
Ph.D. Thesis

Learning Potential Inheritance
in Baldwinian Evolution

T

Jun. 1, 2012

Supervisor Professor Hitoshi Iba

Graduate School of Engineering, the University of Tokyo

Department of Electical Engineering and Information Systems
37-097408

Shu Liu

Abstract

Inspired by organism evolution, evolutionary algorithms have attracted research interests for

several decades, and have been proved effective and efficient to solve optimization problems.

For further enhancement, local search are introduced into evolution, imitating the biological

fact that organism individuals change themselves to better fit the environment during their life-

time. In the context of evolutionary computation, Baldwinian evolution hybridizes global search

through population-based evolution with local search through individual refinements. Refine-

ment influences selection, however, unlike Lamarckian evolution, refined traits are not inherited

by the offspring. In Baldwinian evolution, local search guides evolution in an indirect manner,

termed “the Baldwin effect”. Conventional studies revealed that Baldwinian learning can en-

hance search, however, there is still considerable work to be done to understand the mechanisms.

This thesis investigates Baldwinian evolution’s mechanisms in depth. By proposing the method

of analyzing individual dynamics, we present some novel views. We find that the substantial

inheritance in Baldwinian evolution is the potential to achieve high fitness through learning,

that the realization of learning potential is influenced by inheritable and noninheritable factors

in evolution, and that learning cost penalties inhibit learning intensity. Our results provide

knowledge of Baldwinian evolution’s mechanisms, and directions to possible applications.

– i –

Acknowledgment

In writing this thesis, in my research, in my recent 3-year life being a doctoral student, many

people helped me. This thesis is a product of not only my efforts, but also theirs. I would like

to present my gratitude here.

First of all I would like to thank my parents. They supported my choice of pursuing the

doctor’s degree in the University of Tokyo. They are not experts in my research field, but are

the first tutors in my life. If I am conscientious in my work, if I am positive in my life, that is

because I want to be such a person like my parents.

I would like to present my greatest thanks to my advisor, professor Hitoshi Iba. He guides me

in how to do research, provides me an environment that I can focus on research, and encourages

me to find my own research. He advised me when I was confused by the research problems,

and his curiousness and knowledge about science and technology impressed me. Working as his

student, I find my view on science and philosophy extended.

I am grateful to all the members of Iba Lab. The whole laboratory is a warm family, they

discuss research problems with me, give me advice in daily routines in Japan, and talk together

about many relaxing topics. They make the laboratory a comfortable place for research and

cultural communications. I thank them all and forgive me for not listing all their names here.

Among the members of the laboratory, I would like to specially thank Akio Watanabe, who

helped me a lot when I first came to Japan; Dr. Noman Nasimul and Leon Palafox, who

advised me much on my studies and papers; also Dr. Toshihiko Yanase, Dr. Makoto Tanji and

Dr. Claus Aranha, who gave me many precious suggestions in my student life.

I would also thank some friends out of the laboratory. They read my papers, discussed

philosophy with me, and sometimes directed me in programming techniques. Among them I

would like to specially mention Dr. Yue Dong, who provided many useful suggestions in my

academic activities.

Last but not least, I would like to thank all the professors gave me lectures and advice, all

the university staffs helped my campus life, all the researchers I met in conferences and gave me

comments, and all my friends supported me. I am not willing to make this acknowledgment a

long name list for pages, so please allow me to just express my gratitude to all these people.

– ii –

Contents

Chapter 1 Introduction 1

1.1 Lamarckian and Baldwinian Evolution . 2

1.1.1 Biological Theories of Lamarckism and Baldwinism 2

1.1.2 Lamarckian and Baldwinian Algorithms 3

1.2 The Baldwin Effect . 4

1.2.1 Hinton & Nowlan’s Example . 4

1.2.2 Two-phase Baldwin Effect . 6

1.3 Computational Efficiency . 8

1.4 Contents of Thesis . 10

Chapter 2 Learning Potential 12

2.1 Introduction to the Chapter . 13

2.2 Lamarckian and Baldwinian Learning . 14

2.3 Model . 16

2.3.1 NK Model . 16

2.3.2 Plasticity Codes . 17

2.3.3 Experiment Settings . 17

2.4 Experiments and Results . 19

2.4.1 Improvement Through the Generations 19

2.4.2 Step-by-Step Improvement . 23

2.4.3 Changing the Budget . 25

2.5 Discussion . 29

2.6 Conclusion . 30

Chapter 3 Realization of Learning Potential 31

3.1 Introduction to the Chapter . 32

3.2 Model . 33

3.2.1 NK Model with Plasticity . 33

3.2.2 Learning Schemes . 34

– iii –

Contents iv

3.2.3 Crossover Operators . 37

3.3 Learning Scheme Comparison . 38

3.3.1 Low Epistasis Landscape . 38

3.3.2 Moderate Epistasis Landscape . 43

3.3.3 High Epistasis Landscape . 48

3.4 Crossover Comparison . 49

3.4.1 Low Epistasis Landscape . 52

3.4.2 Moderate Epistasis Landscape . 56

3.4.3 High Epistasis Landscape . 59

3.5 Discussion . 63

3.6 Conclusion . 64

Chapter 4 Learning Intensity and Cost Punishment 65

4.1 Introduction to the Chapter . 66

4.2 Model . 69

4.2.1 NK Model with Plasticity and Learning Budget 69

4.2.2 Learning Settings . 70

4.3 Components of Selective Pressure . 71

4.3.1 Low Epistasis Landscape . 73

4.3.2 Moderate Epistasis Landscape . 77

4.3.3 High Epistasis Landscape . 80

4.4 A Condition for Genetic Assimilation . 83

4.5 Discussion . 89

4.6 Conclusion . 90

Chapter 5 Discussion 91

5.1 From Algorithms to Components . 92

5.2 From Groups to Individuals . 96

Chapter 6 Conclusion 102

Appendix A Continuous Optimization Experiments 107

Bibliography 123

List of Figures

1.1 Biological explanations of Lamarckian and Baldwinian evolution. 2

1.2 Computational conterparts of Lamarckian and Baldwinian evolution. 3

1.3 Plastic genotype and learning process, an example given by Hinton & Nowlan . . 5

1.4 Learning’s extension smoothes fitness landscape. 6

1.5 Learning’s extension smoothes fitness landscape. 7

1.6 Two phase process of the Baldwin effect . 8

1.7 Comparison of evolutionary and memetic search 8

1.8 From macroscopic to microscopic. 11

2.1 Evolutionary search with Lamarckian and Baldwinian learning. 15

2.2 Fitness calculation of NK model with N=10, K=2. 17

2.3 k-th trial in learning process. 18

2.4 Genotype with plasticity codes. 18

2.5 Fitness improvement with deterministic learning on the K=2 landscape. 20

2.6 Fitness improvement with nondeterministic learning on the K=2 landscape. . . . 21

2.7 Fitness improvement with deterministic learning on the K=5 landscape. 22

2.8 Fitness improvement with nondeterministic learning on the K=5 landscape. . . . 23

2.9 Step-by-step learning improvements on the K=2 landscape. 24

2.10 Step-by-step learning improvements on the K=5 landscape. 26

2.11 Periodically changing and constant budgets on the K=2 landscape. 27

2.12 Periodically changing and constant budgets on the K=5 landscape. 28

3.1 Two types of memetic search. 32

3.2 Each partial fitness value is dependent on only a single K-neighborhood. 33

3.3 Learning uncertainties and effect on children. 34

3.4 k-th trial in learning process. 35

3.5 Genotype with plasticity codes. 36

3.6 Change in inheritance caused by crossover and effect on children. 37

3.7 Three types of crossovers. 39

– v –

Contents vi

3.8 Search capabilities on K = 2 landscape with the same population. 40

3.9 Learning similarities on K = 2 landscape when budget is 20. 41

3.10 Learning improvement on K = 2 landscape when bpre = 20. 42

3.11 Search performance on K = 2 landscape when budget is 20. 43

3.12 Search capabilities on K = 5 landscape with the same population. 45

3.13 Learning similarities on K = 5 landscape when budget is 20. 45

3.14 Learning improvement on K = 5 landscape when bpre = 20. 46

3.15 Search performance on K = 5 landscape when budget is 20. 47

3.16 Search capabilities on K = 15 landscape with the same population. 48

3.17 Learning similarities on K = 15 landscape when budget is 20. 49

3.18 Learning improvement on K = 15 landscape when bpre = 20. 50

3.19 Search performance on K = 15 landscape when budget is 20. 51

3.20 Search without learning on K = 2 landscape. 52

3.21 Learning similarities on K = 2 landscape when budget is 20. 53

3.22 Learning improvement on K = 2 landscape when bpre = 20. 54

3.23 Search performance on K = 2 landscape when budget is 20. 55

3.24 Search without learning on K = 5 landscape. 56

3.25 Learning similarities on K = 5 landscape when budget is 20. 57

3.26 Learning improvement on K = 5 landscape when bpre = 20. 57

3.27 Search performance on K = 5 landscape when budget is 20. 58

3.28 Search without learning on K = 15 landscape. 60

3.29 Learning similarities on K = 15 landscape when budget is 20 60

3.30 Learning improvement on K = 15 landscape when bpre = 20. 61

3.31 Search performance on K = 15 landscape when budget is 20. 62

4.1 Two-phase Baldwin effect. 66

4.2 Equivalent landscape with smoothing and cost punishment. 68

4.3 Equivalent landscape extended along the cost dimension. 69

4.4 Genotype with plasticity. 70

4.5 k-th trial in learning process. 71

4.6 Tournament selection with size 2. 72

4.7 Search performance on K = 2 landscape with 2-tournament selection. 74

4.8 Selected individual types on K = 2 landscape with 2-tournament selection. . . . 75

4.9 Search performance on K = 5 landscape with 2-tournament selection. 78

4.10 Selected individual types on K = 5 landscape with 2-tournament selection. . . . 79

List of Figures vii

4.11 Search performance on K = 15 landscape with 2-tournament selection. 81

4.12 Selected individual types on K = 15 landscape with 2-tournament selection. . . . 82

4.13 Roulette wheel selection. 84

4.14 Search performance on K = 2 landscape with roulette wheel selection. 85

4.15 Search performance K = 5 landscape with roulette wheel selection. 86

4.16 Search performance on K = 15 landscape with roulette wheel selection. 87

5.1 Baldwinian evolution components studied in this thesis. 94

5.2 The roles of learning on fitness landscape (by Suzuki et al [51]). 94

5.3 Two phase process of the Baldwin effect . 95

5.4 Step-wise cost-performance analysis. 97

5.5 Compare children’s and their parents’ learning steps. 98

5.6 Global simplification and divergence of individuals. 99

5.7 Tournament selection with size 2. 100

A.1 Fitness improvements with functions F1 ∼ F8 using BLX and CMA-ES. 111

A.2 Fitness improvements with functions F9 ∼ F17 using BLX and CMA-ES. 112

A.3 Fitness improvements with functions F18 ∼ F25 using BLX and CMA-ES. 113

A.4 Fitness improvements with functions F1 ∼ F8 using BLX and Solis-Wets. 115

A.5 Fitness improvements with functions F9 ∼ F17 using BLX and Solis-Wets. 116

A.6 Fitness improvements with functions F18 ∼ F25 using BLX and Solis-Wets. . . . 117

A.7 Fitness improvements with functions F1 ∼ F8 using PBLX and CMA-ES. 119

A.8 Fitness improvements with functions F9 ∼ F17 using PBLX and CMA-ES. 120

A.9 Fitness improvements with functions F18 ∼ F25 using PBLX and CMA-ES. . . . 121

List of Tables

2.1 Experiment Parameters . 18

3.1 Experiment Parameters . 33

3.2 Learning improvement on K = 2 landscape . 42

3.3 Search performance on K = 2 landscape . 44

3.4 Learning improvement on K = 5 landscape . 46

3.5 Search performance on K = 5 landscape . 47

3.6 Learning improvement on K = 15 landscape . 50

3.7 Search performance on K = 15 landscape . 51

3.8 Learning improvement on K = 2 landscape . 54

3.9 Search performance on K = 2 landscape . 55

3.10 Learning improvement on K = 5 landscape . 58

3.11 Search performance on K = 5 landscape . 59

3.12 Learning improvement on K = 15 landscape . 61

3.13 Search performance on K = 15 landscape . 62

4.1 Experiment Parameters . 70

4.2 Search performance on K = 2 landscape with 2-tournament selection 73

4.3 Search performance on K = 5 landscape with 2-tournament selection 77

4.4 Search performance on K = 15 landscape with 2-tournament selection 80

4.5 Search performance on K = 2 landscape with roulette wheel selection 85

4.6 Search performance on K = 5 landscape with roulette wheel selection 87

4.7 Search performance on K = 15 landscape with roulette wheel selection 88

A.1 Functions in IEEE CEC 2005 Test Suite . 108

A.2 Fitness and potential scales of the 12th generation using BLX and CMA-ES . . . 110

A.3 Fitness and potential scales of the 12th generation using BLX and Solis-Wets . . 114

A.4 Fitness and potential scales of the 12th generation using PBLX and CMA-ES . . 118

– viii –

Chapter 1

Introduction

Evolutionary algorithms imitate organism evolution in the natural world, and are proved

effective and efficient to handle optimization problems, especially when the search space is huge

and the landscape is irregular. To accelerate evolution, and to overcome even more difficult

problems, researchers have been trying to combine evolution with learning techniques in the

recent decades. Baldwinian evolution is a hybridization of evolution and learning. It claims that

learning throughout the individuals’ lifetime can guide evolution to better solutions, without

transferring acquired characters back into genotypes. The theme of this thesis is to study

Baldwinian evolution’s mechanisms. First of all, this chapter introduces the basic conceptions

of Baldwinian evolution, the search efficiency issue, and significance of our research.

– 1 –

Chapter 1 Introduction 2

(a) Lamarckian evolution (b) Baldwinian evolution

Fig.1.1: Biological explanations of Lamarckian and Baldwinian evolution.

1.1 Lamarckian and Baldwinian Evolution

1.1.1 Biological Theories of Lamarckism and Baldwinism

As biologists have observed in the natural world, organisms adapt themselves during their

lifetime to better fit the environment. They try various possibilities, or are taught by parents, to

shift themselves, and this process begins with the characters received inherently. It is apparent

that if these adaptations can be passed on to the offsprings, the process of fitting the environment

will be evidently accelerated.

The most direct idea is the inheritance of acquired characters, as known as Lamarckism. It

can be inferred from Lamarckism that an animal stretching its neck in its life will have children

with long necks, or the children of a chess champion will also play chess well. As shown in

Fig.1.1(a), a child giraffe is born with the stretched long neck, because its parent stretched the

parent’s neck. This theory was proposed by biologists in the period when chromosomes and

genes were not discovered. With the characters inherited, the species can react immediately to

the changes in environment. However, there is a distinction between genes and bodies, and an

inverse mapping to genes is implausible. For example, if a person do exercises and build his

muscles, he cannot change his DNA according to the muscles and ensure that his children will

be strong. Lamarckism is thus refused by current biological science in general.

In 1896, the Baldwin effect was proposed independently by Baldwin [2], Morgan [37] and Ors-

born [43], also known as Baldwinian evolution or ontogenic evolution. Later in 1942, Wadding-

Chapter 1 Introduction 3

(a) Lamarckian algorithm (b) Baldwinian algorithm

Fig.1.2: Computational conterparts of Lamarckian and Baldwinian evolution.

ton [53] reviewed the theory and presented the term ”genetic assimilation” or ”canalization”. In

this theory, acquired characters do not transfer information directly back to genotypes. Instead,

when an individual learns good characters in its lifetime, it is rewarded in selection, therefore a

selective advantage is automatically assessed to the genotypes inherently easier to acquire good

characters. It is denoted that the children of a neck-stretching animal receive no long necks but

good ability in the stretching, or the children of a chess champion will be excellent in activities

asking for logical thinking. As shown in Fig.1.1(b), a child is born with a short neck similar to

its parent’s, however, it is likely to have good capability in stretching as its parent did. The

Baldwin effect has always been controversial in biology, since in the complex natural world it is

too difficult to varify.

1.1.2 Lamarckian and Baldwinian Algorithms

No matter Lamarckism and Baldwinism are correct or not in biology, they can enhance evo-

lutionary algorithms, and the hybridizations are termed “memetic algorithms”. The flow of

a Lamarckian algorithm on an individual is demonstrated in Fig.1.2(a): the individual trans-

lates its initial genotype to phenotype/traits, adapt the phenotype through a learning process

pursuing better fitness, then encode the adaptated phenotype back into the genotype and pass

on the learned traits to the offspring. The flow of a Baldwinian algorithm on an individual is

demonstrated in Fig.1.2(b): the individual translates its initial genotype and learns, but the

following reproduction is carried out using the initial genotype. The acquired characters are not

transferred back to genotype, but the initial genotype receives a bonus or penalty as the start

points of good or bad final traits. As concluded in a recent survey [7], Lamarckian learning

influences improved solutions and improved fitness, while Baldwinian learning influences initial

Chapter 1 Introduction 4

solutions and improved fitness.

Considering algorithms, the most essential difference between Lamarckism and Baldwinism is

the existance of an inverse mapping from phenotype to genotype. In many real world problems

there is no such a mapping, or the mapping is too complicated. In this case, Baldwinism is a

prior choice than Lamarckism. On the other hand, comparing to Lamarckism, Baldwinism is

slower as learned characters are not encoded directly, whereas the slowness brings robustness

to environment permutations.

Initially, combinations of evolution and learning are used to solve the topology and synapse

strengths of artificial neural networks [27,35,54], however, the methodology is then employed in

many other problems. To apply memetic algorithms to real-world problems, it is necessary to

have knowledge on how evolution proceeds and which factors influence search performance. So

far, the majority of researchers have focused on Lamarckian evolution since it is considered more

simple and effective. For example, there are studies on optimizing parameters such as learning

frequency and intensity [3,15,29,31,39], and on adapting parameters during a search [30,40–42].

However, the conclusions that have been drawn might not hold for Baldwinian evolution. For

example, in a Lamarckian search, it is common to choose a random subset of the population

for learning. Conversely, in the Baldwinian scenario a surviving parent is selected for its refined

traits after learning, but its children may be judged on only their initial traits before learning.

Such initial traits have no guarantee of being beneficial.

Several studies on Baldwinian evolution have also been performed. The guiding effect of

Baldwinian learning in evolutionary searches was first verified by Hinton and Nowlan [20].

Since then, there have been works on search process characteristics of Baldwinian evolution

[33, 34, 46, 51, 52, 55], on interactions of learning, evolution and development [10–12], on the

hiding of Baldwinian learning [44,45], and on combining Baldwinian and Lamarckian evolutions

[5, 8, 9, 21]. Attempts have also been made to improve Baldwinian algorithms and to apply

them [4,13]. However, as claimed by Turney [52], Baldwinian evolution is highly complex, and

so there is still considerable work to be done.

1.2 The Baldwin Effect

1.2.1 Hinton & Nowlan’s Example

The term ”the Baldwin effect” is widely used in biology and evolutionary computation, how-

ever, there is not yet a clear definition and researchers may have different views on the same

vague concept. The mechanism of how Baldwinian learning guides evolution presented in this

chapter follows the classic article of Hinton & Nowlan [20]. In the article they presented a simple

Chapter 1 Introduction 5

Fig.1.3: Plastic genotype and learning process, an example given by Hinton & Nowlan

and extreme, but very clear example. This example is cited and developed by many researchers

in the field of evolutionary computation. We will begin with the revision on the example, too.

Suppose in a search problem, the search target is a random binary string of 20 bits. Only

this target string is assigned a positive fitness, and all other strings are set zero fitness. When

using 20 bit binary strings as genotypes and corresponding phenotypes, it is extremely difficult

to reach the goal. For individuals different from the target, they provide no information about

where the target may be. An evolutionary algorithm is thus degraded to a random search, and

it reaches the target only when by good luck an individual is generated exactly the same as the

target. Even after reaching the goal, crossover and mutation operations may break it.

The situation changes when plasticity is added to the genotypes. Several bits are set to ?

instead of 0 or 1, which means the bits are not determined and left to learning after birth. Every

individual tries 1000 times to assign 0/1 values to all the ? bits in its initial phenotype, and

stops when arriving at the target or the number of trials reaches the limit, as shown in Fig.1.3.

At the same time, the fitness is modified to 1 +
19n

1000
for individuals reaching the target in

learning, where n refers to the number of remaining trials after reaching the target. As a result,

many individuals have the chance to reach the target, and can inform the offsprings that they

are close to the target. Furthermore, when one more bit is fixed to genotype, the according

individual will need in average half the trials as before to find the target. According to the

fitness function, it is ecouraged to have less ? bits through the search, so that the genotypes

are driven toward the target after first reached it.

As claimed by Hinton & Nowlan, in Baldwinian algorithms, the learning process acts as a local

search in the phenotype space, in a neighborhood around the expression of its genotype. This

exploration is similar to generating individuals corresponding to the phenotypes that collects

information about the landscape, while with a much lower cost than generating such individuals.

When an individual moves to a nearby phenotype, usually it is easy to take the move and check

the fitness. The learning process explores the local region efficiently, and discovers directions

Chapter 1 Introduction 6
F

it
n

e
s
s

Solution

Learning

Learning

(a) Learning explores a neighborhood

F
it
n

e
s
s

Solution

Learning

Learning

(b) Smoothed landscape

Fig.1.4: Learning’s extension smoothes fitness landscape.

towards the target.

1.2.2 Two-phase Baldwin Effect

In Hinton & Nowlan’s example, the Baldwin effect guides evolution by two mechanisms, known

as “smoothing” and “genetic assimilation”. In this example, the one-point target is too extreme.

However, generally speaking, in many problems the access to a local optimum is like finding a

needle in a haystack. Fitness decreases acutely as the solution leaves the local optimum. In

this situation, only when an individual falls in the narrow range of the spike, the individual

can win in selection and the algorithm can find this local optimum. Therefore, an evolutionary

algorithm will not realize there is a local optimum nearby until an individual falls in the range at

random. If the individuals have learning ability and can search a neighborhood around its initial

position, the way to the local optimum is broadened. The learning process can be implemented

by constructing an analytic model of the local area, or by stochastic search methods, or by some

random trials as Hinton & Nowlan did. As shown in Fig.1.4(a), not necessarily in the narrow

range, if the point is near to the spike, it reaches the spike by learning. It thus receives a fitness

bonus and calls attention to the area. With learning. It is like searching in an equivalently

smoothed landscape, possibly like the curve in Fig.1.4(b), where peaks become plateaus.

There is a fitness bonus in Hinton & Nowlan’s model, to those who learn faster, and lead

genotypes to keep less undetermined bits. This bonus comes from the cost of learning, as the

cost always exists in the natural world, and is usually significant in evolutionary computation.

This is a second driving force after reaching a local optimum, and emphasized by Turney [52]

that it is important. Affected by this force, learned characters become fixed into genotype as

Chapter 1 Introduction 7
F

it
n

e
s
s

Solution

Genetic Assimilation

(a) All individuals reach the top

F
it
n

e
s
s

Solution

Selection

(b) Select according to learning cost

Fig.1.5: Learning’s extension smoothes fitness landscape.

evolution processes. This mechanism is termed genetic assimilation, or canalization. By chance,

some genius individuals may get born with good characters that its ancestors spent time to

learn. These individuals have better starting points, thus cost less to learn what their ancestors

learned. Under selective pressure, the genius individuals win in selection and the species in

allowed to obtain even better initial traits. As shown in Fig.1.5(a), all the individuals can reach

the top of the hill by learning. With selective pressure from learning cost, low cost individuals

survive, and the population moves closer to the top of hill, as shown in Fig.1.5(b). The Baldwin

effect does not transfer acquired characters back to genotype, but it can be observed that the

evolution follows the indication of learning, as Waddington [53] claimed the process ”by which

a phenotypic character, which initially is produced only in response to some environmental

influence, becomes, through a process of selection, taken over by the genotype, so that it is

formed even in the absence of the environmental influence which had at first been necessary”.

In addition, Suzuki [51] claimed there is more than genetic assimilation in Baldwin effect. In

some situations, maybe caused by epistasis or other factors, the capability of learning is limited.

Individuals can find hills around them by learning, but have not enough capabilities to climb to

the top. As the result, there will be a period for climbing. In this period, the genius offsprings

will have chance to learn further, and continue to climb the hill their ancestors discovered. This

is somehow different from genetic assimilation, and enlightened some of our works.

Affected by these two basic mechanisms, the Baldwin effect acts as a two phase process in

the search, as shown in Fig.1.6. In the first phase, learning assisted search dominates. Fitness

grows up remarkably, while learning cost keeps high. In the second phase, genetic assimilation

dominates. Fitness is stable, while learning cost decreases, even to zero in some situations. This

Chapter 1 Introduction 8

F
it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

Generation

Phase I:
Smoothing

Phase II:
Genetic Assimilation

Fitness
Cost

Fig.1.6: Two phase process of the Baldwin effect

(a) Evolutionary Search (b) Memetic Search

Fig.1.7: Comparison of evolutionary and memetic search

is the basic description of the Baldwin effect. When learning is limited, as claimed by Suzuki,

there will be a third phase of hill climbing, between the basic two. Fig.1.6 shows the general

trends of fitness and learning cost. This is the conventional theory, and we are to go beyond it.

1.3 Computational Efficiency

There has been memetic algorithm applications in problems such as computational finance [1],

music composition [24], aircraft design [47], job-shop scheduling [18], and drug design [32]. In

applications an essential factor that must be kept in consideration is the search efficiency of the

algorithm, in other words the balance of the fitness of the found solution and the cost, usually

in term of computation time. To arrive at satisfying solutions within reasonable computation

time, there has been investigations into the factors that influence the banlance, and the possible

ways to accelerate.

As shown in Fig.1.7, in evolutionary algorithms, the search can be considered to have a set

Chapter 1 Introduction 9

of searching points sampled in the space, and they evolve/update towards better fitness with

iterative operations. On the other hand in memetic algorithms, for each searching point it is not

limited to the simgle position, but also allowed to search and refine locally in a neighborhood,

using either statistic or deterministic methods. This allows the population to cover more area

in the space, and the covered area is expected to be relatively good as they are around the good

individuals survived in evolutionary selection. On the other hand, however, such local searches

call for considerable computation resources. A balance is necessary for applications, especially

in Baldwinian evolution where the products of learning are limited.

The goal of optimization algorithms is to find good solutions, and in real world applications

it is also in serious concern that how much time has to be paid. In fact many real world

problems are reported very expensive in computation. The main reason for this is the high cost

to evaluate a candidate solution in complex real world situations. A simgle evaluation call may

take minutes to hours, such as in [47]. In memetic algorithms usually the search goes through

hundreds or generations, where there are tens or hundreds of individuals in every generation,

and each individual may take multiple evaluation calls in its own learning or local refinement.

These altogether make the computational cost of memetic algorithms very high when dealing

with real world problems.

The intention of memetic algorithms is to improve search performance. However, it is not

guaranteed, thus often asks for appropriate combination and fine tuning in practice. The hybri-

dation may attain advantages of both global and local search thus improve, also it is possible

that the two ingredients do not fit each other so well and result in lower efficiency. Besides

optimistic expectation, it is necessary more solid work on how to understand, measure, control

and improve the efficiency in the hybridation algorithms.

So far there has been many reports on the topic, to accelerate memetic search. Basically

there are two categories. Some work on the combination of the two components [3, 5, 9, 15, 21,

29–31,39–42], that is to optimize or adapt the parameters or combination forms to improve the

balance. Some work on the extension of accelerating methods already discussed in evolutionary

algorithm context [6, 22, 23, 26, 48, 56], and tailor them to suit memetic computation.

However, most of these works focus on Lamarckian algorithms. The difference in inheritance

of learned traits distinguishes Lamarckian and Baldwinian evolutions on many aspects, and the

roles of learning in both types are quite different. Conclusions of Lamarckian evolution may

not hold in Baldwinian evolution. When we tried to apply Baldwinian evolution in real world

applications, we find indications in the literature are not adequate. Therefore, we investigate

the efficiency characters of Baldwinian evolution, for the ultimate goal of making appropriate

applications.

Chapter 1 Introduction 10

1.4 Contents of Thesis

Basically, studies on Baldwinian evolution may have two goals: to provide evidence for biol-

ogists, or/and to solve optimization problems. Many researchers focus on the the former topic,

and have collected valuable results. As the natural world is too complex and examinations on

real creatures are very difficult, these results contribute much to biology. There are also applica-

tion attempts, but, not many, and some of which are not quite successful. Baldwinian evolution

is complex and difficult, and inheriting no learned traits may make its cost performance low.

However, it is suitable for dynamic environments, and is likely to be a good choice under some

situations.

This thesis contributes to the latter purpose. We study the composing factors of Baldwinian

algorithms, and try to find rules concerning search efficiency. Our studies focus on the basic

components on static fitness landscapes, however, the ultimate goal is to apply Baldwinian

evolution in the real world, in dynamic or/and noisy problems. To build higher towers, we first

enhance the foundation.

Our methodology is to present a new view point. The history shows that proposing a new

view point is risky, but may bring more knowledge. Nicolaus Copernicus proposed heliocentrism

against Ptolemy’s geocentrism, and started the astronomy revolution. His key change is the

center of the system, not the different-epicycle system [28]. David Hilbert insisted formalism,

proposed a program to rebuild the foundations of mathematics, and failed. However, a product

of this program, Gödel’s incompleteness theorems, brought a revolution to mathematics and

philosophy. Human’s knowledge is accumulative. A new view point on the foundation enables

consequent new ideas and new tools. On the other hand, when we do not start the first step,

we can barely see the steps behind. I would like to present my own view point, and some of its

consequents.

Our unique method of analyzing Baldwinian evolution is taking the microscopic view. In

conventional studies, researchers focus on the global behaviors of the whole population. Of

course, this is necessary. Evolutions are on groups or species. However, the group’s power

comes from diversity. The evolving population can achieve good search because there are

different individuals and they form a gene pool. Furthermore, the mechanisms of Baldwinian

evolution are very complex. Taking only the global view, we see many phenomena, find some

reasons, but cannot figure out how it works in details. We investigate microscopic behaviors

from individual to individual, comparing with other individuals of the same generation, or with

the parent in the previous generation.

Fig.1.8 shows an example. In conventional studies, Baldwinian learning’s enhancement in

Chapter 1 Introduction 11
F

it
n

e
s
s

Solution

Learning

Learning

(a) Smoothing effect

F
it
n

e
s
s

Solution

(b) Individual difference

Fig.1.8: From macroscopic to microscopic.

evolution is described as an equivalent fitness landscape, drawn in the dashed line in Fig.1.8(a).

However, this is a simplification that considering all the individuals taking the same deter-

ministic learning process, and a starting point is mapped to a single learning destination. In

algorithms, learning usually has randomness, and the destination may vary, thus there is a prob-

lem for the child to re-discover its parent’s achievement (Fig.1.8(b)). In this case, the equivalent

landscape is highly dynamic and noisy, and the metaphor does not provide much convenience.

In order to understand the mechanisms, we have to compare children’s learning processes to

those of their parents. We conducted all our studies in this manner.

For the rest of this thesis, in Chapter 2 we discuss the catching-up behavior in Baldwinian

evolution, by comparing children’s fitness improvement and that of their parents. Chapter 3

introduces a study on the realization of inherited learning potential, by comparing children’s

and their parents’ learning steps. Chapter 4 presents experiments examining learning cost

penalties’ effects, by analyzing selection winner types in the population. Chapter 5 presents

some discussions, and Chapter 6 is the conclusion. Finally we present an appendix about some

experiments on continuous optimization benchmarks, to enhance our conclusions described in

the main body of the thesis.

Chapter 2

Learning Potential

Baldwinian and Lamarckian evolution are different in inheritance, and this makes their learn-

ing processes playing significantly different roles in the whole search. Considering computational

resources, the cost-performance also varies. In this chapter, we investigate Baldwinian evolu-

tion’s mechanism, in term of computational costs and fitness improvements, to find what is

produced in Baldwinian learning, and what role Baldwinian learning plays. We found that,

on the static landscapes involved, learning cost is paid to maintain a certain level of potential

to reach good solutions, rather than to further explore on the landscape. Plasticity codes in

genotypes can help in selecting appropriate parts to refine and improve search performance.

However, this improvement remains limited because no learned traits are passed on, and does

not enable exploration far beyond parents. Some further experiment results in continuous op-

timization are presented in the appendix.

– 12 –

Chapter 2 Learning Potential 13

2.1 Introduction to the Chapter

Memetic algorithms are extensions of evolutionary algorithms, inspired by the biology’s hold

that individual organisms often tailor themselves within their lifetimes to fit the environment.

Memetic algorithms combine population-based evolution and individual refinements, a process

also called ”learning”, have attracted increasing attention. Local refinements can, in the con-

text of individual learning, reportedly improve search efficiency. Hybrid algorithms may also,

however, perform worse. The individual learning process is often expensive in computation. A

single evaluation call may take minutes to hours [47]. Memetic search often continues through

hundreds of generations, with tens or hundreds of individuals in every generation, each making

multiple evaluation calls in its own learning or local refinement. Altogether these may make the

computational cost of memetic algorithms very high when dealing with real-world problems.

Only when learning processes are more beneficial in improving fitness than in computational

cost can they accelerate the search.

Individual learning often takes multiple evaluation calls, and learning generally takes much

more computational effort than evolution, so work has gone into limiting the number of evalu-

ation calls in learning, or preventing some individuals from learning [3, 15, 29, 31, 39]. In some

further works, memetic algorithms have been designed self-adaptive [30,40–42]. The parameters

such as learning intensity and frequency are tuned online, to attain more flexibility.

Work mainly has been focused on Lamarckian learning, the most widely used pattern encoding

learned traits back to genotypes and passing them on to the offspring. need exists, however,

for the other pattern of individual learning, Baldwinian learning, suggested by James Baldwin

a century ago [2]. Baldwinian learning selects individuals based on refined fitness while using

initial genotypes in reproduction. In computation scenarios, Baldwinian evolution is often

regarded as a necessary substitution for Lamarckian learning, if the inverse mapping from

learned phenotypes to genotypes does not exist, or the environment is dynamic, either of which

may make Lamarckian evolution fail. Knowledge pertaining to Lamarckism may thus not

necessarily be appropriate in Baldwinian evolution. Specially for Baldwinian evolution, there

has been studies on the basic mechanisms [10–12,20,45,51,52], and on search efficiency [5,9,21].

The knowledge accumulated is still not enough to indicate a way to make Baldwinian algo-

rithm designs efficient. In this chapter, we analyze computational cost and fitness improvement

in Baldwinian learning, to find some fundamental views. We assign individuals the same learn-

ing computation cost, called ”budget” hereafter, and compare the refined fitness of them and

their parents. We also examine genotypes with and without bit plasticity codes, to find the role

plasticity codes play in the scenario.

Chapter 2 Learning Potential 14

Note here that we are interested only in the speed to find satisfactory solutions, so genetic

assimilation, the second phase of the Baldwin effect, is not considered. In genetic assimilation,

individuals rarely achieve even higher fitness and traits become fixed into genotypes. Learning

cost falls and the best fitness found changes little, having much less effect on efficiency than the

first phase. Learning cost is not considered in selection in experiments, because it is considered

trivial in the first phase, and also in experiments, individuals invariably cost the same.

Having various learning budgets and cost punishment in fitness function, even if considered

trivial, can bring in the power of selection, and balance cost and performance. However, each

possible cost punishment term has its unique way of balancing, based on the form and scale:

linear or quadric, big or small. The balance changes search target substantially, from ”pursuing

high fitness” to ”pursuing balanced cost and fitness,” and may lead to a unique behavior of

convergence. To find a good cost punishment term is thus another question and, in this chapter,

we decide not to include its effect in the current step and, instead, focus on lost learned trait

information in Baldwinian evolution.

Section 2.2 presents a simple analysis of the mechanisms of Baldwinian and Lamarckian evo-

lution. Section 2.3 introduces experiment settings of Baldwinian/Lamarckian evolution and

plasticity codes. Section 2.4 details experiment results, which section 2.5 discusses further. Sec-

tion 2.6 lists conclusions and future work. In addition, the appendix presents some experiments

in continuous optimization.

2.2 Lamarckian and Baldwinian Learning

Both Baldwinian and Lamarckian evolution apply individual learning to improve fitness and

advantageously affect selection. The difference is whether traits attained in learning are inher-

ited.

Lamarckian theory claims that learned traits can be inherited by the offspring. Based on

current knowledge, it substantially asks for the inverse mapping from phenotypes to genotypes

not occurring in organisms, and thus not correct in biology. In evolutionary computation,

however, such mapping is often easy to attain, and phenotypes may even be the same as

genotypes. Lamarckism is simple to implement and brings refinement information directly

to evolution. As shown in Fig.2.1(a), individual P undergoes learning and reaches P ′ with

higher fitness. Child C is then generated around final position P ′, receiving all productions of

parental learning, starting with higher fitness and learning to explore beyond.

Baldwinian learning is relatively complex, as shown in Fig.2.1(b). Individual P pays works

to learn, refines fitness to some extent, and receives a corresponding bonus in selection. By the

Chapter 2 Learning Potential 15
F

it
n

e
s
s

Solution

P

P’

C

C’

(a) Lamarckian learning

F
it
n

e
s
s

Solution

P

P’

C1

C1’

 C2

 C2’

(b) Baldwinian learning

Fig.2.1: Evolutionary search with Lamarckian and Baldwinian learning.

simple fact of survival, all that individual P can tell its offspring is its potential to reach high

fitness, not how to learn or where. Its offspring are born similar to P and worse than P ′, having

to work to first catch up to their parents, before searching further. They learn similar to their

parents similar to child C1, or possibly take another way similar to child C2, either better or

worse than their parents’ way.

Taking a different approach, Baldwinian evolution is usually recognized as eliminating inverse

mapping from Lamarckian evolution. It can also be considered a traditional evolutionary pro-

cess with a different selection standard. What provides advantages in survival is the potential

to achieve such fitness through the certain learning process, not having high fitness traits di-

rectly encoded in genotypes. Offspring also receive potential. Realizing this potential, however,

requires nonstop computational effort, even if learning is often similar to that of an ancestor.

Search efficiency is an important factor in many applications, and the principle of evaluating

whether an individual learning process enhances the whole search, should be the improvement

between sequential generations, not fitness improvement within a generation, Lamarckian evo-

lution does not need to distinguish between the two ways because learning is usually beyond

that of the parents. Baldwinian evolution, however, children must catch up to parents, which

makes the two ways quite different. This implies a possible reason for Baldwinian learning in-

efficiency: most computational cost in learning is paid in following in the footsteps of ancestors

and maintaining potential. Fitness arises through generations with margins similar to simple

evolution, although computation cost is much greater. This in turn, implies a further problem:

the need for the learning budget to be constant throughout generations. A varying budget may

otherwise become insufficient for maintaining potential, or inefficient in searching further.

Chapter 2 Learning Potential 16

A further question arises about plasticity encoding. In conventional Baldwinian evolution

studies, genotypes can also include codes referring to which bits or parts are ”plastic,” in

addition to encoding for initial phenotypes. Only plastic parts can be modified in a lifetime

of learning. Plasticity encoding can limit the local search range and prevent the search from

being inefficient, because the codes also face selective pressure. Plasticity codes are not seen

in Lamarckian evolutions because learning goes beyond the previous, and there is no guarantee

whatsoever that previous ”good” local search directions will remain so. In Baldwinian evolution,

the fact that children follow parents brings to bear the significance of plasticity encoding,

because children start learning in situations similar to those of parents. Plasticity codes, as

a consequence, are expected to bring advantages in a search, but not likely to break the need

to follow before pushing the learning of children beyond that of the parents.

2.3 Model

2.3.1 NK Model

To test our proposal, we conducted experiments with an artificial NK model, broadly used to

simulate general discrete optimization problems proposed by Kauffman [25]. Some researchers

use this model to test general rules in evolution [34].

With the NK model, solutions are expressed as binary strings. A landscape is defined by

N lookup tables, each of which corresponds to a position of the binary strings. Each lookup

table holds information on a position’s (K+1)-bit neighborhood in the solution string, and lists

partial fitness values fi assigned to 2K+1 possible binary instances of the (K + 1) substring.

Then, to calculate the fitness f of a solution, the associated partial fitness values are acquired

from the N lookup tables and the average is calculated: f = 1
N

∑N
i=1 fi. N therefore determines

the scale of search space in the model, and K adjusts the epistasis/complexity level. Fig. 2.2

shows an example NK model, where N = 10 and K = 2. Thus, the landscape has 10 lookup

tables, the 4th of which is shown here. This table determines the 4th partial fitness, and is

indexed by the binary values of the 4th to 6th bits in the solution string. Here, the three bits of

concern are 101, and the partial fitness f4 = 0.880075. In our experiments, values in the lookup

tables are generated randomly according to a uniform distribution on [0, 1] in order to produce

relatively “general” conditions for our comparisons.

To study the effect of uncertainties, we designed two learning schemes: deterministic and

non-deterministic. Deterministic scheme modifies bit one by one from most to least significant,

and non-deterministic scheme modifies random bits. These schemes are all bitwise climbing

trials that start from solution S0 = GI and produce solutions S1, S2, · · · . An example of the

Chapter 2 Learning Potential 17

Fig.2.2: Fitness calculation of NK model with N=10, K=2.

k-th trial in a learning process is shown in Fig. 2.3. On the basis of previous result Sk, the

position i = 4 is selected and the ith bit in the solution is modified to produce S′

k. S′

k is then

compared with Sk and the fitter of the two is set as Sk+1. Such trials are repeated for different

modifying positions until a given number of trials have been conducted. The final solution is

then the learning destination and its fitness is set as the fitness of the individual.

2.3.2 Plasticity Codes

The above explanations apply to Baldwinian and Lamarckian evolution without plasticity

codes, where in all bits are considered plastic. For comparison we include a version of Baldwinian

search that uses plasticity codes to show how plasticity inheritance works in the search.

The extended genotype with plasticity is shown in Fig.2.4. GI records the learning start

point, as explained. Additional binary string GP points out which bits in GI can be modified

in lifetime learning. In the learning process, only the plastic bits, those having 1 in GP) of GI ,

are modified to try new strings and pursue higher fitness. The only difference in learning is

that when determining the swapping bit, only candidate bits, not all bits are plastic according

to GP .

2.3.3 Experiment Settings

Experiments use two-tournament selection, a simple two-point crossover and a one-bit muta-

tion. Parameters lists Table 2.1.

Three groups of experiments are conducted separately with the model on two landscapes.

Group 1 compares Baldwinian and Lamarckian learning, i.e., how the learning budget affects

Chapter 2 Learning Potential 18

Fig.2.3: k-th trial in learning process.

Fig.2.4: Genotype with plasticity codes.

Table2.1: Experiment Parameters

N 20

K 2 / 5

Population Size 500

Crossover Rate 0.50

Mutation Rate 0.05

Iteration Runs 50

Chapter 2 Learning Potential 19

the scale of improvement between generations. A test of how much improvement each step

brings in Baldwinian learning is then made. A Baldwinian search process with a periodically

changing learning budget then shows that budget changes may cause additional inefficiency.

Both versions, with and without plasticity, are examined for all Baldwinian evolution runs.

In this chapter we use only two landscapes with K = 2 and K = 5. The K = 15 landscape,

which will be used in latter chapters, is not included here. On the K = 15 landscape, things

are not changed, but differences become less distinct because learning is very difficult to follow.

On the other hand, we already have comparisons of two learning schemes and three values of

learning budgets. It is possible that an additional landscape and additional 50% data makes

the explanations more complicated rather than clearer. We decide to present results of only

two landscapes here.

2.4 Experiments and Results

In an early generation of a memetic search, individual learning usually does not lead directly

to the global optimum, We are often not even sure if there is a better solution undiscovered.

Given this, the benefit of learning is improvement expected in later generations rather than

a rise in yhe current generation, so we choose average fitness instead of best fitness as the

score. In Lamarckian evolution, any benefit from learning is apparently fully inherited by the

offspring. Benefits passed on to the offspring are thus almost the same as in fitness improvement

during current learning. In Baldwinian evolution, however, inheritance is not direct benefit. It

is thus worth determining to what extent learning achievements are passed on or, in the sense

of computational efficiency, to what degree Baldwinian learning pushes the whole search into

going further. Experiments all deal with this topic, and some fundamental propositions can be

inferred from results.

2.4.1 Improvement Through the Generations

In Baldwinian evolution, the learning process can improve fitness through the individual’s

lifetime, but what the offspring actually receive is doubtful. In these experiments, exactly the

same learning processes are applied in Baldwinian and Lamarckian evolution for comparison.

The learning budget, i.e. the number of learning steps for each individual, is fixed through each

run, and various budget scales are tested. What is recorded and compared is the difference

between the average final fitness of the current generation and that of the previous generation.

We are, in fact, measuring what is brought into the current generation rather than what is

passed on to the offspring. In Baldwinian evolution with plasticity, learning schemes do, in fact,

Chapter 2 Learning Potential 20

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Fitness of Previous Generation

No Learning
Budget = 5
Budget = 10
Budget = 20

(a) Lamarckian evolution

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Fitness of Previous Generation

No Learning
Budget = 5

Budget = 10
Budget = 20

(b) Baldwinian evolution

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Fitness of Previous Generation

No Learning
Budget = 5

Budget = 10
Budget = 20

(c) Baldwinian evolution with plasticity

Fig.2.5: Fitness improvement with deterministic learning on the K=2 landscape.

different due to the change in candidate bit sets. This is, however, the very way to compare

and judge the effect of plasticity codes.

Relatively low fitness is naturally easier to improve further, so different evolution versions

should be compared for similar previous fitness levels. We use the average fitness of the last

generation as index x, and the average fitness differences of two generations as index y. Data

shown is for averages of 50 random runs.

Fig.2.5 shows the result of using a deterministic local search, on the K=2 landscape, where

epistasis is low and optimization is relatively simple. Results show that improvement between

generations in Baldwinian evolution is much lower than that in Lamarckian evolution. The

little advantage of no learning can be observed, and as the learning budget increases, learning

passes on a bit more benefit to the offspring. Adding plasticity codes keeps fitness improvements

Chapter 2 Learning Potential 21

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Fitness of Previous Generation

No Learning
Budget = 5
Budget = 10
Budget = 20

(a) Lamarckian evolution

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Fitness of Previous Generation

No Learning
Budget = 5

Budget = 10
Budget = 20

(b) Baldwinian evolution

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Fitness of Previous Generation

No Learning
Budget = 5

Budget = 10
Budget = 20

(c) Baldwinian evolution with plasticity

Fig.2.6: Fitness improvement with nondeterministic learning on the K=2 landscape.

almost the same, or even a little lower.

Fig.2.6 shows results of nondeterministic local search, on the K=2 landscape. Note that with

Lamarckian learning, the improvement between generations is even higher than with determin-

istic learning. Uncertainties appear to offer more chances and Lamarckian learning has managed

to catch them. In contrast, Baldwinian evolution performs even worse than no learning. As the

learning budget increases, it becomes more and more difficult to realize and the computational

cost grows even as improvement through generations falls slightly. With plasticity codes, the

Baldwinian evolution becomes better than no learning whatsoever, but still only slightly.

Figs.2.7 and 2.8 show results on the K=5 landscape, a landscape that is more complex, and has

higher epistasis. With deterministic learning scheme, Lamarckian evolution improves most, and

both Baldwinian versions improve just a little more than no learning evolution. This is similar

Chapter 2 Learning Potential 22

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Fitness of Previous Generation

No Learning
Budget = 5
Budget = 10
Budget = 20

(a) Lamarckian evolution

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Fitness of Previous Generation

No Learning
Budget = 5

Budget = 10
Budget = 20

(b) Baldwinian evolution

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Fitness of Previous Generation

No Learning
Budget = 5

Budget = 10
Budget = 20

(c) Baldwinian evolution with plasticity

Fig.2.7: Fitness improvement with deterministic learning on the K=5 landscape.

to the situation for the K=2 landscape, but has smaller differences between the algorithms.

With the nondeterministic learning scheme, things are similar to that on the K=2 landscape.

Another thing common to this landscape is that after fitness reaches a certain level 0.7 here, all

the algorithms perform similarly in fitness improvements. This is related to landscape features.

In the experiments above, note that, the Baldwinian learning effort brings little if any ad-

vantage in fitness through generations, compared to no learning evolution. Plasticity improves

performance, but not essentially. With the same budget as that of the ancestors, the offspring in

learning keep just the potential they inherited. Baldwinian learning may bring higher diversity,

however, does not seem to accelerate the increase in fitness.

The most important point here is search speed, in fitness improvement through generations.

The learning schemes themself are not powerful to improve fitness, leading to fitness converging

Chapter 2 Learning Potential 23

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Fitness of Previous Generation

No Learning
Budget = 5
Budget = 10
Budget = 20

(a) Lamarckian evolution

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Fitness of Previous Generation

No Learning
Budget = 5

Budget = 10
Budget = 20

(b) Baldwinian evolution

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Fitness of Previous Generation

No Learning
Budget = 5

Budget = 10
Budget = 20

(c) Baldwinian evolution with plasticity

Fig.2.8: Fitness improvement with nondeterministic learning on the K=5 landscape.

above 0.8 with small differences. The difference between Lamarckian and Baldwinian evolution,

and between the two learning schemes is significant, however, it would interesting to check more

powerful learning schemes, however, that may accelerate the search phase and converge fast,

leaving us less data to compare differences in the search phase.

2.4.2 Step-by-Step Improvement

With a fixed budget, Baldwinian learning performs to maintain learning potential, rather

than pushing the population into going further. The question thus arises: what happens when

the learning budget changes through the search process. In these experiments, we first let the

Baldwinian evolution run with a fixed learning budget, until the average fitness of the population

reaches a certain level set here at 0.70. After that learning is taken trial by trial, to measure

Chapter 2 Learning Potential 24

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-20 -15 -10 -5 0 5 10 15 20F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Budget Increment

Previous Budget = 5
Previous Budget = 10
Previous Budget = 20

(a) Deterministic learning

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-20 -15 -10 -5 0 5 10 15 20F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Budget Increment

Previous Budget = 5
Previous Budget = 10
Previous Budget = 20

(b) Deterministic learning with plasticity

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-20 -15 -10 -5 0 5 10 15 20F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Budget Increment

Previous Budget = 5
Previous Budget = 10
Previous Budget = 20

(c) Nondeterministic learning

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-20 -15 -10 -5 0 5 10 15 20F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Budget Increment

Previous Budget = 5
Previous Budget = 10
Previous Budget = 20

(d) Nondeterministic learning with plasticity

Fig.2.9: Step-by-step learning improvements on the K=2 landscape.

how much it improves in each learning step, i.e. we determine what fitness level the current

generation can achieve.

To compare this to parents and see how inherited potential is realized, we expressed the

learning budget differences from the previous budget, not to absolute values. For the same

reason, improvement is expressed the differences in final fitness between the two generations,

not in the fitness increment during learning. Data is averages of 50 random runs.

Results for the K=2 landscape are shown in Fig.2.9. The abscissa shows the current learning

budget comparing to the previous one, and the ordinate shows fitness improvement since the

last generation. The horizontal line at y=0.0156449 shows on the average how much it improves

if no learning evolution is applied. Deviations in fitness improvement at some points are shown

by error bars.

Chapter 2 Learning Potential 25

First it is clear that, with either deterministic or nondeterministic learning, with or without

plasticity, only when the current learning budget approaches the previous budget does the

current generation catch up with the previous generation in fitness. When the same budget as

used before is taken, the fitness increment of the current generation is very close to that of no

learning evolution. This is again evidence that Baldwinian learning’s main job is to maintain

potential and to catch up with parents. It can be further inferred that when the learning budget

drops, the population loses some of the potential inherited, causing the generation to stop or

even back up in fitness.

Inherited potential, on the other hand, appears to be only the potential to reach high fitness in

the fixed budget, with learning steps beyond realizing inherited potential becoming inefficient.

Note in Figs.2.9(b) and 2.9(d), for Baldwinian learning with plasticity, that after taking the

same budget (increment=0), further steps make hardly any progress. In Figs.2.9(a) and 2.9(c),

the non-plasticity versions, this phenomenon becomes less obvious, but the difference in fitness

increasing speed is apparent, comparing periods before and after reaching the previous budget.

Plasticity codes thus appear to make the budget limit stricter.

Results on the K=5 landscape are shown in Fig.2.10. The horizontal line at y=0.0102983

shows on the average how much it improves if no-learning evolution is applied. Similar to the

situation for K=2, the same computational cost is paid to achieve similar improvements as in

no learning evolution. As landscape complexity increases, it becomes more difficult to maintain

potential and explore unknown areas.

These results verified again learning cost is paid to keep inherited potential, implying that

adaptating learning budget may bring inefficiency into a search. When the budget drops, some

inherited potential is not realized and is hence lost, rendering some effort useless. Even when

the budget rises again afterward, a less efficient local search will be made to rediscover potential,

slowing the whole search even more.

2.4.3 Changing the Budget

In the search of a memetic algorithm, learning intensity/budget is an important performance

parameter. Some studies on this in Lamarckian evolution may lead to claims that techniques

used in Lamarckian evolution can also be applied to Baldwinian evolution [40]. These experi-

ments argue that this is not easy, because what is inherited is indirect potential corresponding

to the learning process, not direct fitness. The difference in inheritance lets Baldwinian learning

affect even the performance of later generations, and it is inappropriate to adapt a budget from

outside of evolution. Such adaptations break inherited potential and prevent children from

realizing what the parents achieved, further adversely influence search performance.

Chapter 2 Learning Potential 26

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-20 -15 -10 -5 0 5 10 15 20F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Budget Increment

Previous Budget = 5
Previous Budget = 10
Previous Budget = 20

(a) Deterministic learning

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-20 -15 -10 -5 0 5 10 15 20F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Budget Increment

Previous Budget = 5
Previous Budget = 10
Previous Budget = 20

(b) Deterministic learning with plasticity

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-20 -15 -10 -5 0 5 10 15 20F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Budget Increment

Previous Budget = 5
Previous Budget = 10
Previous Budget = 20

(c) Nondeterministic learning

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-20 -15 -10 -5 0 5 10 15 20F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Budget Increment

Previous Budget = 5
Previous Budget = 10
Previous Budget = 20

(d) Nondeterministic learning with plasticity

Fig.2.10: Step-by-step learning improvements on the K=5 landscape.

Generally speaking, a certain learning scheme makes the inheritance a certain level of po-

tential, to which it is related to but not always in accord with other levels of potentials. The

potential to reach a good solution after 10 learning steps does not guarantee that a point

achieved by only 5 steps is a good one, or that after another 10 steps a prior solution can be

found comparing to other individuals taking 20 steps. The individuals are selected for 10-step

learning.

From this, changes in a learning budget may break potential and slow the search in a Bald-

winian scenario. In experiments, we set a scenario to verify this effect. Experiments test two

budget assignment cases: one using a fixed learning budget of 5 steps, and the other using 1 step

and 9 steps alternatively, changing every 4 generations. This means that over a long period,

the average generation computational cost of the two methods is exactly the same. Baldwinian

Chapter 2 Learning Potential 27

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 5 10 15 20

F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

in
 t

h
e

 G
e

n
e

ra
ti
o

n

Evaluation Calls (x10000)

Fixed Budget
Changing Budget

(a) Deterministic learning

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 5 10 15 20

F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

in
 t

h
e

 G
e

n
e

ra
ti
o

n

Evaluation Calls (x10000)

Fixed Budget
Changing Budget

(b) Deterministic learning with plasticity

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 5 10 15 20

F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

in
 t

h
e

 G
e

n
e

ra
ti
o

n

Evaluation Calls (x10000)

Fixed Budget
Changing Budget

(c) Nondeterministic learning

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 5 10 15 20

F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

in
 t

h
e

 G
e

n
e

ra
ti
o

n

Evaluation Calls (x10000)

Fixed Budget
Changing Budget

(d) Nondeterministic learning with plasticity

Fig.2.11: Periodically changing and constant budgets on the K=2 landscape.

versions both with and without plasticity codes are included.

We simply compared the search speed of the two methods. Data is averages of 50 random

runs. Fig.2.11 shows results on the K=2 landscape. Figs.2.11(a) and 2.11(b) show that with

deterministic learning, search performance is adversely affected by the changing learning budget:

a budget decrease causes fitness to drop in the next generation. In later generations it pursues

the fitness of the fixed budget version, but can hardly catch up with it, even in next 4 steps of

a high learning budget. Taking averages of 50 runs and 500 individuals per run, the trend is

smoothed, but the difference in changing and constant budgets is distinct. With deterministic

learning scheme, regardless of whether plasticity is included, the entire search becomes slower

if the budget is dynamic.

This does not, however, always happen. As shown in Figs.2.11(a) and 2.11(b), the results of

Chapter 2 Learning Potential 28

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 5 10 15 20

F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

in
 t

h
e

 G
e

n
e

ra
ti
o

n

Evaluation Calls (x10000)

Fixed Budget
Changing Budget

(a) Deterministic learning

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 5 10 15 20

F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

in
 t

h
e

 G
e

n
e

ra
ti
o

n

Evaluation Calls (x10000)

Fixed Budget
Changing Budget

(b) Deterministic learning with plasticity

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 5 10 15 20

F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

in
 t

h
e

 G
e

n
e

ra
ti
o

n

Evaluation Calls (x10000)

Fixed Budget
Changing Budget

(c) Nondeterministic learning

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 5 10 15 20

F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

in
 t

h
e

 G
e

n
e

ra
ti
o

n

Evaluation Calls (x10000)

Fixed Budget
Changing Budget

(d) Nondeterministic learning with plasticity

Fig.2.12: Periodically changing and constant budgets on the K=5 landscape.

nondeterministic learning do not imply such a phenomenon. Average lines show that changing

and constant budgets yield almost the same performance, probably because learning is random

and offspring rely less on their ancestors.

The case is similar for K=5, as shown in Fig.2.12. With deterministic learning, fitness with

a changing budget drops and rises regularly, finally converging at a level lower than that of

the constant budget version. With nondeterministic learning, changing and constant budget

versions perform quite similarly, but here the changing budget converges at a slightly lower

fitness level.

Experiments thus verify that in Baldwinian evolution, the level of inherited potential is fixed

by the allowed budget. Online adaptation of the budget may bring additional inefficiency and

weaken the search. It is not a problem in this search that with deterministic learning, the

Chapter 2 Learning Potential 29

changing budget search converges only a few generations later than the fixed budget search. It

is possible, however, that problems may arise when other learning schemes are applied, perhaps

with more procedure information or heuristics. Cost is also likely to rise, if the landscape is

more complex and the search period much longer, such as tens or hundreds of generations, or

the learning budget variation becomes more complex. This makes it necessary to consider this

inefficiency when applying adaptations to learning intensity in Baldwinian evolution, or to avoid

designing such online adaptations from the very beginning.

2.5 Discussion

In this chapter, we revealed a novel view of Baldwinian learning in the stage before conver-

gence: Learning effort is paid to maintain a certain level of potential to achieve high fitness

through learning, rather than to spread the search and pursue higher fitness. This presents

further understanding of the Baldwinian evolution performance in the search phase.

We also examined the use of plasticity encoding, which is widely used in Baldwinian evolution

research, and considered an enhancement. It is reasonable to set some general rules or limitations

on genotypes, but plasticity itself becomes practical because children and parents are starting

from similar positions and searching almost the same areas. This cannot change the basic fact

that learned traits are not known to the offspring, or the result that learning cost is mostly paid

to maintain potential. Our experiments also verified this.

This work presents the view that Baldwinian evolution may work this way, rather than to

argue that it is invariable in all possible situations. Some work already showed different Bald-

winian evolution performances on different landscapes [46,51,55]. Baldwinian evolution showd

its strengths when the problem is deceptive or the environment is dynamic. In this work we

included fewer factors and analyzed performance on very simple static landscapes. The view

attained here is not directly useful to design efficient Baldwinian algorithms, nor does it even

imply that in such situations, Baldwinian evolution is an undesirable choice for such practical

requests. By analyzing the basic facts, however, we can attain an alternative viewpoint that

may help in the study of more complex situations.

There are many possible extensions for future works. First of all is the question of what

Baldwinian learning achieves. From the examination we found it difficult to exploit fitness after

the first generation. It is, however, said to be robust. What the robustness is against, and how

the trade-off between the two aspects can be measured, calls for further investigation.

Another question arises about the end condition of learning. In our experiments the end

condition is the limit on the learning budget. Another end condition frequently used is the

Chapter 2 Learning Potential 30

arrival at a local optimum or a threshold for low improvement. We wonder how the cost-benefit

relationship in individual learning is to be determined, and how the budget assignment and end

condition are to be used to achieve an efficient search.

This then leads to the question about the effect of learning cost in selection. This is con-

ventionally considered to be the condition necessary to enable genetic assimilation. It can be

expected that having various learning levels in one generation and putting the cost into selec-

tion may help with computational efficiency, as individuals having smaller potential ask their

offspring to make less effort in realizing their inheritance. This is, in fact, the most essential

part in learning cost that we are concerned with before genetic assimilation. As mentioned in

the introduction, questions exist on how to fix the form and scale of this balance, and how the

performance will be changed.

Another point important in acceleration is the comparison of efficiency in evolution and

learning. Our examination mainly implies that their products are not independent, and that

the total effect is not simply the sum of both. In Baldwinian learning the search history should

be considered. Chanllenges thus remain in how to make an efficient estimation, how to assign

a set of computational resources, and how to optimize search efficiency.

2.6 Conclusion

This chapter has, from the view of computational cost and fitness improvement, examined

the basic mechanism in Baldwinian evolution in which no learned traits are passed on to the

offspring. It is revealed that, on the static landscapes involved, learning cost is paid to maintain

a certain level of potential to reach good fitness, rather than to further explore on the landscape.

If the level of potential is compromised, for example, by learning intensity adaptation, some

inheritance may be lost and the search becomes worse. We also experimented with plasticity

codes, finding that plasticity encoding may improve the performance as good areas are selected,

but does not change the fact that Baldwinian learning effort is paid to realize inherited potential.

There are some further verifications in continuous optimization in the appendix of this thesis,

and the results also support the conclusions found in this chapter. These results provide an

alternative viewpoint on the basic Baldwinian mechanism, and may be a helpful reference in

complex situations.

Chapter 3

Realization of Learning Potential

In Baldwinian evolution, refined fitness influences selection. However, unlike Lamarckian evo-

lution, refined traits are not passed on to the offspring. This loss of refined trait information

implies that the guiding effect of learning comes from the inheritance of learning potential. Off-

spring do not directly inherit beneficial traits, but instead inherit genes that lead to beneficial

traits after their lifetime learning. In the previous chapter we verified the existence of such

potential, and in this chapter we study how it works. The realization of learning potential,

namely, how learning behavior compares to the previous generation’s learning, are studied, in

addition to how much learning improves the current generation’s initial phenotypes. Since chil-

dren are affected by learning schemes and genetic operators, they may prefer either to follow

and repeat their parents’ learning, or to explore a new direction. In this chapter, we investigate

how learning schemes and genetic operators affect the realization of learning potential, and,

in turn, how this influences search performance. Some further experiments in continuous op-

timization are presented in the appendix. The results show that learning schemes and genetic

operators have different impacts: uncertainties in learning schemes slow down speeds and lower

fitness, whereas genetic operators balance exploitation and exploration. The guiding effect of

Baldwinian learning is thus implied to originate from only what children can inherit or follow.

– 31 –

Chapter 3 Realization of Learning Potential 32
F

it
n

e
s
s

Solution

P

P’

C

C’

(a) Lamarckian evolution

F
it
n

e
s
s

Solution

P

P’

C

C’

(b) Baldwinian evolution

Fig.3.1: Two types of memetic search.

3.1 Introduction to the Chapter

The biological concept of Baldwinian evolution is especially complicated, as well as sometimes

being quite vague [52]. In this chapter, we consider a simplified situation by using randomly

generated static landscapes and an evolution process that includes only the most basic rule:

“learned traits are not inherited.” We then propose a method to explain that Baldwinian evolu-

tion’s properties may have impact on performance and how this occurs. In particular, we make

a comparison between children’s and parents’ learning processes. This approach differs from

many conventional studies that examine learning performance only in the current generation.

The present work is inspired by Suzuki et al. [51], who have reported climbing behavior in

Baldwinian evolution and the effect of keeping track of the optimum. Here, we study the out-

come of an offspring’s decision to follow (or not) their parents’ learning trajectories or directions,

which can be affected by the learning starting point and its process.

Fig. 3.1 shows examples of Lamarckian and Baldwinian evolution. In Lamarckian evolution,

a child C completely inherits the refined traits of its parent P ′. Then, through the child’s

learning process C → C ′, it goes beyond the learning destination of its parent. In Baldwinian

evolution, C is born close to P , the starting point of its parent. C must therefore first catch up

with the final position of its parent P ′ before it can progress even further.

During this catch-up process in Baldwinian learning, individuals may choose to follow their

parents’ footprints or a different pathway that explores a new area of the landscape. In this

chapter, we study this preference, how it is influenced by algorithm parameters and how, in

turn, it influences search performance. Our results reveal that learning schemes and genetic

Chapter 3 Realization of Learning Potential 33

Table3.1: Experiment Parameters

N 20

K 2/5/15

Population Size 500

Learning Budget 5/10/20

Crossover Rate 0.50/0.75

Mutation Rate 0.05

Fig.3.2: Each partial fitness value is dependent on only a single K-neighborhood.

operators have different impacts. Uncertainties in learning schemes degrade speed and fitness,

while variation in genetic operators appears as a trade-off between speed and diversity. The

chapter proceeds as follows. In Section 3.2, we introduce the NK model as a benchmark, and

present the learning schemes and crossover operators involved in our comparison. In Sections

3.3 and 3.4, we then outline the experiment for comparing the learning schemes and crossover

operators, respectively. A discussion on the experimental results and possible future work

is given in Section 3.5. Finally, in Section 3.6, the conclusions of this study are presented.

In addition, some experiments with continuous optimization benchmarks are presented in the

appendix of this thesis.

3.2 Model

3.2.1 NK Model with Plasticity

We use NK model with plasticity codes for benchmark, as introduced in the previous chapter.

Conventional 2-tournament selection and one-bit mutation is employed. Learning schemes and

crossover operators are introduced later. Some experiment parameters are included in Table

3.1. Experiments are taken on three fitness landscapes, to include various levels of epistasis and

complexity. For each landscape the N look-up tables are generated randomly once, and on this

same landscape various tests and their iterations take place.

In the experiments, we compare children’s and parents’ learning processes to investigate

Chapter 3 Realization of Learning Potential 34
F

it
n

e
s
s

Solution

P

P’

(a) Learning uncertainties

F
it
n

e
s
s

Solution

P

P’

C1

C1’

 C2

 C2’

(b) Children’s learning

Fig.3.3: Learning uncertainties and effect on children.

whether learning is “similar”. Here, similarity is an imprecise concept. Affected by genetic

operators such as crossovers and mutations, children differ from their parents even though they

inherit their parents’ genes. Learning potential is realized not by children having exactly the

same initial points and learning processes as their parents, but by inheriting functional gene

pieces that enable the children to perform the same local refinements. Fortunately, the NK

model facilitates quantitative measurement of this local similarity. A solution’s fitness is the

average of N partial fitness values, each of which is dependent on only a single K-neighborhood.

If, at time t, a change occurs in a K-neighborhood of a learning individual, and the same change

in the same K-neighborhood previously occurred for one of its parents, then in the scope of

this K-neighborhood and learning change, the child’s learning is similar to that of its parent.

Fig. 3.2 shows an example of this: if the 4th bit is changed from 1 to 0, and the 5th and 6th

bits are 0 and 1, respectively then the change in f4 is determined regardless of the other bits in

the solution string. Learning similarity in our experiments is measured as the number of such

learning changes repeated locally.

The learning schemes and crossover operators for testing are introduced in the next section.

Several experiment parameters are listed in Table 3.1, and, 2-tournament selection and one-bit

mutation are employed. Experiments are performed on three fitness landscapes to examine

various levels of epistasis and complexity.

3.2.2 Learning Schemes

When comparing learning processes between parents and children, the most essential factor

is the employed learning scheme. If uncertainties exist in the learning scheme, the trajectory

Chapter 3 Realization of Learning Potential 35

Fig.3.4: k-th trial in learning process.

and results of learning may vary even when starting with exactly the same solution. As shown

in Fig. 3.3(a), if the starting point is P , the destination could be P ′. However, uncertainties

can shift the destination to a point in the same direction as P ′ but closer to P , or even to a

point in a different direction. Hence, although children inherit their parents’ genes, they are not

guaranteed to rediscover their parents’ learning destinations. A child may (C1 → C ′

1) or may

not (C2 → C ′

2) follow their parent’s path (Fig. 3.3(b)). Under different levels of uncertainties,

a child preference for following its parents changes. Consequently, an individual’s survival is

affected by the nature of learning uncertainties, and search performance varies accordingly.

The trade-off between a child following its parents or exploring elsewhere can be thought of as

exploitation versus exploration. However, the mechanism here is not exactly that topic. Without

handing down the learning routes/destinations to offspring, neither exploitation nor exploration

makes sense. We thus expect that under a learning scheme with a high level of uncertainty,

the achievements of ancestors are difficult to repeat, and the search may be inefficient. The

search target in such a case can be considered as changing from “looking for peaks” to “looking

for plateaus”, because surviving individuals must achieve high fitness in most of their possible

learning directions.

To study the effect of uncertainties, we designed three learning schemes. These schemes are

all bitwise climbing trials that start from solution S0 = GI and produce solutions S1, S2, · · · .

An example of the k-th trial in a learning process is shown in Fig. 3.4. On the basis of previous

result Sk, the position i = 4 is selected and the ith bit in the solution is modified to produce S′

k.

Chapter 3 Realization of Learning Potential 36

Fig.3.5: Genotype with plasticity codes.

S′

k is then compared with Sk and the fitter of the two is set as Sk+1. Such trials are repeated

for different modifying positions until a given number of trials have been conducted. The final

solution is then the learning destination and its fitness is set as the fitness of the individual.

Our three designed learning schemes have similar procedures and search capabilities, but are

different in terms of uncertainty level since they determine the modifying position from trial to

trial by different methods. Note that the plastic positions of an individual, from most to least

significant, are i1, i2, · · · , im, 1 ≤ ij ≤ N . For example, in Fig. 3.5, the plastic positions are 1,

2, 7 and 9. Determination of the modifying positions for the three schemes, in ascending order

of uncertainty level, are as follows.

1) “Sequential” scheme: modify the plastic bits one by one in sequence order i1, i2, · · · , im, i1, i2, · · · .

Referring to Fig. 3.5, the sequence is 1, 2, 7, 9, 1, 2, 7, 9,· · · . This scheme has the fewest un-

certainties among the three, and the same individual always has the same learning performance

under the scheme.

2) “Permuted” scheme: modify the plastic bits one by one in a randomly permutated order. If

we denote a permutation of 1, 2, · · · ,m as p(1), p(2), · · · , p(m), then the corresponding modified

position sequence is ip(1), ip(2), · · · , ip(m), ip(1), ip(2), · · · . Starting with the same initial solution,

the permutation can change, resulting in a different learning result. Referring to Fig. 3.5, the

sequence could be, for instance, 1, 7, 9, 2, 1, 7, 9, 2,· · · or 9, 2, 1, 7, 9, 2, 1, 7,· · · . This scheme

has limited uncertainties.

3) “Random” scheme: choose a random plastic bit in each trial. Sequences are of the form

ir1 , ir2 , ir3 , · · · , where r1, r2, r3, · · · are randomly selected from 1, 2, · · · ,m. Referring to Fig.

3.5, the sequence could be, for instance, 1, 2, 9, 2, 9, 7, 1,· · · or 7, 1, 1, 9, 2, 7, 1,· · · . Because

this scheme is random, an individual with multiple plastic bits often proceeds in a new learning

direction.

Here, we limit the number of learning trial iterations to a prescribed value, which we call the

“budget” hereinafter. This terminating condition for learning is easy to control and measure,

Chapter 3 Realization of Learning Potential 37
F

it
n

e
s
s

Solution

P

P’

C1

C2

(a) Crossover breaks building blocks

F
it
n

e
s
s

Solution

P

P’

C1

C1’

C2

C2’

(b) Children’s learning

Fig.3.6: Change in inheritance caused by crossover and effect on children.

and makes comparison between generations more convenient. Learning is also commonly ter-

minated when little to no further learning improvement occurs. While this second terminating

condition is reasonable, having various learning iterations in the population is complicated. Fur-

thermore, the fitness function in our experiments does not include a learning cost, since we are

interested in only the search phase of Baldwinian evolution. During this phase, enhancement

of the local search is claimed to dominate [9, 20], and the learning cost penalty is considered

trivial. Studying the effect of the learning cost penalty on the search phase is beyond the scope

of this chapter. Instead, we use cost-free Baldwinian learning.

3.2.3 Crossover Operators

The starting point of learning is another important factor in the learning process. Crossover

and mutation operations add diversity during evolution and enhance search. However, these

operations also break building blocks in genotypes at random, and therefore children can have

initial solutions that their parents might never have experienced. In evolutionary algorithms

without learning, these building blocks are directly related to beneficial traits. In Baldwinian

evolution, they are related to good learning potential, and breaking such blocks prevents children

from replicating their parents’ learning achievements. If a child inherits genes from a parent

at P (Fig. 3.6), the child’s initial position could be close to that of the parent (e.g., C1), such

that it can easily follow its parent’s path. However, if genetic variation produces a considerable

change, such as moving the child’s position to C2, the child must explore a new path.

Unlike random learning schemes that merely waste parents’ efforts, crossovers and mutations

add variations to the gene pool, and a beneficial variation can be inherited by later generations

Chapter 3 Realization of Learning Potential 38

unless further changes occur. Genetic operators that break few building blocks enable children

to realize their inherited learning potential and to accelerate search. In contrast, genotype

diversity through the breaking of inherited building blocks can be advantageous, and may

prevent premature convergence. The balance between preserving and breaking building blocks

is an exploitation and exploration trade-off, similar to that in simple evolution. Inherited

sequences are no longer representations of beneficial traits in the current case, however. Instead,

inheritance maintains traits through learning, and building blocks provide promising starting

points for learning.

To verify this idea and study the influence of breaking building blocks, the three crossover

operators in Fig. 3.7 are compared in the experiments alongside a fixed 5% one-point mutation

operation. In increasing order of breaking building blocks, the crossover operators are as follows.

1) One-bit crossover: exchange only one random position. Although this operator is uncom-

mon, we use it to represent an extreme case. Since genotypes barely change, the population has

insufficient diversity.

2) Two-point crossover: select two random positions and exchange the bit sequences between

them. This operator is commonly used, and retains a certain amount of the building blocks.

3) Uniform crossover: each bit in the genotype has a 50% chance of being exchanged. This

crossover operation is also popular, and breaks building blocks considerably in the binary strings.

3.3 Learning Scheme Comparison

The following subsections introduce experiments on three landscapes in which we compare

the effects of the three learning schemes. We first clarify that the schemes have comparable

search capabilities, and then examine the similarity between search generations for each scheme

and the inheritance of learning potential. Finally, we compare their search performance. In

this section, all experiments use two-point crossover and 50% crossover rate. The results are

averages of 50 runs.

3.3.1 Low Epistasis Landscape

First, we present the experimental results for a K = 2 fitness landscape with low-level epis-

tasis. This landscape is the simplest in our experiments; genotype bits have few connections to

each other, and optimization is relatively straightforward.

The three learning schemes involve similar procedures. Furthermore, the schemes are verified

as being somewhat equal in terms of search capabilities when applied to the same starting popu-

lation that evolved without the bias of any scheme. We evolve this population without learning

Chapter 3 Realization of Learning Potential 39

(a) One-bit crossover

(b) Two-point crossover

(c) Uniform crossover

Fig.3.7: Three types of crossovers.

Chapter 3 Realization of Learning Potential 40

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 5 10 15 20 25

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Learning Budget

sequential-bits learning
permuted-bits learning

random-bits learning

Fig.3.8: Search capabilities on K = 2 landscape with the same population.

until the average fitness exceeds 0.75, and then ascertain how much the fitness is improved by

the learning schemes. The exact optimum is 0.817048, as found through enumerations, and

therefore convergence has not occurred at a fitness of 0.75. In Fig. 3.8, the x-axis represents

the budget, namely, the number of learning trials, and the y-axis represents the average fitness

improvement achieved by learning. The sequential and permuted schemes have approximately

the same performance, whereas that of the random scheme is slightly worse. Thus, differences

between these learning schemes are caused by their uncertainties, not their search capabilities.

We also measured learning similarity between generations during each search when the learn-

ing budget is 20. The results are given in Fig. 3.9, which shows the preferences under each

scheme of following parents’ paths. The learning similarities of the sequential and permuted

schemes increase rapidly, whereas that of the random scheme is slower.

Consequently, the preference for following parents influences the selective pressure—individuals

are selected as being suitable in the learning scheme, and the potential inheritance of learning

is shaped accordingly. To show the differences in learning potential, we compare the fitness

values of the current generation during learning with the final value of the previous generation.

To this end, we first evolve a population with a fixed learning budget of bpre = 20 until the

learning-improved fitness reaches 0.75, which we denote as fpre. Then, during learning in the

next generation, we record the improved fitness after each additional learning trial has been

conducted. We denote fitness after each learning step as f(b), corresponding to the budget b

Chapter 3 Realization of Learning Potential 41

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

L
e
a
rn

in
g
 S

im
ila

ri
ty

 (
%

)

Evaluation Calls (× 10
4
)

sequential-bits learning
permuted-bits learning

random-bits learning

Fig.3.9: Learning similarities on K = 2 landscape when budget is 20.

(= 0,1,2,...). The results are shown in Fig. 3.10, where the x-axis represents the difference in

learning budget between the current and previous generations b−bpre, and the y-axis represents

the difference in fitness between the current generation’s learning achievements and the previous

generation’s final fitness f(b)−fpre. For example, after all individuals in the current generation

have taken five learning trials, the average fitness of the population is f(5), which is plotted as

the point (−15, f(5) − fpre) in the figure. Table 3.2 lists further results for the three schemes,

including some statistics, when bpre = 5, 10 and 20.

The results show that fitness considerably improves during learning, but the current genera-

tion’s final fitness is only a little higher than that of the previous generation, regardless of the

employed learning scheme. The majority of the current generation’s learning effort is hence

used to catch up with the previous generation, and the fitness improvement during the current

generation’s learning can be considered as a measure of their learning potential. Comparing

the potentials across the schemes, the sequential scheme provides greater potential than the

permuted one, and the random scheme’s potential is substantially lower. With fewer uncertain-

ties, children are able to track their parents’ achievements even from positions located farther

away. According to the fitness improvement data in Table 3.2, differences in fitness improve-

ment among the schemes are also seen when comparing with the previous generation. These

differences may lead to different search speeds for the schemes.

Finally, we compare the search performance of the three schemes. Fig. 3.11 shows the search

Chapter 3 Realization of Learning Potential 42

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-20 -15 -10 -5 0 5 10 15F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t
b
e
tw

e
e
n
 G

e
n
e
ra

ti
o
n
s

Learning Budget Increment

sequential-bits learning
permuted-bits learning

random-bits learning

Fig.3.10: Learning improvement on K = 2 landscape when bpre = 20.

Table3.2: Learning improvement on K = 2 landscape

Budget 5 10 20

Compared with

Before Learning

(f(b)− f(0))

Sequential
0.081556

(±0.023206)

0.131644

(±0.031032)

0.153381

(±0.030198)

Permuted
0.065039

(±0.026127)

0.122322

(±0.028635)

0.150823

(±0.031647)

Random
0.023136

(±0.008275)

0.067394

(±0.020891)

0.110723

(±0.020286)

Compared with

Previous Generation

(f(b)− fpre)

Sequential
0.011700

(±0.003829)

0.013574

(±0.004168)

0.012827

(±0.003877)

Permuted
0.010531

(±0.004331)

0.012240

(±0.004364)

0.012765

(±0.003866)

Random
0.008906

(±0.004989)

0.008101

(±0.005209)

0.009782

(±0.005140)

Chapter 3 Realization of Learning Potential 43

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 5 10 15 20 25

A
v
e
ra

g
e
 F

it
n
e
s
s

Evaluation Calls (× 10
4
)

sequential-bits learning
permuted-bits learning

random-bits learning

Fig.3.11: Search performance on K = 2 landscape when budget is 20.

performance with a fixed learning budget of 20. Table 3.3 then lists the convergence times and

fitness values for the schemes when the budget is 5, 10 and 20. Since this landscape is simple,

Baldwinian search under all three learning schemes leads to fairly good solutions, while their

search performance is indistinct. The solutions of the sequential and permuted schemes are

approximately equal in terms of high accuracy, although the sequential scheme is slightly faster.

The random scheme is slowest, and converges at lower fitness values.

Thus far, the results have shown that with a high level of uncertainties, it is difficult for chil-

dren to follow their parents. As the learning similarity between generations decreases, learning

potential also decreases such that the search becomes slow and the final fitness value is low.

However, differences in performance due to uncertainties are not distinct on this simple land-

scape.

3.3.2 Moderate Epistasis Landscape

We next examine the results for aK = 5 fitness landscape with higher epistasis and complexity

than the previous one.

For this fitness landscape, we evolve a population without learning until the average fitness

exceeds 0.70, and then determine fitness improvements. This change in the fitness threshold

compared with the previous experiments is to guarantee the sampled period during the search

phase. Since the current landscape has greater complexity, and the exact optimum is 0.803160,

Chapter 3 Realization of Learning Potential 44

Table3.3: Search performance on K = 2 landscape

Budget 5 10 20

Converging Fitness

Sequential
0.814074

(±0.004357)

0.814694

(±0.003487)

0.814832

(±0.003193)

Permuted
0.813532

(±0.004826)

0.815032

(±0.002607)

0.815043

(±0.002244)

Random
0.810283

(±0.009025)

0.811861

(±0.005343)

0.813789

(±0.003234)

Eval. Calls to

Reach 99% Fitness

Sequential
9972

(±1805)

15598

(±3003)

28602

(±7273)

Permuted
10968

(±1939)

16566

(±3307)

29736

(±8252)

Random
13896

(±5498)

23716

(±9082)

37632

(±8003)

the threshold is reduced. From Fig. 3.12, the sequential and permuted schemes realize similar

fitness improvements, whereas that of the random scheme is slightly worse. Examining the

standard deviations drawn in the figure, we see that all three schemes still have approximately

the same search capability for unbiased populations.

However, differences brought about by uncertainties become distinct on this landscape. Fig.

3.13 shows the learning similarities between generations when the learning budget is 20. The

sequential scheme provides a higher learning similarity than the permuted one, while the per-

muted scheme enables a greater number of individuals to follow parents than the random scheme

does. Following parents thus becomes difficult on this landscape such that the performance of

the three learning schemes have apparent distinctions.

As a result, the characteristics of surviving individuals have greater diversity among the

learning schemes. Fig. 3.14 shows the fitness improvements when bpre = 20, and Table 3.4 lists

further fitness improvement data. The sequential scheme provides greater learning potential

than the permuted scheme does, especially when bpre = 5 or 10. Furthermore, the learning

potential of the random scheme is considerably smaller than that of the permuted scheme.

Although the improvements of the three learning schemes between generations are still similar,

applying the sequential scheme is advantageous.

Fig. 3.15 shows the search performance of the schemes with a fixed budget of 20. Table

3.5 then lists convergence times and fitness values when the budget is 5, 10 and 20. Since

this landscape has some complexity, the three learning schemes attain different fitness levels.

The solutions of the sequential and permuted schemes are approximately equally in terms of

accuracy, and are better than those of the random scheme. Conversely, the sequential scheme

Chapter 3 Realization of Learning Potential 45

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 5 10 15 20 25

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Learning Budget

sequential-bits learning
permuted-bits learning

random-bits learning

Fig.3.12: Search capabilities on K = 5 landscape with the same population.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

L
e
a
rn

in
g

 S
im

ila
ri
ty

 (
%

)

Evaluation Calls (× 10
4
)

sequential-bits learning
permuted-bits learning

random-bits learning

Fig.3.13: Learning similarities on K = 5 landscape when budget is 20.

Chapter 3 Realization of Learning Potential 46

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-20 -15 -10 -5 0 5 10 15F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t
b
e
tw

e
e
n
 G

e
n
e
ra

ti
o
n
s

Learning Budget Increment

sequential-bits learning
permuted-bits learning

random-bits learning

Fig.3.14: Learning improvement on K = 5 landscape when bpre = 20.

Table3.4: Learning improvement on K = 5 landscape

Budget 5 10 20

Compared with

Before Learning

(f(b)− f(0))

Sequential
0.107202

(±0.031928)

0.133819

(±0.025349)

0.150970

(±0.025699)

Permuted
0.076220

(±0.036756)

0.114828

(±0.026211)

0.143798

(±0.028833)

Random
0.027006

(±0.012308)

0.062833

(±0.023066)

0.107060

(±0.028150)

Compared with

Previous Generation

(f(b)− fpre)

Sequential
0.007008

(±0.005064)

0.008571

(±0.007307)

0.009232

(±0.005002)

Permuted
0.008071

(±0.006426)

0.008298

(±0.006023)

0.008034

(±0.006350)

Random
0.007872

(±0.006299)

0.007061

(±0.006347)

0.008646

(±0.005188)

Chapter 3 Realization of Learning Potential 47

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 5 10 15 20 25

A
v
e
ra

g
e
 F

it
n
e
s
s

Evaluation Calls (× 10
4
)

sequential-bits learning
permuted-bits learning

random-bits learning

Fig.3.15: Search performance on K = 5 landscape when budget is 20.

Table3.5: Search performance on K = 5 landscape

Budget 5 10 20

Converging Fitness

Sequential
0.777821

(±0.020729)

0.786345

(±0.014021)

0.788744

(±0.012398)

Permuted
0.781688

(±0.014764)

0.786077

(±0.011939)

0.789492

(±0.011760)

Random
0.769680

(±0.023172)

0.776895

(±0.019193)

0.782463

(±0.014602)

Eval. Calls to

Reach 99% Fitness

Sequential
14964

(±6475)

29348

(±20068)

54894

(±46130)

Permuted
20100

(±13975)

52272

(±81908)

63462

(±45098)

Random
27708

(±35874)

38742

(±17893)

62244

(±23109)

converges more rapidly than the other two schemes.

The results on this landscape also show the difficulty for children to follow their parents under

uncertainties. The differences in learning similarity, learning potential, and search performance

are more distinct for a more complex landscape, especially when comparing the sequential and

random schemes. The effect of uncertainties is thus similar to that for the K = 2 landscape.

Chapter 3 Realization of Learning Potential 48

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 5 10 15 20 25

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Learning Budget

sequential-bits learning
permuted-bits learning

random-bits learning

Fig.3.16: Search capabilities on K = 15 landscape with the same population.

3.3.3 High Epistasis Landscape

We finally examine a highly complex K = 15 fitness landscape. The epistasis of this landscape

is thus very high. Any crossover or mutation in such a case is likely to break building blocks

and prevent children from following their parents.

For this fitness landscape, the sampling threshold during the search phase is set to 0.65,

because under some learning schemes/budgets, the average fitness may not even reach 0.70 (the

exact optimum is 0.801496). The three schemes still have similar search capabilities on this

landscape (Fig. 3.16).

The difference in learning similarity is highly evident on this landscape where following is

always difficult. Fig. 3.17 shows the similarities when the learning budget is 20. The separa-

tion between the plots of the three schemes is obvious compared with those on the other two

landscapes. Even after convergence, high uncertainties result in lower learning similarities.

Differences in learning potential are also clear on this landscape. Fig. 3.18 shows the fitness

improvements when bpre = 20, and Table 3.6 lists further data. The sequential scheme provides

greater learning potential than the permuted scheme does, when bpre = 5, 10 or 20. The random

scheme still provides the least learning potential. From Table 3.6, improvements between gen-

erations are small under all three learning schemes. With parents’ learning hard to replicate on

this landscape, the random scheme may show greater improvement than the sequential scheme

Chapter 3 Realization of Learning Potential 49

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

L
e
a
rn

in
g
 S

im
ila

ri
ty

 (
%

)

Evaluation Calls (× 10
4
)

sequential-bits learning
permuted-bits learning

random-bits learning

Fig.3.17: Learning similarities on K = 15 landscape when budget is 20.

when the learning budget is high, since the random scheme enables individuals to traverse a

greater number of possible solutions through learning.

Fig. 3.19 shows the fitness growth of the schemes with a fixed learning budget of 20. Table

3.7 then lists the convergence times and fitness values when the budget is 5, 10 and 20. Since

this landscape is highly complex, the solutions of all three learning schemes are far from the real

optimum. Substantial differences are found among the schemes. Baldwinian search under the

sequential scheme finds solutions with the highest accuracy, and has the fastest convergence.

The random scheme shows greater improvements during search, but improvements are not

maintained throughout the evolution. Thus the search becomes slow and solutions are unfit.

All three schemes are unable to find the global optimum on this landscape. Moreover, their

ability to determine a relatively good solution is different. With the least uncertainties, the

sequential scheme retains a high learning similarity and high learning potential. Consequently,

applying this scheme leads to faster convergence and fitter solutions.

3.4 Crossover Comparison

The following subsections introduce experiments on the same three landscapes as in Section

3.3, in which we compare the effects of the three crossover operators. We first examine the

performance of the crossovers under evolution without learning, and then measure their search

Chapter 3 Realization of Learning Potential 50

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-20 -15 -10 -5 0 5 10 15F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t
b
e
tw

e
e
n
 G

e
n
e
ra

ti
o
n
s

Learning Budget Increment

sequential-bits learning
permuted-bits learning

random-bits learning

Fig.3.18: Learning improvement on K = 15 landscape when bpre = 20.

Table3.6: Learning improvement on K = 15 landscape

Budget 5 10 20

Compared with

Before Learning

(f(b)− f(0))

Sequential
0.140207

(±0.049448)

0.142670

(±0.026759)

0.151701

(±0.025760)

Permuted
0.068164

(±0.042362)

0.096168

(±0.033593)

0.109059

(±0.025264)

Random
0.027944

(±0.027808)

0.060741

(±0.039543)

0.081730

(±0.029312)

Compared with

Previous Generation

(f(b)− fpre)

Sequential
0.006983

(±0.009712)

0.005321

(±0.008959)

0.000936

(±0.006853)

Permuted
0.006880

(±0.008140)

0.005577

(±0.008986)

0.003944

(±0.006582)

Random
0.006249

(±0.009153)

0.006954

(±0.008443)

0.005423

(±0.007555)

Chapter 3 Realization of Learning Potential 51

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 5 10 15 20 25

A
v
e
ra

g
e
 F

it
n
e
s
s

Evaluation Calls (× 10
4
)

sequential-bits learning
permuted-bits learning

random-bits learning

Fig.3.19: Search performance on K = 15 landscape when budget is 20.

Table3.7: Search performance on K = 15 landscape

Budget 5 10 20

Converging Fitness

Sequential
0.713321

(±0.022128)

0.726721

(±0.017311)

0.730913

(±0.018842)

Permuted
0.704109

(±0.024239)

0.708605

(±0.016018)

0.716028

(±0.021400)

Random
0.696998

(±0.026925)

0.704753

(±0.021346)

0.709458

(±0.020702)

Eval. Calls to

Reach 99% Fitness

Sequential
30984

(±66048)

32274

(±24799)

54348

(±14932)

Permuted
30384

(±39435)

33594

(±13879)

79926

(±71295)

and Random
37584

(±75975)

49676

(±51267)

66948

(±23132)

Chapter 3 Realization of Learning Potential 52

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 2000 4000 6000 8000 10000

A
v
e
ra

g
e
 F

it
n
e
s
s

Evaluation Calls

One-bit
Two-point

Uniform

Fig.3.20: Search without learning on K = 2 landscape.

similarities and learning potentials. Finally, we compare their search performance. In this

section all experiments use the sequential learning scheme, and crossover rate is set to 75% such

that the results of each operation are distinct. All results are averages of 50 runs.

3.4.1 Low Epistasis Landscape

Crossover operators provide different trade-offs between diversity improvement and learn-

ing potential degradation. We first apply the operators under the condition of learning-free

evolution in order to compare their performance with that under Baldwinian evolution condi-

tions. From Fig. 3.20, two-point crossover provides the fastest convergence and fittest solutions,

whereas one-bit and uniform crossover converge at lower fitness values. The lack of diversity

in genomes and the high level of building blocks breaking produced by one-bit and uniform

crossovers limit their performance, respectively.

We expect from the operator designs that one-bit and uniform crossovers break building blocks

the least and most, respectively. This supposition is verified in Fig. 3.21, which shows the learn-

ing similarities of the three operations when the learning budget is 20. One-bit crossover pro-

vides the highest learning similarity over the entire search, attaining a value of nearly 90% when

terminated. Two-point crossover achieves a higher learning similarity than uniform crossover

does, but this similarity is considerably lower than that of one-bit crossover.

Although the three crossovers provide different learning similarities, their learning potentials

Chapter 3 Realization of Learning Potential 53

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

L
e
a
rn

in
g
 S

im
ila

ri
ty

 (
%

)

Evaluation Calls (× 10
4
)

One-bit
Two-point

Uniform

Fig.3.21: Learning similarities on K = 2 landscape when budget is 20.

are almost equal. Fig. 3.22 shows the fitness improvements provided by the crossovers when

bpre = 20. Further fitness improvements results are included in Table 3.8. The highest learning

potential is attained with one-bit crossover, while two-point crossover provides higher learning

potential than uniform crossover does. However, the difference between the potentials is small.

Changes in learning resulting from the genetic operators are inheritable, and may explain why

the learning potential is the same across the crossovers.

Fig. 3.23 shows search performance with the crossovers when the learning budget is 20.

Table 3.9 lists convergence time and fitness values when the budget is 5, 10 ad 20. With one-

bit crossover, the search initially rises at a similar rate to that with two-point crossover, but

converges at a lower fitness value. Conversely, the search is slower with uniform crossover,

but converges at a value equal to that with two-point crossover. The performance of all three

Baldwinian evolutions is similar to that without learning, except that uniform and two-point

crossovers provide almost the same solutions here.

Applying the three crossover operators on this landscape, the learning similarity varies ac-

cording to the level of breaking building blocks. However, little difference is found in terms

of learning potential. The crossovers influence search in similar manners without learning and

with Baldwinian learning.

Chapter 3 Realization of Learning Potential 54

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-20 -15 -10 -5 0 5 10 15F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t
b
e
tw

e
e
n
 G

e
n
e
ra

ti
o
n
s

Learning Budget Increment

One-bit
Two-point

Uniform

Fig.3.22: Learning improvement on K = 2 landscape when bpre = 20.

Table3.8: Learning improvement on K = 2 landscape

Budget 5 10 20

Compared with

Before Learning

(f(b)− f(0))

One-bit
0.094481

(±0.033120)

0.139956

(±0.038957)

0.151684

(±0.038570)

Two-point
0.079049

(±0.018962)

0.131793

(±0.028551)

0.145607

(±0.027656)

Uniform
0.069697

(±0.014039)

0.124134

(±0.020257)

0.144526

(±0.021511)

Compared with

Previous Generation

(f(b)− fpre)

One-bit
0.010360

(±0.004386)

0.011148

(±0.003973)

0.012465

(±0.004322)

Two-point
0.013248

(±0.003827)

0.014986

(±0.003204)

0.014910

(±0.003013)

Uniform
0.010752

(±0.004505)

0.010962

(±0.004712)

0.012998

(±0.004502)

Chapter 3 Realization of Learning Potential 55

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 5 10 15 20 25

A
v
e
ra

g
e
 F

it
n
e
s
s

Evaluation Calls (× 10
4
)

One-bit
Two-point

Uniform

Fig.3.23: Search performance on K = 2 landscape when budget is 20.

Table3.9: Search performance on K = 2 landscape

Budget 5 10 20

Converging Fitness

One-bit
0.808148

(±0.009504)

0.812554

(±0.006096)

0.812834

(±0.005742)

Two-point
0.814171

(±0.003854)

0.815382

(±0.002252)

0.815449

(±0.001064)

Uniform
0.812643

(±0.005507)

0.814180

(±0.004206)

0.815660

(±0.000879)

Eval. Calls to

Reach 99% Fitness

One-bit
18132

(±51235)

17182

(±4073)

30912

(±7150)

Two-point
9600

(±1494)

15004

(±2264)

26922

(±3858)

Uniform
14616

(±9552)

19074

(±4301)

33810

(±13970)

Chapter 3 Realization of Learning Potential 56

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 2000 4000 6000 8000 10000

A
v
e
ra

g
e
 F

it
n
e
s
s

Evaluation Calls

One-bit
Two-point

Uniform

Fig.3.24: Search without learning on K = 5 landscape.

3.4.2 Moderate Epistasis Landscape

Fig. 3.24 shows the search performance with the crossover operators under the condition of

no-learning evolution. Search is fastest with one-bit crossover, but attains the lowest fitness

value at convergence. With two-point crossover, the search is slightly slower, but the highest

fitness is achieved.

Fig. 3.13 shows the learning similarities on the landscape when the learning budget is 20.

Considerable differences are still seen in learning similarities. In particular, the separation

between the plots associated with each crossover is greater on this landscape.

Fig. 3.26 shows the fitness improvements provided by the crossovers when bpre = 20. Further

results are included in Table 3.10. The difference between the potentials is even smaller than

on the K = 2 landscape.

Fig. 3.27 shows the search performance with the crossovers when the learning budget is 20.

Table 3.11 lists the convergence times and fitness values when the budget is 5, 10, and 20.

Search performance is also similar to that without learning. With one-bit crossover, the fitness

rises quickly but converges too early. With two-point crossover, the search achieves the highest

fitness, and converges only slightly later than the search with one-bit crossover.

On this landscape, crossover operator effects without learning evolution and with Baldwinian

evolution are still equal. Learning similarities vary considerably according to the crossover,

Chapter 3 Realization of Learning Potential 57

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

L
e
a
rn

in
g
 S

im
ila

ri
ty

 (
%

)

Evaluation Calls (× 10
4
)

One-bit
Two-point

Uniform

Fig.3.25: Learning similarities on K = 5 landscape when budget is 20.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-20 -15 -10 -5 0 5 10 15F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t
b
e
tw

e
e
n
 G

e
n
e
ra

ti
o
n
s

Learning Budget Increment

One-bit
Two-point

Uniform

Fig.3.26: Learning improvement on K = 5 landscape when bpre = 20.

Chapter 3 Realization of Learning Potential 58

Table3.10: Learning improvement on K = 5 landscape

Budget 5 10 20

Compared with

Before Learning

(f(b)− f(0))

One-bit
0.106776

(±0.040169)

0.141225

(±0.029885)

0.155552

(±0.026686)

Two-point
0.093782

(±0.028046)

0.134509

(±0.023538)

0.149825

(±0.026349)

Uniform
0.090604

(±0.023266)

0.129036

(±0.023969)

0.154065

(±0.017483)

Compared with

Previous Generation

(f(b)− fpre)

One-bit
0.007807

(±0.005599)

0.008925

(±0.004710)

0.008783

(±0.004817)

Two-point
0.009067

(±0.007128)

0.011150

(±0.005115)

0.008801

(±0.005956)

Uniform
0.009676

(±0.006719)

0.007965

(±0.006587)

0.007605

(±0.005735)

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 5 10 15 20 25

A
v
e
ra

g
e
 F

it
n
e
s
s

Evaluation Calls (× 10
4
)

One-bit
Two-point

Uniform

Fig.3.27: Search performance on K = 5 landscape when budget is 20.

Chapter 3 Realization of Learning Potential 59

Table3.11: Search performance on K = 5 landscape

Budget 5 10 20

Converging Fitness

One-bit
0.766761

(±0.024777)

0.784450

(±0.018082)

0.783249

(±0.016570)

Two-point
0.781207

(±0.018430)

0.787092

(±0.013144)

0.792753

(±0.009547)

Uniform
0.776598

(±0.016397)

0.784388

(±0.013313)

0.790300

(±0.015055)

Eval. Calls to

Reach 99% Fitness

One-bit
39300

(±81156)

40656

(±46077)

58338

(±71022)

Two-point
19524

(±20130)

27434

(±9242)

61026

(±40715)

Uniform
24456

(±26856)

47366

(±56264)

101220

(±77513)

whereas learning potentials vary only slightly.

3.4.3 High Epistasis Landscape

Fig. 3.28 shows the search performance under the condition of learning-free evolution. The

search performance on this fitness landscape, which has the highest complexity, is quite different

from that on the other landscapes. Search is the fastest with one-bit crossover, and the highest

fitness value is attained at convergence. Search is the slowest with uniform crossover, while the

lowest fitness is achieved. Uniform crossover breaks inherited blocks too many times on this

landscape, and retaining positive traits becomes beneficial.

As expected, the differences between learning similarities increases even more on this land-

scape, as shown in Fig. 3.17 when the learning budget is 20. In the early stages of a search

with any of the three crossovers, very few children repeat their parents’ learning. However, this

period finishes earlier with a crossover that does not break building blocks greatly.

Fig. 3.30 shows the fitness improvements when bpre = 20. Further results are included in

Table 3.12. As on the other two landscapes, the learning potentials are almost equal in this

case.

Fig. 3.31 shows the search performance when the learning budget 20. Table 3.13 then lists

the convergence times and fitness values when the budget is 5, 10 and 20. Similar to the case

of evolution without learning, the Baldwinian search becomes slower when the crossover breaks

many building blocks, and converges at a lower fitness value.

As on the other two landscapes, crossover operator effects on search performance are similar

without learning evolution and with Baldwinian evolution. Crossover operators change the

Chapter 3 Realization of Learning Potential 60

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 2000 4000 6000 8000 10000

A
v
e
ra

g
e
 F

it
n
e
s
s

Evaluation Calls

One-bit
Two-point

Uniform

Fig.3.28: Search without learning on K = 15 landscape.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

L
e
a
rn

in
g

 S
im

ila
ri
ty

 (
%

)

Evaluation Calls (× 10
4
)

One-bit
Two-point

Uniform

Fig.3.29: Learning similarities on K = 15 landscape when budget is 20

Chapter 3 Realization of Learning Potential 61

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-20 -15 -10 -5 0 5 10 15F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t
b
e
tw

e
e
n
 G

e
n
e
ra

ti
o
n
s

Learning Budget Increment

One-bit
Two-point

Uniform

Fig.3.30: Learning improvement on K = 15 landscape when bpre = 20.

Table3.12: Learning improvement on K = 15 landscape

Budget 5 10 20

Compared with

Before Learning

(f(b)− f(0))

One-bit
0.131926

(±0.033166)

0.139718

(±0.027106)

0.148496

(±0.023469)

Two-point
0.109040

(±0.046359)

0.139111

(±0.029782)

0.146858

(±0.014729)

Uniform
0.108928

(±0.032270)

0.125843

(±0.026315)

0.138671

(±0.017363)

Compared with

Previous Generation

(f(b)− fpre)

One-bit
0.004638

(±0.008298)

0.004029

(±0.007335)

0.003473

(±0.005131)

Two-point
0.007676

(±0.009682)

0.005871

(±0.007483)

0.002583

(±0.007728)

Uniform
0.010552

(±0.007672)

0.005524

(±0.007909)

0.000325

(±0.006829)

Chapter 3 Realization of Learning Potential 62

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 5 10 15 20 25

A
v
e
ra

g
e
 F

it
n
e
s
s

Evaluation Calls (× 10
4
)

One-bit
Two-point

Uniform

Fig.3.31: Search performance on K = 15 landscape when budget is 20.

Table3.13: Search performance on K = 15 landscape

Budget 5 10 20

Converging Fitness

One-bit
0.714271

(±0.020064)

0.723905

(±0.024034)

0.726737

(±0.022697)

Two-point
0.704900

(±0.022111)

0.723319

(±0.017530)

0.726353

(±0.019928)

Uniform
0.706928

(±0.019591)

0.718666

(±0.018622)

0.720197

(±0.017455)

Eval. Calls to

Reach 99% Fitness

One-bit
12828

(±8854)

47784

(±85079)

50316

(±41511)

Two-point
24288

(±8302)

44330

(±17673)

88704

(±51589)

Uniform
37032

(±22477)

78474

(±52445)

143136

(±77618)

Chapter 3 Realization of Learning Potential 63

learning similarities in searches, but learning potentials are almost the same with all operators.

3.5 Discussion

In the experiments, the effects of learning scheme uncertainties and crossover’s building block

breaking were examined. Both of these properties influence the preference of children to follow

their parents’ learning paths. However, the effects of each property are completely different.

Under different learning schemes, learning potentials vary substantially, although their improve-

ment capabilities are approximately equal when applied to an unbiased starting population.

Search performance varies such that when the uncertainty level rises, the converging speed and

final fitness are both degraded. With different crossover operators, the learning similarity con-

siderably changes, but the learning potential hardly varies. Search performance alters according

to the well-known scenario of exploitation/exploration trade-off.

Performance differences occur due to differences in the underlying mechanisms. Learning

scheme uncertainties vary the learning process, whereas crossover’s block breaking varies the

learning start points. Randomness in learning schemes is a part of learning, in addition to

evolution, and changes resulting from randomness are not guaranteed to be inherited or re-

peated. Block breaking during crossover is a part of reproduction, and changes take the form

of genotype diversity, which can be inherited if no further variation occurs. The above is the

difference between noninheritable and inheritable characteristics, which determine whether a

parents’ learning efforts are “wasted”.

Following the pioneering work by Hinton and Nowlan [20], conventional statements of Bald-

winian evolution describe the search phase as “smoothing the fitness landscape”. In such a

case, learning can be considered a necessary part of the fitness function. However, learning is

not a simple, deterministic mapping from a “needle in a haystack” landscape to a “smoothed”

landscape. Uncertainties are often found in learning schemes, and an initial solution may reach

several different refined solutions after learning, while a single refined solution may result from

different initial solutions. A smoothed landscape is analogous to a noisy landscape, and a

smoothing effect is analogous to a noisy landscape transformation. Thus, we do not employ

the classic view of landscape transformation here, but instead focus on detailed dynamics—

specifically, comparison of learning behavior between generations—to explore unanswered ques-

tions on the smoothing effect.

Our viewpoint is necessary for understanding Baldwinian evolution. In Lamarckian evolution,

children’s achievements through learning are always beyond those of their parents. But in

Baldwinian evolution, realization of inherited learning potential calls for learning effort, and

Chapter 3 Realization of Learning Potential 64

successful realization is not guaranteed. Our findings may imply that, in Baldwinian evolution,

what learning provides to guide evolution is what can be inherited or followed by children.

These “inherited or followed” factors might be gene building blocks or beneficial local search

steps. These factors must be realized during a child’s learning process; parents’ achievements

guide their children, and Baldwinian learning guides evolution.

This chapter has contributed to the understanding of Baldwinian evolution. The following

behavior of children’s learning, and the two main factors that affect this, have been studied. The

conclusions that we have attained about learning scheme and genetic operator characteristics

may provide directions toward possible applications.

For future work, the questions of what and how to inherit must be explored. In this chapter,

we concluded that children following parents’ learning may be beneficial. However, if they

should just follow their parents, why do we not use Lamarckian evolution? How to properly

apply Baldwinian evolution, and how to combine it with Lamarckian evolution, is still a problem

for consideration. Designing genotypes to control the learning process beyond the boundaries

of plasticity is also possible. Conversely, under a full Baldwinian scenario, learning costs affect

learning potential and its realization. Further studies are thus required.

3.6 Conclusion

This chapter has presented a study on how individuals realize learning potential in Baldwinian

evolution. The preference of children to follow their parents’ learning is affected by two factors:

uncertainties in learning scheme affect the learning process, and breaking of building blocks by

genetic operators affect initial solutions. These two factors were shown to have different impacts.

Uncertainties in a learning scheme provide noninheritable variations and substantially change

the search target. As a result, learning potential is limited, searches are slow, and solutions are

unfit. Genetic operators break building blocks in genotypes and provide inheritable variations.

As a result, learning similarity is influenced, and exploitation is balanced with exploration.

The guiding effect of Baldwinian learning on evolution is therefore implied to be that which

can be inherited or followed by children. There are some further verifications in continuous

optimization in the appendix of this thesis, and the results also support the conclusions found

in this chapter. Our results help to further understand Baldwinian evolution, and can be a

reference point for possible applications.

Chapter 4

Learning Intensity and Cost Punishment

In the previous chapters learning cost punishment is not included, however, it is an essential

factor in Baldwinian evolution. In Baldwinian algorithms, a selective penalty on individuals

with high learning costs is usually implemented by the addition of a negative term to the fitness

function. This penalty is necessary for genetic assimilation, and influences the search by limiting

the increase of learning intensity. Although a cost penalty can accelerate search, it sometimes

inhibits the discovery of better solutions. Appropriate design of a penalty is important for

building effective algorithms; however, the exact effect of penalties and how best to design them

is still not fully understood. This chapter investigates the mechanisms of cost penalties in depth,

focusing on their influence on learning intensity during the search phase. Our results show that

genetic assimilation may start long before search convergence, and cost penalty effects may vary

considerably dependent on the employed selection scheme. A selection scheme has to provide

competitions of individuals learning the same traits, to guarantee the occurrence of genetic

assimilation. High punishments transform the landscape significantly, and assign individuals

learning the same traits different fitness. It is a substitution of converged individuals’ structural

competitions, but has the side-effect of inhibiting the “smoothing” effect.

– 65 –

Chapter 4 Learning Intensity and Cost Punishment 66

F
it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

Generation

Phase I:
Smoothing

Phase II:
Genetic Assimilation

Fitness
Cost

(a) Two-phase Baldwin effect

F
it
n

e
s
s

Solution

Learning

Learning

(b) Smoothing effect

F
it
n

e
s
s

Solution

Selection

(c) Genetic assimilation

Fig.4.1: Two-phase Baldwin effect.

4.1 Introduction to the Chapter

As Hinton and Nowlan claimed [20], the Baldwin Effect consists of two phases. Fig. 1.6 shows

the two phases of the search process along with their mechanisms. During the early stages

of a search, individuals can perform personal refinements through learning. An individual

is selected not for the direct traits encoded in its genes, but based on the optimal point in

its neighborhood that can be reached by learning. This selection is equivalent to applying a

“smoothing” transformation on the fitness landscape (Fig. 4.1(b)). Similarly, an individual’s

fitness is not its initial solution’s fitness, but is assigned according to the higher values of some

of its neighbors. By considering learning as a part of the evaluation process, the individual

Chapter 4 Learning Intensity and Cost Punishment 67

is assigned its neighbor’s higher fitness such that the “actual landscape” potentially attains

a higher fitness. This equivalent landscape is denoted by the dashed line in Fig. 4.1(b), and

extends the original peaks to plateaus. A Baldwinian evolution on the original landscape is thus

equivalent to an evolution without learning on the equivalent “smoothed” landscape. During

this phase, learning considerably improves fitness, learning costs are constantly high, and the

population fitness increases rapidly (Fig. 4.1(a)).

Once the majority of individuals have converged on good solutions, selective pressure on the

learning cost causes “genetic assimilation”. Fig. 4.1(c) shows multiple individuals reaching the

same learning destination, all of which have the same improved fitness. However, a cost penalty

in selection eliminates individuals with high learning costs. As evolution proceeds, individuals’

initial solutions converge on the same destination, and learning costs decrease. In this process,

learned traits are automatically “encoded” into the genotypes. During this phase, learning

improvement is low, the learning cost decreases, and the population fitness is maintained at the

same level (Fig. 4.1(a)).

This two-phase description is generally accepted in Baldwinian algorithm studies. However, a

problem with the description is that learning cost penalties may have effects on the “smoothing”

phase. In many Baldwinian algorithms, cost penalty is implemented through the addition of

a negative term to the fitness function: f = fraw − p(b), where fraw is the learning-improved

fitness, f is the final fitness used during selection and p(b) is the cost penalty, which is an

increasing function of the learning cost/budget b. In conventional studies, the penalty term

p(b) is usually considered to be trivial and is ignored in the first phase. However, the penalty

term will always have an effect on the first phase because the penalty changes the fitness function

and thus the selection rule. We must therefore determine when the effects are not trivial and

what their influence is.

When a cost penalty is included in Baldwinian evolution, learning intensity is affected by

two opposing driving forces. The first is fitness improvement, known as the smoothing effect,

which enables individuals to receive their neighbors’ higher fitness values. Individuals with

high learning intensity can explore large areas when learning, and thus can achieve high fit-

ness improvements. This is a well-known episode. However, the second driving force—the

cost penalty—brings further complications. Learning provides fitness improvement, but also

demands high computational effort and incurs a cost penalty p(b). The cost penalty degrades

a “smoothed landscape”, as shown in Fig. 4.2. Thus, the true equivalent landscape is not a

“smoothed” one, but a “smoothed and degraded” one. If we consider that individuals have

different learning intensity levels, and that learning costs are a part of, or determined by, their

genotypes, then the “smoothed and degraded landscape” can be extended along the cost di-

Chapter 4 Learning Intensity and Cost Punishment 68

F
it
n

e
s
s

Solution

Learning Refinement Cost Punishment

Fig.4.2: Equivalent landscape with smoothing and cost punishment.

mension (Fig. 4.3). As learning intensity increases, peaks are transformed into plateaus, but

with lower altitudes.

From Fig. 4.3, it is easy to understand that a cost penalty may limit learning intensity. When

the cost penalty is too high, the refinements through learning can be smaller than the applied

penalties. Learning-improved fitness then has little effect on evolution, and the search becomes

inefficient. In such a case, cost punishment has a considerable influence on the “smoothing”

phase.

Problems can also exist even with quantitatively trivial cost penalty terms. One question is,

how can a trivial cost penalty guarantee genetic assimilation? Genetic assimilation necessitates

cost penalties, but the introduction of penalties does not ensure assimilation. Furthermore, if

genetic assimilation does occur, will the penalty influence the “smoothing” phase at the same

time? Since fitness evaluation is merely an intermediate step of the total selection operation,

answers to these questions are not given by simple fitness comparisons. Landscape equivalences

provide some clues, but more methods are required.

In this chapter we attempt to study what happens during selection: how learning improve-

ments and cost penalties affect the survival of individuals during selection, when learning costs

increase and decrease, and the influences of the scale of cost penalty and type of selection.

Learning costs are encoded into genotypes so that the costs are independent of the other genes

forming the genotype. We verify that the “smoothing” effect and genetic assimilation exist

during the entire search process in Baldwinian evolution, and that the balance between them

determines the learning cost dynamics. Furthermore, individuals with low learning costs sur-

vive over those with high costs by two mechanisms. Which mechanism dominates is highly

dependent on the employed selection scheme. The remainder of the chapter is as follows. In

Chapter 4 Learning Intensity and Cost Punishment 69

F
it
n
e
s
s

Solution

CostF
it
n
e
s
s

Fig.4.3: Equivalent landscape extended along the cost dimension.

Section 4.2 we introduce the NK model as our benchmark. In Sections 4.3 and 4.4, we present

experiments with 2-tournament selection, and with a roulette wheel selection for comparison,

respectively. A discussion on the experiment results and possible future works is given in Section

4.5. Finally, the conclusions of this study are drawn in Section 4.6.

4.2 Model

4.2.1 NK Model with Plasticity and Learning Budget

As well as we did in the previous chapters, plasticity-encoding strings are added into geno-

types. Furthermore, a limitation of learning cost—which we call the “budget” hereinafter—is

also included in genotypes in this study. A genotype consists of two N -bit binary strings and

a budget b, as shown in Fig. 4.4. GI encodes the initial solution, which is modified throughout

learning, and is evaluated according to the look-up tables. However, GI is inherited as part of

the initial value of an individual’s offspring, irrespective of the parents’ learning. An additional

string GP encodes plasticity, which is a mask that determines those bits of the learning solution

that can be modified. Positions containing a value of 1 in GP denote bits in the learning solution

that may be changed; otherwise, bits are fixed. Learning is then a series of such trials, and is

completed once b trials have been conducted.

Experiments are performed on three fitness landscapes to examine various levels of epistasis

Chapter 4 Learning Intensity and Cost Punishment 70

Fig.4.4: Genotype with plasticity.

Table4.1: Experiment Parameters

N 20

K 2/5/15

Population Size 500

Crossover Rate 0.50

Mutation Rate 0.05

and complexity. Several of the experiment parameters are listed in Table 4.1. Two-point

crossover and one-bit mutation are employed in the experiments. Moreover, 2-tournament

selection is employed in Section 4.3 and, and a roulette wheel selection is employed in Section

4.4. The learning settings are now introduced in next subsection.

4.2.2 Learning Settings

The learning scheme in our experiments is a series of bitwise climbing trials. An individual’s

learning starts from solution S0 = GI and passes through improved solutions S1, S2, · · · until

a pre-specified number of trials have been performed. The final solution is then the learning

destination and its fitness is set as the fitness of the individual.

An example is shown in Fig.4.5 in which the position i = 4 is selected in the k-th learning

trial based on the previous result Sk. The i-th (4th) bit in the solution is modified to produce

a variant S′

k, and S′

k and Sk compared such that the fitter one is set as Sk+1. Such trials are

repeated for different modifying positions until a given number of trials have been conducted.

The final solution is then the learning destination and its fitness is set as the fitness of the

individual. Note that the plastic positions in an individual’s genotype, from most to least

significant, are i1, i2, · · · , im, 1 ≤ ij ≤ N ., and the sequence of bits to be modified during

learning is i1, i2, · · · , im, i1, i2, · · · . Referring to Fig. 4.4, the sequence is 1, 2, 7, 9, 1, 2, 7, 9,

· · · .

Chapter 4 Learning Intensity and Cost Punishment 71

Fig.4.5: k-th trial in learning process.

Here, we use the encoded budget b to limit the number of iterations of learning trials. Setting b

enables individuals to have unique learning costs, and places these costs under selective pressure.

In conventional studies, learning costs may not be encoded explicitly, but instead will be related

to the number of plastic bits or to other information contained in GI and GP . In this chapter,

we intend to isolate learning costs from these other complexities and examine how they change

when viewed as an independent factor. We also apply a mutation to the encoded learning costs

to maintain their diversity during evolution. When generating a new child, a random variable

X is added to the inherited learning budget: bchild = bparent + X, where X is the difference

between a binomial distributed random variable and its expectation: X = Y −3, Y ∼ B(6, 0.5).

Following conventional methods, we set a cost penalty as a negative term in the fitness

function: p(b) = C ·b. Four values of the coefficient C are used in our experiments: 0, ǫ, 0.001 and

0.01. ǫ helps us to examine the situation when the learning cost really is trivial. The value ǫ is set

to a sufficiently small value, that the difference in cost penalty between two individuals is always

smaller than the raw fitness difference: ∀i 6= j, |p(bi)− p(bj)| = C · |bi − bj | < |fraw,i − fraw,j |.

Thus, when C = ǫ, a high-level learning result always provides a fitness advantage.

4.3 Components of Selective Pressure

During the selection process of a Baldwinian algorithm, an individual may survive due to its

good initial solution, its effective learning, its low learning cost or, as is commonly the case, a

combination of these three factors. Initial solutions do not directly influence learning intensity,

Chapter 4 Learning Intensity and Cost Punishment 72

Fig.4.6: Tournament selection with size 2.

while fitness improvements and cost penalties have opposing impacts. Fitness improvements

promote learning intensity increases because additional learning produces fitness improvement.

Conversely, cost penalties decrease learning intensity since additional learning increases punish-

ment. During a search, the trade-off between these two factors determines the learning intensity

dynamics.

Whether an individual has been selected for its initial solution, fitness improvement or learning

cost is difficult to distinguish. In fact, an individual’s survival is always a consequence of all

three factors. We can therefore observe an increase or decrease in learning intensity, but not the

factors behind such a change. However, we can clearly recognize the influence of cost penalties

when an individual survives over other individuals at the same learning destination. The reason

for the individual’s survival must be its cost punishment, because the raw fitness values are the

same for each member. The phenomenon is what we term “genetic assimilation”. If we can

count such surviving individuals, we can ascertain when genetic assimilation begins, and how

much it contributes to learning intensity decreases.

To analyze the effects of the above factors, we use 2-tournament selection in this section. In

each step of the 2-tournament selection, two individuals are sampled from the population, their

fitness values are compared, and the individual with higher fitness is selected (Fig. 4.6). These

steps are then repeated until a sufficient number of individuals have been selected. This selection

scheme facilitates analysis of selective pressure components. Each selected individual can be

compared with its beaten opponent to determine the reason for its victory, without the influence

of other individuals in the population. We can thus count how many individuals have higher

learning intensity than their opponents, how many individuals have lower learning intensity

Chapter 4 Learning Intensity and Cost Punishment 73

Table4.2: Search performance on K = 2 landscape with 2-tournament selection

C
Converging

Fitness

Eval. Calls to

Reach 99% Fitness

Maximum Total

Cost

Eval. Calls to

Reach Max. Cost

0
0.814999

(±0.000591)

68408

(±8430)
∞ —

ǫ
0.814449

(±0.000564)

67717

(±7675)

5091

(±463)

65066

(±10744)

0.001
0.814500

(±0.000529)

66270

(±7119)

4467

(±374)

50535

(±8464)

0.01
0.814531

(±0.000661)

45680

(±4762)

2665

(±106)

7851

(±3854)

and how many individuals beat opponents at the same learning destination. The results are,

of course, dependent on the unique characteristics of 2-tournament selection. What is observed

here is not guaranteed to be reproduced under a different selection scheme. Experiments with

2-tournament selection at least provide insight into the underlying processes.

The following subsections introduce experiments on three landscapes. On each landscape, we

examine the effects of using the four punishment coefficient values: 0, ǫ, 0.001 and 0.01. We

compare the search processes when using each penalty coefficient and the proportions of each

type of selection survivals. All results are the averages of 50 runs.

4.3.1 Low Epistasis Landscape

First, we present the experimental results for a K = 2 fitness landscape with low-level epis-

tasis. This is the simplest landscape in our experiments; genotype bits have few connections to

each other, and optimization is relatively straightforward.

Fig. 4.7 shows the search performance when using each penalty coefficient. The black lines

denote fitness values, and the gray lines denote learning costs/budgets of the total population,

which are measured in terms of evaluation calls. Because of the simplicity of the landscape,

all of the Baldwinian searches converge to high fitness values in about 20 generations. How-

ever, different learning intensities are attained during each search, which affects computational

speeds and can be measured through the number of evaluation calls. When C = 0, learning is

cost-free, and learning intensity grows without restriction. A high computational cost is paid

for convergence, and even after convergence the learning intensity continues to increase. The

mutation on the learning budget has zero expectation, and therefore this unlimited grow must

be explained. The main reason may be that, with greater learning, children are more likely to

repeat their parents’ achievements and survive in the population. When C = ǫ, the learning

Chapter 4 Learning Intensity and Cost Punishment 74

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(a) C = 0

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(b) C = ǫ

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(c) C = 0.001

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(d) C = 0.01

Fig.4.7: Search performance on K = 2 landscape with 2-tournament selection.

Chapter 4 Learning Intensity and Cost Punishment 75

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

T
o

u
rn

a
m

e
n

t
w

in
n

e
rs

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

High-budget

Low-budget

Assimilation

Learning Cost

(a) C = 0

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

T
o

u
rn

a
m

e
n

t
w

in
n

e
rs

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

High-budget

Low-budget

Assimilation

Learning Cost

(b) C = ǫ

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

T
o

u
rn

a
m

e
n

t
w

in
n

e
rs

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

High-budget

Low-budget

Assimilation

Learning Cost

(c) C = 0.001

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

T
o

u
rn

a
m

e
n

t
w

in
n

e
rs

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

High-budget

Low-budget

Assimilation

Learning Cost

(d) C = 0.01

Fig.4.8: Selected individual types on K = 2 landscape with 2-tournament selection.

Chapter 4 Learning Intensity and Cost Punishment 76

intensity is effectively limited, and is similar to the limitation provided when C = 0.001. When

C = 0.01, cost punishment is high, and the learning intensity immediately begins to decrease.

Table 4.2 lists further data on search performance. Final fitness values are approximately

equal when using all four punishment coefficient values. Convergence time varies according to

the different limitations placed on the learning intensity, however. When C = 0, ǫ or 0.001,

the convergence time is nearly unchanged, whereas when C = 0.01, convergence is faster. Peak

values of the population’s total learning cost are also different. When C = 0, the learning cost

continues to increase long after convergence, and so we denote it by ∞ in the table. Search

using C = ǫ costs more than using C = 0.001, and considerably more than using C = 0.01.

These results imply that even low fitness punishment can limit learning intensity effectively

under 2-tournament selection. In addition, when C = 0.001 or 0.01, learning costs reach their

peak long before convergence. Decreases in learning costs are therefore not limited to the period

after convergence, but may occur in the early stages of search.

Furthermore, Fig.4.8 shows the results of an experiment that analyzes the selective pressure

components. The black lines denote the learning costs. Dark grey regions denote individuals

that beat opponents with higher learning budgets at the same learning destination, which we

term “assimilation winners”. Moderate grey regions denote individuals that beat opponents

with higher learning budgets, but at different learning destinations (i.e., not assimilation win-

ners). We term such winners “low-budget winners”. Light grey regions denote individuals that

beat opponents with lower learning budgets, which we term “high-budget winners”.

With zero cost punishment, genetic assimilation does not occur, and learning intensity is un-

restricted. Throughout the search, even after convergence, there are more high-budget winners

than low-budget winners, and the proportions of these two groups remain at a fixed level. As

a result, the learning intensity continually increases at almost constant speed. When C = ǫ,

the situation changes. Initially, high-budget winners are in greater number than low-budget

winners. But, as evolution proceeds, the number of high-budget winners falls and the number

of low-budget winners grows. Moreover, assimilation winners appear before the search con-

verges, and their number increases rapidly. After convergence, over 50% of the population are

assimilation winners, and the learning cost converges to a constant level. For searches using

C = 0.001 and 0.01, the results are similar to those when C = ǫ.

This early appearance of assimilation winners implies that genetic assimilation is not limited

to the period after convergence. Considering the mechanisms involved, this implication is quite

natural. If individuals learn the same target phenotype and compete with each other, their

cost penalties determine the selection result. Thus, we have local genetic assimilation. Genetic

assimilation may even happen in initial stages of search, and its influence is then felt during the

Chapter 4 Learning Intensity and Cost Punishment 77

Table4.3: Search performance on K = 5 landscape with 2-tournament selection

C
Converging

Fitness

Eval. Calls to

Reach 99% Fitness

Maximum Total

Cost

Eval. Calls to

Reach Max. Cost

0
0.798539

(±0.003607)

150217

(±77551)
∞ —

ǫ
0.796337

(±0.004332)

131606

(±29429)

5491

(±574)

89639

(±20203)

0.001
0.797025

(±0.003093)

134484

(±32258)

4852

(±610)

77036

(±23783)

0.01
0.792158

(±0.008827)

73805

(±89750)

2640

(±85)

6870

(±1715)

entire smoothing phase. Because of the high population diversity during the search phase, the

frequency of genetic assimilation occurrences is low, however, and so its effect is not obvious.

After convergence, the diversity of population is reduced, and so genetic assimilation becomes

the dominant force affecting learning intensity. From this point of view, rather than arising

in two separate phases, smoothing and genetic assimilation are opposing forces that compete

throughout the search process.

Conversely, genetic assimilation is not the only force that limits the growth of learning inten-

sity. As mentioned in Section 4.2, a cost penalty can degrade a smoothed landscape. With a

high penalty, the landscape is considerably altered, and the balance between the selective pres-

sure components changes. From Fig. 4.8, with a high punishment coefficient C, high-budget

winners reduce in number, whereas low-budget winners increase. The effect of a cost penalty is

hence reflected in the learning intensities and search performance.

4.3.2 Moderate Epistasis Landscape

We next examine the results for aK = 5 fitness landscape with higher epistasis and complexity

than the previous landscape.

Fig. 4.9 shows the search performance when using each punishment coefficient. Search is

slower and final fitness values are lower on this landscape; however, the general trends of all

four searches are similar to those on the K = 2 landscape. When C = 0, the learning intensity

grows continuously at almost constant speed. When C = ǫ, the learning intensity is effectively

limited and is similar to the case when C = 0.001. Finally, when C = 0.01, the learning intensity

decreases from search commencement.

Table 4.3 lists further search performance data. Final fitness values are higher under low

cost punishment, but the differences between the values are small. In contrast, the variation in

Chapter 4 Learning Intensity and Cost Punishment 78

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(a) C = 0

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(b) C = ǫ

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(c) C = 0.001

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(d) C = 0.01

Fig.4.9: Search performance on K = 5 landscape with 2-tournament selection.

Chapter 4 Learning Intensity and Cost Punishment 79

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

T
o

u
rn

a
m

e
n

t
w

in
n

e
rs

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

High-budget

Low-budget

Assimilation

Learning Cost

(a) C = 0

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

T
o

u
rn

a
m

e
n

t
w

in
n

e
rs

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

High-budget

Low-budget

Assimilation

Learning Cost

(b) C = ǫ

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

T
o

u
rn

a
m

e
n

t
w

in
n

e
rs

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

High-budget

Low-budget

Assimilation

Learning Cost

(c) C = 0.001

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

T
o

u
rn

a
m

e
n

t
w

in
n

e
rs

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

High-budget

Low-budget

Assimilation

Learning Cost

(d) C = 0.01

Fig.4.10: Selected individual types on K = 5 landscape with 2-tournament selection.

Chapter 4 Learning Intensity and Cost Punishment 80

Table4.4: Search performance on K = 15 landscape with 2-tournament selection

C
Converging

Fitness

Eval. Calls to

Reach 99% Fitness

Maximum Total

Cost

Eval. Calls to

Reach Max. Cost

0
0.743802

(±0.017854)

279967

(±104931)
∞ —

ǫ
0.741298

(±0.017781)

278825

(±115613)

6577

(±1071)

164819

(±64131)

0.001
0.740881

(±0.017076)

231537

(±79510)

5499

(±710)

141442

(±47828)

0.01
0.718408

(±0.020291)

98473

(±23769)

2571

(±92)

6485

(±957)

convergence time becomes more distinct on this landscape. Search using C = 0 results in the

slowest convergence, searches using C = ǫ and 0.001 have almost the same speed, whereas the

convergence time when C = 0.01 is half of that when using the other three coefficients. Peak

values of the population’s total learning cost, and the numbers of evaluation calls required to

reach the peaks, are similar to those on the K = 2 landscape.

Fig. 4.10 shows the numbers of selected individuals according to winner types. The figures

are similar to those on the K = 2 landscape, but the numbers vary more slowly through the

generations. We see that genetic assimilation can start in the early stages of search, and that

higher punishments increase the number of low-budget winners. The results once more imply

that smoothing and genetic assimilation have influence throughout a search, and that high

punishment substantially transforms the landscape.

4.3.3 High Epistasis Landscape

We finally examine a highly complex K = 15 fitness landscape. The epistasis of the landscape

is hence very high. Any crossover or mutation in such a case is likely to break building blocks

and prevent children from following their parents. Thus, finding good solutions is difficult.

Fig. 4.11 shows the search performance when using each penalty coefficient. All of the

Baldwinian searches converge slowly on this complex landscape, and the final fitness values are

low. The behaviors of the four searches are similar to those on the other two landscapes, but

the differences between them are more distinct. In particular, when C = 0.01, the final fitness

is considerably lower than when using the other three coefficients.

Table 4.4 lists further search performance data. The variation in convergence time is very

clear on this landscape. Convergence is slowest when search using C = 0, is still slow when

using C = ǫ, and is slightly faster when using C = 0.001. Conversely, the convergence time

Chapter 4 Learning Intensity and Cost Punishment 81

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(a) C = 0

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(b) C = ǫ

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(c) C = 0.001

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(d) C = 0.01

Fig.4.11: Search performance on K = 15 landscape with 2-tournament selection.

Chapter 4 Learning Intensity and Cost Punishment 82

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

T
o

u
rn

a
m

e
n

t
w

in
n

e
rs

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

High-budget

Low-budget

Assimilation

Learning Cost

(a) C = 0

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

T
o

u
rn

a
m

e
n

t
w

in
n

e
rs

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

High-budget

Low-budget

Assimilation

Learning Cost

(b) C = ǫ

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

T
o

u
rn

a
m

e
n

t
w

in
n

e
rs

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

High-budget

Low-budget

Assimilation

Learning Cost

(c) C = 0.001

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

T
o

u
rn

a
m

e
n

t
w

in
n

e
rs

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

High-budget

Low-budget

Assimilation

Learning Cost

(d) C = 0.01

Fig.4.12: Selected individual types on K = 15 landscape with 2-tournament selection.

Chapter 4 Learning Intensity and Cost Punishment 83

when C = 0.01 is less than half of that when using the other three coefficients. Comparisons

among learning cost peak values, and those among required evaluation calls, show similar trends

as on the other two landscapes. The difference here is that the costs when C = ǫ and 0.001 are

higher than before.

Fig. 4.12 shows the numbers of selected individuals according to winner types. The figures

are similar to those on the other two landscapes, although the numbers vary even more slowly.

We confirm the appearance of genetic assimilation in the early stages of search, and the increase

in low-budget winners brought by using high punishments.

In this section, we compare the effects of four penalty coefficients. When C = 0, the learning

intensity is unrestricted and therefore continuously grows. When C = ǫ, selection provides

competitions between individuals reaching the same learning destination. Convergence is not

accelerated to any great extent, but learning intensity is constrained and genetic assimilation

occurs. When C = 0.001, the situation is similar to that when C = ǫ. When C = 0.01,

punishment is high, and learning intensity is highly constrained. Search is fast in this case, but

the final fitness is low.

We draw two conclusions from these results. First, genetic assimilation occurs throughout a

search, although its dominance comes after convergence. Second, selection limits learning inten-

sity by providing competitions between individuals with the same learned traits, and by trans-

forming the landscape to the advantage of low cost individuals. Moreover, with 2-tournament

selection, competitions between individuals with the same learned traits are suitably frequent

to restrict learning intensity and cause genetic assimilation. Searches are therefore unlikely to

improve even with higher punishments.

4.4 A Condition for Genetic Assimilation

In the previous section, we employed a 2-tournament selection scheme. That selection offers

many opportunities for individuals with the same learned traits to compete against each other,

resulting in evident genetic assimilation even for a trivial punishment coefficient. However,

such competitions are not guaranteed under all selection schemes. Under a scheme that does

not promote such competitions, the prospect of genetic assimilation becomes doubtful. In this

section, we utilize a roulette wheel selection in place of the 2-tournament selection, and examine

the changes that occur in searches.

As shown in Fig.4.13, in roulette wheel selection, every individual is mapped onto a segment,

and all these segments form the roulette wheel. Selection of an individual is achieved by per-

forming a uniform sampling on the roulette wheel, where an individual mapped to a longer

Chapter 4 Learning Intensity and Cost Punishment 84

Fig.4.13: Roulette wheel selection.

segment has greater chance of survival. The length of a segment li is calculated according to

fitness fi. In our experiments, we set li = (max(fi − 0.5, 0))2, to ensure an appropriate level of

selective pressure.

In contrast to 2-tournament selection, roulette wheel selection considers all individuals simul-

taneously. Each individual competes with all of the other members of the population. Therefore,

when several individuals reach the same learning destination and the punishment is low, they

are mapped onto segments of approximately equal lengths. They are thus treated equally dur-

ing selection, and competition among them is unlikely to occur. Furthermore, judging which

selective pressure component provides the largest contribution when an individual is selected

is difficult. We therefore do not categorize survivals by winner types, and examine only search

performance.

Experiments are performed on three landscapes, and we compare the effects of using four

punishment coefficient values: 0, ǫ, 0.001 and 0.01. All results are the averages of 50 runs.

Fig. 4.14 shows the search performance with roulette wheel selection when using each penalty

coefficient on theK = 2 landscape. All of the Baldwinian searches converge to high fitness values

in about 30 generations. When C = 0, the learning intensity still grows without limitation.

When C = ǫ, the search performance is almost the same as when C = 0. In contrast to

the performance with 2-tournament selection, this “trivial” penalty does not restrict learning

intensity or cause genetic assimilation. Because the segment lengths, and therefore the survival

probabilities, are only slightly changed. When C = 0.001, the learning intensity is limited

after convergence, but the decrease in learning cost is very slow and genetic assimilation is

insubstantial. Furthermore, the final fitness is lower than that when C = 0 and ǫ. When C =

Chapter 4 Learning Intensity and Cost Punishment 85

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(a) C = 0

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(b) C = ǫ

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(c) C = 0.001

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(d) C = 0.01

Fig.4.14: Search performance on K = 2 landscape with roulette wheel selection.

Table4.5: Search performance on K = 2 landscape with roulette wheel selection

C
Converging

Fitness

Eval. Calls to

Reach 99% Fitness

Maximum Total

Cost

Eval. Calls to

Reach Max. Cost

0
0.810296

(±0.001348)

173933

(±46262)
∞ —

ǫ
0.810296

(±0.001348)

173933

(±46262)
∞ —

0.001
0.808358

(±0.001550)

145233

(±40240)

5900

(±510)

334082

(±157153)

0.01
0.807941

(±0.002513)

64848

(±18006)

2563

(±126)

7395

(±2232)

Chapter 4 Learning Intensity and Cost Punishment 86

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(a) C = 0

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(b) C = ǫ

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(c) C = 0.001

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(d) C = 0.01

Fig.4.15: Search performance K = 5 landscape with roulette wheel selection.

0.01, genetic assimilation occurs, but learning is strongly inhibited from search commencement

such that the final fitness is even lower than in the other cases. Table 4.5 lists further search

performance data. As the penalty coefficient C is increased, search becomes more rapid, but

the final fitness value is reduced.

Fig. 4.15 shows the search performance on the K = 5 landscape. Lower fitness values are

attained by all searches on this landscape, and the trends of the four searches are similar to

those on the K = 2 landscape. When C = 0 or ǫ, learning intensity grows without limitation.

When C = 0.001, learning intensity is limited but genetic assimilation is insignificant, and the

final fitness is reduced. When C = 0.01, genetic assimilation occurs, but learning is strongly

inhibited and the fitness is poor. Data in Table 4.6 further supports these conclusions. The

four Baldwinian searches behave similarly on the K = 2 and K = 5 landscapes.

Chapter 4 Learning Intensity and Cost Punishment 87

Table4.6: Search performance on K = 5 landscape with roulette wheel selection

C
Converging Fitness Eval. Calls to Reach

99% Fitness
Maximum Total

Cost
Eval. Calls to Reach

Max. Cost

0
0.787858

(±0.009423)
257816

(±130333)
∞ —

ǫ
0.787858

(±0.009423)
257816

(±130333)
∞ —

0.001
0.788634

(±0.008212)
220978

(±171354)
5534

(±763)
320361

(±238885)

0.01
0.780647

(±0.013147)
67811

(±36818)
2427

(±226)
7669

(±6224)

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(a) C = 0

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(b) C = ǫ

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(c) C = 0.001

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

A
v
e

ra
g

e
 F

it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

(×
 1

0
3
)

Generation

Fitness Cost

(d) C = 0.01

Fig.4.16: Search performance on K = 15 landscape with roulette wheel selection.

Chapter 4 Learning Intensity and Cost Punishment 88

Table4.7: Search performance on K = 15 landscape with roulette wheel selection

C
Converging

Fitness

Eval. Calls to

Reach 99% Fitness

Maximum Total

Cost

Eval. Calls to

Reach Max. Cost

0
0.733877

(±0.018830)

122482

(±102508)
∞ —

ǫ
0.733877

(±0.018830)

122482

(±102508)
∞ —

0.001
0.736112

(±0.018030)

92570

(±45346)

5059

(±1085)

224143

(±169212)

0.01
0.726722

(±0.022471)

58487

(±80389)

2318

(±356)

9302

(±9072)

Fig. 4.16 shows the search performance on the K = 15 landscape, and further performance

data are listed in Table 4.7. Because of the high epistasis of this landscape, fitness values become

even lower, and search becomes very slow. However, the trends of the four searches are the same

as on the other two landscapes. A trivial penalty no longer limits the learning intensity, and a

trade-off is found between search speed and final fitness.

In this section, we have compared the effects of four penalty coefficients under a roulette

wheel selection scheme. When C = 0, the learning intensity continuously increases. A trivial

penalty when C = ǫ does not the limit learning intensity, and the performance is the same as

when C = 0. When C = 0.001, learning is limited, but genetic assimilation is not obvious.

The final fitness attains a lower value than that when C = 0 or ǫ. When C = 0.01, learning is

inhibited and genetic assimilation occurs, but the final fitness is reduced considerably.

The search performance under roulette wheel selection is considerably different from that

under 2-tournament selection. First, a trivial penalty when C = ǫ no longer restricts learning.

The lack of competitions between individuals learning the same traits means that genetic as-

similation does not occur, and learning intensity always increases. Second, although learning

is limited and genetic assimilation can occur with a high penalty, the price for this is a reduc-

tion in final fitness. The landscape is considerably transformed in this case and the fitness of

individuals with high learning costs becomes particularly low. All individuals in the population

are affected by this transformation, including those learning the same traits, who are treated

differently according to their learning costs. However, the majority of individuals have unique

learning destinations before convergence, and penalties mainly constrain learning rather than

promoting genetic assimilation.

In summary, competitions between individuals learning the same traits is a necessary con-

dition for genetic assimilation to occur. Such competitions can be provided by the selection

Chapter 4 Learning Intensity and Cost Punishment 89

scheme, or result from landscape transformations caused by enough cost punishment. However,

cost penalties also inhibit learning.

4.5 Discussion

In the experiments, the effects of selective pressure components were examined. We found

that “smoothing” and genetic assimilation occurred at all stages of a search. These two key

factors of the Baldwin effect are thus two competing driving forces, rather than two separate

search periods. The two-phase explanation does, however, describe the search behaviors when

one of the forces dominates, but does not describe how the trade-off between them varies over

time. By considering the factors as two dynamically changing forces, the fact that genetic

assimilation sometimes initiates long before convergence is not surprising result.

Investigating the condition for genetic assimilation, we verified that learning cost punish-

ment is necessary for, but does not guarantee, genetic assimilation. Genetic assimilation arises

from competitions between individuals learning the same traits, and the preference for such

competitions varies substantially according to the selection scheme. Under tournament selec-

tion schemes, competitions are performed between pairs or among small groups of individuals.

Therefore, even if there are only a few individuals reaching the same learning destination, they

have the opportunity to compete with one other, and trivial punishment is sufficient for genetic

assimilation to occur. Conversely, under roulette wheel selection schemes based on fitness, an

individual always compete with all other member of the population, and survival depends only

on its fitness. Competitions between individuals learning the same traits are not naturally pro-

vided by such a selection scheme. Fitness values are almost unchanged with a trivial penalty

in this situation. Thus, individuals reaching the same learning destination are treated similarly

during selection, and genetic assimilation cannot occur.

A relatively high punishment of cost does, however, induce genetic assimilation under a

roulette wheel selection scheme. When punishment is suitably high, individuals reaching the

same learning destination are treated differently, according to their learning costs, and compete

with one another. Nevertheless, high punishment inhibits learning, and may prevent the search

from finding a better solution. To ensure genetic assimilation, therefore, utilizing selection

schemes that intrinsically provide competitions among individuals learning the same traits,

such as tournament selection schemes, is better than relying on a high learning cost penalty

that influences all individuals.

This chapter has contributed to the understanding of Baldwinian evolution. The effects of

learning cost penalties on selection results and search performance have been studied. We

Chapter 4 Learning Intensity and Cost Punishment 90

found that “smoothing” and genetic assimilation continuously influence a search, and that the

potential for cost penalty to cause genetic assimilation is highly dependent on the selection

scheme. Hence, a cost punishment function that is universally appropriate does not exist. A

cost penalty is a constituent factor of the entire selection process, and its effect cannot be

considered in isolation from the selection scheme.

For future work, continuous problems must be addressed. In the experiments, we utilized a

discrete benchmark, and thus we could easily recognize individuals converging around the same

peak. Such recognition in continuous problems is difficult. The influence of genetic assimilation

and the cost penalty’s landscape transformation may become unintelligible for a continuous

problem. This is one reason for our choice of the NK model. However, we expect that similar

phenomena are found in continuous problems. On the other hand, continuing with the current

study, we can investigate how to measure competitions between individuals learning the same

traits, and how to control these competitions to build efficient Baldwinian algorithms.

4.6 Conclusion

This chapter has presented a cost-performance study for Baldwinian evolution. By examining

the effects of cost penalties on learning intensity, we found that that “smoothing” and genetic

assimilation are dynamic driving forces that affect the entire search process, rather than arising

in two separate periods. Furthermore, whether a cost punishment causes genetic assimilation is

highly dependent on the selection scheme’s provision of competitions among individuals reaching

the same learning destination, A cost punishment’s design must therefore be matched to the

characteristics of the selection scheme. Our results improve the understanding of Baldwinian

evolution, and provide a reference point for possible future applications. As mentioned in the

discussion part, the measurement of similarity is a complex problem, thus we do not have

corresponding experiments examining cost penalties in the appendix.

Chapter 5

Discussion

In the previous chapters, we presented three sets of experiments, and collected some conclu-

sions about Baldwinian evolution’s mechanisms. The findings provide new mechanism knowl-

edge, as well as design rules that may be useful in application attempts. In this chapter, we

introduce how these three parts connect to each other, the new aspects of viewing the evolution-

learning hybridization, and what we have found beyond conventional studies. We also discuss

how these ideas can be extended further, to reveal more about Baldwinian evolution. We follow

the spirit of analysis, study isolated algorithm components instead of entire algorithms, and

study individual dynamics instead of group behaviors.

– 91 –

Chapter 5 Discussion 92

5.1 From Algorithms to Components

Baldwinian evolution is a complex hybridization of population-based global search and in-

dividual local search. Individuals in the population perform their unique learning processes,

then are selected by their learned fitness, but in the next reproduction operation, their children

receive only their chromosomes as the starting points of learning. There are some genes in the

chromosomes that control or influence the learning behavior, such as plasticity codes. There

are also factors influencing selection other than refined fitness, such as learning cost penalties.

A Baldwinian algorithm is a combination of all these components, and is supposed to work in

dynamic environments.

Considering all these components together, Baldwinian evolution becomes a complex scenario.

Many driving forces influence at the same time, and what we observe is just the output of the

whole system. We can describe and explain the performance of the whole system, but it is

difficult to figure out how it happens, which components of the algorithm is responsible for the

occurrence, and how we can attain expected behaviors by tuning the algorithm components. As

far as we consider them together, we are not decoupling them, and what we attain is knowledge

about how they work together, not effects of each component.

Of course, even without decoupling these components, there is much to study with Baldwinian

evolution. Designing appropriate genotypes for real world problems, which assigns suitable parts

of the solution to evolution and learning; optimizing or adapting parameters of the algorithm,

in order to enhance search performance; or discussing the information contents maintained by

genotypes and the environment, to propose new models explaining biological Baldwinism theory:

there are many possible topics, and many studies are already conducted. These works enrich the

knowledge about Baldwinian evolution greatly, however, they are not solving all the problems.

The fundamental components are considered as a single entity. They are labelled altogether as

“Baldwinian evolution”, and the studies tend to find the characters of the entity, or describe the

entity from new aspects, whileas keeping the mechanisms inside as a black box. Our studies are

trying to open the black box, in order to find possible answers to some fundamental questions,

and possible alternative explanation to known facts.

There is a question, that when we divide the “Baldwinian evolution” entity and go along with

only some of the parts, the attained algorithm is no longer “Baldwinian evolution”. This is a

fair comment, but the division is necessary. A wheel is only a part of an automobile, and when

the wheel is taken off, it no longer functions as a part of the automobile. Study and improve

the wheel is not contributing to the automobile, however, if we give the wheel a more durable

tire, it contributes to an automobile when assembled to it. This is similar with our studies on

Chapter 5 Discussion 93

Baldwinian algorithms’ components. When we conduct experiments without plasticity codes,

or without learning cost penalties, the algorithms are not exactly full Baldwinian evolution.

However, they contain the necessary gears of Baldwinian evolution. Implementing them isolated

enables us to find out their own influences, and the same gears are likely to work in the same

way when combined with more other components.

Humans are curious. They ask why when encountering fresh phenomena in their life, and try

to find simple and universal explanations, according to the psychological manner of understand-

ing and memorizing. As their knowledge increases, old answers become new questions. Human’s

knowledge is like a growing tree: it stretches the branches towards the sun, as well as spreading

the roots deep into the ground. It is especially apparent with mathematics: Peano describes

natural numbers as labels corresponding to five axioms, but later set theory mathematicians

still feel it not fundamental enough, and move the foundation deeper to set cardinalities; New-

ton explains function derivatives as velocities, however, mathematicians find it not precise, and

replace it with Cauchy’s dynamic limit process description. There seems to be no ultimate end

for the foundations of our theories, and we always have to analyze the current foundation and

chop it into tinier pieces or concepts. This thesis is such a trial, dividing the whole Baldwinian

algorithms into their constructing pieces.

We also have a practical reason for dividing Baldwinian algorithms into basic components.

Although in the natural world, organisms’ evolution and learning is always influenced by all the

components together, in evolutionary computation, we design and implement our algorithms

piece by piece. In algorithms, we can tune one component without changing others, and ulti-

mately, we do not have to make the algorithms exact counterparts to biological evolution. To

solve real world problems, we just need to imitate the nature, extract the effective mechanisms

and implement them. When we implement a learning scheme or a crossover operator, we have

to know about the certain part’s effect, rather than the effect of the whole set.

We decide to study isolated components of Baldwinian evolution, and Fig. 5.1 shows the

involved components. In Chapter 2, we build the smallest system only including the rule

“learned traits are not inherited”, and find how such a rule brings the fact of children learn to

catch up with their parents. Also in Chapter 2 plasticity codes are added into genotypes, and

the result shows that such inheritable learning indications can help in search, but cannot cancel

the fact of children have to pay learning costs catching up. Then in Chapter 3, we substitute

the learning scheme and crossover operator of Chapter 2’s system, investigate these two factors

used by default in Chapter 2. In Chapter 4, learning cost penalties are added into evolution

and learning budgets as part of genotypes to Chapter 2’s system, and study effects of the new

components.

Chapter 5 Discussion 94

Fig.5.1: Baldwinian evolution components studied in this thesis.

Fig.5.2: The roles of learning on fitness landscape (by Suzuki et al [51]).

We study the components one by one, and try to avoid influence from other components.

We also conduct our experiments on static landscapes, to avoid complexity from environmental

dynamics or noise. Such studies are not showing Baldwinian algorithms’ advantages comparing

to Lamarckian algorithms or evolutionary algorithms without learning, because the problem

is not selected for Baldwinian evolution, and the examined algorithms are even completed

Baldwinian evolution. However, they are the most basic composing factors, and are likely to

perform in the same way in complicated situations.

In fact, by analyzing the basic components’ effects, our results can provide some new expla-

nations to known phenomena. These phenomena are not fully explained, or we can present a

Chapter 5 Discussion 95

F
it
n

e
s
s

L
e

a
rn

in
g

 C
o

s
t

Generation

Phase I:
Smoothing

Phase II:
Genetic Assimilation

Fitness
Cost

Fig.5.3: Two phase process of the Baldwin effect

new way of understanding. For example, Suzuki reported that Baldwinian evolution may be

not exactly two phases, there can be a climbing period before convergence [51]. Fig. 5.2 shows

his four-phase description. Referring to this thesis, using the concept of “learning potential”,

there can be a more fundamental and universal explanation. Children are always catching up

with parents in learning, rather than explore further. That is why the population performs like

climbing slowly with a limited learning capability, and why after convergence they learn against

mutations: they are doing exactly the same thing of following parents, the various behaviors

are results of the population’s different positions on the fitness landscape. Furthermore, the

two-phase description can be extended to four phases, then it is possible to have even more

periods. However, replace the idea of dividing the process into consequent periods, there is also

a method to analyze the conflicting driving forces and find a universal view of all the phases, as

mentioned in Chapter 4. At least, our research provides alternative view points to understand

known phenomena, and enriches the diversity of research.

Both the two-phase description (Fig. 5.3) and the four-phase description (Fig. 5.2) can

explain the process of Baldwinian evolution, however, neither of them can be the only effective

way. Each explanation has its emphasizing aspects and simplifies some other parts of the

scenario. Depending on the landscape, algorithm, and topic of concern, different explanations

are needed. This thesis is presenting such an alternative explanation to the process of Baldwinian

evolution, and we expect it useful in search efficiency issues.

The latest experiments in this thesis, i.e. the experiments on learning cost penalties, have a

relatively complete version of Baldwinian evolution. However, it does not mean the finish of

studying Baldwinian algorithms’ components. Similar experiments can be conducted on other

problems, for example dynamic landscapes, to verify the findings. Contents of genotypes can

Chapter 5 Discussion 96

be discussed further, beyond plasticity and learning budgets, to select or design more beneficial

components. There is much to do with the consideration of analysis, and such studies are

promising to build a deeper foundation for our understanding of Baldwinian evolution.

5.2 From Groups to Individuals

Our special view point, is not only studying constructing components instead of the whole

Baldwinian evolution, but also investigating individual behaviors instead of group performance.

Evolution occurs on groups of candidate solutions, and diverse individuals enables the group to

change and compete pursuing high fitness. By analyzing individuals’ behaviors, we explain the

performance of the group.

In evolutionary or memetic algorithms, there is always a population, i.e. multiple candidate

solutions. Through selection, crossovers and mutations, and possibly learning, the population

evolves, and eliminating poor fitness individuals pushes the group towards high fitness. This

is the mechanism of evolutionary search, and a necessary condition for fitness improvements

to happen is: there are different individuals in the population that by eliminating the low

fitness part of them, the average quality of the population rises. Furthermore, crossovers and

mutations increase diversity of the population and enable such selection improvements last till

convergence. The effectiveness of evolutionary search is based on the group with diversity. How

this diversity appears, and how individuals are similar or different to each other, then become

natural questions.

Adding individual learning and limiting the effect only in selection makes Baldwinian evo-

lution more complicated than Lamarckian evolution or evolution without learning. Beside

genotype diversity, randomness in learning schemes make the final fitness even more diverse,

and very difficult to predict. In this case, studying the evolution process by only conventional

methods and conventional means of measurements may be insufficient. It is possible that some

phenomena are observed, but we cannot figure out which component in Baldwinian evolution

causes them, and how to modify the algorithm to tune such phenomena. The solution is to

divide the algorithm into tinier pieces: if observing the group is not enough to explain, then

compare the individuals.

In optimization studies, such as continuous function optimization, it is common to measure

the best fitness of the population. This is direct, and is often what we need in solving real

world problems. However, for investigations of evolution’s mechanisms, this index might be not

enough. Evolutionary search is not hill climbing, and the best solution of the current generation

is not necessarily related to the best solution of the previous generation. Each individual is

Chapter 5 Discussion 97
F

it
n

e
s
s

Solution

P

P’

C

C’

(a) Compare learning of children and their parents

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-20 -15 -10 -5 0 5 10 15F
it
n

e
s
s
 I

m
p

ro
v
e

m
e

n
t

b
e

tw
e

e
n

 G
e

n
e

ra
ti
o

n
s

Learning Budget Increment

Previous budget = 5
Previous budget = 10
Previous budget = 20

(b) Record improvements step by step

Fig.5.4: Step-wise cost-performance analysis.

produced based on the gene pool determined by the previous selection, its constructing genes

may come from multiple parents, and the parents are not necessarily to be the best. The increase

of best fitness is substantially a side effect of the whole population’s quality. Measuring the

best fitness can reflect the performance of the evolution, however, it is only one aspect of the

evolution improvements.

This problem is especially obvious in Baldwinian evolution. Children have to learn to catch

up with their parents, and when they fail to repeat the parents’ achievements, they may even

end up with a lower fitness than the parents. This is not rare in Baldwinian algorithms, for

learning is not a simple repetition. In such a case, best fitness becomes insufficient to describe

the population’s move. This is why we always measure average fitness values in our experiments.

Because of crossovers and mutations, the average values are not likely to converge to the exact

optimum, and such values are not showing how good a solution we have found to solve the

problem, however, we can trace the move of the group by average fitness.

Measuring average fitness is only the start, we study the population’s behaviors from many

smaller scopes than before. The first change is measuring learning improvements step by step.

Step-wise fitness improvement is not a new concept in learning schemes that are sequences of

iterative operations, however, taking this view to Baldwinian learning, leads to our first works

in Chapter 2.

Baldwinian algorithms are much slower than Lamarckian algorithms. This fact is well-known,

but most researchers have not explained more than the basic fact that “Baldwinian learning’s

results are not inherited”. This is a correct explanation, however, hardly helps us in applying

Baldwinian algorithms. Our study in Chapter 2 provides a more detailed cost-performance

Chapter 5 Discussion 98

(a) Step-wise learning trials (b) Similarity by neighborhoods

Fig.5.5: Compare children’s and their parents’ learning steps.

analysis on the question, and presents an alternative, maybe more effective explanation to the

phenomenon. We record average fitness improvements of each learning step, and compare to

the fitness of the previous generation, such as in Fig. 5.4(b). By such comparisons, we find

the exact effects of each step in the learning sequence, and confirmed that children have to pay

the same learning efforts as their parents did, to catch up with the parents, and make some

further improvements. The fitness improvements beyond their parents are much lower than the

improvements during the whole learning process, which implies Baldwinian learning’s main role

is to maintain the potential inheritance, rather than exploring on the landscape.

This conclusion is an alternative explanation to the role of Baldwinian learning, and the

difference from conventional explanations is that it provides suggestions to search efficiency

issues. Inherited learning potential is attained by certain learning processes. This fact implies

that if the the learning process is changed from outside settings, such as selecting different

individuals to perform learning, or changing the learning budget significantly and frequently,

the search performance will fall down. This is the global effect of collecting individual behaviors.

Taking conventional explanations, it is also possible to reach such conclusions. However, our

analysis provides a shortcut.

In Chapter 3, we go even further, and measure similarities of children’s and their parents’

learning steps, in addition to fitness comparisons. As shown in Fig. 5.5, in each learning step,

the change in fitness is only related to some of the substrings or neighborhoods. Counting

such neighborhoods enables us to judge whether a child is performing similar learning as that

of its parents’. Such comparisons confirm our claim of the learning similarity changes caused

by learning scheme or crossover operator substitutions, and are a necessary part of the study

on learning potential’s realization. Based on the learning similarity measurement applied to

Chapter 5 Discussion 99
F

it
n

e
s
s

Solution

Learning

Learning

(a) Smoothing effect

F
it
n

e
s
s

Solution

(b) Individual difference

Fig.5.6: Global simplification and divergence of individuals.

individuals one by one, we confirm the population’s preference of following parents, and find

rules for the whole search’s performance.

A universal measurement of learning similarity is nearly impossible, and our measurement in

fact makes use of the special structure of the NK model. It cannot be used in other problems,

such as the continuous benchmark functions in our appendix. However, it is still an advance.

By analyzing individual behaviors, we again explain the performance of the group. If we only

have the learning schemes and crossover operators and have to judge the similarity level only

from their designs, it would not be so precise and reliable.

Chapter 2 and Chapter 3 provide an alternative explanation to extend the “smoothing”

metaphor. The conventional description of Baldwinian evolution’s search phase is a static global

simplification, as shown in Fig. 5.6(a). Considering the equivalent landscape as a “smoothed”

landscape, has the hidden assumption that one initial phenotype is mapped to a single fitness

value, or, if admitting dynamics or noises, mapped to a predictable varying value or a stochastic

distribution. In other words, one phenotype is mapped to one entity, one point on the surface

of the equivalent landscape. If the learning process is completely determined by the initial

phenotype, there is a single mapped fitness value, and the metaphor simplifies the scenario

properly. However, usually it is not the case. Learning schemes have uncertainties, as shown

in Fig. 5.6(b), one initial solution corresponds to multiple possible refined solutions at random.

Of course, in this case the equivalent landscape can be designed as with random noises, but this

metaphor is not making the problem easier to deal with. It is replacing one kind of difficulties

with another, without revealing the inside rules. We attempt to figure out more about what

happens with such random learning schemes, and that leads to our comparisons between children

Chapter 5 Discussion 100

Fig.5.7: Tournament selection with size 2.

and their parents, which bring back the ignored divergence of individuals. Changing the view

point, we see more.

Chapter 4 presents another microscopic measurement. We classify selection survivals by their

reasons of winning in tournaments. This is also a special measurement, guaranteed by the

structure of the employed 2-tournament selection (Fig. 5.7). Such a classification helps us to

recognize composing factors of the selective pressure, and how these factors work as conflicting

driving forces. The corresponding explanation of Baldwinian evolution’s process is thus the

influence of dynamically changing forces, instead of the conventional two-phase description.

The two-phase description is an effective model, however, it simplifies the scenario too much,

and our explanation are intended to complete some of the necessary parts.

In fact the conclusion of Chapter 4 provides more significant directions to application at-

tempts. Learning cost punishment is a direct search efficiency controlling module, and the

conclusion provides a way to avoid unnecessary cost-performance conflicts. Only when we in-

vestigate what happens to the individuals in selection, we can describe the composing factors of

selective pressure, and consequently find what causes genetic assimilation whileas what inhibits

learning improvements.

In this thesis, we measure individual behaviors to explain the group’s performance, instead of

measuring global indices directly. We compare children’s fitness improvements through learning

with their parents’, compare children’s learning steps with their parents’, and categorize sur-

vivals by their reasons of victory in selection. By comparing between generations and between

individuals, we reveal mechanisms of the whole search.

In our studies, we employ microscopic measurements on individuals. Some of them are de-

signed according to the special structure of the problem and the algorithm, such as the learning

similarity and the selection survival categories. Although they cannot be used invariably in

Chapter 5 Discussion 101

some other problems or algorithms, the concept of monitoring individuals’ various behaviors

is emphasized. Depending on the search scenario, similar measurements can be designed, and

collected data will contribute to the understanding of the mechanisms. If we cannot draw a

universal conclusion for the general cases, we would suggest, starting from some instances also

makes an advance.

We studied some instances of optimization in this thesis. The main body contains experiments

on the NK models, and the appendix contains some on continuous benchmark functions. These

studies are not proposing that in all situations Baldwinian algorithms will perform like this.

We can never cover absolutely “all” possible situations in any research. The result just imply

that, in the scope of our examinations, Baldwinian algorithms perform as we concluded, and

considering the structure, they are expected to perform similarly in other situations. More

experiments under other situations can be conducted, and investigating by other individual-

wise analysis is possible. There is much that can be done.

Chapter 6

Conclusion

In this thesis, Baldwinian evolution’s mechanisms are studied, in order to attain in-depth

understanding of the theory, and ultimately to design effective and efficient algorithms for real

world tasks. Differing from conventional researches, we divide algorithms to components, and

groups to individuals. The change in the view point enabled us to reveal new knowledge about

Baldwinian evolution. The findings provide directions to applications, as well as materials for

biology and philosophy.

– 102 –

Chapter 6 Conclusion 103

In this thesis, we briefly introduced the background and proposal, presented experiments on

three topics about Baldwinian evolution’s mechanisms, then discussed our view point and its

products. Our results are useful for real world algorithm designs, and may provide ideas for

biology and philosophy.

In Chapter 2, we measure computational costs and fitness improvements, and emphasize that

what is essential for search efficiency is not improvements during learning, but improvements

between generations. The appendix provides results with continuous optimization benchmarks

to further support the conclusion. Under this view, we compare children’s fitness improvement

with that of their parents, and find that children are catching up with the previous generation

through their learning, rather than explore beyond their parents. The experimental results

imply that, Baldwinian learning’s role is to maintain a certain level of learning potential, rather

than to further explore on the fitness landscape. We also verified that plasticity encoding, which

is popular in Baldwinian algorithms, does not change this basic fact.

This part of experiments determines the role of Baldwinian learning as passing on refinement

potential, and Baldwinian evolution as a kind of evolution towards individuals having promising

learning potential. Although the fundamental difference between Baldwinian and Lamarckian

evolution is just the inheritance of learned traits, the learning’s role significantly changes. In

Lamarckian evolution, parents’ learning is “done”. Their children do not have to repeat the

parents’ learning, or to know how the parents made such achievements, because all what found

are already encoded into genotypes and passed on to the children. In Baldwinian evolution,

however, the children need to know about their parents’ learning, otherwise they often cannot

achieve good fitness, their parents’ achievements will be lost by the population.

For design issues, the concept of “learning potential” implies that, algorithms settings should

protect individuals’ capabilities to catch up with their parents. For example, it is not wise

to assign the individuals frequently varying budget limits, or taking only a random set of

individuals to perform learning. When an individual has too low learning intensity comparing to

its parents, it cannot realize the parents’ achievements, and the parents’ learning efforts become

a waste. On the other hand, it is helpful to put learning controlling information in genotypes,

such as plasticity codes. Such genes could provide a brief guidance to individuals and tell

them how their parents managed to reach high fitness. These directions are not quantitative,

but can avoid some inefficiency from the beginning of algorithm designs, by selecting suitable

components of the algorithm, such as the genotype form and learning intensity control.

For biology/philosophy, this may imply that acquired learning and its products are to guar-

antee the groups’ robustness to the environment, rather than changing the group significantly.

Chapter 6 Conclusion 104

With acquired learning, organisms may fit the changes in the environment, even some sudden

and significant changes. This is much more reliable than random gene mutations, since muta-

tions are rare and blind. On the other hand, children learn from their parents, make advantage

of their parents’ surviving experience and find their own ways of living. This is what we can see

in the nature, and many animals even have apparent behaviors of parents training their chil-

dren. With more learning, children are more difficult to improve much beyond their parents,

however, the organisms attain more talents to live in the world. Although our computational

models are too simple to describe the real creatures, such inferences may be inspirations.

The study verifying learning potential brings some clues, however, the question is just a be-

ginning. Learning potential makes sense only when it is realized by the children, however, this

realization is not always guaranteed. This is the topic of Chapter 3, and the appendix provides

some further data supports. By comparing locally same learning steps of children and their

parents, we analyze whether children follow or not parents’ learning, and find that learning

schemes and genetic operators influence in different ways. A learning scheme’s randomness

causes non-inheritable variations, prohibits following, decelerates search, breaks inherited po-

tential and results in low fitness. A crossover’s breaking effect causes inheritable variations,

prohibits following but improves diversity, thus there is a trade-off between search speed and

final fitness. These two aspects can be explained by a single principle, that only the factors

being inherited or repeated in children’s learning can guide evolution.

This conclusion is an extension of Chapter 2’s conclusion, and place the question on a general

stage. What does the inheritance of “learning potential” consist of? This study answers that,

the potential passing through generations is in fact a collection of characters that included

in genes or repeated through determined learning. Of course it is different from Lamarckian

evolution which simply passes on all learned traits. In Baldwinian evolution, only a part of

learned characters or learning behaviors, which is strongly dependent on components of the

algorithm, are passed on as the inheritance, and this inheritance asks for computational efforts.

How learning guides evolution depends on how much the children can repeat, through the

indirect path. This implies that the key problem of Baldwinian evolution’s search efficiency is

how to make it “like” Lamarckian evolution. Of course this has to trade off with Baldwinian

evolution’s robustness, especially when applied in dynamic environments.

For design issues, “let children follow their parents’ learning” can be a criterion. When

designing the learning scheme in a Baldwinian algorithm, we should consider not only how

effective can the learning scheme improve an individual, but also how good can a child follow

its parents with the same learning scheme. A learning scheme with too little randomness may

Chapter 6 Conclusion 105

prevent the search from finding better solutions, but a highly random learning scheme cannot

maintain the learned good solutions in later generations. When using Baldwinian algorithms,

a balance is necessary, and may often appear as a limitation of learning randomness.

For biology/philosophy aspect, the findings about following parents’ learning again empha-

sizes the need of “education” between generations. Only when parents’ beneficial learning results

are repeated by their children, the inheritance becomes received, and the group can maintain

its finding and evolve on. Although such education may cost much because there is too much

to learn, it is still the fastest way to improve.

Another essential component in Baldwinian algorithms is learning cost penalties. We include

it and form a complete scenario of Baldwinian evolution in Chapter 4, By analyzing three

types of selection winner individuals, we revealed how learning cost penalties contributes to

and inhibits Baldwinian searches. When the selection scheme provides adequate competition

opportunities for individuals that learned the same traits, a quantitatively trivial cost penalty

can cause genetic assimilation, without inhibiting learning in the search phase. Otherwise, ge-

netic assimilation’s occurrence asks for a high cost penalty that transforms the fitness landscape

significantly, and makes individuals with different learning costs distinct in fitness. This high

cost penalty also brings a side-effect of inhibiting learning, which may prevent the algorithm

from discovering even better solutions.

Learning is not free, especially in Baldwinian algorithms. In an individual’s lifetime, it take

one evaluation for evolution/initial solution, and multiple evaluation calls for the learning pro-

cess. The learning cost becomes extremely high in Baldwinian algorithms, in which all the

individuals have to take learning to catch up with their parents and maintain the search find-

ings. This calls for a limitation on learning intensity, and the direct solution is a cost penalty

in the fitness function. However, the effect of such a penalty depends on the selection scheme

and may degrade the search performance. Ultimately, what we need in Baldwinian evolution is

the selective pressure on learning cost, not the punishment.

For algorithm designs, realizing a cost penalty is only one possible way to limit learning cost

also can help in search efficiency of Baldwinian algorithms. To enable genetic assimilation, and

to control computational costs, it is more important to design an appropriate selection scheme,

rather than to tune the scale of learning cost punishment. When having many opportunities

for individuals converging to the same peak to compete with each other, learning intensity can

be reduced, and learning steps that are not improving can be avoided. Of course, what we have

verified is still a limited conclusion on discrete problems, in which similar individuals are likely

to learn exact the same results. In continuous problems, classifying “similar” or not is a very

Chapter 6 Conclusion 106

complex preliminary problem.

In the natural world, of course, learning has costs, and in many types, as Turney once

listed [52]. The costs are more complex, and, in fact, the proportion of evolution’s (especially

reproduction) and learning’s costs is much different from that in algorithms. Furthermore,

learning costs and selection are not separate in the natural world. The computational models

can be approximations of Baldwinian evolution, however, from the aspect of learning costs, such

approximations are far from accurate. We need to modify the models to describe organisms, or

on the other hand, re-design learning-selection parts according to biological facts may improve

Baldwinian algorithms.

The results in this thesis imply the necessity of analyzing Baldwinian evolution from the aspect

of individual behaviors. An evolutionary/memetic algorithm is based on a group of candidate

solutions. We usually focus on the average performance or best individual of the group, however,

the diversity of the group is also essential. Diversity enables the group to improve through

generations, and individuals’ behaviors make the behavior of the group. Taking macroscopic

views, we have the “smoothing” metaphor, the two-phase description, works on development

processes, etc. These findings solve many problems. But only when we focus on the similarities

and differences of the group members, we can solve some other problems, such as how children

follow their parents, or whether we can assign learning intensities arbitrarily.

This thesis contributes to the understanding of Baldwinian evolution, as well as to algorithm

design issues. We collected some design rules, mainly qualitative, since appropriate algorithms

forms are prior to appropriate parameters. Knowing these rules does not guarantee efficient

Baldwinian algorithms, but they can be directions to avoid some inefficiencies. Such findings

can reduce blind trials and confusions, and provide a foundation for further studies.

Considering the whole thesis as an auxiliary material for biologists, the contribution is difficult

to determine. In biology, pure Lamarckism is incorrect, but Baldwinism is also not verified.

Furthermore, recent biological studies imply some local Lamarckian phenomena. It seems that

in the natural world, the true combination of evolution and learning is neither Lamarckian nor

Baldwinian, but between the two. Lamarckian algorithm studies may help in understanding the

Lamarckian parts, and Baldwinian studies, such as this thesis, may help with the Baldwinian

parts. On the other hand, further discoveries in biology may also provide new inspirations for

evolutionary/memetic computation.

Appendix A

Continuous Optimization Experiments

In the main body of this thesis, Baldwinian evolution’s mechanisms are studied with the NK

model. We have three fitness landscapes with different epistasis and complexity levels, however,

the experiments are not covering all situations. In order to accumulate more evidences for

our conclusions, and to examine how the phenomena can change in continuous optimization,

we conducted some additional experiments and describe them here in this appendix. Some

phenomena occur in different forms comparing to using the NK model, however, all the results

support our conclusions presented in the thesis.

– 107 –

Appendix A Continuous Optimization Experiments 108

TableA.1: Functions in IEEE CEC 2005 Test Suite
No. Function

F1 Shifted Sphere Function

F2 Shifted Schwefel ’s Problem 1.2

F3 Shifted Rotated High Conditioned Elliptic Function

F4 Shifted Schwefel ’s Problem 1.2 with Noise in Fitness

F5 Schwefel ’s Problem 2.6 with Global Optimum on Bounds

F6 Shifted Rosenbrock ’s Function

F7 Shifted Rotated Griewank ’s Function without Bounds

F8 Shifted Rotated Ackley ’s Function with Global Optimum on Bounds

F9 Shifted Rastrigin ’s Function

F10 Shifted Rotated Rastrigin ’s Function

F11 Shifted Rotated Weierstrass Function

F12 Schwefel ’s Problem 2.13

F13 Expanded Extended Griewank ’s plus Rosenbrock ’s Function (F8F2)

F14 Shifted Rotated Expanded Scaffer ’s F6

F15 Hybrid Composition Function

F16 Rotated Hybrid Composition Function

F17 Rotated Hybrid Composition Function with Noise in Fitness

F18 Rotated Hybrid Composition Function

F19 Rotated Hybrid Composition Function with a Narrow Basin for the Global Optimum

F20 Rotated Hybrid Composition Function with the Global Optimum on the Bounds

F21 Rotated Hybrid Composition Function

F22 Rotated Hybrid Composition Function with High Condition Number Matrix

F23 Non-Continuous Rotated Hybrid Composition Function

F24 Rotated Hybrid Composition Function

F25 Rotated Hybrid Composition Function without Bounds

In this appendix, the benchmark is the IEEE CEC 2005 test suite [50], which consists of 25

continuous function minimization problems. This standard test suite covers various types of

real-parameter optimization problems, and is broadly used in continuous optimization studies.

The functions are listed in Table A.1, and in the technical report [50] much further details are

described. In our experiments, we use all the 25 functions with 30 dimensions.

Our experiments employ methods from a recent study on memetic algorithms with local search

chains [36], which presents a Lamarckian algorithm which combines evolutionary search with

iterative local search trials. In their work, based on a real-coded steady state genetic algorithm

[19], they apply the BLX-α crossover operator with α = 0.5 and the negative assortative mating

strategy [14], and the BGA mutation operator [38]. They then apply CMA-ES (covariance

matrix adaptation evolution strategy) [16, 17] as the local search method.

Appendix A Continuous Optimization Experiments 109

In our experiments, we change the algorithm to Baldwinian and reset the population size

to 100, while keeping the BLX-α crossover, the BGA mutation, and the CMA-ES local search

scheme. However, to enable the comparison between children and their parents, we use a

generation-based genetic algorithm with 2-tournament selection instead of the steady state

genetic algorithm, since the latter varies only a single individual at a time. In addition, we

apply a PBLX crossover operator, which is a variation of the BLX crossover [36], and a Solis-

Wets local search scheme [49], for comparisons of different crossovers/learning schemes.

In this appendix, we first examine the catching-up phenomena in Baldwinian evolution, cor-

responding to the contents of Chapter 2, then introduce experiments examining the influence

when changing the learning scheme and crossover operator, corresponding to the contents of

Chapter 3. The measurement of learning similarity or genetic assimilation in continuous opti-

mization is highly complicated, and calls for niche and classification techniques. Therefore, we

do not examine the influence of cost penalties (Chapter 4) in this appendix. In all the sections,

results presented are averages of 25 random runs.

Learning Potential

First of all, we examine fitness improvements comparing to the previous generation and

comparing to before learning. All individuals are assigned the same learning intensity, and

the learning improvements are shown in Fig.A.1, A.2 and A.3. In the figures, x axis shows the

generation number, and y axis shows the fitness improvements. The squares show improvements

between generations, noted as f(b) − fpre according to Chapter 3, whileas the triangles show

improvements during the current generation’s learning, noted as f(b)−f(0). It can be observed

that, in a few generations at the beginning, improvements between generations may be greater

than improvements in the current generation. But after about the 5th generation, improvements

in the current generation rise over, and improvements between generations fall down to around

zero. With different benchmark functions, fitness varies much, but the trends are the same.

The results can be described that learning significantly refines the children from their initial

solutions, but does not push the whole population apparently forward. This is coincident to

the conclusion with the NK model, that children’s learning improvements just enable them to

catch up with their parents. Although changes in algorithm, optimization target (maximiza-

tion/minimization) and other characters of the model make the phenomenon in a different form,

the fact “learned traits are not inherited” brings the same outcomes.

In addition, Table A.2 shows the fitness and potential scales of the 12th generation. From the

aspect of solving these optimization problems, the Baldwinian algorithm’s performance may be

Appendix A Continuous Optimization Experiments 110

TableA.2: Fitness and potential scales of the 12th generation using BLX and CMA-ES

Function Average Fitness Potential Scale Function Average Fitness Potential Scale

F1 9.709393e+04 1.665257e+04 F14 1.453008e+01 2.596800e-01

F2 1.946172e+05 5.775100e+04 F15 1.281630e+03 1.010990e+02

F3 2.877471e+09 8.298220e+08 F16 1.205503e+03 1.380340e+02

F4 1.685714e+05 9.062690e+04 F17 1.148282e+03 2.605620e+02

F5 4.627802e+04 5.822240e+03 F18 1.406825e+03 5.533400e+01

F6 8.060630e+10 3.376360e+10 F19 1.414746e+03 5.102500e+01

F7 1.151713e+04 1.018040e+03 F20 1.413493e+03 5.571300e+01

F8 2.131534e+01 2.226300e-01 F21 1.542668e+03 7.542800e+01

F9 5.196022e+02 4.810150e+01 F22 1.861563e+03 2.858430e+02

F10 8.518058e+02 1.082650e+02 F23 1.542616e+03 7.616400e+01

F11 4.754357e+01 4.962420e+00 F24 1.555970e+03 6.807100e+01

F12 2.114259e+06 5.850660e+05 F25 1.940548e+03 4.558800e+01

F13 1.410002e+06 9.211570e+05

poor. After 12 generations, about 90,000 evaluation calls are taken, the average fitness values

are still far above zero and are not decreasing fast. Basically, the tested algorithm here is not

designed specially for finding the optimum rapidly, but for investigations of mechanisms. For

such a reason, we record the average fitness of the population, instead of best fitness which is

more commonly used in continuous optimization research.

Learning Scheme’s Effect

By changing the learning scheme to Solis-Wets’ method, we examine the effect of the learning

scheme. The learning improvements are shown in Fig.A.4, A.5 and A.6, and Table A.3 lists

average fitness and potential scales. With this learning scheme, improvements in the current

generation are much higher than improvements between generations from the beginning. With

some benchmark functions, the two values are even distinct in the order of magnitude. The

fact that children’s learning improvements just enable them to catch up with their parents is

verified again, and this learning scheme brings much variation in the learning potential scales.

The data show that with Solis-Wets local search, individuals have higher potentials passed on

through generations, and, the found solutions are better than using CMA-ES. This result is

also coincident to our findings with the NK model, that when learning brings better following

effect and higher inherited potential, the search also becomes more efficient.

In continuous optimization problems, solutions are in form of real value vectors. As a result,

there are no exactly same learning steps in the search, and figuring out whether two individuals

Appendix A Continuous Optimization Experiments 111

-5.0×10
3

0.0×10
0

5.0×10
3

1.0×10
4

1.5×10
4

2.0×10
4

2.5×10
4

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(a) F1

-2.0×10
5

0.0×10
0

2.0×10
5

4.0×10
5

6.0×10
5

8.0×10
5

1.0×10
6

1.2×10
6

1.4×10
6

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(b) F2

-5.0×10
8

0.0×10
0

5.0×10
8

1.0×10
9

1.5×10
9

2.0×10
9

2.5×10
9

3.0×10
9

3.5×10
9

4.0×10
9

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(c) F3

-2.0×10
5

0.0×10
0

2.0×10
5

4.0×10
5

6.0×10
5

8.0×10
5

1.0×10
6

1.2×10
6

1.4×10
6

1.6×10
6

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(d) F4

-2.0×10
3

0.0×10
0

2.0×10
3

4.0×10
3

6.0×10
3

8.0×10
3

1.0×10
4

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(e) F5

-1.0×10
10

0.0×10
0

1.0×10
10

2.0×10
10

3.0×10
10

4.0×10
10

5.0×10
10

6.0×10
10

7.0×10
10

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(f) F6

-2.0×10
2

0.0×10
0

2.0×10
2

4.0×10
2

6.0×10
2

8.0×10
2

1.0×10
3

1.2×10
3

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(g) F7

-5.0×10
-2

0.0×10
0

5.0×10
-2

1.0×10
-1

1.5×10
-1

2.0×10
-1

2.5×10
-1

3.0×10
-1

3.5×10
-1

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(h) F8

Fig.A.1: Fitness improvements with functions F1 ∼ F8 using BLX and CMA-ES.

Appendix A Continuous Optimization Experiments 112

-2.0×10
1

-1.0×10
1

0.0×10
0

1.0×10
1

2.0×10
1

3.0×10
1

4.0×10
1

5.0×10
1

6.0×10
1

7.0×10
1

8.0×10
1

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(a) F9

-5.0×10
1

0.0×10
0

5.0×10
1

1.0×10
2

1.5×10
2

2.0×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(b) F10

-1.0×10
0

0.0×10
0

1.0×10
0

2.0×10
0

3.0×10
0

4.0×10
0

5.0×10
0

6.0×10
0

7.0×10
0

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(c) F11

-1.0×10
5

0.0×10
0

1.0×10
5

2.0×10
5

3.0×10
5

4.0×10
5

5.0×10
5

6.0×10
5

7.0×10
5

8.0×10
5

9.0×10
5

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(d) F12

-5.0×10
5

0.0×10
0

5.0×10
5

1.0×10
6

1.5×10
6

2.0×10
6

2.5×10
6

3.0×10
6

3.5×10
6

4.0×10
6

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(e) F13

-5.0×10
-2

0.0×10
0

5.0×10
-2

1.0×10
-1

1.5×10
-1

2.0×10
-1

2.5×10
-1

3.0×10
-1

3.5×10
-1

4.0×10
-1

4.5×10
-1

5.0×10
-1

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(f) F14

-2.0×10
1

0.0×10
0

2.0×10
1

4.0×10
1

6.0×10
1

8.0×10
1

1.0×10
2

1.2×10
2

1.4×10
2

1.6×10
2

1.8×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(g) F15

-5.0×10
1

0.0×10
0

5.0×10
1

1.0×10
2

1.5×10
2

2.0×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(h) F16

-5.0×10
1

0.0×10
0

5.0×10
1

1.0×10
2

1.5×10
2

2.0×10
2

2.5×10
2

3.0×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(i) F17

Fig.A.2: Fitness improvements with functions F9 ∼ F17 using BLX and CMA-ES.

Appendix A Continuous Optimization Experiments 113

-2.0×10
1

0.0×10
0

2.0×10
1

4.0×10
1

6.0×10
1

8.0×10
1

1.0×10
2

1.2×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(a) F18

-2.0×10
1

0.0×10
0

2.0×10
1

4.0×10
1

6.0×10
1

8.0×10
1

1.0×10
2

1.2×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(b) F19

-2.0×10
1

0.0×10
0

2.0×10
1

4.0×10
1

6.0×10
1

8.0×10
1

1.0×10
2

1.2×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(c) F20

-2.0×10
1

0.0×10
0

2.0×10
1

4.0×10
1

6.0×10
1

8.0×10
1

1.0×10
2

1.2×10
2

1.4×10
2

1.6×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(d) F21

-2.0×10
2

0.0×10
0

2.0×10
2

4.0×10
2

6.0×10
2

8.0×10
2

1.0×10
3

1.2×10
3

1.4×10
3

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(e) F22

-2.0×10
1

0.0×10
0

2.0×10
1

4.0×10
1

6.0×10
1

8.0×10
1

1.0×10
2

1.2×10
2

1.4×10
2

1.6×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(f) F23

0.0×10
0

1.0×10
1

2.0×10
1

3.0×10
1

4.0×10
1

5.0×10
1

6.0×10
1

7.0×10
1

8.0×10
1

9.0×10
1

1.0×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(g) F24

-1.0×10
1

0.0×10
0

1.0×10
1

2.0×10
1

3.0×10
1

4.0×10
1

5.0×10
1

6.0×10
1

7.0×10
1

8.0×10
1

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(h) F25

Fig.A.3: Fitness improvements with functions F18 ∼ F25 using BLX and CMA-ES.

Appendix A Continuous Optimization Experiments 114

TableA.3: Fitness and potential scales of the 12th generation using BLX and Solis-Wets

Function Average Fitness Potential Scale Function Average Fitness Potential Scale

F1 3.636323e+04 7.704447e+04 F14 1.412549e+01 6.539300e-01

F2 1.383203e+05 5.521164e+05 F15 7.403768e+02 8.916352e+02

F3 6.594291e+08 4.564474e+09 F16 7.153493e+02 9.153727e+02

F4 1.455673e+05 2.494592e+05 F17 1.196496e+03 2.336700e+02

F5 3.143922e+04 3.080013e+04 F18 1.232921e+03 4.565930e+02

F6 9.076444e+09 1.052143e+11 F19 1.216724e+03 4.781790e+02

F7 7.803948e+03 5.220032e+03 F20 1.253179e+03 4.147060e+02

F8 2.119526e+01 4.085500e-01 F21 1.357268e+03 4.508030e+02

F9 4.270676e+02 1.259049e+02 F22 1.435987e+03 3.138172e+03

F10 7.589375e+02 1.980897e+02 F23 1.473278e+03 3.825440e+02

F11 4.240163e+01 9.854610e+00 F24 1.503081e+03 3.342580e+02

F12 7.603130e+05 2.063375e+06 F25 1.898579e+03 5.259630e+02

F13 2.144400e+05 2.412709e+06

perform similar learning is a demanding task. There is no precise means of “same”, and the

concept of “nearby” is highly dependent on the landscape characters. According to the conti-

nuity and gradient situation, different landscapes have different thresholds for “nearby”, and

even different regions on the same landscape may have different ways of judging the similarity.

Therefore, we skip the examination of learning similarities as an immediate step, and focus on

only the input and output of the search.

Crossover’s Effect

We then use PBLX crossover with CMA-ES local search method, to examine the effect of

the crossover operator. The learning improvements are shown in Fig.A.7, A.8 and A.9, and

Table A.4 lists average fitness and potential scales. Using this crossover operator, the fitness

improvements are almost the same as using the BLX crossover operator. Furthermore, the

fitness of the 12th generation is also similar to that of using BLX crossover. It is verified again

here that the crossover is not likely to change the inherited potential, as it brings inheritable

variations to the gene pool.

As mentioned before, in continuous optimization, it is difficult to judge similarities between

individuals or their learning processes. Furthermore, it is also difficult to describe the effect

of breaking building blocks. Basically the individuals are always changing in reproduction.

Effective building blocks can be a region on a dimension, a volume determined by several

dimensions in the vector, or an exact starting point. As a result, we do not have a method to

Appendix A Continuous Optimization Experiments 115

-2.0×10
4

0.0×10
0

2.0×10
4

4.0×10
4

6.0×10
4

8.0×10
4

1.0×10
5

1.2×10
5

1.4×10
5

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(a) F1

-5.0×10
5

0.0×10
0

5.0×10
5

1.0×10
6

1.5×10
6

2.0×10
6

2.5×10
6

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(b) F2

-2.0×10
9

0.0×10
0

2.0×10
9

4.0×10
9

6.0×10
9

8.0×10
9

1.0×10
10

1.2×10
10

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(c) F3

-2.0×10
5

0.0×10
0

2.0×10
5

4.0×10
5

6.0×10
5

8.0×10
5

1.0×10
6

1.2×10
6

1.4×10
6

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(d) F4

-5.0×10
3

0.0×10
0

5.0×10
3

1.0×10
4

1.5×10
4

2.0×10
4

2.5×10
4

3.0×10
4

3.5×10
4

4.0×10
4

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(e) F5

0.0×10
0

5.0×10
10

1.0×10
11

1.5×10
11

2.0×10
11

2.5×10
11

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(f) F6

0.0×10
0

1.0×10
3

2.0×10
3

3.0×10
3

4.0×10
3

5.0×10
3

6.0×10
3

7.0×10
3

8.0×10
3

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(g) F7

-5.0×10
-2

0.0×10
0

5.0×10
-2

1.0×10
-1

1.5×10
-1

2.0×10
-1

2.5×10
-1

3.0×10
-1

3.5×10
-1

4.0×10
-1

4.5×10
-1

5.0×10
-1

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(h) F8

Fig.A.4: Fitness improvements with functions F1 ∼ F8 using BLX and Solis-Wets.

Appendix A Continuous Optimization Experiments 116

-5.0×10
1

0.0×10
0

5.0×10
1

1.0×10
2

1.5×10
2

2.0×10
2

2.5×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(a) F9

-5.0×10
1

0.0×10
0

5.0×10
1

1.0×10
2

1.5×10
2

2.0×10
2

2.5×10
2

3.0×10
2

3.5×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(b) F10

0.0×10
0

2.0×10
0

4.0×10
0

6.0×10
0

8.0×10
0

1.0×10
1

1.2×10
1

1.4×10
1

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(c) F11

-5.0×10
5

0.0×10
0

5.0×10
5

1.0×10
6

1.5×10
6

2.0×10
6

2.5×10
6

3.0×10
6

3.5×10
6

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(d) F12

-1.0×10
6

0.0×10
0

1.0×10
6

2.0×10
6

3.0×10
6

4.0×10
6

5.0×10
6

6.0×10
6

7.0×10
6

8.0×10
6

9.0×10
6

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(e) F13

-1.0×10
-1

0.0×10
0

1.0×10
-1

2.0×10
-1

3.0×10
-1

4.0×10
-1

5.0×10
-1

6.0×10
-1

7.0×10
-1

8.0×10
-1

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(f) F14

0.0×10
0

1.0×10
2

2.0×10
2

3.0×10
2

4.0×10
2

5.0×10
2

6.0×10
2

7.0×10
2

8.0×10
2

9.0×10
2

1.0×10
3

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(g) F15

-2.0×10
2

0.0×10
0

2.0×10
2

4.0×10
2

6.0×10
2

8.0×10
2

1.0×10
3

1.2×10
3

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(h) F16

-5.0×10
1

0.0×10
0

5.0×10
1

1.0×10
2

1.5×10
2

2.0×10
2

2.5×10
2

3.0×10
2

3.5×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(i) F17

Fig.A.5: Fitness improvements with functions F9 ∼ F17 using BLX and Solis-Wets.

Appendix A Continuous Optimization Experiments 117

-1.0×10
2

0.0×10
0

1.0×10
2

2.0×10
2

3.0×10
2

4.0×10
2

5.0×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(a) F18

-5.0×10
1

0.0×10
0

5.0×10
1

1.0×10
2

1.5×10
2

2.0×10
2

2.5×10
2

3.0×10
2

3.5×10
2

4.0×10
2

4.5×10
2

5.0×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(b) F19

-1.0×10
2

0.0×10
0

1.0×10
2

2.0×10
2

3.0×10
2

4.0×10
2

5.0×10
2

6.0×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(c) F20

0.0×10
0

1.0×10
2

2.0×10
2

3.0×10
2

4.0×10
2

5.0×10
2

6.0×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(d) F21

0.0×10
0

5.0×10
2

1.0×10
3

1.5×10
3

2.0×10
3

2.5×10
3

3.0×10
3

3.5×10
3

4.0×10
3

4.5×10
3

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(e) F22

-5.0×10
1

0.0×10
0

5.0×10
1

1.0×10
2

1.5×10
2

2.0×10
2

2.5×10
2

3.0×10
2

3.5×10
2

4.0×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(f) F23

0.0×10
0

5.0×10
1

1.0×10
2

1.5×10
2

2.0×10
2

2.5×10
2

3.0×10
2

3.5×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(g) F24

0.0×10
0

1.0×10
2

2.0×10
2

3.0×10
2

4.0×10
2

5.0×10
2

6.0×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(h) F25

Fig.A.6: Fitness improvements with functions F18 ∼ F25 using BLX and Solis-Wets.

Appendix A Continuous Optimization Experiments 118

TableA.4: Fitness and potential scales of the 12th generation using PBLX and CMA-ES

Function Average Fitness Potential Scale Function Average Fitness Potential Scale

F1 9.935136e+04 1.799054e+04 F14 1.451056e+01 3.347700e-01

F2 1.971154e+05 1.013557e+05 F15 1.226237e+03 1.175930e+02

F3 2.279776e+09 9.587780e+08 F16 1.127452e+03 1.427300e+02

F4 1.910765e+05 1.533672e+05 F17 1.259544e+03 2.791570e+02

F5 4.433963e+04 6.146320e+03 F18 1.398195e+03 8.314400e+01

F6 8.454966e+10 3.378334e+10 F19 1.411134e+03 6.883700e+01

F7 1.137070e+04 8.813900e+02 F20 1.401532e+03 7.041300e+01

F8 2.128284e+01 1.977700e-01 F21 1.528675e+03 8.007100e+01

F9 5.197329e+02 5.060470e+01 F22 1.917113e+03 2.903630e+02

F10 8.751866e+02 1.047364e+02 F23 1.547031e+03 6.429800e+01

F11 4.687180e+01 4.416600e+00 F24 1.569445e+03 5.296800e+01

F12 2.197234e+06 4.861910e+05 F25 1.940685e+03 5.465100e+01

F13 1.592331e+06 9.603020e+05

compare the exact preference levels of breaking building blocks. In this part of experiments,

what is verified is that crossover operators are not changing learning potential scales significantly,

by applying variations to the gene pool.

Appendix A Continuous Optimization Experiments 119

-5.0×10
3

0.0×10
0

5.0×10
3

1.0×10
4

1.5×10
4

2.0×10
4

2.5×10
4

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(a) F1

-2.0×10
5

0.0×10
0

2.0×10
5

4.0×10
5

6.0×10
5

8.0×10
5

1.0×10
6

1.2×10
6

1.4×10
6

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(b) F2

-5.0×10
8

0.0×10
0

5.0×10
8

1.0×10
9

1.5×10
9

2.0×10
9

2.5×10
9

3.0×10
9

3.5×10
9

4.0×10
9

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(c) F3

-2.0×10
5

0.0×10
0

2.0×10
5

4.0×10
5

6.0×10
5

8.0×10
5

1.0×10
6

1.2×10
6

1.4×10
6

1.6×10
6

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(d) F4

-1.0×10
3

0.0×10
0

1.0×10
3

2.0×10
3

3.0×10
3

4.0×10
3

5.0×10
3

6.0×10
3

7.0×10
3

8.0×10
3

9.0×10
3

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(e) F5

-1.0×10
10

0.0×10
0

1.0×10
10

2.0×10
10

3.0×10
10

4.0×10
10

5.0×10
10

6.0×10
10

7.0×10
10

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(f) F6

-2.0×10
2

0.0×10
0

2.0×10
2

4.0×10
2

6.0×10
2

8.0×10
2

1.0×10
3

1.2×10
3

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(g) F7

-5.0×10
-2

0.0×10
0

5.0×10
-2

1.0×10
-1

1.5×10
-1

2.0×10
-1

2.5×10
-1

3.0×10
-1

3.5×10
-1

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(h) F8

Fig.A.7: Fitness improvements with functions F1 ∼ F8 using PBLX and CMA-ES.

Appendix A Continuous Optimization Experiments 120

-1.0×10
1

0.0×10
0

1.0×10
1

2.0×10
1

3.0×10
1

4.0×10
1

5.0×10
1

6.0×10
1

7.0×10
1

8.0×10
1

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(a) F9

-5.0×10
1

0.0×10
0

5.0×10
1

1.0×10
2

1.5×10
2

2.0×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(b) F10

-1.0×10
0

0.0×10
0

1.0×10
0

2.0×10
0

3.0×10
0

4.0×10
0

5.0×10
0

6.0×10
0

7.0×10
0

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(c) F11

-1.0×10
5

0.0×10
0

1.0×10
5

2.0×10
5

3.0×10
5

4.0×10
5

5.0×10
5

6.0×10
5

7.0×10
5

8.0×10
5

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(d) F12

-5.0×10
5

0.0×10
0

5.0×10
5

1.0×10
6

1.5×10
6

2.0×10
6

2.5×10
6

3.0×10
6

3.5×10
6

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(e) F13

-1.0×10
-1

0.0×10
0

1.0×10
-1

2.0×10
-1

3.0×10
-1

4.0×10
-1

5.0×10
-1

6.0×10
-1

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(f) F14

-2.0×10
1

0.0×10
0

2.0×10
1

4.0×10
1

6.0×10
1

8.0×10
1

1.0×10
2

1.2×10
2

1.4×10
2

1.6×10
2

1.8×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(g) F15

-2.0×10
1

0.0×10
0

2.0×10
1

4.0×10
1

6.0×10
1

8.0×10
1

1.0×10
2

1.2×10
2

1.4×10
2

1.6×10
2

1.8×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(h) F16

-5.0×10
1

0.0×10
0

5.0×10
1

1.0×10
2

1.5×10
2

2.0×10
2

2.5×10
2

3.0×10
2

3.5×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(i) F17

Fig.A.8: Fitness improvements with functions F9 ∼ F17 using PBLX and CMA-ES.

Appendix A Continuous Optimization Experiments 121

-2.0×10
1

0.0×10
0

2.0×10
1

4.0×10
1

6.0×10
1

8.0×10
1

1.0×10
2

1.2×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(a) F18

-2.0×10
1

0.0×10
0

2.0×10
1

4.0×10
1

6.0×10
1

8.0×10
1

1.0×10
2

1.2×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(b) F19

-2.0×10
1

0.0×10
0

2.0×10
1

4.0×10
1

6.0×10
1

8.0×10
1

1.0×10
2

1.2×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(c) F20

-2.0×10
1

0.0×10
0

2.0×10
1

4.0×10
1

6.0×10
1

8.0×10
1

1.0×10
2

1.2×10
2

1.4×10
2

1.6×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(d) F21

-2.0×10
2

0.0×10
0

2.0×10
2

4.0×10
2

6.0×10
2

8.0×10
2

1.0×10
3

1.2×10
3

1.4×10
3

1.6×10
3

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(e) F22

-2.0×10
1

0.0×10
0

2.0×10
1

4.0×10
1

6.0×10
1

8.0×10
1

1.0×10
2

1.2×10
2

1.4×10
2

1.6×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(f) F23

-2.0×10
1

0.0×10
0

2.0×10
1

4.0×10
1

6.0×10
1

8.0×10
1

1.0×10
2

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(g) F24

-2.0×10
1

-1.0×10
1

0.0×10
0

1.0×10
1

2.0×10
1

3.0×10
1

4.0×10
1

5.0×10
1

6.0×10
1

7.0×10
1

8.0×10
1

 2 4 6 8 10 12

F
it
n
e
s
s
 I
m

p
ro

v
e
m

e
n
t

Generation

Compared to Previous Generation

Compared to Before Learning

(h) F25

Fig.A.9: Fitness improvements with functions F18 ∼ F25 using PBLX and CMA-ES.

Publication List

Journal Papers

S. Liu, H. Iba, “A Study on Computational Efficiency and Plasticity in Baldwinian Learning,”

Journal of Advanced Computational Intelligence and Intelligent Informatics, vol. 15(9), pp.

1300—1309, 2011.

S. Liu, H. Iba, “Realization of Learning Potential in Baldwinian Evolution,” Artificial Life.

(Submitted)

S. Liu, H. Iba, “Learning Intensity and Cost Punishment in Baldwinian Evolution,” Journal

of the Japanese Society for Evolutionary Computation. (Submitted)

Conference Papers (with Peer Reviews)

S. Liu, H. Iba, “A Study on the Computational Efficiency of Baldwinian Evolution,” Proc.

of the Second World Congress on Nature and Biologically Inspired Computing (NaBIC 2010),

pp. 467—472, Kitakyushu, Japan, 2010.

S. Liu, H. Iba, “Imitation Tendencies of Local Search Schemes in Baldwinian Evolution,”

Proc. of Genetic and Evolutionary Computation Conference 2011 (GECCO2011), pp. 553—

560, Dublin, Ireland, 2011.

B. Tserenchimed, S. Liu, H. Iba, “A Trading Method in FX using Evolutionary Algorithms,”

Proc. of Genetic and Evolutionary Computation Conference 2011 (GECCO2011), pp. 139—

140, Dublin, Ireland, 2011.

Conference Papers (without Peer Reviews)

S. Liu, H. Iba, “Baldwin効果を用いた外国為替取引最適化,” 第４回進化計算フロンティア研

究会 (SIG-ECF), 2010.

S. Liu, H. Iba, “A Study on Computational Efficiency in Baldwinian Evolution,” 進化計算シ

ンポジウム 2010, 2010.

S. Liu, H. Iba, “Learning Imitation Tendencies in Baldwinian Evolution,” 第７回進化計算フ

ロンティア研究会 (SIG-ECF), 2011.

S. Liu, H. Iba, “Genetic Operators May Break Inherited Learning Potential in Baldwinian

Evolution,” 進化計算シンポジウム 2011, 2011.

– 122 –

Bibliography

[1] Claus Aranha and Hitoshi Iba. The memetic tree-based genetic algorithm and its applica-

tion to portfolio. Memetic Computing, 1(2):139–151, 2009.

[2] J. Mark Baldwin. A new factor in evolution. American Naturalist, 30:441–451, 1896.

[3] N. K. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler. Systematic integration of

parameterized local search in evolutionary algorithm. IEEE Transactions on Evolutionary

Computation, 8(2):137–155, 2004.

[4] Sendhoff Bernhard and Kreutz Martin. A model for the dynamic interaction between

evolution and learning. Neural Processing Letters, 10(3):181–193, 1999.

[5] C. G. Carrier. Unifying learning with evolution through baldwinian evolution and lamarck-

ism: A case study. In in Proc. Symp. Computational Intelligence and Learning (CoIL-2000),

pages 36–41, 2000.

[6] J. H. Chen, D. E. Goldberg, S. Y. Ho, and K. Sastry. Fitness inheritance in multi-objective

optimization. In Genetic and Evolutionary Computation Conference, pages 319–326, 2002.

[7] Xianshun Chen, Yew-Soon Ong, Meng-Hiot Lim, and Kay Chen Tan. A multi-facet survey

on memetic computation. IEEE Transactions on Evolutionary Computation, 15(5):591–

607, 2011.

[8] S. S. Choi and B. R. Moon. A graph-based lamarckian-baldwinian hybrid for the sorting

network problem. IEEE Transactions on Evolutionary Computation, 9(1):105–114, 2005.

[9] K. L. Downing. Deisgning neutral networks using genetic algorithms with graph generation

system. Genetic Programming and Evolvable Machines, 2(3):259–288, 2001.

[10] K. L. Downing. Development and the baldwin effect. Artificial Life, 10(1):39–63, 2004.

[11] K. L. Downing. Computational explorations of the baldwin effect. In Proceedings of the

First Norwegian Artificial Intelligence Symposium, pages 41–52, 2009.

– 123 –

Bibliography 124

[12] K. L. Downing. The baldwin effect in developing neural networks. In Proceedings of the

Genetic and Evolutionary Computation Conference, pages 555–562, 2010.

[13] T. El-Mihoub, Adrian Hopgood, L. Nolle, and A. Battersby. Self-adaptive baldwinian

search in hybrid genetic algorithms. In Computational Intelligence, Theory and Applica-

tions, volume 38, pages 597–602, September 2006.

[14] C. Fernandes and A. Rosa. A study on non-random mating and varying population size

in genetic algorithms using a royal road function. In Proceedings of the 2001 Congress on

Evolutionary Computation, pages 60–66, 2001.

[15] D. E. Goldberg and S. Voessner. Optimizing global-local search hybrids. In Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO), pages 220–228, 1999.

[16] N. Hansen, S. D. Muller, and P. Koumoutsakos. Reducing the time complexity of the

derandomized evolution strategy with covariance matrix adaptation (cma-es). 11(1):1–18,

2003.

[17] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution

strategies. 9(2):159–195, 2001.

[18] S. M. K. Hasan, R. Sarker, D. Essam, and D. Cornforth. Memetic algorithms for solving

job-shop scheduling problems. Memetic Computing, 1(1):69–83, 2009.

[19] F. Herrera, M. Lozano, and J. L. Verdegay. Tackling real-coded genetic algorithms: Oper-

ators and tools for the behavioral analysis. 12(4):265–319, 1998.

[20] G.E. Hinton and S.J. Nowlan. How learning can guide evolution. Complex Systems, 1:495–

502, 1987.

[21] Hisao Ishibuchi, Shiori Kaige, and Kaname Narukawa. Comparison between lamarckian and

baldwinian repair on multiobjective 0/1 knapsack problems. In Proc. of Third International

Conference on Evolutionary Multi-Criterion Optimization, EMO 2005, ser. Lecture Notes

in Computer Science, pages 370–385. Springer, 2005.

[22] Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary optimization with

approximate fitness function. IEEE Transactions on Evolutionary Computation, 6(5):481–

494, 2002.

[23] Y. Jin, M. Olhofer, and B. Sendhoff. Faster convergence by means of fitness estimation.

Soft Computing, 9(1):13–20, 2005.

Bibliography 125

[24] C. G. Johnson and J. J. R. Caldalda. The memetic tree-based genetic algorithm and its

application to portfolio. Leonardo, 35(2):175–184, 2002.

[25] S. Kauffman. The Origin of Order: Self-Organization and Selection in Evolution. Oxford

University Press, 1993.

[26] H. S. Kim and S. B. Cho. An efficient genetic algorithm with less fitness evaluation by

clustering. In Congress on Evolutionary Computation, pages 887–894, 2001.

[27] H. Kitano. Deisgning neutral networks using genetic algorithms with graph generation

system. Complex Systems, 4:461467, 1990.

[28] Morris Kline. Mathematics: The Loss of Certainty. Oxford University Press, New York,

1980.

[29] N. Krasnogor and J. Smith. A memetic algorithm with self-adaptive local search: Tsp

as a case study. In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO), pages 987–994, 2000.

[30] N. Krasnogor and J. Smith. A tutorial for competent memetic algorithms: Model, taxon-

omy, and design issues. IEEE Transactions on Evolutionary Computation, 9(5):474–488,

2005.

[31] K. W. C. Ku, M. W. Mak, and W. C. Siu. A study of the lamarckian evolution of recurrent

neural networks. IEEE Transactions on Evolutionary Computation, 4(1):31–42, 2000.

[32] E. W. Lameijer, T. Baeck, J. N. Kok, and A. P. Ijzerman. Evolutionary algorithms in drug

design. Natrual Computing, 4(3):177–243, 2005.

[33] S. Liu and H. Iba. A study on computational efficiency and plasticity in baldwinian learning.

Journal of Advanced Computational Intelligence and Intelligent Informatics, 15(9):1300–

1309, 2011.

[34] Giles Mayley. Landscapes, learning costs and genetic assimilation. Evolutionary Compu-

tation, 4:213–234, 1996.

[35] G.F. Miller, P.M. Todd, and S.U. Hedge. Deisgning neutral networks using genetic algo-

rithms. In Morgan Kaufmann, editor, Proceedings of Third Int. Conf. Genetic Algorithms,

page 379384, San Francisco, 1989.

Bibliography 126

[36] D. Molina, M. Lozano, C. Garc鱈 a-Mart鱈 nez, and F. Herrera. Memetic algorithms for

continuous optimization based on local search chains. Evolutionary Computation, 8(1):27–

63, 2010.

[37] C. Lloyd Morgan. On modification and variation. Science, 4:733–740, 1896.

[38] H. Muhlenbein and D. Schlierkamp-Voosen. Predictive models for the breeder genetic

algorithm in continuous parameter optimization. 1:25–49, 1993.

[39] Q.H. Nguyen, Y.S. Ong, and N. Krasnogor. A study on the design issues of memetic

algorithm. In Proc. of 2007 IEEE Congress on Evolutionary Computation, pages 2390–

2397, 2007.

[40] Quang Huy Nguyen, Yew-Soon Ong, and Meng Hiot Lim. A probabilistic memetic frame-

work. IEEE Transactions on Evolutionary Computation, 13(3):604–623, 2009.

[41] N. Noman and H. Iba. Accelerating differential evolution using an adaptive local search.

IEEE Transactions on Evolutionary Computation, 12(1):107–125, 2008.

[42] Yew-Soon Ong, Meng-Hiot Lim, Ning Zhu, and Kok-Wai Wong. Classification of adaptive

memetic algorithms: a comparative study. IEEE Transactions on Systems, Man, and

Cybernetics, Part B, 36(1):141–152, 2006.

[43] H.F. Osborn. Ontogenic and phylogenic variation. Science, 4:786–789, 1896.

[44] Ingo Paenke, Tadeusz J. Kawecki, and Bernhard Sendhoff. On the influence of lifetime

learning on selection pressure. In Proceedings of Artificial Life X, pages 500–506, 2006.

[45] Ingo Paenke, Tadeusz J. Kawecki, and Bernhard Sendhoff. The influence of learning on

evolution: A mathematical framework. Artificial Life, 15(2):227–245, 2009.

[46] Takahiro Sasaki and Mario Tokoro. Evolving learnable neural networks under changing

environments with various rates of inheritance of acquired characters: Comparison between

darwinian and lamarckian evolution. Artificial Life, 5(3):203–223, 1999.

[47] D. Simon. Biogeography-based optimization. IEEE Transactions on Evolutionary Compu-

tation, 12(6):702–713, 2008.

[48] R. Smith, B. Dike, and S. Stegmann. Fitness inheritance in genetic algorithms. In ACM

Symposiums on Applied Computing, pages 345–350, 1995.

[49] F. J. Solis and R. J.-B. Wets. Minimization by random search techniques. 6:19–30, 1981.

Bibliography 127

[50] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger, and S. Tiwari.

Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter

optimization. Technical report, 2005.

[51] R. Suzuki and T. Arita. The dynamic changes in roles of learning through the baldwin

effect. Artificial Life, 13(1):31–43, 2007.

[52] P. Turney. Myths and legends of the baldwin effect. In Proceedings of the Workshop on

Evolutionary Computing and Machine Learning at the 13th International Conference on

Machine Learning (ICML-96), pages 135–142, 1996.

[53] C.H. Waddington. Canalization of development and the inheritance of acquired characters.

Nature, 150:563–565, 1942.

[54] J. Watson and J. Wiles. The rise and fall of learning: A neural network model of the

genetic assimilation of acquired traits. In Proceedings of the 2002 Congress on Evolutionary

Computation (CEC 2002), pages 600–605, 2002.

[55] D. L. Whitley, V. S. Gordon, and K. E. Mathias. Lamarckian evolution, the baldwin effect

and function optimization. In Proceedings of International Conference on Parallel Problem

Solving From Nature III (PPSN III), pages 6–15, 1994.

[56] Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum. Combining global and local

surrogate models to accelerate evolutionary optimization. Systems, Man and Cybernetics,

Part C: Reviews and Applications, IEEE Transactions on, 37(1):66–76, 2007.

