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Abstract

T-codes are variable-length self-synchronizing codes introduced by Titchener in

1984. T-code codewords are constructed recursively from a finite alphabet using

an algorithm called T-augmentation, resulting in excellent self-synchronization

properties. An algorithm called T-decomposition parses a given sequence into a

series of T-prefixes, and finds a T-code set in which the sequence is encoded to a

longest codeword.

There are similarities and differences between T-decomposition and the conven-

tional LZ78 incremental parsing. The LZ78 incremental parsing algorithm parses a

given sequence into consecutive distinct subsequences (words) sequentially in such

a way that each word consists of the longest matching word parsed previously and

a literal symbol. Then, the LZ-complexity is defined as the number of words. By

contrast, T-decomposition parses a given sequence into a series of T-prefixes, each

of which consists of the recursive concatenation of the longest matching T-prefix

parsed previously and a literal symbol, and it has to access the whole sequence

every time it determines a T-prefix. Alike to the LZ-complexity, the T-complexity

of a sequence is defined as the number of T-prefixes, however, the T-complexity of

a particular sequence in general tends to be smaller than the LZ-complexity.

In the first part of the thesis, we deal with our contributions to the theory of

T-codes. In order to realize a sequential determination of T-prefixes, we devise

a new T-decomposition algorithm using forward parsing. Both the T-complexity

profile obtained from the forward T-decomposition and the LZ-complexity profile

can be derived in a unified way using a differential equation method. The method

focuses on the increase of the average codeword length of a code tree. The obtained

formulas are confirmed to coincide with those of previous studies.



The magnitude of the T-complexity of a given sequence s in general indicates

the degree of randomness. However, there exist interesting sequences that have

much larger T-complexities than any random sequences. We investigate the max-

imum T-complexity sequences and the maximum LZ-complexity sequences using

various techniques including those of the test suite released by the National In-

stitute of Standards and Technology (NIST) of the U.S. government, and find

that the maximum T-complexity sequences are less random than the maximum

LZ-complexity sequences.

In the second part of the thesis, we present our achievements in terms of appli-

cation. We consider two applications—data compression and randomness testing.

First, we propose a new data compression scheme based on T-codes using a

dictionary method such that all phrases added to a dictionary have a recursive

structure similar to T-codes. Our data compression scheme can compress any of

the files in the Calgary Corpus more efficiently than previous schemes based on

T-codes and the UNIX compress, a variant of LZ78 (LZW).

Next, we introduce a randomness test based on the T-complexity. Recently,

the Lempel-Ziv (LZ) randomness test based on the LZ-complexity was officially

excluded from the NIST test suite. This is because the distribution of P-values for

random sequences of length 106, the most common length used, is strictly discrete

in the case of the LZ-complexity. Our test solves this problem because the T-

complexity features an almost ideal uniform continuous distribution of P-values

for random sequences of length 106. The proposed test outperforms the NIST LZ

test, a modified LZ test proposed by Doganaksoy and Göloglu, and all other tests

included in the NIST test suite, in terms of the detection of undesirable pseudo-

random sequences generated by a multiplicative congruential generator (MCG) and

non-random byte sequences Y = Y0, Y1, Y2, · · · , where Y3i and Y3i+1 are random,

but Y3i+2 is given by Y3i + Y3i+1 mod 28.
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Chapter 1

Introduction

1.1 Overview of the Thesis

As our network society grows and grows, more and more information needs to

be exchanged over the public net. In order to transmit information securely, we

have to encrypt the transmitted messages by a reliable cipher system. Random

or pseudo-random sequences play an important role in such cipher systems. For

example, keystreams used in symmetric-key stream ciphers should not be distin-

guishable from truly random sequences in order to protect encrypted messages

against eavesdroppers. In general, we use pseudo-random number generators in

cryptosystems because a device to generate truly random sequences is expensive

and it is often required that random sequences can be reproduced. Therefore,

in order to establish a secure cryptosystem, we need a measure to evaluate how

random a sequence is.

What is randomness? It is a mathematically and philosophically interesting

deep question. The randomness of a sequence is often measured on the basis of sta-

tistical properties of the truly random sequences. However, from the perspective of

information theory, random sequences can also be characterized as incompressible

sequences. The ultimate form of this approach is Kolmogorov complexity [3, 36].
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The Kolmogorov complexity of a sequence is defined as the length of the short-

est computer program that can generate the sequence. If the shortest computer

program is shorter than the length of the sequence, it is not random. Since com-

pressed data with a decoding program can generate a sequence, its length gives

an upper bound of Kolmogorov complexity. Hence, the complexity of a sequence

is closely related to data compression. However, Kolmogorov complexity has been

proved to be uncomputable in general [3].

In 1978, Lempel and Ziv [66] proposed a computable complexity called the

LZ-complexity founded on the LZ78 universal compression scheme. Furthermore,

a randomness test based on the LZ-complexity (LZ test) was included in the NIST

test suite [42] released by the U.S. government. But, the LZ test was officially

excluded from it in 2008 [43] because of a serious defect [29].

The NIST test suite is a package of randomness tests to evaluate random num-

ber generators and pseudo-random number generators for cryptographic appli-

cations. It has been used by various companies, organizations, and government

agencies worldwide. The NIST test suite assumes that the P-value of a random

sequence distributes uniformly in the range of 0 to 1. The LZ test cannot sat-

isfy this assumption because the distribution of P-values for random sequences of

length 106 is strictly discrete. If we do not pay attention to it, the type I error

rate is unexpectedly increased, and hence we cannot evaluate (pseudo) random

number sequences correctly. This is the reason why the LZ test was excluded

from the NIST test suite. Since a randomness test based on a complexity measure

is essential in the field of information security, the problem of the LZ test is ex-

pected to be solved. But, it is difficult to solve this problem whenever we use the

LZ-complexity.

The T-complexity [55], which is also the computable complexity measure based

on T-codes [53] proposed by Titchener, has similarities with the LZ-complexity.

The LZ78 is the encoding scheme in which a given sequence is parsed into sub-

2



sequences (words) using the LZ78 incremental parsing in such a way that each

word consists of the longest matching word parsed previously and a literal sym-

bol. The LZ-complexity is defined as the number of words obtained by the LZ78

incremental parsing. By contrast, the T-complexity is defined as the number of

subsequences obtained by T-decomposition, which is the parsing algorithm that

parses a given sequence into subsequences (T-prefixes) in such a way that each

subsequence consists of the recursive concatenation of the longest matching T-

prefix parsed previously and a literal symbol. Because of these characteristics, it

is expected that the T-complexity can detect the recursive structure of a sequence

better than the LZ-complexity.

The LZ78 encoding and the LZ-complexity have been well studied by many

researchers. On the other hand, although T-codes have several desirable and at-

tractive properties, T-codes have received little attention from anyone but some re-

searchers at the University of Auckland. Furthermore, T-codes or the T-complexity

has the following defects.

• The LZ78 incremental parsing is sequential, while T-decomposition is not

a sequential algorithm because it requires the whole sequence to start the

algorithm.

• There are many efficient universal compression schemes derived from the

LZ78 scheme, while no efficient data compression scheme has been devised

from T-codes.

• The maximum T-complexity is not attained by truly random sequences, and

hence there exist sequences that have larger T-complexity than those of truly

random sequences.

From the above background, this thesis mainly deals with T-codes and the

T-complexity to clarify the following.

3



• Sequential T-decomposition can be realized by an algorithm proposed in

Chaper 2.

• The T-complexity profile of a sequence can be derived theoretically by a

differential equation method proposed in Chapter 3.

• The distribution of T-complexity can be characterized for random sequences,

and properties of the maximum T-complexity sequences can be clarified as

shown in Chapter 4.

• An efficient universal data compression scheme can be constructed on the

basis of T-codes, and it outperforms the UNIX compress as shown in Chap-

ter 5.

From these results, we can expect that the T-complexity is a good measure

to evaluate the randomness of a sequence. Actually, in Chapter 6, we propose a

randomness test based on the T-complexity (T-complexity test) that can solve the

problem of the NIST LZ test and can be used as a supplement to the NIST test

suite. We also demonstrate the power of the T-complexity test by showing some

experimental results for non-random sequences that cannot be detected well by

the NIST test suite, but can be detected well by the T-complexity test. From this

fact, the T-complexity test can contribute considerably to accurate evaluation of

cryptosystems.

In the following of this chapter, we introduce some basic concepts about com-

plexity, data compression, statistical test, and T-codes. Furthermore, in the last

of this chapter, we describe the organization of this thesis and the notation used

in this thesis.
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1.2 Kolmogorov Complexity

Suppose we are interested in the amount of information in an individual finite

object that can be represented in the form of a finite sequence, such as a DNA

sequence or a written text. We want to measure it just as mass and energy.

According to Shannon’s information theory [48], the amount of information

in a particular message x from an ensemble of possible messages E , which is

communicated between a sender and a receiver over a channel, is defined as

I(x) ≡ − log2 q(x), where q(x) is the probability that x is selected from the en-

semble E . I(x) measures the statistical unexpectedness of x. In other words, it

measures the amount of surprise contained in x when x is received. The entropy

of E is defined as

H(E) ≡
∑
x∈E

q(x)I(x).

H(E) is the average amount of information gained by observing the outcome from

E . This approach requires á priori knowledge of the probability distribution over

the set of possible messages. Hence, the concept of information based on Shannon’s

information theory is a probabilistic notion. We cannot rely on this approach to

measure the amount of information in an individual finite sequence.

Kolmogorov complexity [3, 36] deals with quantifying the amount of informa-

tion in an individual finite sequence. In 1965, Kolmogorov defined the Kolmogorov

complexity of a finite sequence s as the length of the shortest binary computer pro-

gram that can generate s. It is known as the invariance theorem that Kolmogorov

complexity is independent of the type of computer up to a constant.

Kolmogorov complexity can express the notion of randomness of an individual

sequence. A sequence is considered non-random when its Kolmogorov complexity

is significantly shorter than its literal representation. Hence, a random sequence

must be an incompressible sequence. Although initial sequences of decimal digits of
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π will pass empirical randomness tests, those sequences are not considered random

in terms of Kolmogorov complexity since π can be calculated by a short program.

As an example, consider the following three binary sequences.

1. 010101010101010101010101010101010101010101010101010101010101

2. 110011001100111111100111011110011001001000010001011001011111

3. 011000110001010000010111100010001110111110001110110001010101

The first sequence is obviously regular, but the second and the third sequences

seem to be irregular. Assume that the third sequence is truly random. We want

to claim that the first sequence is not random. However, when each bit is an

i.i.d. (independent and identically distributed) random variable taking values on

{0, 1} with equal probability, the probability of the outcome of the first sequence

is the same as those of the others. So, we cannot say that the first sequence is

less probable than the others. In this case, we can use Kolmogorov complexity.

The first sequence can be simply described as ‘write 01 thirty times’. The second

sequence seems to be irregular, but it is actually described as the binary expansion

of
√
2− 1. So, we can claim that both the first and the second sequences are not

random on the basis of Kolmogorov complexity.

1.3 Computable Complexity Measures

Unfortunately, Kolmogorov complexity is impracticable because Kolmogorov com-

plexity of an arbitrary sequence is non-computable [3]. Instead, the following two

groups of computable complexity measures are used to estimate Kolmogorov com-

plexity.

• The size of a specific machine that can generate a given sequence.

• The number of steps in which a given sequence can be generated from a given

alphabet according to a specific predetermined rule.
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The former group includes the linear complexity and the maximum order complex-

ity. The linear complexity of a sequence s is defined as the length of the shortest

linear feedback shift register (LFSR) that can generate s, and it is efficiently com-

puted by the Berlekamp-Massey algorithm [38]. The maximum order complexity

of a sequence s is defined as the length of the shortest (not necessarily linear)

feedback shift register (FSR) that can generate s, and it is efficiently calculated

using a directed acyclic word graph (DAWG) [26]. These complexities have been

commonly used to evaluate stream ciphers, in which (pseudo) random keystreams

are generated. In this thesis, we focus on the latter group.

1.3.1 LZ76-complexity

In 1976, Lempel and Ziv proposed their first computable complexity measure [35],

which is referred to as the LZ76-complexity hereafter. A famous data compres-

sion algorithm known as LZ77 [65] is based on the LZ76-complexity. The LZ76-

complexity of a sequence is linked to the gradual buildup of new patterns along

the given sequence and defined as the number of subsequences obtained from a

particular parsing of the sequence described below.

Let s = s0s1 · · · sN−1 be a sequence of length N , and let us denote a subsequence

sisi+1 · · · sj of s by s(i, j). We say that s(0, b) is reproducible from s(0, a), a <

b < N , if there exists an integer m ≤ a such that sm+k = sa+1+k for all 0 ≤ k ≤

b− a− 1. This reproducibility is denoted by s(0, a) → s(0, b). We say that s(0, b)

is producible from s(0, a), a < b < N , if s(0, a) → s(0, b − 1). This producibility

is denoted by s(0, a) ⇒ s(0, b). A history of s is the parsing of s such that

s(0, h0)s(h0 + 1, h1) · · · s(hn−1 + 1, hn), where h0 = 0, hn = N − 1, hi−1 < hi, and

s(0, hi−1) ⇒ s(0, hi), 1 ≤ i ≤ n. s(hi−1 + 1, hi), i = 1, 2, · · · , a, are called words.

A word s(hi−1 +1, hi) and the corresponding production step s(0, hi−1) ⇒ s(0, hi)

are called exhaustive if s(0, hi−1+1), s(0, hi−1+2), · · · , s(0, hi−1) are reproducible

from s(0, hi−1) but s(0, hi) is not. A history is called exhaustive if all the words are
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exhaustive with a possible exception of the last word. Every sequence has a unique

exhaustive history. The LZ76-complexity of s is defined as the number of words in

the exhaustive history of s. For example, the exhaustive history of s = 0101110110

is given by 0 · 1 · 011 · 10110·, where successive words are separated by dots. In

this case, the last word is also exhaustive, and so there is a dot at the end of the

history. Thus, the LZ76-complexity of this sequence is 4. The time complexity

for computing the LZ76-complexity of a sequence of length N is O(N2) because of

the exhaustive search of the patterns. This is a demerit of the LZ76-complexity.

The above parsing is called the LZ76 parsing hereafter.

1.3.2 LZ-complexity

In 1978, Ziv and Lempel proposed another computable complexity measure [66],

which is referred to as the LZ-complexity. A famous data compression algorithm

known as LZ78 [66] is based on the LZ-complexity. The LZ-complexity of a se-

quence is defined as the number of subsequences obtained from the LZ78 incre-

mental parsing of the sequence described below.

The LZ78 incremental parsing is sequential and parses a given sequence im-

mediately after a prefix of the unparsed part of the sequence that differs from all

preceeding words. The resultant parsing is represented as s = s(n0 + 1, n1)s(n1 +

1, n2) · · · s(nm + 1, nm+1), where n0 = −1, nm+1 = N − 1. The first m words

s(nj−1 + 1, nj), 1 ≤ j ≤ m, are all distinct and for all j, 0 ≤ j ≤ m, there exists

i < j such that s(ni + 1, ni+1) = s(nj + 1, nj+1 − 1), where s(n−1 + 1, n0) is the

empty string. But, the last word s(nm + 1, nm+1) may not be distinct from the

first m words. For example, the resultant parsing of s = 0101110110 is given by

0·1·01·11·011·0, where successive words are separated by dots. The LZ-complexity

of this sequence is 6. The time complexity for computing the LZ-complexity of a

sequence of length N is O(N logN). While the LZ76 parsing searches the entire

string occurred before, the LZ78 incremental parsing restricts the starting points
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of its pattern searches to those of previously parsed words in order to reduce time

complexity of the LZ76 parsing.

1.3.3 T-complexity

In 1984, Titchener introduced variable-length self-synchronizing codes called T-

codes [53]. The codewords of a T-code set are constructed from a finite alphabet

using a recursive hierarchical pattern copying algorithm called T-augmentation.

An algorithm called T-decomposition parses a given sequence into a series of pa-

rameters for T-augmentation—a codeword called T-prefix and an integer called

T-expansion parameter, and finds a T-code set in which the sequence is encoded

to a longest codeword.

In 1998, Titchener proposed a new complexity measure called T-complexity

[55]. The T-complexity*1 of a sequence s is the number of T-augmentation steps

required to represent s as a longest codeword in a T-code set. T-information is

defined as the inverse logarithmic integral*2 of the T-complexity, and T-entropy

is defined as T-information divided by the sequence length. The normalized T-

entropy has been shown to be closely related to the Kolmogorov-Sinai entropy of

the logistic map [6]. Several applications of the T-complexity have been introduced,

such as evaluation of the entropy of language texts [56], network event detection [7],

and similarity detection [63]. The time complexity for computing the T-complexity

of a sequence of length N is O(N logN) and it ostensibly corresponds to O(N)

in an implementation on a fixed word size computer [62]. Details of T-codes are

given in Section 1.6.

*1Strict definition is given in Section 1.6.
*2The logarithmic integral function is defined as li(η) ≡

∫ η

0
dt
ln t .
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1.4 Data Compression and Parse Tree

Data compression is the conversion of an input data stream into another shorter

data stream. Data compression is called lossless when the original input stream can

be completely reproduced from the compressed stream. Lossless data compression

can be classified into entropy coding (statistical coding) and universal coding. The

former uses probability models explicitly, but the latter does not. Furthermore,

universal coding is broadly classified into dictionary methods and transforms. The

former includes LZ77 [65], LZ78 [66], LZW [61], etc., and the latter includes block-

sorting compression [1], grammar-based compression [31], etc.

A given long data sequence is usually parsed into subsequences and each sub-

sequence is encoded into the corresponding codeword. Depending on the lengths

of subsequences and codewords, codes can be classified into four types: fixed-

to-fixed-length (FF) codes, fixed-to-variable-length (FV) codes, variable-to-fixed-

length (VF) codes, and variable-to-variable-length (VV) codes. In the case of VF

codes, a data sequence is parsed into subsequences with variable length, but the

length of codewords is fixed. A VF encoder uses a parse tree to parse a data

sequence. In a parse tree, each branch is labeled with one of source symbols, each

leaf node is assigned to a codeword, and every internal node has r child nodes,

where r is the alphabet size. Following the unparsed part of a data sequence, the

VF encoder traverses the parse tree from the root to a leaf. When a leaf node is

reached, a parsed subsequence is given by the path from the root to the leaf, and

the codeword is given by the codeword assigned to the leaf. This process contin-

ues until all data sequence is encoded. As an example of VF parsing, consider a

sequence over the alphabet {a, b}: “bbbbbbbbbbabbabbabbb”, and a parse tree shown

in Fig. 1.1. Since this parse tree has four leaf nodes, each codeword can be repre-

sented by a 2-bit string. The sequence is parsed as bbb · bbb · bbb · ba · bba · bba · bbb·,

and encoded into 3, 3, 3, 1, 2, 2, 3, which means 11 11 11 01 10 10 11.

10



0

1

2 3

a b

a b
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Figure 1.1. Example of a parse tree.

VF codes can be classified into static ones and adaptive ones. A VF code is

called static when its parse tree is fixed, and called adaptive when its parse tree

is dynamically changed as a data sequence is processed. The optimized static VF

code (and parse tree) can be constructed by the Tunstall algorithm [60]. Further-

more, adaptive VF codes can be classified into two types: one is based on statistical

coding and the other is based on non-statistical coding. Examples of the former

and the latter are the adaptive Tunstall code [51] and LZ78 code, respectively.

Usually, LZ78 falls into the category of dictionary methods, however, it can also

be regarded as a non-statistical adaptive VF code because the LZ78 incremental

parsing can be implemented by the incremental parse tree [64] as follows. Let r be

the alphabet size. The LZ78 parse tree starts with a tree with a root and r child

nodes. Following the unparsed part of a data sequence, the encoder traverses the

current LZ78 parse tree from the root to a leaf. When a leaf is reached, a parsed

subsequence is given by the path from the root to the leaf, and the subsequence

is encoded into the codeword assigned to the leaf. Then, the LZ78 parse tree is

updated by adding r child nodes to the leaf. This process continues until all data

sequence is encoded. For example, consider a sequence over the alphabet {a, b}

(r = 2): “abbbbababbaba”. The sequence can be parsed as a · b · bb · ba · bab · baba·

according to the LZ78 incremental parsing. For each parsing, the LZ78 parse tree

is updated as shown in Fig. 1.2.
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Figure 1.2. Updates of the incremental parse tree for “abbbbababbaba”.

1.5 Statistical Randomness Test

This section describes how a statistical randomness test measures the quality of a

pseudo-random sequence.

A binary sequence ε = ε0ε1 · · · εN−1 that satisfies the following ideal properties

for 0 ≤ i ≤ N − 1 is simply called a random sequence of length N .

• Pr(εi = 0) = Pr(εi = 1) = 1
2

• Pr(εi | ε0, . . . , εi−1) = Pr(εi)

Let H0 be a statistical hypothesis that a given sequence is random. A statisti-

cal randomness test is a procedure for evaluating the hypothesis H0 for a given

sequence based on its statistical properties. The test has two errors. A Type I

error occurs when the test rejects sequences that were in fact produced by a ran-

dom bit generator. A Type II error occurs when the test accepts sequences even

though they were not produced by a random bit generator. The significance level

α is defined as the probability that H0 is rejected when it is true, and hence α is

equal to the Type I error probability. Let x be an observed value of a specified

random variable X obtained by applying a statistical test to a random sample. X

is called a test statistic. When X is expected to take on larger (smaller) values

for non-random sequences, the P-value of x is defined as the probability that X is
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P-value

Normal distribution

distribution

= Pr(X ≥ x)

= Pr(|X| ≥ |x|)

x

|x|−|x|

χ
2

X

X

Figure 1.3. P-value

larger (smaller) than x in the case where H0 is true. On the other hand, when X

is expected to take on both larger and smaller values for non-random sequences,

the P-value of x is defined as the probability that |X| is larger than |x| in the case

where H0 is true. The former and the latter cases correspond to the one tailed test

and the two tailed test, respectively. Figure 1.3 shows P-values as gray area in the

case where X follows normal distribution or χ2 distribution. A small P-value gives

evidence that a given sequence is non-random. Hence, we treat that if P-value

< α, then the given sequence fails the test and H0 is rejected. Otherwise, the

given sequence can be regarded as a random sequence and H0 is accepted.

The P-value of a statistical randomness test distributes uniformly in the range

of 0 to 1 if H0 is true [33]. Let F (X) be the cumulative distribution function of
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a random variable X that is expected to take on larger values for non-random

sequences. Let G(Y ) be the cumulative distribution function of a random variable

Y where the observed value y of Y is the P-value of x. By the definition of y,

y = Pr(X ≥ x) = 1 − F (x). Hence, Pr(Y ≤ y) = Pr(1 − F (X) ≤ 1 − F (x)) =

Pr(F (X) ≥ F (x)) = Pr(X ≥ x) = 1 − F (x) = y. Therefore, the P-value is

uniformly distributed in the range of 0 to 1.

Famous packages of statistical randomness tests include:

• The NIST test suite described in NIST SP 800-22 [42, 43] released by the

National Institute of Standards and Technology (NIST) of the U.S. govern-

ment.

• The randomness tests listed by Knuth [33].

• The Diehard tests [37] developed by Marsaglia.

In most applications such as games, gambling, and computer simulations, ran-

dom numbers are required to have the following representative properties.

• Long period

• Balance of symbols (uniform distribution)

• Low correlation

1.6 T-codes

T-codes are codes with variable-length codewords like Huffman codes [47]. Let A

be a finite alphabet. Let uv represent the concatenation of two strings u and v, and

let us denote k successive copies of u by uk. A series of T-code sets Si, i = 1, 2, . . . ,

is constructed using the following recursive formula called T-augmentation.

Si =

ki∪
j=0

{pjis | s ∈ Si−1\{pi}} ∪ {pki+1
i }, (1.1)
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where S0 = A and a string pi is selected from Si−1 and ki ∈ N ≡ {1, 2, 3, · · · }. A

string pi and an integer ki are called T-prefix and T-expansion parameter, respec-

tively. Si is called a T-code set at T-augmentation level i. Si is also represented

as S(k1,k2,...,ki)
(p1,p2,...,pi)

.

Several kinds of T-augmentation are defined as follows [12].

• T-augmentation is called simple when all T-expansion parameters are re-

stricted to one, i.e., k1 = k2 = · · · = 1.

• T-augmentation is called strictly minimal when each T-prefix pi is chosen

from one of the shortest codewords in the set.

• T-augmentation is called systematic if it is simple and strictly minimal.

T-code sets that can be generated entirely by simple T-augmentation are called

simple T-code sets. Strictly minimal T-code sets and systematic T-code sets are

defined in the same way. T-code sets generated according to Eq. (1.1) are also

called generalized T-code sets [54] because simple T-code sets were first proposed

by Titchener in 1984. Figure 1.4 shows code trees corresponding to T-code sets Si

for the case of S5 = S(1,1,2,1,1)
(1,10,0,001010,00101011) with A = {0, 1}. Left and right branches

are labeled 0 and 1, respectively. Each node x in the code tree of S(k1,k2,...,ki)
(p1,p2,...,pi)

can

be uniquely represented as

x = pk
′
n

n p
k′n−1

n−1 · · · pk
′
1

1 k′
0,

where 0 ≤ k′
i ≤ ki for i = 1, 2, . . . , n and k′

0 ∈ A.

T-codes have desirable properties for character synchronization to occur au-

tomatically on decoding. Let us explain this with an example. Figure 1.5 shows

the code tree corresponding to a systematic T-code set S(1,1,1,1,1)
(0,1,00,01,11). S(1,1,1,1,1)

(0,1,00,01,11)

can be used in variable-length encoding in such a way that shorter codewords are

assigned to more frequent characters and longer codewords are assigned to less fre-
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T 	 p r e fi x T 	 e x p a n s i o n p a r a m e t e r
Figure 1.4. Intermediate T-code sets Si, 0 ≤ i ≤ 4.

quent characters as shown in Table 1.1. A string “KOLMOGOROV” is encoded

to the following binary string.

010010000110110101000000111100000011001010011110111 (1.2)

When a data loss or corruption occurs in a string that is encoded with variable

length codes, the decoder can lose track of the correct codeword boundaries, and

hence a large number of subsequent characters can also be corrupted. To overcome

this problem, variable length codes usually have certain bit sequences occurring

at the end of codewords. However, T-codes do not have such specific synchro-

nizing bit sequences. In the case of T-codes, the synchronization information is

spread throughout the codewords owing to the T-augmentation algorithm. When

the first bit of the string (1.2) is missing, it is decoded to “(sp)(sp)OLMOGO
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Figure 1.5. S(1,1,1,1,1)
(0,1,00,01,11).

ROV”. Besides, when the first bit of the string (1.2) is inverted, it is decoded

to “JOLMOGOROV”. As can be noted from these examples, T-codes exhibit

quick automatic synchronization. The self-synchronization mechanism is well un-

derstood [14].

T-decomposition [14], described below as Algorithm-A, is the inverse operation

of T-augmentation, which can parse any sequence s into the following form

s = pknn p
kn−1

n−1 · · · pk11 k0, (1.3)

where k0 ∈ A is a literal symbol and ki ∈ N, 1 ≤ i ≤ n. The sequence s is related

to one of the longest codewords in the T-code set Sn = S(k1,k2,...,kn)
(p1,p2,...,pn)

. Furthermore,

each pi can be uniquely represented as

pi = p
k
(i)
i−1

i−1 p
k
(i)
i−2

i−2 · · · pk
(i)
1

1 k
(i)
0 , (1.4)

where k
(i)
0 ∈ A and 0 ≤ k

(i)
j ≤ kj for j > 0. Algorithm-A can be implemented with

O(N logN) time and space complexities when the length of s is N , and it can be

implemented with O(N) ostensibly on a fixed word size computer [62].

Algorithm-A

A1 Let s be a given sequence.

i :=0.
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Table 1.1. Character assignment to S(1,1,1,1,1)
(0,1,00,01,11).

Code Character
100 <space>
101 E
0000 T
0001 A
0011 O
0101 I
0111 N
1111 S
00100 H
00101 R
01100 D
01101 L
11100 C
11101 U
010000 M
010001 W
010011 F
110000 G
110001 Y
110011 P
110101 B
110111 V
0100100 K
0100101 X
1100100 J
1100101 Q
1101100 Z
1101101 <.>
11010000 <,>
11010001 <?>
11010011 capsoff
110100100 capson
110100101 fill char
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S0 :=A.

s :=sa, where a is an arbitrary symbol in A.

A2 Parse s into codewords in Si.

A3 If s becomes a single codeword in Si, i.e., s ∈ Si, then exit.

A4 Let pi+1 be the second to last codeword of s.

A5 If l adjacent copies of pi+1 are found immediately to the left of and including

the second to last codeword, let ki+1 :=ℓ.

A6 i := i+ 1. Generate Si by Eq.(1.1). Go back to A2.

We show an example of how Algorithm-A processes s = 00101000101 for A =

{0, 1}. First, an arbitrary symbol a ∈ A is appended to s, i.e., s := sa. Then s is

parsed into codewords in S0 (= A). We obtain s = 0.0.1.0.1.0.0.0.1.0.1.a, where

boundaries are indicated by dots. p1 is given as the second to last codeword “1”

and k1 = 1. Then, S1 = {0, 10, 11} is constructed from p1, k1, and S0. For i = 1,

s is parsed into codewords in S1 as s = 0.0.10.10.0.0.10.1a, we obtain p2 = 10,

k2 = 1, S2 = {0, 11, 100, 1010, 1011}. For i = 2, s is parsed into codewords in S2

as s = 0.0.1010.0.0.101a, and we obtain p3 = 0. Since p3 occurs twice adjacently

including the second to last codeword, we have k3 = 2, and

S3 = {11, 100, 1010, 1011, 011, 0100, 01010, 01011,

000, 0011, 00100, 001010, 001011}.

For i = 3, s is parsed into codewords in S3 as s = 001010.00101a, and we obtain

p4 = 001010 and k4 = 1. For i = 4, s is parsed into codewords in S4 as s =

00101000101a. Finally s satisfies s ∈ S4, and the algorithm terminates. Then, we

have s = 00101000101a = pk44 pk33 pk22 pk11 a, where s is one of the longest codewords

in S4 (See the code tree of S4 in Fig. 1.4).
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The T-complexity of s is defined as

t =
n∑

i=1

log2(ki + 1),

when s is given by Eq. (1.3). It is worth noting that Sn has 2t =
∏n

i=1(ki + 1)

internal nodes. Hence, the T-complexity coincides with the number of bits required

to address every internal node in its code tree where s corresponds to one of the

longest codewords. For simple T-codes, the T-complexity t is equal to the number

of T-prefixes, namely n. The T-information of s is defined as li−1(t), and the

T-entropy of s is defined as li−1(t)/(|s| ln(#A)), where |s| is the length of s.

On the basis of Eq. (1.4), pi is represented as (k
(i)
i−1, k

(i)
i−2, . . . , k

(i)
1 , k

(i)
0 ). Further-

more, (k
(1)
0 , k

(2)
0 , . . . , k

(n)
0 ) is called a literal vector, and (k

(i)
i−1, k

(i)
i−2, . . . , k

(i)
1 ), i =

2, . . . , n, can be represented as the following lower triangular matrix called a T-

prefix matrix.



k
(2)
1 · · · 0 0

...
. . .

...
...

k
(n−1)
1 · · · k

(n−1)
n−2 0

k
(n)
1 · · · k

(n)
n−2 k

(n)
n−1


Figure 1.6 shows the T-prefix matrix of ‘obj2’ included in the Calgary Corpus,

which is obtained from a forward T-decomposition algorithm for simple T-codes*3.

In the figure, white and black pixels represent “0” and “1”, respectively. A column

of a T-prefix matrix is called occupied if it contains at least one non-zero element.

Otherwise, it is called unoccupied or empty. As can be noted from the figure, in

general, T-prefix matrices are very sparse. A T-prefix matrix has lots of empty

columns, and few non-zero elements are unevenly distributed in it. These char-

acteristics of T-prefix matrices were used for data compression by C. Müller and

*3A forward T-decomposition algorithm for simple T-codes is described in Section 2.2.
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Figure 1.6. T-prefix matrix of ‘obj2’ included in the Calgary Corpus.

R. Schimpfky (See Section 5.3).

1.7 LZ78 versus T-codes

The LZ78 incremental parsing and the standard T-decomposition are related as

shown in Fig. 1.7. The LZ78 incremental parsing parses a given sequence s into

words in such a way that each word consists of the longest matching word parsed

previously and a literal symbol. The T-decomposition parses s to T-prefixes, each

of which consists of the recursive concatenation of the longest matching T-prefix

parsed previously and a literal symbol. However, while the LZ78 incremental pars-

ing is sequential, the standard T-decomposition has to access the whole sequence

every time it determines a T-prefix, as described in Algorithm-A. On the other

hand, a forward T-decomposition algorithm, as shown in Fig. 1.8, is suitable for

on-line applications because of forward parsing.

The T-complexity of a particular sequence tends to be smaller than the re-

spective LZ-complexity [58]. Therefore, data compression based on T-codes may

be expected to achieve a better compression performance than the so-called LZ78

family. In addition, Titchener showed that the T-complexity is more sensitive to
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Figure 1.7. Relations between the LZ78 incremental parsing and the standard
T-decomposition
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Figure 1.8. Forward T-decomposition
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Table 1.2. Comparative table between LZ78 and T-codes.

LZ78 T-codes

parsing
method

The LZ78 incremental
parsing, which is
a sequential algorithm.

The known T-decomposition,
which is not a sequential
algorithm.

complexity
measure

LZ-complexity, which
is obtained by applying
the LZ78 incremental
parsing to a sequence.

T-complexity, which is
obtained by applying
the T-decomposition
to a sequence.

data
compression

so-called
LZ78 family [47]

Nothing except for [41],
which is not so efficient.

randomness
test

The LZ test, which
was excluded from
the NIST test suite.

Nothing.

the variation between sources than the LZ-complexity [58]. Thus, a randomness

test based on the T-complexity is likely to outperform a randomness test based on

the LZ-complexity.

Table 1.2 shows a comparison between LZ78 and T-codes. We note from the

table that compared with LZ78, T-codes has no counterparts for parsing method,

efficient data compression scheme, and randomness test. In this thesis, we show

that T-codes can have good counterparts that defeat the LZ78.

1.8 Organization of the Thesis

In Chapter 2, we first devise a forward T-decomposition algorithm, which can parse

a given sequence and determine T-prefixes and T-expansion parameters sequen-

tially. We propose two T-decomposition algorithms. One is for simple T-codes

and the other is for generalized T-codes. It is experimentally confirmed that the

computation time is about O(N1.2), where N is the length of a random sequence.

These sequential algorithms are suitable for on-line applications.

In Chapter 3, the T-complexity profile and the LZ-complexity profile are de-

rived in a unified way using the same differential equation method. Here, the
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complexity profile of a sequence s is defined as the sequence of c1, c2, · · · , cn, · · · ,

where cn is the complexity of the n-symbol prefix of s, i.e., s(0, n − 1). We focus

on incremental quantities of average codeword length to formulate the differential

equation. First, the maximum T-complexity profile, i.e., the T-complexity profile

of a maximum T-complexity sequence obtained from the consecutive concatenation

of T-prefixes of a systematic T-code set, is derived using the differential equation

method. Then, we derive the T-complexity profile for random sequences on the

basis of the derivation method of the maximum T-complexity profile. After that,

the maximum LZ-complexity profile and the LZ-complexity profile for random se-

quences are derived following an argument similar to the case of the T-complexity

profile. Our differential equation technique shows how the logarithmic integral

function necessarily appears in the expression of the maximum T-complexity pro-

file. Our expressions are confirmed to agree with the ones in previous studies.

Although the empirical mean of the T-complexity of binary random sequences

of length 106 is 38720.6, we can easily generate the binary maximum T-complexity

sequences of length 106 with T-complexity 56170. In Chapter 4, some properties

of the maximum T-complexity sequences are investigated experimentally using

various techniques including the NIST test suite [42,43] and compared with those

of the maximum LZ-complexity sequences. The experimental results show that

the maximum T-complexity sequences are less random than the maximum LZ-

complexity sequences, and some spikes are observed in the spectrum of a maximum

T-complexity sequence, while no spike is observed in that of a maximum LZ-

complexity sequence.

In Chapter 5, we propose a data compression based on a dictionary method

such that all phrases added to a dictionary have a recursive structure of T-codes.

We examine three dictionary updating rules. Since the T-complexity of a given

sequence in general tends to be smaller than the respective LZ-complexity, our data

compression scheme is expected to be more efficient than the UNIX compress, a
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variant of LZ78. After we briefly summarize the known data compression scheme

based on T-codes [41], we compare compression ratios of our proposed scheme,

the known scheme based on T-codes, and the UNIX compress. As expected, our

proposed scheme is more efficient than the known scheme based on T-codes and

the UNIX compress, however, it is inferior to the UNIX bzip2 and gzip on the

whole.

Finally, a randomness test based on the T-complexity, called the T-complexity

test in this thesis, is proposed in Chapter 6. A randomness test based on the LZ-

complexity (LZ test) originally included in the NIST test suite was excluded from

it in 2008 because the distribution of P-values for random sequences of length 106,

the most common length used, is strictly discrete in the case of the LZ-complexity.

It is undesirable because the NIST test suite assumes that the P-value of a random

sequence distributes uniformly in the range of 0 to 1 and not paying attention to

this assumption results in an unexpected increase in the Type I error rate. On

the other hand, the T-complexity features an almost ideal continuous distribution

of P-values for random sequences of length 106. Hence, the T-complexity test can

solve the problem of the NIST LZ test. Moreover, we show that the T-complexity

test outperforms the NIST LZ test, all other tests included in the NIST test suite,

and a modified LZ test proposed by Doganaksoy and Göloglu [5] in terms of the

detection of undesirable pseudo-random sequences generated by a multiplicative

congruential generator (MCG) and non-random byte sequences Y = Y0, Y1, Y2, · · · ,

where Y3i and Y3i+1 are random, but Y3i+2 is given by Y3i + Y3i+1 mod 28.

The schematic flowchart of this thesis is shown in Fig. 1.9.
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Chapter 6
Application of the T-complexity to Randomness Testing for Cryptography 

Figure 1.9. Schematic flowchart of this thesis.

1.9 Notation

This thesis uses the following notation.

• A: A finite alphabet set.

• uv: The concatenation of two strings u and v.

• uk: k successive copies of string u.

• |u|: The length of string u.

• λ: The null string.

• #B: The cardinality of a set B.

• Si: A T-code set at T-augmentation level i.

• pi: The i-th T-prefix.

• ki: The i-th T-expansion parameter.

• s: A sequence fed into various algorithms described in this thesis.
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• N : The length of a sequence s.

• erf(·): The error function defined as erf(x) ≡ 2√
π

∫∞
x

exp(−t2)dt.

• igamc(·, ·): The incomplete gamma function defined as igamc(a, x) ≡ Γ(a,x)
Γ(a)

=

1
Γ(a)

∫∞
x

exp(−t)ta−1dt, where igamc(a, 0) = 1, igamc(a,∞) = 0.

• N(µ, σ2): The normal distribution with mean µ and variance σ2.

• li(·): The logarithmic integral function defined as li(η) ≡
∫ η

0
dt
ln t

.
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Chapter 2

Forward T-decomposition

2.1 Introduction

The standard T-decomposition parses a given sequence into T-prefixes, each of

which consists of the recursive concatenation of the longest matching T-prefix

parsed previously and a literal symbol [14]. However it has to access the whole

sequence every time it determines a T-prefix as shown in Algorithm-A (See Sec-

tion 1.6). On the other hand, the LZ78 incremental parsing sequentially parses a

given sequence into distinct words in such a way that each word consists of the

longest matching word parsed previously and a literal symbol.

In this chapter, we propose several new T-decomposition algorithms for simple

T-codes and generalized T-codes. These algorithms parse a given sequence s into

pk11 pk22 · · · pknn , where ki ∈ {0, 1} for simple T-codes, however, ki ∈ N for generalized

T-codes. Alike to the standard T-decomposition, each T-prefix pi can be uniquely

represented as Eq. (1.4). The proposed algorithms enable the sequential parsing

of a given sequence s and can be used in on-line applications.
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2.2 Forward T-decomposition Algorithm for Sim-

ple T-codes

In this section, we concentrate on simple T-code sets. The case of generalized

T-code sets is treated in Section 2.3. Let s = s1s2 · · · sN be a sequence of length

N and let sji = sisi+1 · · · sj be a subsequence of s. As an example, let us consider

the case of a sequence s = s261 = 00111110011111000111000100 being parsed as

p1p2p3p4p5p6p7p8, where each pi is given as follows.

p1 = 0

p2 = p11 (= 01)

p3 = 1

p4 = p31 (= 11)

p5 = p3p10 (= 100)

p6 = p4p31 (= 1111)

p7 = p5p21 (= 100011)

p8 = p5p2p10 (= 1000100)

Note that these pi’s satisfy Eq. (1.4) with k
(i)
j ∈ {0, 1}, and each pi can be obtained

by using tries*1 t0, t1, t2, . . . , ti−1 shown in Fig. 2.1. Each trie ti is constructed from

{p1, p2, . . . , pi} such that pj, 1 ≤ j ≤ i, corresponds to a path from the root to node

j. Nodes with index 0 do not correspond to any pj, and the root node has no index.

Assume that s131 = 0011111001111 is parsed as p1p2p3p4p5p6 and the tries

tj, 0 ≤ j ≤ 6, have already been constructed from {p1, p2, · · · , p6} as shown

in Fig. 2.1. Then, the T-prefix p7 is obtained from the previous tries as follows.

First, we trace trie t6 from the root to a leaf node following the remaining sequence

of s, s2614 = 100011 · · · . Since we reach leaf node 5 in t6, we can infer that the first

part of p7 consists of p5, i.e., p7 = p5 · · · . Since p5 is parsed, the second pj must

*1A trie is an ordered-multiway-tree data structure used in computer science [34].
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satisfy j ≤ 4. Hence, we next use trie t4. Again, we trace trie t4 from the root to a

leaf node following the remaining sequence of s, s2617 = 011 · · · . Because we end up

at leaf node 2 in t4, we can infer that the second part of p7 is p2, i.e., p7 = p5p2 · · · .

Since p2 is parsed, we move on to trie t1. In trie t1, we cannot move from the root

when we follow the remaining sequence of s, s2619 = 1 · · · . In this case, the next

symbol of the remaining sequence, “1”, becomes the literal symbol of p7, and p7 is

given as p5p21.

Trie t7 can be created by adding p7 into trie t6. Similarly, p8 is obtained as

follows. Following the remaining sequence of s, s2620 = 1000100, we trace trie t7 from

the root toward a leaf node. But, in this case, the tracing ends at a node with

index 0 instead of a leaf node. This means that s2620 (= 1000100) does not coincide

with any pj and hence it must be parsed with shorter pj. So, we move backwards

to the nearest node with a positive index, and we find that p8 = p5 · · · . We next

use trie t4 since p5 is parsed. After similar iterations, p8 is given as p5p2p10.

Sometimes the last T-prefix pn does not end with a literal symbol. For instance,

if s191 is the same as the previous example and s ends with s2220 = 100, p8 is given

as p8 = p5. In this case, similarly to the above case, we move backwards to the

nearest node with a positive index. After similar iterations, p8 can be parsed as

p8 = p5 = p3p10.

In the above exapmle, we assumed for simplicity that all tries ti are constructed

separately. But, we note that trie ti can simulate any tj for 0 ≤ j < i by considering

only the nodes with index l satisfying l ≤ j in the trie ti. Hence, it is sufficient

that only the latest trie is memorized.

The above scheme can be described formally as the following Algorithm-B.

Algorithm-B (Forward T-decomposition Algorithm for Simple T-codes)

B1 (Initialization)

Let s be a given sequence.
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1 0 10 21 10 21 31 10 21 31 41
10 21 31 410050 10 21 31 410050 01 6110 21 31 410050 01 610 01 710(t1)(t0) (t2) (t3) (t4)

(t5) (t6)

(t7)

Figure 2.1. Trie growth for a sequence s = 00111110011111000111000100.

i :=1.

Create t0.

B2 pi :=λ. ν := i− 1.

B3 Following s, trace a path from the root toward a leaf node in trie tν
*2 as far

as possible. Let v represent the farthest node that we can reach.

• If v is a node with a positive index and s is not exhausted, then go to B4.

• If v is a node with index 0 or s is exhausted, then go to B5.

• If v is the root, i.e., we cannot move from the root, then go to B6.

B4 Let j be the index of node v.

*2Trie tν is simulated by considering only the nodes with index l satisfying l ≤ ν in trie ti−1.
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pi :=pipj.

ν :=j − 1.

Remove pj from the head of s.

Go back to B3.

B5 If there exists no node with a positive index between node v and the root,

then go to B6. Otherwise, move backwards from node v toward the root in

trie tν . Let v̂ be the first node with a positive index that we find when moving

backwards. Let v represent the node v̂, and go back to B4.

B6 pi :=piω, where ω is the first symbol of s.

Output pi.

Remove ω from the head of s.

If s = λ, exit.

Otherwise, update trie ti−1 to ti by adding pi into ti−1.

i := i+ 1.

Go back to B2.

Table 2.1 shows average time of ten trials necessary to compute the LZ-complexity

and the T-complexity (Algorithms A and B) for random sequences with 3 GHz

CPU. Algorithm-A is implemented on the basis of [62] and its computation time

is about O(N) for a random N -bit sequence. On the other hand, we note from

Table 2.1 and Fig. 2.2 that Algorithm-B has about O(N1.2) computation time.

However, Algorithm-B can process a given sequence on-line, and Algorithm-B is

faster than Algorithm-A for 215 ≤ N ≤ 224. Furthermore, Algorithm-B can com-

pute the T-complexity for a random sequence of length 106 ≈ 220 within about 0.07

seconds. This means that Algorithm-B can be practically used in a randomness

test that we propose in Chapter 6.
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Table 2.1. Comparison of average time to compute the LZ-complexity and the
T-complexity of a random sequence for various lengths.

Length LZ-complexity Algorithm-A Algorithm-B
(bits) (seconds) (seconds) (seconds)
210 2.36× 10−4 1.54× 10−4 5.63× 10−4

211 2.54× 10−4 2.46× 10−4 6.78× 10−4

212 2.98× 10−4 4.39× 10−4 1.13× 10−3

213 3.96× 10−4 8.28× 10−4 1.36× 10−3

214 7.81× 10−4 1.59× 10−3 1.97× 10−3

215 1.01× 10−3 3.34× 10−3 2.88× 10−3

216 1.42× 10−3 6.85× 10−3 4.77× 10−3

217 2.30× 10−3 2.06× 10−2 8.58× 10−3

218 4.10× 10−3 5.14× 10−2 1.67× 10−2

219 7.22× 10−3 1.10× 10−1 3.29× 10−2

220 1.35× 10−2 2.37× 10−1 6.80× 10−2

221 2.60× 10−2 4.51× 10−1 1.51× 10−1

222 5.13× 10−2 9.42× 10−1 3.43× 10−1

223 1.05× 10−1 1.88 7.90× 10−1

224 2.18× 10−1 3.82 1.81

2.3 Forward T-decomposition Algorithm for Gen-

eralized T-codes

In this section, we introduce a forward T-decomposition algorithm for generalized

T-code sets by extending Algorithm-B.

We now consider the problem of parsing a sequence s sequentially to pk11 pk22 pk33 · · ·

with each pi satisfing Eq. (1.4), and ki being a positive integer. As an example,

let us consider the case of s = s251 = 1100011110111111111111111 being parsed as

pk11 pk22 pk33 pk44 pk55 pk66 with k1 = 2, k2 = 3, k3 = 1, k4 = 1, k5 = 2, k6 = 1 and the
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sequence length N
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4.1677× 10
−9

N
1.1956

Figure 2.2. Computation time of the T-complexity using Algorithm-B.

subsequent pi’s.

p1 = 1

p2 = 0

p3 = p211 (= 111)

p4 = p10 (= 10)

p5 = p3p
2
11 (= 111111)

p6 = p211 (= 111)

Note that each pi satisfies Eq. (1.4) and can be obtained by tries identical to those

of Algorithm-B. However, in the case of forward T-decomposition for generalized

T-codes, the value of ki has to be stored in the node with index i.

Assume that s101 = 1100011110 is parsed as pk11 pk22 pk33 pk44 and the tries tj, 0 ≤

j ≤ 4, have already been constructed from {p1, p2, p3, p4} and {k1, k2, k3, k4} as

shown in Fig. 2.3. Then p5 is inferred from the tries as follows. First, we trace trie t4

from the root to a leaf node following the remaining sequence of s, s2511 = 111111 · · · .

Since we reach leaf node 3 in t4, we may conclude that the first part of p5 consists

of p3, i.e., p5 = p3 · · · . Because p3 is parsed and k3 = 1, the second pj must satisfy

j ≤ 2. Hence, we move on to trie t2. Again, we trace t2 from the root to a leaf node

following the remaining sequence of s, s2514 = 111 · · · . Then, since we have reached
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leaf node 1 in t2, we know that the second part of p5 is p1, i.e., p5 = p3p1 · · · . Since

node 1 features k1 = 2, p1 may become the third pj. Hence, we proceed with trie

t1 rather than trie t0. Again, we trace t1 from the root to a leaf node following

the remaining sequence of s, s2515 = 11 · · · . For we reached leaf node 1 in t1, the

third part of p5 is p1, i.e., p5 = p3p
2
1 · · · . Since p1 is now included in p5 k1 times,

p1 cannot be used anymore. Hence next is trie t0. In trie t0, we cannot move from

the root. In this case, the next symbol “1” becomes the literal symbol of p5, and

p5 is given as p3p
2
11.

Trie t5 can be created by adding p5 into trie t4 as shown in Fig. 2.3. At this

point, we set k5 = 1, which is stored at node with index 5. Next, we trace trie t5

from the root to a leaf node following the remaining sequence of s, s2517 = 111111 · · · .

Since the tracing ends at the just created leaf node 5 in t5, we find that p5 occurs

twice successively in s. Thus, we increment k5 by 1 as shown in Fig. 2.3.

p6 is obtained in a similar fashion. Following the remaining sequence of s,

s2523 = 111, we traverse trie t5 from the root toward a leaf node, finally reaching

node 3 in t5. When p6 = p3, p6 does not end with a literal symbol. Therefore,

we move backwards until we reach the nearest node with a positive index, which

is 1 in this example, and hence we obtain that p6 = p1 · · · . Next we repeat the

traversal of trie t1 since k1 = 2. After similar iterations, p6 turns out p211.

Alike to the case of the formal description of Algorithm-B, ti contains any tj

for 0 ≤ j < i, and hence it is sufficient that only the latest trie is memorized.

The above scheme follows as Algorithm-C.

Algorithm-C

C1 (Initialization)

Let s be a given sequence.

i :=1.

Create t0.
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20 11 0140 31(t4)

k1 = 2

k2 = 3

k3 = 1

k4 = 1

20 11 0140 31 01 01 51(t5)

k3 = 1

k1 = 2

k4 = 1

k2 = 3

k5 = 1

20 11 0140 31 01 01 51k3 = 1

k1 = 2

k4 = 1

k2 = 3

k5 = 2

u p d a t e
Figure 2.3. Trie growth for a sequence s = 1100011110111111111111111.

C2 pi :=λ. ν := i− 1.

C3 Following s, trace a path from the root toward a leaf node in trie tν
*3 as far

as possible. Let v represent the farthest node that we can reach.

• If v is a node with a positive index, then go to C4.

• If v is a node with index 0, then go to C5.

• If v is the root, i.e., we cannot move from the root, then go to C6.

C4 Let j be the index of node v.

If j = i− 1, then go to C7.

If pi ends with p
kj
j or s is exhausted, then go to C5. Otherwise, pi :=pipj.

Remove pj from the head of s.

If kj = 1, ν :=j − 1. Otherwise, ν :=j.

Go back to C3.

*3Trie tν is simulated by considering only the nodes with index l satisfying l ≤ ν in trie ti−1.
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C5 If there exists no node with a positive index between v and the root, then go

to C6. Otherwise, move back from node v toward the root in trie tν . Let v̂ be

the first node with a positive index that we find in the backward movement.

Newly let v represent the node v̂, and go back to C4.

C6 pi :=piω, where ω is the first symbol of s.

Output pi.

If i > 1, output ki−1.

Remove ω from the head of s.

ki :=1.

If s = λ, output ki, exit.

Otherwise, update trie ti−1 to ti by adding pi into ti−1.

i := i+ 1.

Go back to C2.

C7 ki−1 :=ki−1 + 1.

Remove pi−1 from the head of s.

If s = λ, output ki−1, exit.

Otherwise, go back to C3.

2.4 Conclusions

We devised the forward T-decomposition algorithm for simple T-codes, Algorithm-

B, in Section 2.2, and then devised that for generalized T-codes, Algorithm-C, in

Section 2.3. Both algorithms are efficient owing to the use of a trie structure.

Algorithm-B can compute the T-complexity of a random sequence of length 106

within about 0.07 seconds with 3 GHz CPU. The experiment showed that its

computation time for a random sequence of length N is about O(N1.2), but there

may be some room for improvement in the implementation of Algorithm-B.
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In Chapter 6, we use Algorithm-B rather than Algorithm-C to compute the T-

complexity of a sequence for a randomness test based on the T-complexity because

in the case of random numbers, the same long pattern seldom occurs sequentially

even if it occurs several times, and a defect of pseudo-random numbers such that

some long pattern tends to occur sequentially can also be detected by Algorithm-B.
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Chapter 3

Differential Equation Method for

Derivation of the Formulas of the

T-complexity and the

LZ-complexity

3.1 Introduction

Titchener stated that the maximum T-complexity of a sequence of length N is

very accurately described by li((ln#A)N) [57]. Although his finding was based

solely on experimental evidence, it has been proved correct recently [59]. However,

the proof of [59] is the so-called top-down approach and requires the knowledge

that the maximum T-complexity profile is probably expressed as li((ln#A)N).

In this chapter, we show that the expression of the T-complexity profile can

be derived using a differential equation technique. The proposed method is the

so-called bottom-up approach and shows how the logarithmic integral function nec-

essarily appears in the expression of the T-complexity profile. Moreover, in order

to strengthen the reliability of our technique, we show that the proposed method is
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applicable to not only the T-complexity profile but also the LZ-complexity profile.

The distinctive feature of our approach is to focus on incremental quantities of

average codeword length.

In Section 3.2, we briefly review the previous derivation method of the max-

imum T-complexity profile. Our differential equation method to derive the T-

complexity profile and the LZ-complexity profile is shown in Section 3.3 and 3.4,

respectively.

3.2 Previous Approach to the Derivation of the

Maximum T-complexity Profile

In this section, we summarize the previous approach to derive the maximum T-

complexity profile [59]. Let di be the number of codewords of length i in a system-

atic T-code set. Then, we may consider a generating function d(z) =
∑∞

j=1 djz
j.

A single T-augmentation step changes d(z) to

d̃(z) = (d(z)− 1)zl + d(z) = (d(z)− 1)(zl + 1) + 1,

where l is the length of the T-prefix chosen for this step. It immediately results in

the following equation.

d̃(z)− 1

d(z)− 1
= zl + 1.

Let us consider a systematic T-code set when all codewords shorter than l have

been just exhausted in the systematic T-augmentation. Furthermore, let ml, nl,

and dl(z) be the number of codewords of length l, the length of a longest codeword,

and the generating function of such a systematic T-code set, respectively. Then,
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nl and dl(z) are given as follows.

nl =
l−1∑
i=1

imi + 1, (3.1)

dl(z) = (rz − 1)
l−1∏
i=1

(zi + 1)mi + 1 = mlz
l + dl+1z

l+1 + · · ·+ dnl
znl , (3.2)

where r = #A. Let CT (nl) be the T-complexity when the length of a longest

codeword is nl. Since the T-complexity increases by one with each T-augmentation

step, it holds that

CT (nl) =
l−1∑
i=1

mi. (3.3)

Hence, the value of mi, 1 ≤ i ≤ l − 1, is required in order to evaluate CT (nl).

From Eq. (3.2), we derive

lml =

[
ddl(z)

dz
mod zl

]
z=1

= rl −
l−1∑

i=1,i(j+1)=l,j≥0

(−1)
l
i
−1imi. (3.4)

Combining Eqs. (3.1) and (3.4), we get

rl − 1

r − 1
≤ nl <

rl

r − 1
+

r⌊
l+3
2

⌋

(r − 1)2
. (3.5)

Since nl+1 − nl = lml, we obtain

rl

l
− r⌊

l+3
2

⌋ + r − 1

l(r − 1)2
< ml <

rl

l
+

r⌊
l+4
2

⌋ + r − 1

l(r − 1)2
.

The combination of this inequality and Eq. (3.3) results in

l−1∑
i=1

ri

i
− δL(l) < CT (nl) <

l−1∑
i=1

ri

i
+ δU(l),
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where

δL(l) =
r

(r − 1)2

l−1∑
i=1

r⌊
i+1
2

⌋

i
+

1

(r − 1)

l−1∑
i=1

1

i
,

δU(l) =
r2

(r − 1)2

l−1∑
i=1

r⌊
i
2
⌋

i
+

1

(r − 1)

l−1∑
i=1

1

i
.

Using the knowledge that the maximum T-complexity profile is probably expressed

as li(nl ln r), we can prove the following equations.

lim
l→∞

δL(l)

li(nl ln r)
= lim

l→∞

δU(l)

li(nl ln r)
= 0,

lim
l→∞

∑l−1
i=1

ri

i

li(nl ln r)
= 1.

Finally we obtain

lim
l→∞

CT (nl)

li(nl ln r)
= 1.

3.3 Derivation of the T-complexity Profile

In this section, we derive the T-complexity profile, which is related to the forward

T-decomposition for simple T-code sets. Although, similarly to the LZ78 incremen-

tal parsing algorithm, the forward T-decomposition may result in an incomplete

parsing at the end of a sequence, the end effect becomes negligible asymptotically

as the sequence length N goes to infinity.

Take a look at Fig. 3.1. Let A be the binary alphabet set with symbols 0 and

1, i.e., A = {0, 1} and #A = 2. Assume that an index number i, i = 1, 2, . . . ,

is assigned to each leaf in a code tree representing a T-code set Sn. Let qi and li

be the probability and depth of leaf i, respectively. Then the average codeword
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(li, qi) (li, qi)

(Ln, Qn)

(li, qi)

(li + Ln, qiQn)

(Ln, Qn)

zn =
∑

i

liqi

length li

probability qi

T-prefix

Sn Sn+1

pn+1

Figure 3.1. Illustration of code trees of simple T-code sets.

length of Sn is given by

zn =
∑
i

liqi.

Let Ln be the length of the T-prefix pn+1 selected from Sn, and let Qn be the

probability of pn+1. Then, zn+1 is calculated as follows:

zn+1 = zn − LnQn +
∑
i

(li + Ln)Qnqi

= zn − LnQn +Qnzn + LnQn

= (1 +Qn)zn.

In the case of Pr(0) = Pr(1) = 1/2, Qn is given by 1/2Ln . Hence, substituting

Qn = 1/2Ln into the above equation, we obtain

zn+1

zn
= 1 +

1

2Ln
. (3.6)

From this equation and the approximation ln(1 + η) ≈ η for η ≪ 1, for large n,
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we may deduce the following approximation.

ln zn+1 − ln zn ≈ 1

2Ln
. (3.7)

On the other hand, the expected length of sequences with T-complexity n is given

by

E[|p1p2 · · · pn|] = E

[
n∑

i=1

|pi|

]
=

n∑
i=1

E[|pi|].

Hence, the point (
∑n

i=1 E[|pi|], n) is considered to lie on the T-complexity profile.

A sequence with maximum T-complexity for a given sequence length is called a

maximum T-complexity sequence. First, let us consider a maximum T-complexity

sequence s. This sequence can be obtained from a consecutive concatenation

of T-prefixes of a systematic T-code set, i.e., s = p1p2p3 · · · , since systematic

T-augmentation makes the longest codewords grow most slowly. In this case,

(n
(l)
max − n

(l)
min + 1) consecutive T-prefixes pn, n

(l)
min ≤ n ≤ n

(l)
max, have the same

length l for n
(l)
min = min{n | |pn| = l} and n

(l)
max = max{n | |pn| = l}. Let

ml be the maximum number of codewords of length l generated during system-

atic T-augmentation. Then, ml
*1 is asymptotically equivalent to 2l/l as l goes

to infinity [59]. Furthermore, let z(l) be the average codeword length when the(
(n

(l)
min + n

(l)
max)/2

)
-th T-prefix is determined. From Eq. (3.7), we have

ln z(l + 1)− ln z(l) ≈ 1

2l
ml

2
+

1

2l+1

ml+1

2
≈ 1

2l
+

1

2(l + 1)
≈ 1

l
.

Substituting q(l) ≡ ln z(l), the above equation becomes

q(l + 1)− q(l)

(l + 1)− l
=

1

l
.

*1It is known that ml is related to the number of cyclic equivalence classes for l [12].
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Table 3.1. Computation of k for the maximum T-complexity sequences.

l ml z(l) l/z(l)
1 2 1.5 0.667
2 3 3.1 0.636
3 2 4.9 0.607
4 6 6.7 0.600
5 6 8.8 0.570
6 11 10.5 0.572
7 18 12.2 0.572
8 36 14.1 0.568
9 56 16.0 0.564
10 105 17.7 0.564
11 186 19.5 0.563
12 346 21.3 0.563
13 630 23.1 0.562
14 1179 24.9 0.562
15 2182 26.7 0.562
16 4116 28.5 0.562
17 7710 30.3 0.562
18 14588 32.0 0.562
19 27594 33.8 0.562

Hence, for sufficiently large l, the differentiation approximation yields

dq

dl
=

1

l
,

which has a solution q(l) = ln z(l) = ln l + C, where C is an integral constant.

This means that z(l) is proportional to l, i.e., l = kz(l) for a constant k when l is

not small. Note from Table 3.1 that this relation holds accurately for l ≥ 13, and

k is given by about 0.562.

Since zn is monotonically increasing, it holds that

l

z
n
(l)
max

≤ l

zn
≤ l

z
n
(l)
min
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for any n ∈ [n
(l)
min, n

(l)
max] and a fixed l. Then, it holds from Eq. (3.6) that

l

z
n
(l)
min

− l

z
n
(l)
max

=
l

z
n
(l)
min

− l

z
n
(l)
min

(
1 + 1

2l

)ml−1 ≈ l

z
n
(l)
min

1− 1(
1 + 1

2l

) 2l

l
−1

 .

Since 1/
(
1 + 1

2l

) 2l

l
−1 ≈ 1− 1

l
for sufficiently large l,

lim
l→∞

(
l

z
n
(l)
min

− l

z
n
(l)
max

)
= 0.

This means that l/zn can also be approximated by k for sufficiently large l because

l/z
n
(l)
max

≤ l/z(l) ≤ l/z
n
(l)
min

. Furthermore, since k does not depend on l for large l,

we can conclude that Ln = kzn holds for all sufficiently large n.

From Eq. (3.7) and Ln = kzn, we have

ln zn+1 − ln zn ≈ 1

2kzn
. (3.8)

For qn ≡ ln zn, this equation becomes

qn+1 − qn
(n+ 1)− n

=
1

2k exp(qn)
,

which can be approximated as

dq

dn
=

1

2k exp(q)

by the differentiation approximation. Substituting q = ln z, we have

2kz

z
dz = dn.

46



Integrating this equation results in

li(2kz) = n+ C1. (3.9)

Let Nn be the end point of pn in a sequence s. Then,

Nn+1 −Nn

(n+ 1)− n
= |pn+1| = Ln = kzn.

This relation can also be approximated by

dN

dn
= kz.

Combining 2kz

z
dz = dn and dN

dn
= kz, we get

k2kzdz = dN.

Integrating this equation yields 2kz

ln 2
= N + C2, i.e., 2

kz = (N + C2) ln 2, where C2

is an integral constant. Substituting this equation into Eq. (3.9), we obtain

n = li ((N + C2) ln 2)− C1, (3.10)

which is the T-complexity of s. Equation (3.10) coincides with the result of [59].

Figure 3.2 shows how well n = li(N ln 2) fits with the maximum T-complexity

profile even for relatively small N .

Next, let us consider random sequences. In this case, Ln and zn depend on a

random sequence and hence they cannot be uniquely determined. Let zn be the

expectation of the average codeword length of Sn. We assume that Eq. (3.8) also

holds for random sequences. Since E[Ln] = zn,
Nn+1−Nn

(n+1)−n
= |pn+1| = Ln can be
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Figure 3.2. Maximum T-complexity profile and the graph of n = li(N ln#A) for
the binary alphabet.
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Figure 3.3. Graph of zn for the T-complexity.

approximated by

dN

dn
= z

in this case. Following a line of argument similar to the case of the maximum

T-complexity sequences, we derive

n = li (k(N + C2) ln 2)− C1. (3.11)

Figure 3.3 shows the graph of zn computed from 104 pseudo-random sequences gen-

erated by Mersenne twister (MT) [39] , which coincides with the plot of Eq. (3.9)

with k = 0.70, C1 = −5.47 for n ≥ 25.
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Figure 3.4. Graph of zn for the T-complexity for the case of p = 0.33.
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Figure 3.5. Graph of zn for the T-complexity for the case of p = 0.20.

Finally, let us consider non-symmetric i.i.d. sources with Pr(0) = p, p ̸= 1/2.

From the argument of typical sequences, the probability of codeword length l can

be approximated by 2−lh(p) for sufficiently large l, where h(p) is the binary entropy

function. The effect of (2h(p))l is equivalent to the case where the alphabet size is

reduced from 2 to 2h(p). Hence, for this case, we obtain from Eq. (3.11) that

n = li (kh(p)(N + C2) ln 2)− C1. (3.12)

As shown in Fig. 3.3, k = 0.70 matches with the simulation result of p = 0.5.

Simulation also confirms that kh(p) = 0.641 and C1 = −5.99 fit well with the

setting of p = 0.33 (See Fig. 3.4), and kh(p) = 0.505 and C1 = −6.69 fit well

with the setting of p = 0.20 (See Fig. 3.5). Since 0.7 × h(0.33) = 0.641 and

0.7× h(0.20) = 0.505, we can conjecture that k = 0.70 holds for all p.
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Figure 3.6. Empirical T-complexity profile and the graph of n = li((ln#A)HTN)
for the binary alphabet.

Titchener showed that the T-complexity profile of s with length N can be

represented by li((ln#A)HTN), where HT is a real constant called T-entropy,

0 < HT ≤ 1 [58]. Note that kh(p) in Eq. (3.12) corresponds to HT for the case of

#A = 2. Therefore, the normalized T-entropy HT/k coincides with the Shannon

entropy.

Figure 3.6 compares the graph of the T-complexity profile of a sequence gen-

erated by MT and the graph of n = li((ln#A)HTN) for three cases: (a) p =

0.5, HT = 0.7, (b) p = 0.33, HT = 0.641, and (c) p = 0.20, HT = 0.505. The

empirical T-complexity profiles were obtained from the forward T-decomposition

algorithm for simple T-codes. In each case, the graph of n = li((ln#A)HTN) fits

well with the empirical T-complexity profile.

3.4 Derivation of the LZ-complexity Profile

The LZ-complexity profile can be derived in the same way as the T-complexity

profile. Assume that a sequence s = w1w2 · · ·wn is parsed by the LZ78 incremental

parsing. See Fig. 3.7. Let zn be the average codeword length of the n-th LZ78 parse

tree [64]. Furthermore, let Ln and Qn be the length of wn+1 and the probability
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(li, qi) (li, qi)

(Ln, Qn)
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(Ln, Qn)
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∑

i

liqi

length li

probability qi
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(Ln+1 + 1, Qnp) (Ln+1 + 1, Qnq)

p + q = 1

added nodes

n-th LZ78 parse tree (n+ 1)-st LZ78 parse tree

Figure 3.7. Illustration of LZ78 parse trees.

of wn+1, respectively. Then, zn+1 is calculated as follows:

zn+1 = zn − LnQn + (Ln + 1)Qnp+ (Ln + 1)Qnq

= zn +Qn,

where Pr(0) = p, Pr(1) = q, and p + q = 1. Since Qn = 1/2Ln for the case of

Pr(0) = Pr(1) = 1/2, we obtain

zn+1 − zn =
1

2Ln
. (3.13)

A sequence with maximum LZ-complexity for a given sequence length is called

a maximum LZ-complexity sequence. First, let us consider a maximum LZ-

complexity sequence, which can be obtained from a consecutive concatenation

of all bit patterns of length l = 1, 2, 3, . . .. In this case, (n
(l)
max − n

(l)
min + 1) suc-

cessive subsequences have the same length l for n
(l)
min = min{n | |wn| = l} and

n
(l)
max = max{n | |wn| = l}. The number of subsequences with length l is 2l.

Let z(l) be the average codeword length when the
(
(n

(l)
min + n

(l)
max)/2

)
-th word is
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determined. Then, we have

z(l + 1)− z(l) =
2l−1

2l
+

2l

2l+1
= 1.

This means that z(l) = l−k, where k is a constant. Since zn is increasing infinitely

and z
n
(l)
max

− z
n
(l)
min

is less than 1 for any large l, the relation Ln = zn + k holds for

all sufficiently large n. From this relation and Eq. (3.13), we obtain

zn+1 − zn =
1

2zn+k
, (3.14)

which can be further approximated by

dz

dn
=

1

2z+k
,

or

2z+kdz = dn. (3.15)

Integrating this equation, we get

2z+k

ln 2
+ C1 = n,

or

z = log2((n− C1) ln 2)− k, (3.16)

where C1 is an integral constant. Let Nn be the end point of wn in a sequence s.

Then,

Nn+1 −Nn

(n+ 1)− n
= |wn+1| = Ln = zn + k.
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This relation can be approximated by

dN

dn
= z + k. (3.17)

Combining Eqs. (3.15) and (3.17), we have

(z + k)2z+kdz = dN.

Integrating this equation, we have

2z+k((z + k) ln 2− 1)

(ln 2)2
= N + C2, (3.18)

where C2 is an integral constant. Combining Eqs. (3.16) and (3.18), we obtain

n− C1 =
N + C2

log2(n− C1) + A1

, (3.19)

where A1 =
−1+ln ln 2

ln 2
≈ −1.97146. Using Eq. (3.19) recursively, we can derive

n =
N + C2

(1− A2) log2(N + C2)
+ C1,

where

A2 =
−A1 + log2(log2(N + C2) + O(log2 log2N))

log2(N + C2)

<
−A1 + log2(2 log2(N + C2))

log2(N + C2)

=
(1− A1) + log2 log2(N + C2)

log2(N + C2)
.
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Figure 3.8. Comparison of Eq. (3.20) and our evaluation Eq. (3.19).

This formula agrees well with the following upper bound on the LZ-complexity [3]

n ≤ N

(1− εN) log2N
, (3.20)

where

εN = min

{
1,

log2(log2N) + 4

log2N

}
.

Figure 3.8 shows the upper bound given by Eq. (3.20) and the graph computed

from Eq. (3.19) with C1 = C2 = 0, which is very close to the maximum LZ-

complexity profile.

Next, let us consider random sequences. Similarly to the case of the T-

complexity, we assume that Eq. (3.14) also holds for random sequences. Since

E[|wn+1|] = zn,
Nn+1−Nn

(n+1)−n
= |wn+1| can be approximated by

dN

dn
= z

in this case. Using an argument similar to the case of the maximum LZ-complexity
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Figure 3.9. Graph of zn for the LZ-complexity.

sequences, we can derive

n− C1 =
N + C2

log2(n− C1) + (A1 − k)
. (3.21)

Figure 3.9 shows the graph of zn computed from 104 pseudo-random sequences

generated by MT, which is well fitted by the graph of Eq. (3.16) with k = −0.254

and C1 = −2.57.

Finally, let us consider non-symmetric i.i.d. sources with Pr(0) = p, p ̸= 1/2.

Following the argument of typical sequences, the probability of codeword length

l can be approximated by 2−lh(p) for sufficiently large l. The effect of (2h(p))l is

equivalent to the case where the alphabet size #A is reduced from 2 to 2h(p). In

general, Eq. (3.15) is written as follows:

(#A)z+kdz = dn.

Integrating this equation, we get

(#A)z+k

ln(#A)
+ C1 = n,
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or

z =
log2((n− C1) ln(#A))

log2(#A)
− k.

For #A = 2h(p), this equation becomes as follows.

z =
log2((n− C1)h(p) ln 2)

h(p)
− k. (3.22)

Figures 3.10 and 3.11 show the graph of zn for the case of p = 0.33 and p = 0.20,

respectively. The graph of zn was computed from 104 sequences generated by MT.

k = −0.333 and C1 = −2.45 fit well with the simulation result of p = 0.33, and

k = −0.599 and C1 = −2.49 fit well with the simulation result of p = 0.20. Since

#A = 2h(p), the following equation is used instead of Eq. (3.21).

n− C1 =
N + C2

log2(n−C1)
h(p)

+ (B1 − k)
, (3.23)

where B1 = −1+ln(h(p) ln 2)
h(p) ln 2

. Figure 3.12 compares the graph of the LZ-complexity

profile of a sequence generated by MT and the graph computed from Eq. (3.23)

with C1 = C2 = 0 for three cases: (a) p = 0.5, k = −0.254, (b) p = 0.33, k =

−0.333, and (c) p = 0.20, k = −0.599. In each case, the graph computed from

Eq. (3.23) fits well with the empirical LZ-complexity profile. Inserting n = 1 and

C1 = −2.50 in Eq. (3.22), we obtain k = log2(3.50h(p) ln 2)
h(p)

−z1, where z1 = 2(p2−p+1).

z1 can be easily derived from the LZ78 parse tree. Note from Fig. 3.13 that this k

represents well the values of k obtained by simulation.
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Figure 3.10. Graph of zn for the LZ-complexity for the case of p = 0.33.
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Figure 3.11. Graph of zn for the LZ-complexity for the case of p = 0.20.
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Figure 3.12. Empirical LZ-complexity profile and the graph computed from
Eq. (3.21).
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3.5 Conclusions

In this chapter, the expressions of the T-complexity profile and the LZ-complexity

profile were derived in a unified way using the proposed differential equation tech-

nique.

We summarized the previous approach [59] to give the proof of the Titch-

ener’s conjecture regarding the maximum T-complexity profile in Section 3.2. In

Section 3.3, first, we showed our new differential equation technique to derive the

maximum T-complexity profile. Then, we derived the T-complexity profile for ran-

dom sequences, following a line of argument similar to the case of the maximum

T-complexity sequences. In this derivation, we assumed that Eq. (3.8) holds for

random sequences. Alike to the case of the T-complexity profile, we derived the ex-

pressions of the maximum LZ-complexity profile and the LZ-complexity profile for

random sequences in Section 3.4. To derive the LZ-complexity profile for random

sequences, we assumed that Eq. (3.14) holds for random sequences. The obtained

formulas regarding the T-complexity profile and the LZ-complexity profile agree

well with the ones in previous studies. We also clarified that the T-entropy HT

corresponds to kh(p) in our derivation.

The proof in [59] requires the knowledge that the maximum T-complexity pro-

file is probably expressed as li((ln#A)N). By contrast, our derivation can explain
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the reason why the maximum T-complexity profile is necessarily expressed using

the logarithmic integral function. This is the distinct advantage of our derivation

over the proof in [59].
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Chapter 4

Properties of the Maximum

T-complexity Sequences

4.1 Introduction

The magnitude of the T-complexity of a given sequence s in general indicates

the degree of randomness. As shown in Chapter 3, the T-complexity profile of

a sequence of length N generated from a stationary ergodic source with entropy

h is described as li(khN ln#A), where k is a constant. The empirical mean and

standard deviation of the T-complexity of binary random sequences of length 106

are 38720.6 and 58.2937, respectively. However, there exist interesting sequences

that have larger T-complexities than any random sequences (See Fig. 4.1). A

maximum T-complexity sequence is a sequence with maximum T-complexity for

a given sequence length, and is obtained from a consecutive concatenation of T-

prefixes of a systematic T-augmentation. The T-complexity of a binary maximum

T-complexity sequence of length 106 is 56170.

In this chapter, we investigate several properties of the maximum T-complexity

sequences using various techniques including the NIST test suite*1 [21]. The prop-

*1The NIST test suite is the package of statistical randomness tests released by the NIST of
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Figure 4.1. Maximum T-complexity profile for the binary alphabet.

erties of the maximum T-complexity sequences are compared with those of the

maximum LZ-complexity sequences, each of which is obtained from a consecutive

concatenation of all bit patterns of length l = 1, 2, 3, · · · .

In Section 4.2, we show an algorithm to generate the binary maximum T-

complexity sequences, Algorithm-D. Since we compare the properties of the max-

imum T-complexity sequences with those of the maximum LZ-complexity se-

quences, we also show an algorithm to generate the binary maximum LZ-complexity

sequences, Algorithm-E. Various maximum T-complexity and LZ-complexity se-

quences are generated by using Algorithm-D and Algorithm-E, respectively. Anal-

ysis results on those sequences are shown in Section 4.3.

4.2 Generation Algorithm of the Maximum T-

complexity Sequences

First, we introduce an algorithm that enables the generation of a binary maximum

T-complexity sequence of length 106 with T-complexity 56170. Since systematic

T-augmentation makes longest codewords grow slowest, a maximum T-complexity

sequence s can be generated by a consecutive concatenation of T-prefixes of a

the U.S. government. Details of the NIST test suite are described in Subsection 6.1.2.
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systematic T-code set, i.e., s = p1p2p3 · · · . Let nl be the length of a longest

codeword in a systematic T-code set when all the codewords shorter than l have

been just exhausted in the systematic T-augmentation. From Eq. (3.5), we find

that nl > 106 for r = 2 and l = 20. Hence, we may ignore any codeword whose

length is not less than 20 in the systematic T-augmentation for the generation of

a binary maximum T-complexity sequence of length 106.

The algorithm uses an array X[i], i = 0, 1, 2, . . ., such that each X[i] takes

a value from the set {0, 1, 2} and each node of the array is related to a specific

string denoted by x[i]. For all i, X[i] is initialized to zero. Let l(i) be the integer

l that satisfies the inequality 2l − 2 ≤ i < 2l+1 − 2. The string x[i] is defined as

a binary l(i)-bit representation of an integer i − (2l(i) − 2). For example, x[0] =

0, x[1] = 1, x[2] = 00, x[3] = 01, x[4] = 10, x[5] = 11, x[6] = 000, x[7] = 001, x[8] =

010, x[9] = 011, x[10] = 100, x[11] = 101, x[12] = 110, x[13] = 111, · · · . Since we

have only to consider codewords shorter than 20, the array size is set to 1048574

(= 219+1−2). ‘X[i] = 0’ indicates that x[i] does not belong to a systematic T-code

set. When x[i] belongs to a systematic T-code set, X[i] is updated to one. The

value ‘2’ is only used for ease of the algorithm. Let Yl be a set {i | 2l − 2 ≤

i < 2l+1 − 2, X[i] = 1}. ‘i ∈ Yl’ means that x[i] is a codeword of length l in

the systematic T-code set. Let ml be the number of codewords of length l when

all the codewords shorter than l have been just exhausted in the systematic T-

augmentation. When a codeword x[y] of length l(y) is chosen as the T-prefix

in a systematic T-augmentation step, for each i such that X[i] = 1, a codeword

x[y]x[i] of length (l(y)+ l(i)) is added to the systematic T-code set. The algorithm

creates a maximum T-complexity sequence of length
∑19

l=1 lml = 1049522, and then

outputs the first 106 bits of it. The above generation scheme of a binary maximum

T-complexity sequence is formally described as the following Algorithm-D. Note

that Algorithm-D can also generate a longer maximum T-complexity sequence by
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changing the array size and the termination condition.

Algorithm-D

D1 (Initialization)

For each i ∈ [2, 1048573], X[i] := 0. X[0] := 1. X[1] := 1. l := 1. s := λ.

Yl :={0, 1}.

D2 Randomly choose an element y from Yl.

D3 Append x[y] to s. Remove y from Yl.

D4 For each i ∈ [0, 1048573], if X[i] = 1 and l(i) + l ≤ 19, then

X[(2l(i)+l − 2) + (y − (2l − 2))2l(i) + (i− (2l(i) − 2))] :=2.

D5 For each i ∈ [0, 1048573], if X[i] = 2, then X[i] :=1.

D6 If #Yl = 0 and l = 19, then output the first 106 bits of s, and exit.

D7 Otherwise, if #Yl = 0, then l := l+1, Yl :={i | 2l−2 ≤ i < 2l+1−2, X[i] = 1}.

D8 Go back to D2.

Next, we present a scheme for generating a binary maximum LZ-complexity

sequence of length 106 with LZ-complexity 70690. A maximum LZ-complexity

sequence s can be obtained from a sequential and consecutive concatenation of all

bit patterns of length l = 1, 2, 3, . . .. Since
∑16

l=1 l2
l = 1966082 > 106, we have

only to consider binary patterns whose lengths are at most 16. The string x[i]

is defined in the same way as Algorithm-D. The algorithm creates a maximum

LZ-complexity sequence of length 1966082, and then outputs the first 106 bits

of it. Above approach of binary maximum LZ-complexity sequence generation is

formally described as the following Algorithm-E.
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Algorithm-E

E1 (Initialization)

l :=1. s :=λ. Yl :={0, 1}.

E2 Randomly choose an element y from Yl.

E3 Append x[y] to s. Remove y from Yl.

E4 If #Yl = 0 and l = 16, then output the first 106 bits of s, and exit.

E5 Otherwise, if #Yl = 0, then l := l + 1, Yl :={i | 2l − 2 ≤ i < 2l+1 − 2}.

E6 Go back to E2.

4.3 Experiments

We evaluated the maximum T-complexity and LZ-complexity sequences (103 se-

quences of length 106) with the NIST test suite in order to compare the two types

of sequences. The significance level α was set to 0.01, and the default parame-

ter values were used. The original NIST test suite was modified according to the

suggestions made in [2, 15–18,20].

Figures 4.2 and 4.3 show the respective pass ratios. We observe that the max-

imum T-complexity sequences are less random than the maximum LZ-complexity

sequences. Evaluation results of the DFT test and the Universal test included

in the NIST test suite are shown in Tables 4.1 and 4.2. For the maximum T-

complexity sequences, the empirical distributions of P-values obtained from the

DFT test and the Universal test are biased to small values. By contrast, they are

almost uniform for the maximum LZ-complexity sequences.

We analyzed a maximum T-complexity sequence in depth using the discrete

Fourier transform (DFT) and the autocorrelation function. Let s = s0s1 · · · sN−1 ∈

{0, 1}N be a binary sequence of length N . The discrete Fourier transform of s is
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Figure 4.3. Pass ratios for the maximum LZ-complexity sequences.

Table 4.1. Test Results of the DFT test and the Universal test for the maximum
T-complexity sequences.

DFT test Universal test
f1 1000 878
f2 0 53
f3 0 25
f4 0 15
f5 0 8
f6 0 5
f7 0 6
f8 0 4
f9 0 3
f10 0 3

Uniformity U 0.000000 0.000000
Pass ratio P 0.000000 0.352
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Table 4.2. Test Results of the DFT test and the Universal test for the maximum
LZ-complexity sequences.

DFT test Universal test
f1 99 122
f2 89 88
f3 99 97
f4 103 85
f5 97 97
f6 110 114
f7 94 110
f8 119 83
f9 92 104
f10 98 100

Uniformity U 0.630872 0.098920
Pass ratio P 0.993 0.982

given by

Fj =
N−1∑
k=0

(2sk − 1) exp

(
i
2πjk

N

)
, 0 ≤ j ≤ N − 1,

where i is the imaginary unit. The spectrum of s is defined as

{
|Fj| : 0 ≤ j ≤ N

2
− 1

}
.

Note that there is a well-known relation Fj = F̄N−j, where F̄N−j is the complex

conjugate of FN−j. Let τ be a lag. When s is a periodic sequence with period N ,

the autocorrelation function of s [40] is defined as

Ĉ(τ) =
1

N

N−1∑
k=0

(2sk − 1)(2sk+τ − 1), 0 ≤ τ ≤ N − 1.

Figures 4.4 and 4.5 show the spectrum and the autocorrelation function*2 of

a maximum T-complexity sequence of length 106, respectively. The spectrum

*2Ĉ(0) was excluded from the figure because its value is always N .
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Figure 4.5. Autocorrelation function of a maximum T-complexity sequence.

has strong spikes, and the graph of the autocorrelation function is considerably

different from the graph that is expected for random sequences. However, as shown

in Figs. 4.6 and 4.7, the spectrum of a maximum LZ-complexity sequence did not

have strong spikes, and its graph of autocorrelation function was not characteristic.

The non-randomness in the maximum T-complexity sequences is caused by a

particularity of the generation procedure. A maximum T-complexity sequence is

generated by a consecutive concatenation of T-prefixes of a systematic T-code set.

In the sequence, T-prefixes of the same length are positioned next to each other.

Each T-prefix is constructed by the recursive concatenation of previous T-prefixes.

Since one of the shortest available codewords is chosen as the T-prefix for each T-

augmentation step, the possible patterns of T-prefixes are restricted compared to
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Figure 4.7. Autocorrelation function of a maximum LZ-complexity sequence.

the case of random sequences.

The non-randomness in the maximum T-complexity sequences is quantitatively

evaluated as follows. When Algorithm-D creates a maximum T-complexity se-

quence of length 1049522, it requires a random sequence of

19∑
l=1

ml∑
i=1

log2 i ≈ 729910 bits.

This length is about 69% of the length of a maximum T-complexity sequence

(1049522 bits). By contrast, when Algorithm-E creates a maximum LZ-complexity
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Figure 4.8. Empirical distributions of LZ-complexities of the maximum T-
complexity sequences (solid line) and Marsaglia’s random sequences (broken line).

sequence of length 1966082, it requires a random sequence of

16∑
l=1

2l∑
i=1

log2 i ≈ 1777077 bits.

This length is about 90% of the length of a maximum LZ-complexity sequence

(1966082 bits). Since 0.69 < 0.90, Algorithm-E consumes more random bits than

Algorithm-D. This is why the maximum T-complexity sequences are less random

than the maximum LZ-complexity sequences.

However, we must note that, the magnitude of the T-complexity of a given se-

quence s in general indicates the degree of randomness (See Figs. 6.3 and 6.4). We

must also note the following results. Figure 4.8 shows an empirical distribution of

LZ-complexities of 103 maximum T-complexity sequences of length 106 generated

by Algorithm-D and that of 103 Marsaglia’s random sequences of length 106 ex-

tracted from a file named ‘bits.01’ [37]. Surprisingly, we found that the maximum

T-complexity sequences on average show larger LZ-complexities than random se-

quences. So, the maximum T-complexity sequences are also ‘complex’ in terms of

the LZ-complexity.
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4.4 Conclusions

In Section 4.2, we showed an algorithm to generate the binary maximum T-

complexity sequences, Algorithm-D, and an algorithm to generate the binary max-

imum LZ-complexity sequences, Algorithm-E. The properties of the maximum T-

complexity sequences were investigated and compared with those of the maximum

LZ-complexity sequences in Section 4.3.

In our analysis, the NIST test suite, the discrete Fourier transform (DFT), and

the autocorrelation function were used. We applied 103 maximum T-complexity se-

quences of length 106 generated by Algorithm-D and 103 maximum LZ-complexity

sequences of length 106 generated by Algorithm-E to the NIST test suite.

The analysis showed that the maximum T-complexity sequences are less ran-

dom than the maximum LZ-complexity sequences. The DFT test and the Univer-

sal test included in the NIST test suite clearly detected the non-randomness in the

maximum T-complexity sequences. Several strong spikes were seen in the spectrum

of a maximum T-complexity sequence and its autocorrelation function was consid-

erably different from the graph that is expected for random sequences. However,

such characteristics were not found in the case of the maximum LZ-complexity

sequences. Hence, we cannot consider that the maximum T-complexity sequences

are random although they have larger T-complexities than random sequences. On

the other hand, the maximum T-complexity sequences on average show larger LZ-

complexities than random sequences. The cause of the non-randomness in the

maximum T-complexity sequences was quantitatively and qualitatively explained.

On the basis of the test results, a randomness test based on the T-complexity

(T-complexity test) proposed in Chapter 6 uses the two-tailed test.
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Chapter 5

Application of the Forward

T-decomposition to Data

Compression

5.1 Introduction

The T-complexity of a sequence in general tends to be smaller than the respective

LZ-complexity. Thus, data compression based on T-codes is expected to achieve a

better compression performance than the so-called LZ78 family. However, no effi-

cient data compression scheme has been devised from the spirit of T-decomposition

so far.

In a student research project [41], C. Müller and R. Schimpfky considered

several compression schemes based on T-codes, in which the T-prefix matrix is

compressed. But, even the best scheme presented in [41] could not compete with

the performance of the UNIX compress, a variant of LZ78, on the Calgary Corpus

[52].

In this chapter, we propose a new data compression scheme based on a dictio-

nary method such that all phrases added to a dictionary have a recursive structure
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similar to T-codes [25]. Our scheme can compress the Calgary Corpus more effi-

ciently than both the known schemes presented in [41] and the UNIX compress.

We examine three dictionary updating rules called Methods A, B, and C.

In Section 5.2, we review LZ78, LZW, and LZMW, all of which belong to the

LZ78 family. In Section 5.3, we briefly describe the best scheme presented by

C. Müller and R. Schimpfky in [41], called the Müller-Schimpfky scheme in this

thesis, and show its defects. Then, we propose a new data compression scheme

based on T-codes in Section 5.4. Our scheme can overcome the defects of the

Müller-Schimpfky scheme. In Section 5.5, the performance of our scheme is com-

pared with that of other schemes on the Calgary Corpus. The difference between

Methods A, B, and C is closely examined using the dictionary size and the number

of parsed subsequences in Section 5.6. It is also shown that the proposed scheme

can be implemented as a single-pass scheme and our scheme with Method C is

universal for stationary ergodic sources in Section 5.6.

Throughout this chapter, an input file is treated as a sequence of 8-bit symbols,

and hence its alphabet A has 28 different symbols, which corresponds to the ASCII

code in the range of 0 to 255.

5.2 LZ78 Family

In this section, we briefly review LZ78, LZW, and LZMW, all of which belong to

the so-called LZ78 family using a dictionary method.

LZ78 [66] processes a given sequence s as follows. The dictionary D starts

empty. The null string λ is assumed to be in position 0 in D. Suppose that

the LZ78 incremental parsing (See Subsection 1.3.2) has parsed s up to the j-th

word as s(n0 +1, n1)s(n1 +1, n2)s(n2 +1, n3) · · · s(nj−1 +1, nj), and the i-th word

s(ni+1, ni+1) is added toD at position i. Let d(w) be the word obtained by deleting

the last symbol of w. Furthermore, let π(j) be the non-negative integer i, 0 ≤ i < j,
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Table 5.1. Encoding steps in LZ78 for the sequence “abracadabraabracadabra”.

Entry Phrase Added to D Token

0 λ −
1 a (0, a)
2 b (0, b)
3 r (0, r)
4 ac (1, c)
5 ad (1, d)
6 ab (1, b)
7 ra (3, a)
8 abr (6, r)
9 aca (4, a)
10 d (0, d)
11 abra (8, a)

such that s(ni−1 + 1, ni) = d(s(nj−1 + 1, nj)). Recall that s(n−1 + 1, n0) = λ. The

output of the encoder for the j-th word is a token with two fields. The first field

encodes π(j) and the second field encodes the code of a symbol snj
(e.g., the ASCII

code). For example, consider the sequence “abracadabraabracadabra”. The LZ78

incremental parsing parses it into a ·b ·r ·ac ·ad ·ab ·ra ·abr ·aca ·d ·abra·. Table 5.1

shows how this sequence is encoded in LZ78.

The encoder of LZW [61] is designed to eliminate the second field of a token

because it worsens compression performance. Initially, the first 256 positions in

the dictionary D are occupied by the respective symbols in A. A string I is

initialized to the null string λ. Then, the encoder reads the current input symbol

and appends it to I. If the encoder finds I in D, the next symbol is concatenated to

I to form a two-symbol string. Then, if the encoder finds I in D, the next symbol

is concatenated to I to form a three-symbol string, and so on. When I cannot be

found in D, the encoder adds I to the next available position in D, encodes the

position of the word d(I) in D, and then initialize I to λ. This process continues

until the end of s is reached. Since words added to D get only one symbol longer

each step, the encoder of LZW slowly adapts itself to the sequence s. Table 5.2
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Table 5.2. Example of LZW for the sequence “abracadabraabracadabra”.

I Output Entry Phrase Added to D
a 97 256 ab
b 98 257 br
r 114 258 ra
a 97 259 ac
c 99 260 ca
a 97 261 ad
d 100 262 da
ab 256 263 abr
ra 258 264 raa
abr 263 265 abra
ac 259 266 aca
ad 261 267 ada
abra 265 − −

shows the LZW parsing of s and the words added to the dictionary D when it is

applied to s = abracadabraabracadabra.

The encoder of LZMW [47] processes a given sequence s as follows. The encoder

reads the current input symbol, concatenates it to I, searches the dictionary D

for I in the same way as LZW. The concatenation is repeated until I cannot

be found in D. Then, I := d(I). Let Ĩ be the previous I. Then, the encoder

adds the concatenation of Ĩ and I, i.e., ĨI , to the next available position in D,

outputs the position of the word I in D, Ĩ := I, and initializes I to λ. This

process continues until the end of the sequence s is reached. Since words added

to D can grow by more than one symbol each step, the encoder of LZMW adapts

itself to the sequence s faster than that of LZW. Table 5.3 shows the LZMW

parsing of s and the words added to the dictionary D when it is applied to s =

alfeatsalfalfaalfeatsalfalfa.
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Table 5.3. Example of LZMW for the sequence “alfeatsalfalfaalfeatsalfalfa”.

I Output Entry Phrase Added to D
a 97 − −
l 108 256 al
f 102 257 lf
e 101 258 fe
a 97 259 ea
t 116 260 at
s 115 261 ts
al 256 262 sal
f 102 263 alf
alf 263 264 falf
a 97 265 alfa
alf 263 266 aalf
ea 259 267 alfea
ts 261 268 eats

alfa 265 269 tsalfa
lf 257 270 alfalf
a 97 271 lfa

5.3 Müller-Schimpfky Scheme

In this section, we briefly describe the best scheme among those presented in [41],

called the Müller-Schimpfky scheme.

Let s = pknn p
kn−1

n−1 · · · pk11 be the output of T-decomposition. Then, s can be rep-

resented by a T-prefix matrix, a literal vector, and a set of T-expansion parameters

(See Fig. 5.1). The concatenation of all columns of the T-prefix matrix yields the

following sequence (See Fig. 5.2),

k
(2)
1 , . . . , k

(n)
1 , k

(3)
2 , . . . , k

(n)
2 , . . . , k

(n)
n−1. (5.1)

In general, most T-expansion parameters take “1”, and hence only the elements

unequal to “1” are encoded by a fixed-length code. On the other hand, since the

T-prefix matrix is sparse, an arithmetic coder encodes run lengths of 0’s in the
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T-expansion parameters {k1, k2, · · · , kn}

T-prefixes {p1, p2, · · · , pn}

sequence s

T-prefix matrix

literal vector

(k
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0 , k

(2)
0 , · · · , k

(n)
0 )

Figure 5.1. Illustration of the Müller-Schimpfky scheme (I).
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Figure 5.2. Illustration of the Müller-Schimpfky scheme (II).

sequence given by (5.1). The literal vector is also encoded by another arithmetic

encoder.

The scheme has the following two defects.

• O(n2) elements of the T-prefix matrix have to be encoded.

• The literal vector with n bytes is encoded separately from the T-prefix ma-

trix.

Those defects worsen compression ratio. As shown in Table 5.4, this scheme is

inferior to the UNIX compress in 12 files out of 18.

Instead, let us consider the following method using a code tree of a simple T-

code set. Each leaf node in the code tree can be indexed systematically as shown

in Fig. 5.3 using the contiguous range index conversion [14]. The number of leaf

nodes of Si is 2
i(#A− 1)+ 1. So, the T-prefix pi can be represented as an integer

of (i+log2#A) bits. The T-complexity of s with length N is t = li(H̄N), where H̄

is in the range of 1.65 to 1.95 for typical English texts [55]. The sequence s can be
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Table 5.4. Compression ratios for the Calgary Corpus achieved by the UNIX gzip,
bzip2, compress, the Müller-Schimpfky (M-S) scheme, and our scheme (A, B, and
C) described in Section 5.4.

File gzip bzip2 comp. M-S A B C

bib 0.315 0.247 0.418 0.500 0.348 0.376 0.392
book1 0.408 0.303 0.413 0.550 0.410 0.393 0.400
book2 0.338 0.258 0.411 0.510 0.381 0.385 0.375
geo 0.669 0.556 0.760 0.691 0.609 0.635 0.640
news 0.384 0.315 0.487 0.545 0.428 0.431 0.436
obj1 0.480 0.501 0.653 0.635 0.543 0.552 0.567
obj2 0.331 0.310 0.521 0.495 0.412 0.443 0.455

paper1 0.350 0.311 0.472 0.555 0.437 0.448 0.440
paper2 0.362 0.305 0.440 0.543 0.428 0.426 0.417
paper3 0.389 0.340 0.476 0.571 0.462 0.462 0.453
paper4 0.417 0.390 0.524 0.589 0.479 0.497 0.494
paper5 0.418 0.405 0.550 0.604 0.512 0.505 0.513
paper6 0.347 0.323 0.491 0.558 0.440 0.445 0.452
pic 0.110 0.097 0.121 0.120 0.107 0.107 0.113

progc 0.335 0.317 0.483 0.557 0.431 0.435 0.445
progl 0.227 0.217 0.379 0.340 0.310 0.327 0.342
progp 0.228 0.217 0.389 0.401 0.318 0.327 0.347
trans 0.203 0.191 0.408 0.376 0.292 0.313 0.361

parsed as s = p1p2 · · · pt by the forward T-decomposition for simple T-codes. Using

the contiguous range index conversion, s can be encoded to a series of integers,

whose total size is at least

t∑
i=1

(i+ log2#A) =
t(t+ 1)

2
+ t log2 #A [bits]. (5.2)

When #A = 256, N = 105, and H̄ = 1.7, Eq. (5.2) is about 1.5 × 107 ≫ N .

However, if a small share of the nodes in the code tree is indexed in some way, we

can compress s. This idea is realized in the next section.
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Figure 5.3. Indexing leaf nodes in the code tree.

5.4 New Compression Scheme Based on T-codes

In this section, we propose a new data compression scheme based on T-codes.

Our encoder creates phrases, which have a recursive structure similar to T-codes,

and they are added to a dictionary D. Initially, the dictionary consists of all the

symbols in A. Let I be the longest prefix of the unparsed part of s that coincides

with a phrase included in D. Then, s is parsed by I, and D is updated using I.

Repeating this operation, s is represented as a sequence of I’s. If the current I

differs from all preceding I’s, then a new T-prefix, pj, is assigned to the current I.

Hence, the parsing of s can also be represented as a sequence of pj’s.

We considered three dictionary updating rules, called Methods A, B, and C.

In Method A, every suffix w of the parsed part of s satisfying (5.3) is added to the

dictionary D.

p
k′1
1 p

k′2
2 · · · pk

′
j−1

j−1 pj, where k′
l ≥ 0, 1 ≤ l ≤ j − 1. (5.3)

Note that T-prefixes p
k′l
l in (5.3) have the opposite order compared with (1.4).

78



Hence, in Methods B and C, we consider every suffix w of the parsed part of s

satisfying (5.4), where m is the current largest index of pj.

pk
′
m

m · · · pk
′
j+2

j+2 p
k′j+1

j+1 pj, where k′
l ≥ 0, l = j + 1, · · · ,m. (5.4)

Every w is added to the dictionary D in Method B. But, in Method C, wx instead

of w is added to D, where x is the next symbol of w in s. The idea of appending x to

w was adopted from LZW [61]. Note that our encoding scheme with Method C is

decodable in the same way as LZW. In all three methods, if w ends with phj , h ̸= 1,

then phj is added to D. This additional rule makes it possible to encode repetitions

of strings efficiently.

Our scheme consists of the following three phases.

• In Phase 1, the encoding scheme sequentially parses a given sequence s and

outputs ξ’s, each of which represents the position of I in the dictionary D.

• In Phase 2, each ξ is converted to an integer η so that the distribution of η’s

becomes almost monotonically decreasing.

• In Phase 3, η is encoded to a binary sequence by using an arithmetic coder.

Phase 1 is described formally as follows, where strings r and s represent the

parsed part and the unparsed part of a given sequence, respectively, and λ is the

null string.

Phase 1

S1 (Initialization)

Let s be a given sequence.

A dictionary D is initialized to all the symbols of A.

I :=λ, r :=λ, α :=1.

S2 Let x be the first symbol of s.
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S3 (Parsing)

If Ix ∈ D, then I :=Ix, remove x from the head of s, go back to S2.

Otherwise, output the integer ξ which represents the position of I in D.

If I is not equal to any T-prefix pl, 1 ≤ l ≤ α− 1, then pα :=I, α :=α + 1.

S4 (Dictionary Updating)

r :=rI, and represent r as a sequence of T-prefixes.

If r ends with phα, h ̸= 1, then add phα to D, go to S5.

Otherwise,

[Method A] consider every suffix w of r that satisfies (5.3).

If w /∈ D, then add w to D.

[Method B] consider every suffix w of r that satisfies (5.4).

If w /∈ D, then add w to D.

[Method C] consider every suffix w of r that satisfies (5.4).

If wx /∈ D, then add wx to D.

S5 If s = λ, then exit.

Otherwise, I :=λ. Go back to S2.

Example

We show an example how Phase 1 with Method A processes s = s131 =

alfeatsalfalf . Assume that all one-byte characters are assigned to integers 0–255

in the dictionary D (e.g., a is 97, e is 101, f is 102, and so on), and s71 = alfeats

has already been processed as shown in Table 5.5. Then, s138 = alfalf is processed

as follows.

1. I :=alf . j :=7. Output ξ = 258.

2. Since I is not equal to any T-prefix pi, 1 ≤ i ≤ 6, I is assigned to p7.
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Table 5.5. Example of Phase 1 with Method A for s71 = alfeats.

I ξ pj Entry Phrase Added to D
a 97 p1 − −
l 108 p2 256 p1p2 = al
f 102 p3 257 p2p3 = lf

258 p1p2p3 = alf
e 101 p4 259 p3p4 = fe

260 p2p3p4 = lfe
261 p1p2p3p4 = alfe

a 97 p1 − −
t 116 p5 262 p1p5 = at
s 115 p6 263 p5p6 = ts

264 p1p5p6 = ats

3. The parsed part of s is represented as r := s101 = p1p2p3p4p1p5p6p7. Then,

three phrases satisfying (5.3), i.e., p6p7, p5p6p7, p1p5p6p7, are added, as entries

265–267, respectively, to the dictionary D.

4. Again, the next I is alf . Output ξ = 258.

5. r :=s131 = p1p2p3p4p1p5p6p7p7.

6. h :=2. p27 = alfalf is added as entry 268 to D.

In Phase 2, a sequence (ξ1, ξ2, ξ3, . . .) obtained in Phase 1 is converted to a

sequence (η1, η2, η3, . . .) as follows. For l = 1, 2, . . ., we sort all numbers appeared in

ξl−1 = (ξ1, ξ2, . . . , ξl−1) in the descending order of frequencies, and other numbers

not appeared in ξl−1 are attached to the sorted list in the increasing order of

numbers. Then, ηl is the position of ξl in the above list. Note that the maximum

of ηl, say Mηl , is bounded by the number of phrases stored in the dictionary D

at the moment ξl is outputted from Phase 1. As a result, the distribution of η’s

becomes almost monotonically decreasing as shown in Figs. 5.4 and 5.5.

In Phase 3, first, each ηl is encoded to a codeword of a Start-Step-Stop code
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Figure 5.4. Distributions of ξ’s and η’s for ‘progc’ in the Calgary Corpus for
Method A.

Table 5.6. Start-Step-Stop code with start = 1, step = 2, stop = 7.

Number First Second
0 1 0
1 1 1
2 01 000
3 01 001
...

...
...

9 01 111
10 001 00000
11 001 00001
...

...
...

41 001 11111
42 000 0000000
43 000 0000001
...

...
...

169 000 1111111
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(b) Distribution of η’s.

Figure 5.5. Distributions of ξ’s and η’s for ‘progc’ in the Calgary Corpus for
Method C.

[47] with three parameters, i.e., start, step, and stop*1. Each codeword consists

of two parts. The first part represents an integer, say m, as a unary number.

That is, m is encoded to m “0’s” terminated by a single “1”. However, when

m = (stop−start)/step, m is exceptionally encoded to m “0’s”. The length of the

second part is given by lm = start+m×step. The value of stop can be determined

by start, step, and Mηl .

Next, an arithmetic coder encodes the first part with (stop − start)/step fre-

quency tables, where the i-th frequency table is used to encode the i-th bit of the

first part. For each m represented by the first part, we separately prepare lm fre-

quency tables in order to encode the second part by another arithmetic coder. The

i-th frequency table is used to encode the i-th bit of the second part. Each time

after ηl is encoded, frequency counters are updated. For the purpose of decoding,

*1We used start = 1 and step = 1.
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file size (or the number of η’s) is written to the header of the output file.

5.5 Experiments

First, we compared the proposed scheme with the Müller-Schimpfky scheme and

the UNIX compress on the Calgary Corpus. As shown in Table 5.4, the proposed

scheme can compress all the files in the Calgary Corpus more efficiently than the

Müller-Schimpfky scheme and the UNIX compress. On the whole, Method A is

superior to Methods B and C. However, as shown in Table 5.4, the proposed scheme

is inferior to the UNIX bzip2, which is based on the block sorting scheme [1]. In

the case of ‘book1’, ‘geo’, and ‘pic’, the proposed scheme can compete with the

UNIX gzip, which is based on the LZ77 scheme.

Since the parsing procedures of our scheme are not exactly the same as T-

decomposition, we examined how each of our parsing procedures is correlated

with T-decomposition. Figure 5.6 shows the relation between the T-complexity

and the number of parsed subsequences (#ξ) for the files in the Calgary Corpus.

We can see a linear relation between #ξ and the T-complexity. Figure 5.7 shows

the relation between the dictionary size and #ξ. We can also see a linear relation

between #ξ and the dictionary size.

Next, we carried out an experiment on the file of 105 bytes, called ‘alpha-

bet.txt’*2, which consists of repetitions of the alphabet, i.e., abc · · · xyzabc · · ·

xyz · · · . Our scheme outperformed than the UNIX compress as shown in Ta-

ble 5.7. In particular, our schemes with Methods A and B compressed this file

more efficiently than the UNIX gzip.

Finally, we compared our schemes with LZW and LZMW [47], which are used

in Phase 1 but the same coding is used in Phases 2 and 3. As shown in Table 5.8,

LZMW defeated Methods A, B, and C, while the proposed scheme was better than

*2This file is available at http://corpus.canterbury.ac.nz/descriptions/artificl/alphabet.html.
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Figure 5.6. T-complexity (vertical axis) plotted against the number of parsed
subsequences (horizontal axis). The broken line shows the result of linear regression
of the data measurement values.
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Figure 5.7. Dictionary size (vertical axis) plotted against the number of parsed
subsequences (horizontal axis). The broken line shows the result of linear regression
of the data measurement values.
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Table 5.7. Compressed file size [bytes] of ‘alphabet.txt’ in the case of the UNIX
gzip, bzip2, compress, and our scheme (A, B, and C).

gzip bzip2 compress A B C
315 131 3053 68 305 2459

Table 5.8. Compression ratios for the Calgary Corpus when LZW and LZMW are
used in Phase 1 but the same coding is used in Phases 2 and 3. The compression
ratios achieved by our scheme (A, B, and C) are shown again.

File LZW LZMW A B C

bib 0.401 0.330 0.348 0.376 0.392
book1 0.395 0.353 0.410 0.393 0.400
book2 0.378 0.314 0.381 0.385 0.375
geo 0.632 0.588 0.609 0.635 0.640
news 0.444 0.377 0.428 0.431 0.436
obj1 0.573 0.521 0.543 0.552 0.567
obj2 0.469 0.372 0.412 0.443 0.455

paper1 0.450 0.382 0.437 0.448 0.440
paper2 0.421 0.367 0.428 0.426 0.417
paper3 0.456 0.410 0.462 0.462 0.453
paper4 0.496 0.452 0.479 0.497 0.494
paper5 0.521 0.465 0.512 0.505 0.513
paper6 0.463 0.396 0.440 0.445 0.452
pic 0.113 0.107 0.107 0.107 0.113

progc 0.454 0.383 0.431 0.435 0.445
progl 0.360 0.278 0.310 0.327 0.342
progp 0.363 0.274 0.318 0.327 0.347
trans 0.382 0.268 0.292 0.313 0.361

LZW on the whole.

5.6 Discussions

5.6.1 Comparison of Methods A, B, and C

In general, when the dictionary size increases, I becomes longer, #ξ decreases,

and compression ratio improves.
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Figure 5.8. Comparison of the dictionary size.

Since the form satisfying (5.3) is more likely to fit the suffix of the parsed part of

a sequence than the form satisfying (5.4), Method A adds more phrases to its dictio-

nary than does Method B. Figure 5.8 shows #D(C)/#D(A) and #D(B)/#D(A),

where #D(A), #D(B), and #D(C) represent the dictionary size for Methods A,

B, and C, respectively. We observe that #D(B) < #D(A). Figure 5.9 shows

#ξ(C)/#ξ(A) and #ξ(B)/#ξ(A), where #ξ(A),#ξ(B), and #ξ(C) are the num-

ber of parsed subsequences for Methods A, B, and C, respectively. We observe that

#ξ(B) > #ξ(A). So, Method A can attain better compression than Method B.

Furthermore, Method A outperforms Method C although #D(A) < #D(C)

and #ξ(A) > #ξ(C), as shown in Figs. 5.8 and 5.9. This is because the distribution

of η’s for Method A is more biased than that for Method C. In Method C, the

number of appearances of each phrase as I is limited by the number of alphabet

symbols. Thus, the distribution of η’s becomes flat and worsens the compression

of η’s.

5.6.2 Single-Pass Realization

In Section 5.4, we explained the proposed scheme by dividing it into three phases.

But, we note that encoding in each phase is sequential. So we can easily realize

88



M e t h o d B
!

M e t h o d A
M e t h o d C

!
M e t h o d Ab i b b o o k 1 b o o k 2 g e o n e w s o b j 1 o b j 2 p a p e r 1 p a p e r 2 p a p e r 3 p a p e r 4 p a p e r 5 p a p e r 6 p i c p r o g c p r o g l p r o g p t r a n s0 . 80 . 91

1 . 11 . 2
#ξ(B)/#ξ(A)

#ξ(C)/#ξ(A)

Figure 5.9. Comparison of #ξ.

the proposed scheme as a single-pass scheme.

Furthermore, encoding in Phase 1 can be implemented independently of Phases 2

and 3. So, Phase 1 can easily be combined with any other coding scheme of integers

instead of Phases 2 and 3.

5.6.3 Universality of the Proposed Scheme with Method C

The universality of the proposed scheme with Method C for stationary ergodic

sources can be proved following a line of argument alike to the universality proof

of LZ78 [3].

Let c and d be the number of parsed subsequences (#ξ) and the dictionary

size, respectively. On the basis of Figs. 5.6(c) and 5.7(c), we assume that there

exist constants α, β such that d ≤ αc and c ≤ βt, where t is the T-complexity.

Let N be the length of a sequence sN = s1s2 · · · sN ∈ AN . Then compression ratio

(c log2 d)/N is evaluated as follows.

c log2 d

N
≤ c log2(αc)

N

=
c log2 c

N
+ (log2 α)

c

N

≤ c log2 c

N
+ β(log2 α)

t

N
.
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The second term converges to 0 as N → ∞ because the T-complexity is an in-

creasing concave function of N [24,59]. For a fixed integer k, define the probability

distribution Qk on SN by

Qk(s
N) =

N∏
j=1

Pr(sj|sj−1
j−k),

where sji ≡ (si, si+1, . . . , sj), i ≤ j, and sj−i = sj1 for any i ≥ 0. Suppose that sN

is parsed into c subsequences, y1, y2, . . . , yc. Let νi be the index of the start of yi,

i.e., yi = s
νi+1−1
νi . For each i = 1, 2, . . . , c, define ri = sνi−1

νi−k. Let clr be the number

of subsequences yi with length l and preceding state ri = r for l ≥ 1 and r ∈ Ak.

Then,
∑

l,r clr = c and
∑

l,r lclr = N hold.

Following the proof of Ziv’s inequality in [3], we have

log2 Qk(s
N) =

c∑
i=1

log2 Qk(yi|ri)

=
∑
l,r

∑
i: |yi|=l,ri=r

log2Qk(yi|ri)

=
∑
l,r

clr
∑

i: |yi|=l,ri=r

1

clr
log2Qk(yi|ri)

≤
∑
l,r

clr log2

(∑
i: |yi|=l,ri=r Qk(yi|ri)

clr

)
.

Since the number of duplications of yi is limited by #A in Method C,
∑

i: |yi|=l,ri=r Qk(yi|ri) ≤

#A. Hence,

log2 Qk(s
N) ≤ c log2#A−

∑
l,r

clr log2 clr

= c log2#A− c log2 c− c
∑
l,r

clr
c
log2

clr
c
.
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Denoting πlr =
clr
c
, we have

∑
l,r

πlr = 1,
∑
l,r

lπlr =
N

c
.

Let us define random variables U, V such that Pr(U = l, V = r) = πlr, E[U ] = N
c
.

Then,

− log2Qk(s
N)

N
≥ −c log2 #A

N
+

c log2 c

N
− c

N
H(U, V )

≥ −c log2 #A
N

+
c log2 c

N
− c

N
(H(U) +H(V ))

≥ c log2 c

N
− c

N
(H(U) + (k + 1) log2 #A).

Since H(U) ≤ (E[U ] + 1) log2(E[U ] + 1)− E[U ] log2 E[U ] holds [3],

H(U) ≤ log2
N

c
+

(
N

c
+ 1

)
log2

( c

N
+ 1

)
.

Recalling the assumption c ≤ βt, we have

− log2 Qk(s
N)

N
≥ c log2 c

N
− εk(N),

where εk(N) → 0 as N → ∞. Thus, for a satisfactory ergodic process,

lim sup
N→∞

c log2 c

N
≤ lim

N→∞

[
− log2 Qk(S

N)

N

]
= lim

N→∞

[
− 1

N

N∑
j=1

log2 Pr(Sj|Sj−1
j−k)

]
→ −E[log2 Pr(Sj|Sj−1

j−k)]

= H(Sj|Sj−1
j−k)

Since H(Sj|Sj−1
j−k) converges to the entropy rate of the process as k becomes large

for j = k + 1, the proposed scheme with Method C is universal.
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5.7 Conclusions

We reviewed several schemes in the LZ78 family, i.e., LZ78, LZW, and LZMW,

in Section 5.2. In Section 5.3, we briefly described the Müller-Schimpfky scheme.

In the Müller-Schimpfky scheme, a given sequence is represented by a T-prefix

matrix, a literal vector, and a set of T-expansion parameters, and then the sequence

obtained from the concatenation of all columns of the T-prefix matrix is encoded by

an arithmetic coder. The Müller-Schimpfky scheme has the following defects. The

first defect is that O(n2) elements of the T-prefix matrix have to be encoded, where

n is the number of T-prefixes. The second defect is that the literal vector with n

bytes is encoded separately from the T-prefix matrix. To overcome the defects, we

proposed the data compression scheme based on a dictionary method such that

all phrases added to a dictionary have a recursive structure similar to T-codes in

Section 5.4. We considered the three dictionary updating rules, Methods A, B,

and C.

The compression performance of our scheme was compared with other schemes

in Section 5.5. Although our scheme is inferior to the UNIX bzip2 and gzip on

the whole, it succeeded in compressing the Calgary Corpus more efficiently than

the Müller-Schimpfky scheme and the UNIX compress. The experiment showed

that the number of parsed subsequences of our scheme has a linear relation with

the T-complexity. On the whole, Method A outperformed Methods B and C.

Methods A and B were superior to Method C with respect to compressing simple

periodic sequences. However, LZMW outperformed Methods A and B because the

dictionary size for LZMW is larger than that for Methods A and B.

In Section 5.6, we first explained the reason why Method A outperformed

Method B and C. Next, we showed how to realize a single-pass scheme. Finally,

we theoretically proved that Method C is universal for stationary ergodic sources

under the assumptions that the number of ξ’s and the dictionary size are propor-

92



tional to the T-complexity, which is experimentally validated.
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Chapter 6

Application of the T-complexity

to Randomness Testing for

Cryptography

6.1 Introduction

6.1.1 Importance of Randomness Testing in Cryptography

A symmetric-key cryptosystem is ideal when an exhaustive key search is the best

way to break it. If keys are not sampled equiprobably from a specified key space,

such a symmetric-key cryptosystem is regarded as insecure. Hence, keys used in

symmetric cryptosystems are generated by random number generators. Random

number generators are also used to generate public-key parameters such as RSA-

moduli of the RSA public-key cryptosystem [40]. So, how can we obtain random

numbers or random bit sequences? A series of coin tosses may provide us with a

random bit sequence. But, can we guarantee the fairness of the coin? Since coin-

tossing obeys Newton’s laws of motion, the final outcome can be predicted from

initial conditions under certain circumstances [4]. Even if the coin is assumed to
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be fair, such a generation is too slow to be used in cryptosystems. Instead of coin-

tossing, we may use physical chaotic processes such as radioactive decay, thermal

noise, metastability, atmospheric noise, and so on. But, can we be sure that the

output is not biased and independent of the previous outputs*1? The only way of

telling is to carry out statistical randomness tests on the obtained bit sequences.

Random number generators are divided into two categories: the truly (physical)

random number generator and the pseudo-random number generator. In general,

a physical random number generator is expensive, slow compared to computation

or communication speed, and does not have reproducibility. These demerits limit

applications in cryptosystems. If a physical random number generator is used as

a keystream generator of a stream cipher, the whole keystream has to be shared

between two parties using a secure channel. But, such a keystream distribution

via a secure channel is affordable for only specialized purposes in the military or

the diplomatic services. Therefore, pseudo-random number generators are usually

used in cryptosystems.

A pseudo-random number generator used in cryptosystems is a polynomial time

algorithm that takes a short seed with length k bits as input and expands it into a

long sequence with length l (≫ k) bits deterministically that is indistinguishable

from a truly random sequence to anyone who does not know the seed, and hence

it has reproducibility. In a strict sense, the output of a pseudo-random number

generator is not random because the output is sampled from only 2k l-bit sequences,

but sharing the same seed between two parties is easy.

In order to check the security of a cryptosystem, first of all, we have to apply

a package of statistical randomness tests to the pseudo-random number gener-

ator used in it. Random numbers used in cryptosystems are required to have

polynomial-time unpredictability as well as the properties listed in Section 1.5.

*1The bias can be removed by de-skewing techniques like von Neumann’s method [44] or hash
functions. This removal of bias is called a post processing.
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Let us consider Mersenne twister (MT) [39]. MT is a high-quality pseudo-random

number generator, which generates M-sequences (maximum length linear feedback

shift register sequence), and is widely used in computer simulations. MT provides

a period of 219937 − 1 and 623-dimensional equidistribution up to 32-bit accuracy,

and it passes numerous randomness tests including the Diehard tests. However,

we can predict future outputs completely by observing a relatively small num-

ber of outputs and using the Berlekamp-Massey algorithm [38]. Therefore, the

evaluation of random numbers for cryptosystems should be stricter than that for

other applications. Unpredictability of a pseudo-random number generator can be

measured by the complexity of the output sequence. The NIST test suite includes

some randomness tests based on computable complexity measures. This is the

reason why the NIST test suite is most widely used in cryptographic fields. Each

randomness test included in the NIST test suite was designed to detect a specific

defect shown in Table 6.1 [49]. The NIST test suite enables us to examine the

output of a pseudo-random number generator from many different perspectives.

6.1.2 NIST Test Suite

History

In 2001, the NIST released NIST SP 800-22 [42] describing the NIST test suite.

When the NIST test suite was released, it included sixteen core randomness tests,

but currently consists of fifteen core randomness tests, which can be viewed as 188

statistical tests as shown in Table 6.2. The default input parameters used in the

NIST test suite are also shown in Table 6.2.

The NIST test suite is a widely used package of statistical tests in the field of

cryptography. For example, it was used in the following projects.

• AES project: a project undertaken by the NIST to select a block cipher

suitable for replacing the Data Encrption Standard (DES) [9].
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Table 6.1. Characteristics of randomness tests included in the NIST test suite.

Test Name Defect Detected
Frequency (Monobits) Too many zeros or ones in the entire sequence.
Test for Frequency
Within A Block Too many zeros or ones within M-bit blocks.

Cumulative Sum
(Cusum) Test Too large or too small maximal excursion of a random walk.

Runs Test
Large (small) total number of runs indicates that

the oscillation in the sequence is too fast (too slow).
Test For The Longest Run

Of Ones In A Block Deviation of the distribution of long runs of ones.

Random Binary Matrix
Rank Test

Deviation of the rank distribution from
a corresponding random sequence, due to periodicity.

Discrete Fourier Transform
(Spectral) Test Periodic features in the sequence.

Non-Overlapping (Aperiodic)
Template Matching Test Too many occurrences of non-periodic templates.

Overlapping (Periodic)
Template Matching Test Too many occurrences of m-bit runs of ones.

Maurer’s Universal
Statistical Test Compressibility

Approximate Entropy Test Non-uniform distribution of m-length words.

Random Excursions Test
Deviation from the distribution of the number of cycles
having exactly K visits in a cumulative sum random walk

to a certain state.
Random Excursions

Variant Test
Deviation from the distribution of the total number of visits

to a certain state in a cumulative sum random walk.
Serial Test Non-uniform distribution of m-length words.

Linear Complexity Test
Deviation from the distribution of the linear complexity

for finite length (sub)strings.
Lempel-Ziv

Complexity Test More compressed than a truly random sequence.

97



Table 6.2. Breakdown of the 188 Statistical Tests

Test Name #P -value Test ID Parameter
Frequency (Monobits) 1 1 -

Test For Frequency Within A Block 1 2 128
Cumulative Sum (Cusum) Test 2 3-4 -

Runs Test 1 5 -
Test For The Longest Run Of Ones In A Block 1 6 -

Random Binary Matrix Rank Test 1 7 -
Discrete Fourier Transform (Spectral) Test 1 8 -

Non-Overlapping (Aperiodic) Template Matching Test 148 9-156 9
Overlapping (Periodic) Template Matching Test 1 157 9

Maurer’s Universal Statistical Test 1 158 7, 1280
Approximate Entropy Test 1 159 10
Random Excursions Test 8 160-167 -

Random Excursions Variant Test 18 168-185 -
Serial Test 2 186-187 16

Linear Complexity Test 1 188 500

• eSTREAM [8]: a project sponsored by the ECRYPT Network of Excellence

to identify promising new stream ciphers.

Despite its reputation, several shortcomings of the NIST test suite have been

noted. It was reported in [15, 16, 28, 32] that the DFT test and the Lempel-Ziv

complexity test (LZ test) in the NIST test suite have some problems. Further-

more, in [30], the modification of the input size of the approximate entropy test

was recommended. The NIST updated some values of parameters for the DFT

test and removed the LZ test from the software of the NIST test suite in 2004.

But no official explanation was given about the reason why the LZ test was re-

moved. The DFT test with modified parameter values is still not ideal because

a more suitable value of a DFT test parameter was derived in [20]. Okutomi et

al. [45] evaluated the randomness of sequences generated by DES and SHA-1 [11]

on the basis of the NIST test suite, and showed that both the overlapping tem-

plate matching test and Maurer’s universal statistical test (Universal test) did not

follow the theoretical binomial distribution if DES or SHA-1 can be assumed to

be an ideal random number generator. The problem of the overlapping template

matching test was caused from inaccurate probability estimation for templates in
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the NIST test suite [18]. The accurate probabilities presented in [18] were later

incorporated into NIST SP 800-22 Revision 1 [43]. Moreover, the revised Univer-

sal test based on the model proposed by Coron [2] resolved the problems of the

original Universal test [27]. It was also reported in [17, 46] that the probabilities

used in the longest-run-of-ones test in the NIST test suite need to be corrected.

Furthermore, Hamano and Yamamoto showed in [20] that the NIST test suite fails

to detect non-random sequences with periodic small biases but a randomness test

based on all autocorrelation values can detect. Hamano, Sato, and Yamamoto also

showed in [23] that the NIST test suite including the linear complexity test (LC

test) fails to detect non-random sequences generated by concatenating two differ-

ent M-sequences with low linear complexity, but a modified LC test can detect

it. The defect of the original LC test comes from the fact that the deviation from

the ideal value is evaluated only for the last part of the whole linear complexity

profile.

In 2008, the NIST released NIST SP 800-22 Revision 1, and officially excluded

the LZ test, a randomness test based on the LZ-complexity, from NIST SP 800-

22 [43]. After the LZ test is excluded, NIST SP 800-22 includes no randomness

test based on a concrete data compression algorithm. In February 2009, the NIST

announced on the web that the NIST had discovered a problem with the DFT test

and advised disregarding the results of the DFT test without detailed explanation.

Test Procedure

The NIST test suite requires the generation of m (e.g., m = 103) random binary

sequences of length N (e.g., N = 106). Note that some statistical tests included

in the NIST test suite require that each sequence has a length at least 106. Each

generated sequence is applied to all 188 statistical tests in the NIST test suite (See

Table 6.2). Thus, each statistical test produces m P-values.

A statistical test considers that a sequence passes the test if P-value ≥ α, where
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α is the significance level (e.g., α = 0.01). For each statistical test, the proportion

of sequences that pass the test is computed. Let us denote the proportion by P .

P is expected to be p̂ = 1 − α if H0 is true. If the proportion P falls outside of

the range

[
p̂− 3

√
p̂(1− p̂)

m
, p̂+ 3

√
p̂(1− p̂)

m

]
, (6.1)

the sequences are considered as non-random. This range was adopted from the

three sigma method.

Additionally, the distribution of P-values is examined to check for uniformity

of P-values via applying a chi-square goodness-of-fit test on the m P-values. The

interval between 0 and 1 is divided into ten sub-intervals Ci = [0.1(i−1), 0.1i), i =

1, 2, . . . , 10. Let fi be the number of P-values falling into the sub-interval Ci. The

χ2-statistic given by

χ2 =

∑10
i=1

(
fi − m

10

)2
m
10

is computed. Let us denote the P-value of the χ2 value by U . If U ≥ 0.0001, it is

treated in the NIST test suite that the P-values distribute uniformly.

However, for α = 0.01 and m = 103, which are the most commonly used values,

the probability of type I error is relatively large because

Pr

{
P ≤ p̂− 3

√
p̂(1− p̂)

m

}
≈ 0.00328836,

and hence, under the assumption that all statistical tests are independent, the

probability that all of the 188 P ’s exceed the threshold p̂ − 3
√

p̂(1−p̂)
m

is (1 −

0.00328836)188 = 0.538359. Hence, the probability that the test on the 188 P ’s is

passed is only about 50% even if H0 is true.

In the NIST report [50] on the evaluation of AES finalists as random number
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generators, the P-value of P is used rather than the range given by Eq. (6.1), and

if the P-value of P is 0.0001 or more, the test on P is considered to be passed.

If we adopt this criterion, the minimum acceptable proportion is revised to 0.976

from 0.9805608 for α = 0.01 and m = 103.

6.1.3 Problems of the NIST LZ Test

The NIST LZ test procedure may be described as follows. Note that the one tailed

test is used in the LZ test. This test rejects H0 only for large positive z values,

i.e., small Wobs values compared to µ.

The NIST LZ Test

S1 Let s be a given binary sequence of length N .

S2 Let Wobs be the LZ-complexity of s.

S3 Compute z = (µ − Wobs)/σ, where µ = 69588.2019 and σ =
√
73.23726011

when N = 106. The values of µ and σ were computed using SHA-1.

S4 Compute P-value= 1
2
erf

(
z√
2

)
=

∫∞
z

1√
2π

exp
(
−u2

2

)
du.

The NIST gave no official explanation of the reason why the LZ test was ex-

cluded from the NIST test suite. However, the CRYPTREC*2 technical report [29]

listed the problems of the LZ test as follows.

1. The mean µ and variance σ2 of the LZ-complexity are not derived by theory

but are given experimentally.

2. The differences between the theoretically evaluated values of the mean and

variance of the LZ-complexity and those experimentally obtained values are

not negligible for sequences of practical length (e.g., 106).

*2CRYPTREC is an abbreviation of Cryptography Research and Evaluation Committees. It
refers to a Japanese project to evaluate and monitor the security of e-Government recommended
ciphers, as well as to examine the establishment of evaluation criteria for cryptographic modules.
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3. It is suspicious that the P-value derived from the LZ-complexity of a random

sequence takes continuous uniform distribution.

Doganaksoy and Göloglu [5] proposed a randomness test based on the theoret-

ical distribution of the LZ-complexity. Their test is described as follows.

The Modified LZ Test

S1 Let s be a given binary sequence of length N .

S2 Divide s into N ′ =
⌊
N
M

⌋
non-overlapping blocks of length M . Hereafter, we

assume that M = 1024.

S3 Let πi, 1 ≤ i ≤ N ′, be the LZ-complexity of the i-th block.

S4 Count r1, . . . , r5 given as follows.

r1 = |{i : πi ≤ 174, 1 ≤ i ≤ N ′}|,

r2 = |{i : πi = 175, 1 ≤ i ≤ N ′}|,

r3 = |{i : πi = 176, 1 ≤ i ≤ N ′}|,

r4 = |{i : πi = 177, 1 ≤ i ≤ N ′}|,

r5 = |{i : πi ≥ 178, 1 ≤ i ≤ N ′}|.

S5 Compute the test statistic: χ2 =
∑5

i=1
(ri−N ′qi)2

N ′qi
, where qi = 0.05262, q2 =

0.19987, q3 = 0.39720, q4 = 0.29107, q5 = 0.05924.

Make sure that N ′ min{qi : 1 ≤ i ≤ 5} ≥ 5.

S6 Compute P-value= igamc
(

4
2
, χ

2

2

)
.

The theoretical distribution for the number of sequences with a given LZ-

complexity is calculated for length M using two recurrence equations. But M is

restricted to be relatively small (e.g., M ≤ 1024) because the time complexity to
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compute the theoretical distribution is very high, i.e., O (M5/ logM). By contrast,

the NIST LZ test uses the LZ-complexity for a whole sequence of length N = 106.

This restriction is a serious defect because the complexity of a long sequence is

not evaluated directly. Hence, this test cannot become a replacement of the NIST

LZ test.

The NIST test suite is superior to the statistical test packages of [33,37] because

only the NIST test suite includes randomness tests based on complexity measures.

So, the three problems of the LZ test listed before should be solved. But, it is

impossible to solve the third problem because the empirical distribution of P-

values for random sequences of length 106 is strictly discrete even if the number of

samples is very large. So, the third problem is the main defect of the LZ test. In

order to overcome the main defect of the LZ test, we construct a new randomness

test based on the T-complexity instead of the LZ-complexity as described in the

next section [19,22].

6.2 Randomness Test Based on the T-complexity

When the forward T-decomposition algorithm for generalized T-codes (Algorithm-

C) was used, the empirical mean and standard deviation of the T-complexity for

4800 Marsaglia’s random numbers [37] of length 106 were 38718.6 and 58.6585,

respectively. These values are almost the same as the case of the forward T-

decomposition algorithm for simple T-codes (Algorithm-B). This result is due to

the fact that in the case of random numbers, the same long sequence seldom

occurs sequentially even if it occurs several times. If pseudo-random numbers

have a defect such that some long subsequences tend to occur sequentially, the

defect can also be detected by Algorithm-B. Hence, for the purpose of randomness

testing, we use Algorithm-B rather than Algorithm-C.

We first compare distributions of the LZ-complexity and the T-complexity. We

103



LZ-complexity

Figure 6.1. Empirical distribution of the LZ-complexity of sequences of length
106 (dots) and the normal distribution N(69588.2, 8.557882) (solid line).

sampled 103 sequences of length 106 from Marsaglia’s random numbers, which are

claimed to be virtually unassailable sources of random bits. Figure 6.1 shows the

empirical distribution of the LZ-complexity and the normal distribution in the

form of cumulative distribution. It was assumed in the NIST LZ test that the

former distribution can be approximated by the latter distribution. But we note

that the empirical distribution of the LZ-complexity is strictly discrete although

these two distributions are close to each other. This means that the distribution

of P-values also becomes discrete. By contrast, as shown in Fig. 6.2, the empirical

distribution of the T-complexity can be approximated well by the normal distribu-

tion. When the length of a sequence is increased to 108, the empirical distribution

of the LZ-complexity can be treated as a continuous distribution, which can be

approximated well by the normal distribution. But the computation of the LZ-

complexity becomes very time and memory consuming. Moreover, it is uncommon

to evaluate random sequences of length ≥ 108 with the NIST test suite because a

single sequence has to be evaluated by all randomness tests included in the NIST

test suite, some of which are time-consuming.

Next we investigate the T-complexity profile using a moving average model

U(i) = e(i) − ψe(i − 1), where e(i) is a random variable following the standard
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T-complexity

Figure 6.2. Empirical distribution of the T-complexity of sequences of length 106

(dots) and the normal distribution N(38720.6, 58.29372) (solid line).

T
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Figure 6.3. T-complexity profiles for ψ = 0.0, 0.2, 0.4, 0.6, 0.8. Wider broken lines
correspond to larger ψ.

normal distribution N(0, 1) and ψ is a constant parameter. We used MT to gen-

erate e(i). U(i) outputs zero or one depending on its sign. The dependence

between adjacent bits becomes stronger as ψ becomes larger. Figure 6.3 shows

T-complexity profiles for sequences of length 106 and Fig. 6.4 presents a magnified

detail of Fig. 6.3. Five values of ψ were considered. We note from Figs. 6.3 and

6.4 that T-complexity profiles can distinguish the level of dependence.

Let T be a random variable defined as the T-complexity of a sequence. If H0

is true (the sequence is random), Z = T−µ
σ

approximately follows N(0, 1), where

µ = 38720.6, σ = 58.2937. The values of µ and σ were obtained experimentally

from 4800 Marsaglia’s random sequences of length 106. If Z ∼ N(0, 1), P-value =
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Figure 6.4. Magnified detail of Fig. 6.3.

erf
(
|Z|/

√
2
)
follows the uniform distribution U(0, 1). Thus, the distribution of P-

values derived from T-complexities satisfies the assumption of the NIST test suite.

We sampled 103 sequences of length 106 generated by the DES in the output

feedback mode [10], which is considered a reliable random number generator. The

Kolmogorov-Smirnov test [33] was applied to the empirical distribution of P-values

and U(0, 1). The test result was that K+
n = 1.21525 and K−

n = 0.139923. Since

the critical point of the significance level α = 0.05 is 1.2188, the KS test concluded

that the P-value follows U(0, 1).

Next, we consider a pass ratio P defined by

P =
#{P-value : (P-value) ≥ α}

m
,

where #{A} stands for the number of occurrences of event A, α is a given signifi-

cance level, m is a given number of trials, and the P-value is calculated from the

T-complexity t. The pass ratio P is normalized by

η =
P − p̂√
p̂(1−p̂)

m

,

where p̂ = 1 − α. When Xi, 1 ≤ i ≤ m, are Bernoulli random variables taking 1

with probability 1−α and 0 with probability α, B =
∑m

i=1 Xi follows the binomial
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η

Figure 6.5. Empirical distribution of η (solid line) and the theoretical distribution
(broken line).

Table 6.3. Probabilities of η.

Range of η Expected Observed
(−∞,−2) 0.0264 0.0290
(−2,−1) 0.108 0.127
(−1, 0) 0.283 0.273

0 0.126 0.130
(0, 1) 0.328 0.316
(1, 2) 0.119 0.115
(2,∞) 0.0101 0.0100
Sum 1 1

distribution with parameters m and α. Under the null hypothesis, η is expected

to follow the distribution of
(
B
m
− p̂

)
/
√

p̂(1−p̂)
m

. In Fig. 6.5, this theoretical distri-

bution is displayed together with an empirical distribution of η based on m = 103

samples of P in the case where α = 0.01 and sequences of length 106 are generated

by the DES with the output feedback mode. The chi-square goodness-of-fit test

was applied to these two distributions using data shown in Table 6.3. The calcu-

lated χ2-statistic is 4.64. Since the upper 5% critical point of the χ2 distribution

with 6-degree of freedom is 12.592, the chi-square goodness-of-fit test concluded

that the empirical distribution of η follows the theoretical distribution. Therefore,

a randomness test based on the T-complexity may be expected to perform well.

From the above results, the procedure of a new randomness test based on the
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T-complexity, called the T-complexity test hereafter, can be constructed as follows.

T-complexity Test

S1 Set α and m to a given significance level and a given trial number, respectively

(e.g. α = 0.01 and m = 103).

S2 Let s and t be a given binary sequence of length N and the T-complexity of s,

respectively.

S3 Compute P-value= erf
(

|z|√
2

)
, where z = t−µ

σ
.

S4 If the number of trials is less than m, go back to S2.

S5 Compute P =
#{P-value : (P-value) ≥ α}

m
.

S6 Compute η = P−p̂
q

p̂(1−p̂)
m

, where p̂ = 1− α.

S7 Test the null hypothesis H0 : η ∼ N(0, 1).

S8 If H0 is rejected, conclude that the given sequences are non-random.

Note that the decision rule of the NIST test suite can be used instead of steps

S5–S8 after collecting m P-values.

6.3 Experiments

Sequences of good random numbers, e.g. Marsaglia’s random numbers and pseudo-

random numbers generated by the DES in the output feedback mode, can pass

the T-complexity test. But, it can detect some sequences of undesirable pseudo-

random numbers that cannot be detected well by the NIST test suite as shown in

the following examples.
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Example 1

First, we considered pseudo-random numbers obtained by a multiplicative con-

gruential generator (MCG):

 Xn+1 = 65539Xn mod 231

X0 = 1
(6.2)

It is well-known that these pseudo-random numbers are undesirable because three

adjacent numbers have a three-dimensional lattice structure as shown in Fig. 6.6.

We generated 103 sequences of length 106 by a sequential concatenation of
⌊
Xi

223

⌋
(eight bits). In the case of the Marsaglia’s random numbers, the mean and stan-

dard deviation of the LZ-complexity were µLZ = 69588.2 and σLZ = 8.55788,

respectively, and the mean and standard deviation of the T-complexity were µT =

38720.6 and σT = 58.2937, respectively. On the other hand, in the case of the

MCG sequences, the mean of the LZ-complexity was 69584.2 ≈ µLZ − 0.46σLZ ,

and the mean of the T-complexity was 37768.4 ≈ µT − 16.3σT . Thus, the T-

complexity can detect the non-randomness of the MCG sequences more easily

than the LZ-complexity. The 103 MCG sequences were evaluated using both the

NIST test suite and the T-complexity test. The default parameters were used in

the NIST test suite. We used the NIST test suite after correcting it on the basis

of [2,15–18,20]. The pass ratio of the T-complexity test was P = 0 (η = −314.6).

On the other hand, the reject ratios for the NIST test suite were very low as shown

in Table 6.4. Hence, the T-complexity test is considerably superior to the NIST

test suite in terms of the rejection of the undesirable MCG sequences. Addition-

ally, we also tried the modified LZ test proposed in [5], with α set to 0.01. But,

the reject ratio turned out to be 0.006.
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Example 2

Next, we considered a non-random sequence Y = Y0, Y1, Y2, · · · such that the

size of each Yi is one byte (eight bits). For i ≥ 0, Y3i and Y3i+1 are generated by

MT, but Y3i+2 is the lower eight bits of Y3i + Y3i+1. We generated 103 sequences

of length 106. The mean of the LZ-complexity was 69586.5 ≈ µLZ − 0.20σLZ ,

and the mean of the T-complexity was 38284.7 ≈ µT − 7.48σT . Thus, the T-

complexity can detect the non-randomness of the sequences Y more easily than

the LZ-complexity. The 103 sequences Y were evaluated using the NIST test

suite, the T-complexity test, and the modified LZ test. The pass ratio of the T-

complexity test was P = 0 (η = −314.6). On the other hand, the reject ratios for

the NIST test suite were very low as shown in Table 6.5, and the reject ratio of

the modified LZ test was 0.007. Hence, the T-complexity test is also considerably

superior to both the NIST test suite and the modified LZ test in terms of the

rejection of the non-random sequences Y .

It is worth noting that if (Y3i, Y3i+1) is perfectly random, each of (Y3i−1, Y3i) and

(Y3i+1, Y3i+2) is also perfectly random, but (Y3i, Y3i+1, Y3i+2) is not random. We

can easily construct many kinds of non-random numbers with such characteristics,

but the NIST test suite is weak in the detection of such non-random numbers.

Therefore, our proposed randomness test is suitable as a supplement to the NIST

test suite in order to make up for its weakness.
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Figure 6.6. View of 104 triples generated from the MCG given by Eq. (6.2).

Table 6.4. Reject Ratios of the NIST test suite for MCG sequences when α = 0.01.

Test Name Reject Ratio
Monobit 0.010

Block Frequency 0.009
Cusum 0.011
Runs 0.007

Long Runs of Ones 0.014
Rank 0.009

Spectral DFT 0.000
Aperiodic Templates 0.021
Periodic Templates 0.010
Universal Statistical 0.015
Approximate Entropy 0.010
Random Excursions 0.021

Random Excursions Variant 0.013
Serial 0.037

Linear Complexity 0.009
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Table 6.5. Reject Ratios of the NIST test suite for sequences Y when α = 0.01.

Test Name Reject Ratio
Monobit 0.012

Block Frequency 0.008
Cusum 0.014
Runs 0.012

Long Runs of Ones 0.023
Rank 0.004

Spectral DFT 0.000
Aperiodic Templates 0.019
Periodic Templates 0.011
Universal Statistical 0.010
Approximate Entropy 0.015
Random Excursions 0.015

Random Excursions Variant 0.015
Serial 0.021

Linear Complexity 0.010

6.4 Conclusions

In Section 6.2, we first showed that the empirical distribution of the T-complexity

for random sequences of length 106, the most common length used, can be approxi-

mated well by the normal distribution, while the distribution of the LZ-complexity

for random sequences of length 106 is strictly discrete. So, we found that the main

defect of the NIST LZ test can be solved by use of the T-complexity instead of the

LZ-complexity in randomness testing. Next, the experiment using a moving aver-

age model confirmed that the magnitude of the T-complexity of a given sequence

s indicates the degree of randomness, and T-complexity profiles can distinguish

the level of dependence between adjacent bits. Then, we checked that the P-value

of the T-complexity of a random sequence distributes uniformly in the range of 0

to 1 via applying the Kolmogorov-Smirnov test on 103 sampled P-values. Addi-

tionally, we checked that, for random sequences, the empirical distribution of the

normalized pass ratio η follows the theoretical distribution. On the basis of the

above results, we derived the T-complexity test.
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In Section 6.3, the power of the T-complexity test was evaluated. The T-

complexity test detected the undesirable pseudo-random numbers generated by

the MCG and the non-random byte sequences Y = Y0, Y1, Y2, · · · , where Y3i and

Y3i+1 are random, but Y3i+2 is given by Y3i + Y3i+1 mod 28, more easily than the

NIST LZ test. Moreover, it outperformed not only all other randomness tests

included in the NIST test suite but also the modified LZ test [5] in terms of the

detection of the non-random sequences.

Since the output form of the T-complexity test is the same as that of the NIST

test suite, it can easily be used in combination with the NIST test suite as a

supplement to the NIST test suite.
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Chapter 7

Conclusions

In Chapter 2, we devised the forward T-decomposition algorithms, Algorithm-B

for simple T-codes and Algorithm-C for generalized T-codes, in order to parse a

given sequence sequentially. Both algorithms are efficient owing to the use of a trie

structure. For Algorithm-B, the experiment showed that its computation time for

a random sequence of length N is about O(N1.2). The forward T-decomposition

enables the use of the T-complexity in on-line applications.

In Chapter 3, we derived the expressions of the T-complexity profile and the

LZ-complexity profile in a unified way using the proposed differential equation

technique. The obtained formulas regarding the T-complexity profile and the LZ-

complexity profile agree well with the ones in previous studies. We also clarified

that the T-entropy HT corresponds to kh(p), where k is a constant and h(p) is the

binary entropy function, in our derivation. The crucial point of our derivation is

that it can explain the reason why the maximum T-complexity profile is necessarily

expressed using the logarithmic integral function.

In Chapter 4, the properties of the maximum T-complexity sequences were

investigated and compared with those of the maximum LZ-complexity sequences

using the NIST test suite, the discrete Fourier transform (DFT), and the autocorre-

lation function. The analysis showed that the maximum T-complexity sequences
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are less random than the maximum LZ-complexity sequences. The NIST DFT

test and the NIST Universal test clearly detected the non-randomness in the max-

imum T-complexity sequences. However, the maximum T-complexity sequences

on average show larger LZ-complexities than random sequences. The cause of the

non-randomness in the maximum T-complexity sequences was quantitatively and

qualitatively explained.

In Chapter 5, we proposed a new data compression scheme based on T-codes

using a dictionary method such that all phrases added to a dictionary have a

recursive structure similar to T-codes. The proposed scheme can overcome the

defects of the Müller-Schimpfky scheme. We considered three dictionary updating

rules, Methods A, B, and C. Regardless of the methods used, our scheme succeeded

in compressing the Calgary Corpus more efficiently than the Müller-Schimpfky

scheme and the UNIX compress. However, the proposed scheme turned out to be

inferior to LZMW, a variant of LZ78, the UNIX gzip, and the UNIX bzip2. The

experiment showed that the number of parsed subsequences of our scheme, #ξ,

has a linear relation with the T-complexity. Our scheme can be implemented as a

single-pass scheme, and when it is used with Method C, it is proved to be universal

for stationary ergodic sources under the assumptions that the number of ξ’s and

the dictionary size are proportional to the T-complexity.

In Chapter 6, we proposed the T-complexity test. We checked that the distri-

bution of P-values and the normalized pass ratio η follow the respective theoretical

distribution in the case of random sequences in order to show the validity of the

T-complexity test. The proposed test outperformed the NIST LZ test, the modi-

fied LZ test proposed in [5], and all other randomness tests included in the NIST

test suite in terms of the detection of the undesirable pseudo-random numbers

generated by the MCG and the non-random byte sequences Y = Y0, Y1, Y2, · · · ,

where Y3i and Y3i+1 are random, but Y3i+2 is given by Y3i + Y3i+1 mod 28. Since

the output form of the T-complexity test is the same as that of the NIST test suite,

115



it can easily be used in combination with the NIST test suite as a supplement to

the NIST test suite.

We remark that since both the standard T-decomposition (Algorithm-A) and

the forward T-decomposition (Algorithm-B) are based on the same recursive struc-

ture of T-codes, the standard T-decomposition can also be used for randomness

testing in the same way as the forward T-decomposition. But, Algorithm-B is

faster than Algorithm-A as shown in Table 2.1 and can process a given sequence

on-line. Furthermore, the forward T-decomposition has a better correspondence

to the LZ78 incremental parsing than the standard T-decomposition because, on

the basis of the forward T-decomposition, we can derive the expressions of the T-

complexity profile and the LZ-complexity profile in a unified way and can design

the sequential data compression scheme based on T-codes.

In conclusion, the T-complexity has superior properties to the well-known LZ-

complexity, and hence it may be used in numerous applications as a replacement

of the LZ-complexity in the future.

Future aims are listed as follows.

• To improve the implementation of the forward T-decomposition algorithm so

that its computation time is reduced to about O(N), where N is the length

of a random sequence.

• To provide the mathematical proof that the asymptotic distribution of the

T-complexity of a random sequence is the normal distribution.

• To popularize the T-complexity test in the field of cryptography.
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