>-Vm( )—}-E’—:-—Vm(ﬂ,)—)-o

Let @, ¢, be the corresponding maps. Splittings j of p and ' of p/ can be taken so that J=Ej.
We have

(a@x)j(u) = jlamxu) + {@a(x ®u)),

(a®@x)j"(u) = j'(awxu) + i (@ (x®u)}

by the definition of @,, ¢,. We see that @, = ¢/, by applying & to the both sides of the first equation
and comparing it with the second one. The claim is proved.



We show that ¢, is a g-module homomorphism and the equation
\q’ab = amPp + b a
holds. We have
(a®x)(0®y)j(u) = j(ambuxyy) + ani(xgs(y @ u)) + bui( 9a(x O yu))

and hence

(a®@x)(b®y)j(u) — (b@y)(a@x)j(u)
= j(@mba[xYu) + ani(x@s(y @ u) — Po(y @ xu)) + bini{(Qa(x @) — yPu(x B us)).

Compare the above with
(ab ® [x,3)j(#) = j (b e, }11) +H(@as ([, Y] @)
and we obtain
Qo ([%:] @ ) = an (X (y © ) — 0 (y @ x)) + b @a(x @) — y P (x D 1))
Consider the case b = 1. Then we obtain the equation
Pa([x,7] @ %) = Qalx @ yui) —y@a(x D).
This proves that @, is a g-module homomorphism. Moreover we have
Pa ([%,Y] @) = am Py ([x,5] @ 1) + b Pa([x,] ® 1)

and this implies that
Pab = A Ps + b Qo

since [g,9] = g.
As aresult we obtain a C-linear map ¢: 4 — Homy(g ® ¥ (4), ¥ (1)) satisfying

¢(ab) = an@(b) +bu(a).

This means that a map
Ext' (Fn(A), V(1)) — S

is defined.
(Step 2) Conversely if a C-linear map ¢: 4 — Homy{g® ¥ (1), ¥ (it)) satistying

¢(ab) = an®(b) + bup(a) ,
is given then we can define the 4 ® g-module structure on £ = V{A) & V(i) by
(@®x)(u,v) = (amxu,amxv+ @(a)(x@u))

foru e V(A),v € V(). It is obvious that this gives the inverse of the map defined in Step 1.
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(Step 3) We show that the bijective map is C-linear. First we show that it is additive. Let

0— Valp) 2> B — 25 V(d) — 0,

0—> Vn(B) = By — 2> V() —> 0

be exact sequences and ¢!, @2 be the corresponding elements. The Baer sum of the classes of the
above extensions is represented by

0 — V() —— E —5 Vu(A) —0

where E is the quotient of the fiber product of p; and p; by Im(v — (i;(v), —i2(v))). Note that ;
is given by v — (i1(v),0) = (0,i2(v)) in £ and p by (z1,22) +— p1(z1) = p2(z2). A splitting j of p
as g-modules is given by u — (ji (), j2(u)) if we take splittings j; of py and j» of p;. Then the
‘equation '
(a@x)j(u) = (1(@wxu) + i1 (@2 (x®u)), jo(anu) +2( 93 (x @)
= jlamxu) +i((9; + 92)(x ®u))

in E holds for a € A and x € g. This shows that the map under consideration is additive. Next we
consider the multiplication by scalar. Take an exact sequence

0 — V() = E —5 Vi (A) —0
and let @ be the corresponding element. The action of ¢ € C on Ext! (¥ (1), V(1)) is described
by the diagram
0 —> Vin(pt) > 57 —Z Vi (R) — 0
Tk
0—> V() 2= E—5Vu(A) —>0

where E’ is the fiber product of p and cidy, (1). Note that 7 is given by v — (i(v),0) and p’ by the
second projection. A splitting j* of ¢’ is given by u — (cj(u),u) where j is a splitting of p. Then
we obtain

(a®x) () = (e (amsa) + i(@a(x@ 1)), anxu)
= j (amxu) + 7 (c@(x D u}).
The proof is complete. |

Remark 3.2. For the case 4 = C[t,#™!], construction of the map from Hom,{g® V' (1), ¥ (1)) to
Ext! (Vi (1), V(1)) as in Step 2 appears in [FM, Remarks 7 (i)] and [CM, Proposition 3.4]. In

such situations the space Der(4,4/m) is one-dimensional and its contribution is not recognized

explicitly. -
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3.2 Vanishing of extension groups

We prove some vanishing results for Ext! in this subsection. Lemma 3.4 is a key for proving
~ the main theorem. The argument in the proof of the following lemma is similar to that in [CM,
Lemma 5.2 (i)]. While they prove vanishing of Ext! for modules with different spectral characters
(See Definition 4.2 for the definition of spectral characters), we show a slightly different statement.

Lemma 3.3. Let i, ' be elements of 2 such that supp xNsupp &’ = &. IfExt' (¥ (x), ¥ (') £ 0
then 7 or T’ is equal to zero.

Proof. We may assume that either of 7 or 7. is nonzero since Ext! (¥(0), ¥ (0)) = 0 by Propos1-
tion 3.1. This assumption implies that 7 % 7.
Let
0—= V(@) —E—5 ¥ () —0

be a nonsplit exact sequence. First we assume that #'[, # 7]y. Let v, be a highest weight vector of
¥ (7) and take v € p~!(vy). By the assumption 'l } 7|, and 7 # &/, this v is a highest weight
vector. Hence the submodule of E generated by v is a highest weight module with highest weight
7. This submodule is not isomorphic to #'(#’) since their highest weights are different. Then it
follows that the submodule coincides with £ since the length of £ is two and the sequence does
not split. This implies that E is a quotient of the Weyl module #(x). Therefore ' must be equal
to zero by Corollary 2.8 and the assumption supp z Nsupp s’ = &. Next assume that 7'}, > xlp.
In this case, take the dual of the exact sequence. Then we obtain the exact sequence

0— ¥/ (1) —> B —> V((#')") —>0
and have ©*|y, # (7)*|y. This implies that 7 is equal to zero. O

Lemma 3.4. Let 1t be an element of 9. We have Ext! (“//(7:) 7(0)) =0and Ext! (¥ (0), ¥ (r)) =
0 unless #suppw = 1.

- Proof. Assume that #supp#z > 2. Take some m € supp 7 and define &’ € & by
Jr(m’ ) ifm'#m
'(m') =
(m) = ifm'=m

form' € SpecmA Then the element 7’ is nonzero by the assumption #suppr > 2. We have
V(1) = Vin(m(m)) @ ¥ (7’). Hence

Ext! (¥ (n), 7 (0)) ~ Ext! (¥ ('), V(m(m)*))

and the right-hand side is equal to zero by Lemma 3.3. The assertion Ext!(7(0),#(n)) =0 is
proved by taking the dual. '
The assertion Ext' (#(0),7(0)) = 0 is a consequence of Proposition 3.1. O

Remark 3.5. In fact, by Proposition 3.1, it is easy to prove a stronger result than the statement
of Lemma 3.4. We state it without a proof since it is not used in the sequel. The following are
equivalent for a finite-dimensional simple 4 ® g-module V-
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e Ext' (¥,7(0)) #£0,
o Ext!(#(0),V) #0,

o V > V,(8) for some m € SpecmA satisfying m/m? # 0 and the highest root 8 of a simple
component of g.

This result for the case 4 = C[¢] is proved in [CG, 3.8 Proposition] by a different approach. They
also prove that
dimExt! (¥(8), ¥ (0)) = dimExt! (¥(0),Vu(0)) =1

and deduce the following result:

Ext'/(V,V)= @ Homgpeglevi(a),V* @V’
mé&Specm Cle]

holds for any finite-dimensional simple C[¢| ® g-modules ¥, V.

3.3 Proof of the main theorem

The main theorem introduced as Theorem 1.2 is reformulated in terms of the set 2 as follows.
Theorem 3.6. Let m, 7’ be elements of 2. |

@) IfExt!(¥ (=), 7(11:’)) # 0 then #{m € Specmd | #(m) # x'(m)} < 1.

(i) If#{m & Specmd | a(m) £ 7' (m)} = 1 then

Ext' (¥ (z), ¥ (")) = Ext! (Voo (7(M0)), Viny (7' (o))
~ Homy (g ® V{mw(mo)), ¥ (&' (myg))) ® Der(4, 4 /mp)

where wy is the unique element of Specm A such that w(mg) # o' (mg).

Ifn =7 then
Ext' (¥ (n), ¥ (7))~ € Ext'(Vulm(m)),Va(n(m)))
~ (P (Homy(g® V(ar(m ), V{m(m))) @ Der(4,4/m)).

mESupp T
Remark 3.7. For the case 4 = C[t] it is proved in [CG] that

Ex!'(V,/)~ (D Homgypg(evi(e),V" @)
. meSpecm Cle]

holds for any finite-dimensional simple C[t] ® g-modules ¥, ¥’ as explained in Remark 3.5. This
implies our main theorem for the case 4 = C[t] after some calculation essentially same as the proof
below.
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Proof of Theorem 3.6. Recall that
V(@)= Q Valr(m))
mesupp R

and

V(@) @ Vula(m).

mesupp T
We prove (i). Suppose that Ext! (¥ (), ¥ (#')) # 0. Put

S =suppzNsupp 7,
T =supprm\ S,
T' =suppn’\S.

Let

Vm(m)) @ (a'(m))* = PV (v.)
be a decomposition into a direct surﬁ of simple g-modules. Note that v; =0 fér some j if and '
only if #(m) = #’(m). We have

Ext'(¥ (), ¥ (7))
= Ext (Q) (Y (m(m)) ® V(@' (m))") © Q) Vi (w(m)) @ X) Vi (' ()", 7(0))

mes meTl meT’

~ Bxt (R eviy (V (7(m)) © V(7' (1)) @ R) Vinl () @ R Va7 (m))*, 7(0))

mes meT meT’

~ P Ext'(QValVin) @ Q) Valm(m)) ® Q) V' (m))*, 7(0)).

(e )mes mes meT meT!

There is a tuple (ji Jmes such that

Ext' (R Vn( Vi) ® Q) Ven(m(m)) @ X) V(7' (m))*, #(0)) #£0

meS mel meT/

by the assumption Ext! (¥ (r), % (n')) # 0. By Lemma 3.4, the number of nontrivial factors of the
tensor product is exactly one. Hence one of the following three cases holds:

(*-1) m(m) = 7'(m) for all m € S but at most one elementand 7 =77 =
(*-2) (m) =n'(m) form € S, 4T =land T’ =
(*-3) m(m)=a'(m) form e S, 7 = @ and ¥ =1,

The case (*-1) implies that #{m € Speem 4 | #{m) # #'(m)} < I and the case (*-2) or (*-3) implies
that #{m € SpecmA | £(m) #£ &'(m)} = 1. The proof of (i) is complete.

We prove (ii). Suppose that #{m € Specmd4 | z{m) # #'(m)} < 1. Put U ={m ¢ SpecmA |
{m) = #'(m)}. We can write as

V() = @ Vn(7(m)) ® Ving (m(mo))

mel/
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and

V(') = @) Va(m(m)) @ Vig (' ()

mel/

for some mq where #(mg) and 7’'(mg) are possibly equal to zero. Again let

V(r(m) @V (w' (m)) =~ PV (v)
Jm

be a decomposition into a direct sum of simple g-modules. Then we have

Ext' (7 (n), 7 (n))
o Ext' () (Vi (m(m)) @ Von(7(m))") & (Vang (7(0)) ® Ving (7' (m0))*), ¥ (0))

melf
= P Ext (R Va(Vi) @ Vi (Vin, ) 7 (0)).
Um)mEUU{mo} mel/ ’

By Lemma 3.4, the number of nontrivial factors of the tensor product is one in every nonzero
summand. If we suppose that 7(mg) 7 7' (mp) then Vi, (m(mg)) ® Vo, (7 (mp))* does not have a
trivial direct summand. Hence

Ext! (¥ (m), ¥ (&) = Ext! (Vo (W(mo)) @ Vruo (7' (o))", #(0))
o Ext! (Ving ((mo)), Viny (' (o))

If # = &/, namely U = Specm A and #(mg) = 7' (mg) = 0, then

Bxt! (¥ (7), ¥ (1)) ~ Ext'( Q) (V(m(m)) @ Vn(m(m))"), #(0))

mesupp K

~ (D Ext!(Vn(m(m)) @ Vn(m(m))*, 7(0))

MESUPP R

~ D EBxt) (Fu(m(m)), Va(m(m))).

mESUpp R

The proof of (ii) is complete together with Proposition 3.1, which asserts the second isomorphisms.
O

Remark 3.8. We give a natural interpretation of the isomorphisms

Ext! (% (n), ¥ (7)) = Ext' (Vg (£(Mo)), Vi (' (m0)))

and
Ext!(¥(n), ¥ (m)) =~ € Ext'(Vu(w(m)),Vulmw(m)))

mesupp

in Theorem 3.6 (ii). According to the proof, the above isomorphisms come from the composite of
the morphisms

Ext' (V,V’) — Ext' (M* @ MV, V') = Ext (M@ V,M® V')

14



for appropriate modules ¥, ¥’, M. This morphism coincides with the natural morphism
Ext'!(¥V, V") — Ext! (MQV,M® V")

obtained by applying the exact functor M ® —. This is proved as follows. Let

0 v’ E vV 0

be an exact sequence which represents an extension class in Ext' (¥, 7). This element maps to the
extension class represented by the first row of

0 4 E MOIMIYV —0
0 v E vV 0

by Ext! (¥, V') — Ext' (M* ® M®V, V") and then maps to the class represented by the first row of

0— MOV E" MV 0

| |

00— MV — MQE — MM QMQV —0

by Ext! (M* @ M@V, V") — Ext!(M®V,M®¥’), as explained in Remark 2.12. Consider the
following diagram:

0— MV’ E" MV ———0

| 1

0— MRV — MRE — MM QIMR@V —0

| |

0> MRV —> MYE ————> M@V ————0.
Since the composite of the right vertical maps M@V — M@M* @MV — MYV is identity, the
first and the third rows are equivalent.
4 The block decomposition

We deduce the block decomposition of the category of finite-dimensional A ® g-modules from the
results in Section 3. Although the argument is similar to that in [CM, Theorem 1, Proposition 2.3,
Proposition 2.4], we give a proof for the sake of completeness.
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4.1 Blocks of an abelian category

‘We briefly recall the notion of blocks of an abelian category. Let € be an abelian category and
assume that any object of ¥ has a composition series of finite length. First we introduce an
equivalence relation for the set of isomorphism classes of simple objects of ¥ as follows: two
simple objects ¥,V are equivalent if there exists a sequence V = ¥1,¥5,...,¥, = ¥/ of simple
objects satisfying Extl (¥}, ¥ir1) % 0 or Extiy(Viq1,¥;) # 0 for all i. Next, for each equivalence
class x, we denote by ¥, the full subcategory of %’ consisting of objects whose all composition
factors belong to x. Each %, is called a block of €.

~ Proposition 4.1. We have ¢ = D, 6y. Morcover each € cannot be decomposed into a direct
sum of two nontrivial abelian full subcategortes

The decomposition in Proposition 4.1 is called the block decomposition of the category.

4.2 The block decomposition

In the sequel we assume that A is connected, namely it is not isomorphic to a direct product of two
nonzero C-algebras for simplicity. Moreover we assume that 4 7 C since the block decomposition
is well known for the case 4 = C as completely reducibility of finite-dimensional g-modules. Let
E be the set of all functions from Specm 4 to P/Q with finite supports.

Definition 4.2. For each finite-dimensional simple 4 ® g-module ¥ (), we define its spectral
character ¥ € Zby
Xx(m) = 7t(m) mod O

for m € SpecmA. A finite-dimensional 4 ® g-module ¥ is said to have the spectral character y € 2
if ¥ = xn for any composition factor ¥ (x) of V.

Remark 4.3. The definition of spectral characters above is a straightforward generalization of that
for the case A = Cft,+!] given in [CM, Definition 2.1].

We denote by # the category of finite-dimensional 4 @ g-modules. For each y € 5 we define
the full subcategory %, of % whose objects have the spectral character .

Theorem 4.4. We have the block decomposition F = Dyecz Fy-
It suffices to show the following proposition.

Proposition 4.5. (i) Awny finite-dimensional indecomposable A & g-module has some spectral
character. ‘

(ii} Any finite-dimensional simple A @ g-modules which have the same spectral character belong
to the same block.

‘We need two lemmas. -

Lemma 4.6. Let V1, V2, V|, V3 be finite-dimensional simple A® g-modules and suppose that Vi and
V{ belong to the same block, and that V3 and V,) belong to the same block. Then Vi @V and V{QV;
belong to the same biock.
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Proof. We may assume that V] = ¥/, Put V =W,V = Vi, M =V, = V{ for the simplicity of
notation. It suffices to show the following: if Ext' (¥, V') # 0 then Ext'(M®V,M@ V') # 0. As
explained in Remark 3.8, the natural morphism

Ext!(V,V') — Ext' (M®V,M@ V')
coincides with
Ext!(V, V') — Ext'(M* @ MV, V') ~ Ext{(MQV,MQV").
Therefore it suffices to show that
Ext!(V,V') = Ext!(M* @MV, V")
is injective, This follows from the fact. that the exact sequence

0—>Ker— MM 7(0) 0

splits. . , |
The following lemma is proved in [CM, Proposition 1.2].

Lemma 4.7. Let A, € Pt with A — u € Q. Then there exists a sequence L = Mg, A1,..., 2 = Ui
in P+ such that

Homy(g® ¥ (4s), V(li+1)) #0
forany i

Proof of Proposition 4.5. The assertion of (i) immediately follows from Theorem 3.6.

We prove (ii). It suffices to show the assertion for the simple modules of the form ¥,(1) by
Lemma 4.6. By Proposition 3.1 and Lemma 4.7, we reduce to claim that Der(4,4/m) # 0. This
is deduced from the following well-known facts:

Der(d4,4/m) ~ Homg(m/m?,C)
and m/m? = 0 if and only if 4 = C. o
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