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Abstract

In this paper, we consider initial value-boundary value problems for partial
differential equations of hyperbolic type whose coefficients are all independent
of time f. We show a necessary and sufficient condition on initial values
guaranteeing that values of the corresponding solutions over the whole spatial
domain and #=1, (given time), uniquely determine coefficients in the equation.
Moreover for any given initial values, we specify a spatial subdomain where
all coefficients can be determined from the above-mentioned values of the
solutions. Finally we prove: in the case of the one spatial dimension, such
a domain is maximal among subdomains where coefficients can be uniquely
determined.

§1.  Imtroduction -

In this paper, we consider initial value-boundary value problems for partial
differential equations of hyperbolic type:

PUEY | orugnia, h=0 e, 150)
1.1) (@, 0)=a"(v) , “%ﬁ(%, O)=b"z)  (wef)

u™ satisfies an appropriate boundary condition on 840.
(e.g. u™(w, £)=0 (xeo0f, t>0).
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iz%}it) + U, )=0 (e, >0)
(1.2) uw, 0=a@), G(5,0=bs) (se0)

u satisfies an appropriate boundary condition on 9%2.
(e.g. ulz, £)=0 (e, t>0)).

Here QCR* is a bounded domain with smooth boundary 02, and — %™ and
—&7 are uniformly elliptic differential operators of the second order.
The purpose of this paper is to solve

ProBLEM. Let #” and # be the solutions respectively to (1.1) and (1.2)
(in a sense stated below). Then, does an equality

(1.3) ulz, H)=u™(x,t) (xef, {=f,: a given non-negative number)
imply
(1.4) O = Sm P

What informations on %" can we derive from (1.3) for a given initial data?

Throughout this paper, we understand that the superscript “m” means
quantities known as the model. In PROBLEM, we consider that %, @, b and a
boundary condition imposed on # should be determined (identified) from the
condition (1.3), which means that a state # of an unknown system (1.2) is
equal to the state ™ of the known model system (1.1).

Moreover, in (1.3), we note that the equality u(z, )=u™(2, ) holds for
each € and for t={,: a given non-négative number. This means that the
“ohservation” of a state # of an unknown system is over the whole domain
2 and that the observation begins after a finite time passing.

This problem is one of what are called identification problems, which are
important as a necessary step for modelling processes or dynamics. For such
identification problems, we can refer to Courdesses, Polis and Amouroux [3],
Kitamura and Nakagiri [9], Nakagiri [11], Nakagiri and Yamamoto [12], [13],
[14], [15], Polis and Goodson [16]. In Nakagiri and Yamamoto [13], the iden-
tification problem is proved to be equivalent to a controllability problem and
to an observability problem, and in [14], we apply results in [13] to identification
problems for partial differential equations of parabolic type. Furthermore, in
[15], the results in [13] are generalized so as to be applicable to our problem
for partial differential equations of hyperbolic type. In. this paper, we use
the results in [15] and give answers to PROBLEM.

This paper is composed of four sections. In §2 we give an exact for-
mulation of our identification problem and state our main results (Theorems
1-4).. In §3 we state abstract theorems established in Nakagiri and Yamamoto
[15], and in §4, by applying those theorems, we prove the main results.
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§2. Formulation and Main Results

Let 2CR” be a bounded domain with smooth boundary 92, and X=L*(2)
be the ordinary L3-space with the inner product (-, -);:. Let us consider the
following two elliptic differential operators —-%™ and —% of the second
order in 2:

T e 3 a M a P - ud ...._a.._ M.

ey —wr= B (@ )+ S o)y 4w @)
& B 2\, ?

@2 —v=5 e (bar )+ 5 a0 gt ) @)

Henceforth the coefficients PH=D}, pu=Dbs, 4}, ¢ r™ and r (14, j<n) are
real-valued and smooth on £, the closure of 2, and the uniform ellipticity

B pr@egszon 3 Jed
(2.3) . -
1%11)#(“;)&5/;5 El ‘51'2 ((Ev i ';En) eRn)
is assumed, 0™ and § being positive constants.

Next we introduce boundary conditions. Let g™ and B be real-valued
smooth functions on 92, and let 3/ov,= and 9/dv, denote the differentiations
along the outer conormal v~ and v, respectively:

d d ()0 9 _ ¢ 9
oy ™ —'i,jzr:l ui(x)pij(x) Bm{ and 3))‘ —i,él ui(x)pﬂ(w) am, ?
where v(@)=(,(%), -+, vo(®)) is the outer unit normal on 82. Then we define

A™ and A% by the realizations in X=L%Q) of %™ with boundary conditions

ou
@.4) 99ym~+ﬁmu’mno
and
(2.5) #190=0 ,

respectively. Furthermore let us define A by the realization in L*2) of &
with a boundary condition

ou
(2.6) "é-;: +Bt100=0
or
(2.6)1) u|ap=0 .

We consider the following systems:
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(2.7) ‘Z”m - Amu(f)=0  (t=0)
or
@7 d BuD | agur=0 (20
with

w  du
(28) - 2!(0)—(1 s *gg“(O}—b .
(2.9) qé;(",t‘)"‘l‘A =0  (t=0)
with
(2.10) v(0)=a, -%;3—(0)=b.

As is known, o(A™), ¢(A}) and o(A) consist entirely of denumerable eigenvalues
with finite multiplicities. Thus we can set ¢(A™={l}:z, and o(A%)={Apiz1,
and we have inf{Repy; pco(d™}> —co, inf{Rep; peo(Am)} > —oo and
inf{Re y; peo(A)}>—oo (e.g. Agmon [2]). Let us fix a sufficiently large «
such that

(2.11) a>inf{Re p; pes(A™Uo(AZ)U G(A)} .

Then the fractional power (A™-+a)'/% is well-defined (e.g. Tanabe [18]). For
each a™e Z(A™) and b™e Z((A™+a)*), there exists a unique strong solution
u(t) to (2.7) and (2.8) satisfying

(2.12) u e CY([0, o0); L((A™+a)'*) N C*(0, o0); L*(R))
Amu e C((0, o0); LM2))

(e.g. Fattorini [4]). Henceforth we denote the solution to (2.7) and (2.8) by
ut; A™, a™, b™). For the unique existence of solution to (2.7), with (2.8), or
to (2.9) with (2.10), similar results hold true and we denote the solutions by
w(t; Ap,a™, b™ and u(t; A, a, b), respectively.

REMARK 1. By Fujiwara [5], we get an isomorphic relation:
(2.13) D((Ap+a))=H}() .

The adjoint operators (A™* and (A5)* of A® and A} in the Hilbert space
L (2), are given by (2.14) and (2.15), respectively:
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((A™)*u) ()

= n 3 au(x) mn
210 S R )+>: (g ote) @) @)

(A= ue B -2+ (r—ruan =0,

where 7™(x)= 21, vi(@)q7(x) (x € af).

(An)*0) @)
(2.15) =-”Z;a--~<1> >~a~§‘g~l)+ 5 —a%<q;<'<w>u(w>>~rm<x)u(x) (@e Q)

D ATV ={we HD; t30=0}

Then we know that o((A™*={4}iz;, c({(AD)*)={Ap}iz1 and dim Ker(,—A™=
dim Ker(2; — (A™*), dim Ker(2,;—AR) = dim Ker(1,; — (An% (cf. Kato [8]).
Throughout this paper, for a€C and a set DCR", we denote the complex
conjugate of « and the closure of D respectively by & and D. Henceforth
let {¢}zjzar and {4 }i=s-qm, denote bases of Ker(,—(A™*) and Ker(A,;— (A%,
respectively.

We regard A™ or Ap as a model (that is, p%, ¢F (14, jsn), »™ and B"
are assumed to be known), whereas we consider A as an unknown operator
except for the assumption on the smoothness of p., ¢; (1=¢, j<n), , f and

the uniform ellipticity.
The identification problem for hyperbolic' equations is formulated as

follows;

ProBLEM. (I) Let ale(A™), bre Z((A™+a)tt) (1£k=N) be given and
let £,=0. Under what conditions on a"‘ b (1sk=N), do equalities

(2.16) ul(t; A, ap, by)=u(t; A™ ap, by) in L3Q2) (té'to)
for a.€2(A4), b.e F(A+a)'?) (1SESN)

imply the following (2.17)-(2.19)?

(2.17) Di(@)=p(®), ¢@)=q}@), r@@)=r"@) (e, 1=i, jSn).
(2.18) Bla)==pm(x) (xeof) .

(2.19) a®)=ay(x), b)) =bp(x) (vel, 1=E=N).

(II) Let are (A}, bpe Z((A%+a)"*) (1SE=N) be given and let #,=0.
Under what conditions on 4, &7 (1=k=<N), do equalities

(2.16)p ult; A, apb)=ult; A3, a7 in L}Q) (Ezt,)
for a,eZ(A), bye Z((A+a)'*) (LSEZN)

imply (2.17), (2.19) and Z/(A)=2(AR)?
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Now we can state the first of our main results which is a modification of
Theorem 5.2 in Nakagiri [11].

THEOREM 1. (I) Let us consider A™ given by (2.1) and (2.4) as a model.
For given ap e Z(A™), br e D(A™+a)'?) (1=kEN), we assume that

(2.20) rank Li=d? for each iz1,

where L} and L7 are Nxd? matrices given by

L{’z(’\/:—-—lg{a}?, @) 2+ (07, 9712 isks v 1sisam
(2.21) v A, i

L =(—~'—2(ap, 1) .2+ 7, P hisesw 155l -

If A and a,e 2(A), bye Z((A+a)V?) (1Sk=SN) satisfy the equalities (2.16) for
some t,=0, then A is the realization of & with (2.6), and (2.17)-(2.19) hold.

(I1) Let us consider A% given by (2.1) and (2.5) as a model. For given
ar e D(AD), bre D((AT+a)?) (1Sk=N), we assume that

(2.20)p rank Li;=d%, for each i=1,
where L}, and Ly, are NXd%, matrices given by

(2.21), ' (Lf)i:(\/"lm(di"y PBis) e+ (B, ¢13ij)L2)15k$N,151§d76,5
ALpe=(—~ ~2pial’y P32+ BF, ¢B)2isnsnoisssas, -

If A and a,e D(A), bye D((A+a)'?) (1=Sk=SN) satisfy the equalities (2.16), for
some t,=0, then A is the realization of S with (2.6),, and (2.17) and (2.19)
hold.

REMARK 2. From Remark 7 in §3 (cf. Nakagiri and Yamamoto [15]), we
see that the conditions (2.20) are equivalent to the following conditions (2.20)
considered at an arbitrary time £:

(2.20) rank Li(f)=d? for some ¢=0 and each i=1
where we set wH)=u(t; A™ a?, b?) and

L:(t)=<«/“—’27(uz"<t), %)Lz+(-3‘—z%(—tl, :y

: —_— dui(t
Lit)=(—v =T, vp)a+(22E, gr) ) :
dt 2%/ 1sksw.1gisal

>L2>1sksx\r,1515d}“

For A%, a similar equivalence holds.

REMARK 3. This theorem corresponds to Theorem 1 in Nakagiri and
Yamamoto {14], where similar identification problems are considered for
partial differential equations of parabolic type.

In Theorem 1, in order to identify a finite number of coefficients pyy, ¢;
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(1=¢, j=n), », B and initial values a,, b, (1=k<N), we require denumerable
conditions (2.20) or (2.20), on the initial data &, b7 (1=k=N). Thus it is
natural to discuss the determination of coefficients in terms of arbitrarily
given initial values @, b (1<k<N). To this end, we introduce some notation.
Let ¢ denote the natural number:

=t mt2)

(2.22) >

For ¢ € C*(@2) and € £, we define a g-dimensional column vector a(¢; %) whose
components are partial derivatives of order =2 with respect to z, (1Si<n):

(T TP, ), @)

(2:23) a(6; x):( awi 7 pad Zawlaxg T by,
0*p(x) 0*p(x) *d(w)  Ig(w) 3¢(90) )
2 ox0x, =’ 2 0%,0%, " ’zamn_laxn’ oz, ' 7 » (@)

where ‘. denotes the transpose of the vector under consideration. Henceforth
we denote the eigenprojection and the nilpotent of A™ for A, by PP and Dp:

PZ’”=Pxi(A”')= —-Am)”,1dz

(2.24)

Dp=Dj(A%)= 5 s j (=R A,
where I";, is a sufficiently small circle around 2; ((=1). We denote the eigen-
projection and the nilpotent of A% for 2, ({=1) respectively by the same
notations P* and Dj*, for simplicity. Since 1; is an eigenvalue of A" with
finite multiplicity m,, the point 2,eC is a pole of the function (z—A™)"! of
order k;+1 and

(2.25) (DPEit =0 (izl1).

Moreover we put (D)°'=Pp, - v
For the determination of coefficients in terms of N-pairs of general initial
values, we have

THEOREM 2.  Let aj e Z(A™), by e D(A"+a)'’?) (1Sk<N) be given and let
t,=0. We set

(2.26)  Quplt)= {x €2; dim Span{za(wmm(tu; A a5 @),

w((D ) et (tD, A", ar, b ; x> =1, 05754k, 1Sk<N}= }

Then:
(1) Q:p(ty) is well-defined and open for each t,,zo Moreover 2,5t is in-
variant with. respect to t,, that is,
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2.27)  Qu)=2,={we; dim Span{d((D")ar; ), 3(Df)by; ©);
izl, 055k, 1Sk=Nl=q} for t,20.

(ii) The equalities (2.16) imply
(2.28)  pul@)=prl@), @(@)=a7@), r@)=r"@) (el 1=i, j<n).
In the case where a model is given by A%, similar results hold.

For the determination of boundary conditions, we have

THROREM 3. Let us assume that 0QN 2,y contains an arc.
(i) Let are 2(A™), bpe D(A™+a)?) ASk=N). Then the equalities (2.16)
imply that A is an operator with a boundary condition (2.6) and

(2.29) B(w) = m(x) (wel: any arc in 0RN2,,) .

In particular, in the case of 2,,=%2, we get (2.18).
(i) Let aye 2(AD), bre Z(A%+a)/?) (1Sk=SN). Then the equalities (2.16)
imply that A is an operator with the boundary condition (2.6),.

For given af e 2(A™), by e D(A™+a)'’?) (1=Sk=N), the set 2,, defined by
the right hand side of (2.27) is an “identifiability domain” where the coefficients
of % can be identified, but in £\2;,, it is not certain whether we can identify
those. Therefore if 2;,=92, then (2.16) or (2.16), implies (2.17) and (2.19).
Moreover, by Theorem 2 (i), this identifiability domain is invariant with respect
to time. ‘

For &™ with real analytic coefficients, we have

COROLLARY 1. Let us assume. that all the coefficients p%y, g%, v (1534, j=#n)
in ™ gre real analytic. Then we have either 2;,=8 or Q,,=0.

Here we do not assume the analyticity of unknown coefficients py, q;, 7 (154,
7En). Corollory 1 means that we can determine coefficients completely (i.e.
on the whole domain) or not at all (i.e. 2,,=@).

ReEMARK 4. Theorem 2 corresponds to Proposition 1 in [14] where we
give a result on the identification problem for parabolic equations in terms
of N-numbers of general initial values.

Similarly to the identification problem for the parabolic equations ([14]),
we will consider: 4
What is the condition on a, bp (1=k<N) assuring 2,,=2? In order that
2,,=10, it is necessary that

(2.30) dim Span{(D®ap, (D)by; iz1 05j=k;, 1Sk=N}zq.

In fact, if (2.30) eoes not hold; then 2;,=@ follows from the definition of 2;,.
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Conversely, does the condition (2.30) imply @=2;,? As in the the parabolic
case, for the spatial dimension =2, the answer is negative. That is, the
set 2;, may be empty even if (2.30) is fulfilled. Actually we can give the
following example:

n=2 (i.e. g=6), 2={(z,, x.); 0<,, 2. <1},

—An= o + 02 with the Dirichlet boundary condition
awl axg

and

ar (%, To)=sin z%, sin 18z, b7 (%, ,)=sin 6nx, sin 1772,

ap (i, %5)=sin 10z, sin 1572, b¥'(x,, ®.)=sin 15z, sin 10x%x,

ag(®,, %,)=sin 17z, sin 6zx,, b7(x,, ®.)=sin 18z, sin 7%, .

Then o(A™={1}iz; ={(m*+#*7"} 1,»=, and let 7, be the number such that ;=
325x%, and let us set N=3. Then we have dim Span{(D?)/ap, (D/Vby; i21, j20,
1=k=3}=dim Span{Piap, Prby; 1 = k=3)=dim Span{ay, b7; 1=k=<3}=6 (=¢),
while by direct computations, we can see dim Span{a((D7)ay; 2), o((DP)bE; z);
izl, 057k, 15k=3}=5<q, that is 2,,=@.

Furthermore, Theorem 2 (ii) can be rewritten as follows.

(2.31) Ooc{zeR; the equalities (2.16) imply py(z)=p(x) ,
gz =qp(x), r@)=r"x) (=i, jsn)}.
In general, it is not certain that the equality holds in the inclusion in (2.31).

If n=1, namely, 2CR is an arbitrary finite interval, then we can prove

that 2,,=7 is equivalent to the condition (2.30) and that the both hand sides-
in (2.31) coincide.

THEOREM 4. Let 2=(0,1) and let us define operators —A™, — A% and —A
respectively by

(—A™u) (@) =p™(x) a u(a:) - +-g™a )du(m) +romu(x) 0<x<l)
2.32)

(=1 my— 2 . u m, -—-,__». e, —

Dam={ue 70, 1); 4.0)+ prat0)= 5 -+ prucy=0} ,

(‘_A 5@ =) LD () M)y ) 0<z<D)
2.33)

(A% ={u e H0, 1), 2(0)=u(1)=0}
and )

(~ Av)w)=p(o) d;’;f’ +@ 22 1 e O0<a<)
(2.34) D(4)= {vem(o 1); 20+ <0)_—~(1>+,elv(1) o}

or
G(A)={v € HX0, 1); v(0)=v(1)=0} .
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Here p™, g, r™, b, q, v are real-valued smooth functions ond p™(x)>0, px)>0
0=x=1), and B3, B, Bo, By are real constants.
@) Let ape Z(A™), bre D((A™+a)'?) (LSk=N) be given and t,20. - Then

(2.35)  Qp={zel0,1]; the equalities (2.16) imply p(x)=p"(x), gx)=g™2),
r@)=r"(x) and az)=a}(x), b(x)=bi(x) (1=k=N)}.

Moreover
(@) L0=0 if and only if

(2.36) dim Span{Pray, Prby; izl, 1sk=N}=2.
(b) 2=2R2 if and only if
(2.37) dim Span{P/ay, Prby; i=1, 1Sk=N}=3.

That is, in order that the equalities (2.16) tmply

(2.38) pimy=p™x), q(z)=q™x), r(z)=r"(x)
alm)=arx), bx)=by(z) (0=«¢=1, 1=k=<N)

and

(2'39) 180=186"'9 ﬁl:ﬂyln »

the condition (2.37) is necessary and sufficient.

(ID)  Let are HX0, 1)NHO, 1), bpre H{(0,1) 1=k N) be given cmd to=0.
Then the relation (2.35) and the statements (a), (b) in (1) hold true. Moreover
(2.37) implies Z(A)=H*0, 1) N H}(0, 1).

REMARK 5. Let us consider one-dimensional wave equations:

o*u(z, 1) d'ulx, i)
e ot

—r™mu(z, t) 0<s<l, £>0)
(2.40) w(, 0)=a™(z), —%;i(w, 0)=b"z) (O=w=1)

on m _ ou " _
—5 O D+ B0, === (1, D+Bru(l, =0 (t>0)

and
v(z, b) v, b)
F r(x)v(e, ) (0<2<1, t>0)
(2.41) o(z, 0)=al®), —%’;—(x, 0)=bx) (O0=z=<l)

v ov _
S5 (0 DB, )=— (1, ) +hw(l, =0 (>0).
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Let —A™ denote the realization in L*0, 1) of the operator vga;vz~rm(x) with the

boundary condition in (2.40). Let ¢(A™={l}:z, and let {¢7},»; be a system of

all eigenfunctions of A™. By Suzuki [17], the following result is proved:
The “observation condition”

(2.42) 2(0, )=u(0, 8), v(1, H=u(l, t) (t=t,)

implies

(2.43) r(x)=r@), al®)=a™®), bx)=bmx) O=sz=D), BL=4F, B =AT,
provided that the initial data (e™, b™) € H'(0, 1)x L*(0, 1) satisfies

(2.44) Sla"‘(x)¢’{‘(w)dx¢0, Slbm(m)qx!'(w)qu&o for each iz1.
0 0

The observation condition (2.42) in [17] is restricted to the end points
=0, 1, and the condition (2.44) is necessary for the identification. Furthermore
“only one” coefficient can be identified. If (a™, b™) satisfies (2.44), then the
linear space Span{Pra™, Prb™; 1=1} is infinitely dimensional. Thus the con-
dition required in [17] is much stricter than (2.37). ‘

In our problem, we impose the stronger observation (2.16) or (2.16), for
the identification, so that on the much weaker assumption (2.37) on the initial
data, we can completely identify “all three” coefficients p, g, 7, initial data «, &
and all boundary conditions. For z=1, we have Dfq,=0 ({21, 1=k<N), as
is well-known (e.g. Lemma 1 in [14]), so that the condition (2.30) is actually
equivalent to (2.37).

By a way similar to the one in [14], we can derive the following corollary
from Theorem 4.

COROMLARY 2. (I) In order that (2.16) implies (2.38) and (2.39), it is suf-
ficient that

(2.45) dim Span{a?, b}; 1Sk<N}=3.

(D) In order that (2.16), implies (2.38) and Z(A)=H*0,1)NH}0,1), the
condition (2.45) is sufficient.

REMARK 6. Let £,=0 and ap, b (1=k=<N) be all sufficiently smooth and

satisfy appropriate compatibi]ity conditions. Then we can let ¢ tend to 0 in
i

equalities ZX(t; A, ar, )= (6; A ar,br) in L0, 1) (LSESN, j=2,9), 50

that we can derive Aa’"~A’"a,c, Abr=Ambr (1=k=N). Thus, not using the
results in §3, we can directly prove this corollary only by discussions on the
Wronskian. However, in this paper, on the smoothness of «F, b, we assume
only that a» € Z(4A™) and b € Z((A™+a)/?) (1=k<N) and do not assume £,=0.
For A%, we have a similar remark.
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§3. Abstract Results

In this section, for the proof of Theorems 1-4 in §2, we state Theorems A
and B from the viewpoint of the operator theory. For those proofs, we can
refer to Nakagiri and Yamamoto [15].

Let X be a Hilbert space over C with an inner product (-,:). Let us
assume that both —A™ and —A are generators of C,-semigroups on X.

Henceforth ¢(A™) and p(A™)=C\e(A™) denote the spectrum and the resolvent
set of a closed linear operator A™ in X, respectively. Let 2 be an isolated
point of o(A™). Then there exists a circle I'; with center 1 such that its in-
terior and I"; contain no points of ¢(4A™) except for 2. Let us put

1 .
(3-1) P] ——m‘grz(z-——A ) dz
and
(3.2) D z_-.l—rs (2—2)(z— A™)'dz
LT opa/—1 r; )

As is known' (e.g. Kato [8]), P* and D are bounded linear operators on X
satisfying (Ppp=Py, PpXc Z(A™) and (D) XC2(A™) (j=1).

THEOREM A ([15]). Let us assume that 1 is an isolated point of o(A™)
satisfying

(3.3) . there exists an arc C; which joints 2 and z, with
Re z,<inf{Re z; zea(A™} and C)\A}cCp(A™) .

Let a, a~e X and t,20 be given. Then a relation

(3.4) e tHg=g W (t2t,)
implies

(3.5) (Dpyame 2(AY  (j=0,1z1)
and

(3.6) ADPY am=A™DrYa (7=0).
Here and henceforth we set k
(3.7) ‘ (DPY =Py .

In the identification of A, it is essetial to search for a set U where A=
A™y, and this theorem asserts that such a U is Span{(Dy)/e™; j=0}.

Henceforth Z denotes the closure in X of Zc X, and -* denotes the adjoint
of an operator under consideration. '

Next we show Theorem B which asserts the unique determination .of an
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unknown operator under stronger assumptions on A™.

THEOREM B ([15]). Let us assume that o(A™) consists entirely of isolated
eigenvalues 1, (1Z1) with finite multiplicities and that the system of the gene-
ralized eigenvectors of A™ is complete in X, that is,

(3.8) Span{PpX; iz1}=X .

Moreover we assume

(3.9) Span{(PRFX; i=1/=X .

Let {{hsizan be a basis of Ker(1,—(A™)*).
(I) For a generator —A of any Cy,-semigroup, equadlities

(3.10) e tha=e"tmay  (t=ty, 1S5RS N) for any fixed 4,20

imply A=A" and a,=a? (1Sk<N) if and only if for each i=1, the condition
(3.11) rank((@}, %) isjsn.1zian=d7

holds.

In this theorem, we note that o((A™*)={1}ix;, and dim Ker(l,—Am™)=
dim Ker(2;—(A™*) by o(A™)={2}x-

ReEMARK 7. In [15], the following is proved: the rank of the NxXd? matrix
(e az, Pi)isssnasiser 1S invariant with respect to £20. That is, in Theorem
B, we can replace (3.11) by

(3.11y rank((e™0*"ay, Piisisn isisar=d7 ,
which is described by quantities at the time #, when the observation begins.

Theorem B asserts that the rank conditions (3.11) for each i=1 are neces-
sary and sufficient for the unique determination of A and initial values within
generators of Cy-semigroups, under the assumptions (3.8) and (3.9).

Theorems 2-4 in §2 are proved on the basis of Theorem A, while Theorem
1 is verified by means of Theorem B. These proofs are carried out in §4.

§4. Proof of Theorems 1-4

For the proof, we apply Theorems A and B. To this end, we reduce
(2.7), (2.7), and (2.9) of the second order with respect to ¢ to equations of the
first order. The reduction for (2.7) and (2.9) is done as follows, for example
according to Fattorini [4]. ‘

We introduce a Hilbert space X with an inner product by
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X=((A™+a)'?) X LHRQ)
(&, 7)% =((u,, v))+ (¢, Ua) 12

for 22——-(%1>, ﬁ:<01> eX.
s Vs

Here the space Z((A™+a)") is considered as a Hilbert space with an inner
Igoduct (Lu, v)):-—(A"‘»%-a)”ﬂu, ((A™+q)/*p),2. - Furthermore we define operators
A™ and A in X by

(4.1)

(4.2) A‘m:(o “1>, DAy = {(Zl) 2, € DA™, Uy € @((Am—r—a)“ﬂ)}

A 0 )
and
(4.3) ]1“:@ “(1)), @(‘Z):{(Z:) 1, e F(A), uge@((A+a)1/ﬂ)} :

Then, both —A™ and —A generate C,-semigroups in X, and moreover the
problem (2.7) with (2.8) and the one (2.9) with (2.10) are equivalent to the
following (4.4) and (4.5), respectively:

dailt) . g
(4.4) 20+ Amid)=0 (t20) and a0=(5) -
u(t)
where ZZ(t)z(du(t) ) (t=0) .
at
GO _ a
4.5) M) | Ko=0 (20) and v(O)——( b),

(1)
where ﬁ(t)z( dv() ) #=0) .
dt

We can similarly reduce the problem (2.7), with (2.8) to an equation of the
first order. o

In applying Theorems A and B, it is necessary to calculate (D7) (7z0),
where

1
27+ —1

Nil

il

S (z—A™)tdz

T

~‘m___,__1__,__ ' - _ Amy~1
Dj Ty s sz(z N(z—A™)"dz

(I';cp(A™): a sufficiently small circle around 2). To this end, we show the
following lemma, whose proof is given at the end of this section.
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LemMA 1. Let L be a densely-defined closed linear operator in a Banach
space Y over C and let us define an operator L in YXY by

~ (0 —1 -

R = 7 =
4.7) L <L 0)’ (L) (L)xY.
For isolated points 2 and g of (L) and o(L), we set

PL)=Py=5—er «}?—‘1" Sr (z—L)'dz
2

(4.8) 1

D](L)=D2:mgrz(2”‘2)(z—‘L)~1dz
and

N 1

P(L)=P,= —\| (z—L)"'dz
(4.9) | 2. 15’"/‘

ﬁll(.z)=D~pZ—2—;\—}-—jﬂ‘i¢SF (Z*/ﬂ)(z—i)hldz .
"

Here I'; and I', are sufficiently small circles around 2 and g, respectively.
Then for an isolated point —p2® of ¢(L), the following relations hold:

(4.10) +p are isolated points of o(L) .
5 _(Qux @
411 | B=(gr =)
@1 Qo Qui
= Q —Q,
4.12 B ::( e “")
( ) " —Qﬂ./l Ql,[l
' - R Y .
(4.13) (D,,)f=<Rg;,: R;;) Gzl .
~ (1Y R (—D’“Ré”n)
j= > 3
(414 O-r=(Cymry, Cavmo, ) UZV-
Here we set
(4.15) (D) =P,
~1~*~P g, if  p=£0
(4.16) QbF: 2 -ps s 1 /~
Py, if p=0.
- = (20! (2p) P
. 1 - RO S M S 2}* =%
4.17) Qz,/‘:( G Pop= 5y (P A 0
0 B ’ if /I:O .
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T R - O Ao A 11V ) B SRV
(4.18) Qa’#: 2 P—F“—Iwizl 21 (Z—’l)! \D.,,u) y lf Iu$0
0, i p=0.
o —1) (27— i— 1)1 (2pu)2itd ) .
£~ )](2@—]]‘)! Dy, i 0
()
(4.19) R, (—1)#2Dj’ if 40 and j is even
0, if p=0 and j is odd .

ici (=)' it
0, if p=0 and j is even
(—1)@rv/epli-nse if p=0 and j is odd .

A e L Ry ) W VR T A
(4.20)  R{.=

= (1) —20)2i— =@ T o
L [E 41 —))! Do)ty 3 0
(4.21) R=\, ) if #=0 and j is even
(—1)u-viepgtnre if p=0 and j is odd .

Proof of Theorem 1. We will prove this theorem by applying Theorem B
in §3 to reduced equations (4.4) and (4.5) of the first order. It is sufficient
to prove the part (I). Without loss of generality, we may assume that
0¢ 0(A™)={1}in;. We see by Lemma Ithat ++/—21, ({21) are eigenvalues of A,
Then we define the eigenprojection for ++/—1; by a way similar to (4.9):

Pn P __Nm—-__lm __Nm—
(4.22) Pr=P, ,—(4™)= Zm/:—fg%/ﬁ_h(z Am)dz

where I'v=;; and I'-.=3; denote sufficiently small circles around +'—1; and
—+/=7,, respectively.
Since the equalities (2.16) are equivalent to

e-t?@k):e—ﬁ"(‘;g) in X (t=t, 1Sk=N),
k &

in view of Theorem B, for the proof, we have only to verify

(4.23) Span{Pr.X; iz1)=X .
(4.24) Span{(Pry*X; iz1}=X .
(4.25) The rank condition (3.11) for A™ is equivalent to (2.20) .

Verification of (4.23). Assuming that (Z‘) e X satisfies
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() (2o

for each (x) eX and iz 1, we have only to prove #=v=0. Firstly let us set

Y
Qui=—5Pr,
Qz,i=~—2:/—1~_-_z~ P-—Z @t (2?1/!;"?*"”“"1 (Dry
and
Q’*'*:"“\/‘ziPe“ﬁ% 2 "225,%{1:5‘)%1 (Dryr

The relations (4.26) imply ((@.,2+ Q.,¥, ) +(Qs.% + @1,, v).2=0 and
(Quw—Q0,, W) +(—Qs,:3+Q,,4y, v):2=0, so that (@, u))=(Q.y, v).2=0,
namely, by Lemma 1, (PMA"+a)'2x, (A™+a)'*u)2=(Pfy, v),2=0 for each
re Z((A™+a)?) and ye€ X, By Theorems 15.4 and 16.5 in Agmon [2], we
have Span{P?X; i1=1}=X. Therefore (A™+a)"u=2=0 follows, which verifies
(4.23).

Verification of (4.24). We have PPA™+a) t=(A"+a)2 PP, (DP)(A" o) 2=
(A™+a) (D) (e Z(A™+a)), j21) and (A™+a)*Pr, (A™+a) Dy (j21)
are bounded, so that we can see

LEMMA 2. The adjoint of Pr in X is given by:

B \ sk Ql,i iQe,i *
* '*"')*"<1-Qa,i Ql,)
—< (Am+a)1/2Q>lk’i(Am+a)1/2 i(A’”+a')“”z((A"‘)*+(r)”2Q§k,i)
- i((A"‘—i—a)”ﬁQz,i)*(Am~}-a)1/2 Q'}(-l

In the last expression, * denotes the adjoints of operators in X.

Next we will complete the verification of (4.24). Assuming that (g) eX

satisfies ((7’5), (f’;’;)*@)) }——-O for each (Z) eX and i=1, we have only to

prove u#=v=0. Similarly to (4.23), by Lemma 2 we can get ((A™+a)'2u,
(PP*(A™4a)*2),2=0 and (v, (PP)*y)2=0 for each 7=1 and %€ 2((4™+a)’?),
yeX. By Theorems 15.4 and 16.5 in [2], also system of the generalized
eigenvectors of (A™* is complete in LX), so that (A™-+a)'*u=v=0, namely,
u=v=0, Thus the verification of (4.24) is complete.

Veriﬁcatign of (2.45). We have to give eigenvectors of (A™*, the adjoint
operator of A™ in the Hilbert space X, Since o(A™)={%(—2)"):z,, We have

(4.27) , o((Am¥)={(— 1)}z,
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(e.g. [8]). We will prove

LeMMA 3. A basis of Ker((—2)"2—(A™*) is given by

. h<¢(.,,Zf)i/z(Am_l_a)—x/Z((Am)*_i_a)—Uegb?j
E-T4 Al

/

m,
iy

(4.28) (1=5=dp) .

Proof of Lemma 3. As is easily seen, {gZ’;:”}lsjs,,;n is_linearly independent
in X. As is easily checked, dim Ker(+(—1)'*—A™)=d?, and hence,
dim Ker(#(—~2)2— Am*)=d», Thus we have only to show that each ¢$Ty,
belongs to Ker(+(—2,)>—(A™*). To this end, it is sufficient to prove that

(A, §2.)3y=(8, £(—2)"*¢%:,)x for each zi-—:(Z’)e—@(z’”) .

This is proved as follows; we have

. —ts - _Z Ve Am )12 (( Am)* ~1/2 ™
oty Bre=((24), (FR A AT
=((A™+a) Py, (=2 ((A™)*+a) 2P o+ (Amuy, 7)1
=((A"+a) A a) My, +(— 2P 2+ (g (A2
Bewuy iz

X ((Ara) i, F(Am+a)5(—T) (A a) (AW a)™ ) e

(=20 s PT5)e2

(by (A™*¢p=2,47 and u, € Z(A™)C Z((A™+a)'"?))

= (=), $T:)% -

This prove this lemma.
Now we return to the calculation of the left hand side of (3.11). We

have

AN
(5 #2a).
=((Ar ) ap, (Am+a) (F (=T A +a) (A +a) T
+(B%, 9.2 (by (4.28))
=F(—2)"*af, ¢%)L?+(b?’ Dy .
This verifies (4.25).

Proof of Theorem 2.

Proof of (i). let aelLl¥Q) be given. Since (DPF)aePrX (j=0) and
PrXc Z((A™" for each Iz1, we get (DP)Vae@(A™McC H*(2) for each I=1,
so 3hat the Sobolev imbedding theorem (e.g. Adams [1]) implies

(4.29) (DryaeC(Q) (z1,0=j=k) .

Therefore &((D)a; x) is well-defined for any ee L*@2) and so £2;,(¢,) is well-
defined for each #,20. Now we recall that k;€ N satisfies (2.25).
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Next we show
(DPYult; A™, at, by) u(t; A™, (DMiag, (Df)by)
(4.30) =\ du
((D’")’ (L‘ A, ag, by )) (ZZZ (t; A~ (DY ar, (DIYDE)
(t=0,721, 05/ sk, 1SkSN) .
In fact, since #u(-; A™, a, b7) e CY([0, «); D((A™+a)"'?)) satisfies

d*u(t; A™, ap, by)
d?

+Amu(t; A™, ai, bp)=0 ((z0),
du
u(0; A™, af, b =ar and ——(O; A™, ar, br)y=by, we have
((Dm)’u(t Am, ap, 5PN H(ARPH (DY u(t; A™, ap, bp)=0 (¢z0)

a?t2
(4.31) (Dr)u(0; A™, at, bp)=(D7)ay

d
W((Dé")ju(oi A, ap, bi)=(DP)by ,

by (DryAn=(A=Pr)(Dr), so that the uniqueness of solutions to (4.31) implies
(DFYult; A™, ap, bby=u(t; A™, (DM ay, (Dryby) (120,121, 075k, 1SE<N), that
is, (4.30) is proved.

In order to prove that 2;,(4,) is invariant with respect to £, noting the
definition (2.23), we have only to show

(4.32) Span{(D"‘)fu(tu, Am, az, by, (Dé")’ (to: Am, ar, bp); 057 k}
=Span{(DM’ay, (DF)br; 0=j Sk} for £,20 and each i=1.

Proof of (4.32). Let us denote the left hand side and right hand side of
(4.32) by M(t,) and M(0), respectively, and let us set A?=A"Ppr, which is a
bounded operator. By (4.4) and (4.30), (4.31), we have

D A e 0 —~1\\/(DMap
(4.33) ((D )f (t Am ak’bm))“exp (-( Ar 0>t>( ( D{"Vb;!b) (t=0) .

Since the operator ( Am —-(1)) is bounded on Xx X, we get

wo(=(ae “o o) B {_ar o) (omae)

_ef B ((—A 0 @m0 (— AP\ /(DFYap
§<(zz>f< - Am>l>+<zz+1)'((—Azﬂ)“1 0 >><(DZ")’?J;’I‘>
to m m\ 7 m m m\jhm
» (AR )fak+(21+1),( ADDP)
i=o\ ¥ +1 :
T (—ADDR+ o5 +1)v( — APy (DYl
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Here we use

(A o) L

(4 34) ( 0 1 1_’ ( 0 (-'Ay,m)”z y if [ is even
) — A7 O) - 0 (—Am)a-vr2 o

((__,Avin)(l-HJ/:‘. 0 ) , if [ is odd ,

which is seen by induction.
Since the equality

(4.35) Ay=2Pr+Dp
holds (e.g. [8]), noting (2.25), we have
Dryulty; A", at, by)
((D”‘)J

€ M(0) x M(0) by (4.33) .
“ g ak,b”")> (0)x M(0) by (4.33)

Therefore we can see that M(#,)< M(0).
Next we have to prove that M(0)c M(#). Since < f(l)’?L _(1)> is bound on
Xx X, we see that

(& p)=e((ar oe)ee(~(ar o)
o pr)TP\ar  o)0)FP\T\4n o))

Thus we have

Pr o 0\/(DPYap 0 -1 (DrYalty:. 47, o, 57)
(o P:l)((or-)sz‘):exl’((A? 0)t°>((1)mv~~(zo,A ak,bw)>
(by (4.33)
)
@
_t
@)t
g
(21-!-1)'
0 to

@I+1)!

(—ADUDMulty; A™, at, bY)

i
Lhge

(,_A?)Z(Dm,%;i(to; 4, a2, B

(— A’")’(D"’) (to A, at, by)
€ Mto) x M(t,)

[Vjs

T

e (— AW DY ulty; A™, a, by)
(by (4.35)) ,

which means M{(0)c M(f,). This completes the proof of (4.32).

Finally we prove the openness of 2;5,. We have 2,,=U2;,(1), -+, i(qy),
7Y, + v, J(q), B, -+, k(g,)), where the sum of the sets is taken over all
(), -+, i(q) e NO, ((1), -+ -, 7(g.)) € (NU{OD®, (B(1), - -+, k(gy)) €11, - - -, 2N}, ¢,
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2 €N, ¢,+¢:+4q=¢q, and we set a%.;=b} (1=j=N) and 2,,((1),---,i(q),
7(gy), -+, 7(q.), (1), - - k(q:z)) {re 2; det(@((D; (11))](1 )ak(rs)ﬁw))musql 1579500, 15350570}
Since each 2,5(:(1), - -+, i(qy), j(1), -+, /@), k(1), -+, k(gs)) is open, we can see
the openness of 2;,. Thus we complete the proof of ().

Proof of (if). Without loss of generality, we may assume that 0¢o(A™).
Let o(A™)={2}»,. Wesee by Lemma 1 that ++/—1; (;=1) are eigenvalues of
Am™. Then we define the nilpotent for ++/—1; (G=1):

~ - 1
. o= mY o -+ o Amy~1
@36) DD, A= SM VTR Az
We recall that the eigenprojection Pr. are defined by (4.22). Then we have
. 1 _ ~
MNf e — _— F{oee Amy-1
(4.37) (D)= «/—ISM_—H(Z (v TR (e—Am)tdz .

(e.g. Kato [8]).
Since the equalities (2.16) mean

e—ﬁ@k):eﬁ"‘(ﬁ) (tzt,, 1=k<N),
k

e

we get
ABy ()= A0y (5E) 21,520, 1585N)
by Theorem A, that is,

(4.38) ((Du) <““>) Am((m) ( bm)) (iz1, 20, 1SE<N) .

Here and henceforth let us denote the first component #, of (ul) e XxX by

(Zl)l Then we will prove that (4.38) implies

(4.39)  ADpYap=A™DrYapr, ADMby=A™Drby (Gzl, 0S5jsk, 1SE<N).

For the proof, we calculate ((5 )7 ( bi‘,.>>l by using Lemma 1. Noting (2.25), we
have

wo  ((5)

™M AT 1 "1 i
—'—Z'"Pi G/:"F(z\/__ ’*‘E

(21)] (2,\/ 1 )-—zz-l(pm)zbm )
@enr ’

and
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(4.41) (o))
k 1
_ % J@I—j—1) @V =2 (Dp)ay
T 20—t
B (2l—j)1(2v =2) " (Dp)by ,
4.42 ( D, ,.<azf )
(4.42) D)),
_ % J@I=j =112V —2)*(Dap
- 20—
(L)) @V = 1) (D) )
+§j @I—ni( (l~j))!l! (D)o (1=j<k) .
Therefore (4.38) implies
(4.43) APrar=A"Pray ,
ko 21— —1)1 (2 —2) )
(4.44) ngj @ 2(1)__(]-)!“ ) {A(DrYap—A™Dprapt=0 (1=j=k),

1 mpym . Am Pmpm
(4.45) 5= (APrbr — AmPrY)

& @Dl V=g

5, e ADEY B — AmDrYE =0

and

ki — N1 Tyl -1 v
@) 3 J)'(gz_‘;.), A AD b~ AMDEYBI=0 (1SiSh) |

In (4.44) and (4.46), putting j=k;, we get
(4.47) ADPYeigp=A™(DpYayr, A(Dp) by=A™(Dy)by .

Next, putting j=#A;~1 in (4.44) and (4.46), and substituting (4.47), we obtain
ADpyetap=Am(DM* qp and ADM*hp=ADM* b7, Continuing this
procedure, we reach ; ,

(4.48) A(DMap=A™DrMay, A(DF)by=A™Dy)by

for i=1, 1=<j=<k, and 1=E=<N. Moreover, applying (4.48) for 1<j<k, in (4.45),

we see by (4.43) that (4.48) holds also for j=0. Thus we reach (4.39).
In view of (4.29), the equalities (4.39) are rewritten as

(4.49) B(DrYay; 2)8x)=0 and UDFbP; z)Bx)=0
weQ,i=1, 0<j<k;, 1SEZN).
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Here we define a g-dimensional column vector 5(x) by

(4.50) @'(m):‘(pn(x)— (@), ) Peal) D) 5

D1s(@) —P(®), « - -, P1a(@)—PTa(), Poalit) —pEi() ,
] Pan(@"‘ﬁ?n(@; ety pnn—t(m)'ﬁpﬁnﬁl(m) »
q&m)-q’f”(ﬂ?) —I-'ti:r-l a(pu(x;;p“(x)) E 2R

qn(a:)—qz‘(oz;)—|—§l o “‘(x;gﬁ&l, r(m)—r’”(x)) .

Now we will complete the proof of the part (ii) of Theorem 2. To this end,
assuming % € 2;, and (2.16), we have to prove

(4.51) bu@)=p7(z), g,(8)=q}x), r@@)=r"(x) (=i, jsn).

By €2, for any £>0, we can take an #,€ 2;, such that |x,—ux|<e. More-
over, there exist g-dimensional column vectors &,(z.) (1=/=<g) each of which
is of the form &((DP)ay; =) or &((Df)by; x,) for some i=1, 0<jsk, 1SkSN,
and dim Span{d,(z.); 1=I<g¢}=q, namely, det(d(z.), ---, d,(x))#0. Therefore
we have det(d,(y), : -+, @, (¥))#0 for each ¥ in a neighborhood U of #,, so that
(4.49) implies (5(3/):0 (yeU). Hence, by the definition (4.50), we obtain
bu(@)=p(®.), gi(e)=q3(x.), r(x)=r"(x,) (1=i, j=n). We can let z,—w, so that
by the continuity of p.;, gs, 7, D%, ¢7, ™, we reach (4.51).

Proof of Theorem 3. By the equalities (2.16) and Theorem A, we have
Pray, Prop e 2(A) N 2(A™) (iz1, 1=k<N) Without loss of generality, we can
assume

(4.52) Prar+0 .

(In fact, let Prap=Prbp=0 for each i=1 and 1=k=<N. Then, by Theorems
15.4 and 16.5 in [2], we get af=b7=0 (1=k=<N), so that Q,,=2,,(f)=7 by
the definition (2.26). Therefore our conclusion (2.29) is trivial.)

(i) We consider the case of the model with the boundary condition (2.4).
Since (S™— )it Prgr=(Dm*tiPragr=0 by (2.25), we get

(4.53) (S =2)(F " —2)Prar)(®)=0 (e ).

By (3.5) in Theorem A, we have (Dr)ap, (D2)br e D(A) Nz (A™Y) (121, 20,
1<k=N,[=1), so that by the relations (4.40)-(4.42) we get (¥™—2) Prgr=
(Am— ) Prar=(Dry Prar e 2(AYN2((A™Y (=1, j=0, I1=1), that is,

(s — 1, P
oV 4m
(4.54) a(™—2,) Pray
oy,
(S —2,) Plratp0=0 .

ar '
Aot Br( 8™ — 2,)I Pa 90 =0

+ B ™ — 2 PlaT50=0 or
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Then we can show

(4.55) The set {£e€dR2; ((%™—2,) Pra?)(€)=0} has no
interior points for some 0<j7,<k, .

In fact, assume contrarily that for each j, the above set has some interior
point. By the condition (4.54), we see that the set

o(sm—2,) Pray

Oy gm

fecoo; (©=((5—2)'Pran)(e)=0}
has some interior point for each j=0. Setting j=#k;, for (Wm—2)1Pra} . in
(4.53), we apply the unique continuation theorem (e.g. Mizohata [10]), so that
(=2, Pra7)(@)=0 (xe Q). Now, noting (-%™—2,)((-%™— 1) LPra7)(2)=0
(x € 2) and applying the unique continuation theorem for (™—2,)*1"'Pral, we
obtain ((¥™— 1) 1 Pra?)(x)=0 (x€R). We continue this argument to get
(7™ — 2 )1 Prgie= (8™ — Y1t Prgi=. .. = Prqg?=0, which contradicts (4.52).
Thus (4.55) is proved.

We will complete the proof of (i) of this theorem. By (4.54) and (4.55),
A is an operator with the boundary condition (2.6). Next we have to verify
(2.29). Let I" be any arc in 92N 2,,. By Theorem 2, we have pyu(&)=p%(&)
(terl, 1=4, j<n), so that

O IINPIGE 00— 2)Pray

auym a})y

& (€el).

Therefore the condition (4.54) with j=j,, implies
(B(&) —B™~(E)( ™ — )0 Plrai)(£)=0 (¢el).

Since {Eel™; (™20 Pra)(£)=0} has no interior points by (4.55), also noting
the continuity of 8 and f™, we obtain B(&)=p"(¢) (€eI'). This completes the
proof of the part (i). For the part (ii), we can proceed similarly, and we omit
the proof.

Proof of Corollary 1. First
(4.56) {DMa are real analytic in 2 for ae X (=1, 05j=k) .

In fact, since (Y™ —1)((¥™—2,)%Pra)=0 by (2.25), we see by a result on the
analyticity of solutions of elliptic equations (e.g. Hormander [6, p. 178]) that
b=( ™ )iPrg = (DM%ag is real analytic. Since we have (¥™—2)X
((S7m—2) " Pra)=b and b is real analytic, also (DM la=("—2)% 'Pl'a is
real analytic by [6]. Continuing this procedure, we see that Pfa is real
analytic. ‘

Now we will complete the proof of this corollary. To' this end, assume
that Q,,%@. Then we have only to prove that 2,,=02. By 2,,% @, there
exist g-dimensional column vectors d(v) (1=<I/=¢) of the forms &((DfYay; )
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or o((DyYby; x) G=21, 057k, 1SE<N) such that W(z)=det(d,(x), -, d,(®))
never vanishes in some open set in 2. By (4.56), W(z) is real analytic in
2 and W(x)#0, so that {xe€®; Wix)=0} is a finite set. Noting that
{zeR; We)#=0CR,,, we get £2,,=10.

Proof of Theorem 4. We will prove the part (I), because we can similarly
do (I). Since the spatial dimension # is one, we see H'(0, 1)cC"'[0, 1] by the
Sobolev imbedding (e.g. [1]). Hence we note that a, b € 2((A™+a)V*)c HY(0, 1)
are continuous on [0, 1].

First we will verify the equivalences in the statements (a) and (b) of this
theorem. Next we will prove that the set

(4.57) M={xe[0,1]; the equalities (2.16) imply
plw)=p™x), qlz)==g™®), »(x)=r"(x) and
ap(z)=ay(x), bp@)=by(x) (I=k=N)}

is empty if (2.36) holds. Then, since 2,,=@ or 2;,=2 by (a), (b) and M>2,,

always holds by (2.31), we will complete the proof of (2.35). As for the de-

termination of boundary conditions, we can see the conclusion by Theorem 3.
Proof of the “if” part in (a). Since the spatial dimension is one, we have
=0 (=1) (e.g. Lemma 1 in [14]). Therefore, by the definition, we get

(4.58) 2:p={xe€(0,1);
dim Span{a(Play; x), o(PPby; %); i=1, 1SE=N}=3}.

Now assume (2.36). Then, as is easily checked, we have
dim Span{a(Prey; x), d(Prby; x); 121, 1SR NI<3

for each x € Q. Therefore (4.58) implies 2;,=@.

Proof of the “if” part in (b). We can take a linearly independent subset
{61, ba, o} Of Span{Prap, Prby; i=1, 1=k=N}. Then, in view of the proof of
Theorem 2, we have only to prove that the set

AED) $a() @a()
{xe(o, 1); det(dsbl(w)/dx doy(x)/de  doy(z)/dx ):O}
d*p (x)ldat  di¢,(w)ldw*  d¢y(w)/dw®
has no interior points. Its proof is carried out by the same way as the proof
of Theorem 2 in [14], and so we omit its proof.

Now the “only if” parts in (a) and (b) are directly seen. In fact assume
that Q,,=@. If (2.37) held, then we would reach 2,,=2 by the “if’ part in
(b), which contradicts 2,,=®. Hence (2.37) cannot hold, that is we see the
“only if” part in (a). In (b), we can similarly proceed. Thus we complete
he proof of the equivalences.
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Proof of “(2.36)=M=@”. Assume that (2.36) holds. Then we will prove:
if dim Span{Pprap, Prby; i=1, 1=k=N}=2, then for some p, ¢, » and B; Bi
such that p=#p™ or q#g™ or r+r™, we have

(4.59) u(t;‘ A, g bP)=ult;, A™ ar, b in L¥0,1) (=0, 1=k=<N).

For the case of dim Span{Pray, Prby; i=1, 1sk<N}=1, we can proceed simi-
larly and, if dim Span{Pap, Prby; i=1, 1Sk<N}=0, then ap=bdp=0 (1=k=N)
by the completeness of the eigenvectors, so that the proof is trivial.

Let {¢;, ¢,} be a basis of Span{Pray, Proy; i=1, 1=k<N}. Then, by the
same way as (4.29), we can see

(4.60) dpeC=(2) .

Moreover, we have A™¢,=2A;m¢: for some i(k)=1 (k=1,2). (e.g. Lemma 1 in
[14]). Henceforth, without loss of generality, we may assume that #(1)=1 and
i(2)=2. That, is,

Since p™(2)>0 (0£2<1), if we take a real constant ¢ such that |e¢| is suf-
ficiently small, then

agy(x) dg,(x)
dw dx

(4.62) @ -+o($,) ¢z<x>)>o 0=z=1) .

Let us fix such an e&. We set

(4.69 puay=p(a) o i) L L0 g 1))
(4.60 a@=gw)+e( L5 i) — g, T2 )

dby(n) dgule) &) dpua)
dx dx? dz? ax

(4.65) n(w>=rm(m)+s( ) 0=z<1).

By (4.60) and (4.63)~(4.65), we see that p,, q,, 7, are real-valued smooth functions

on [0,1] and p(@)>0 (0Sz=<1). Moreover, since ¢.(z) dq;;a(c”) df;;‘”)

nothing but the Wronskian of ¢; and ¢,, by the property of the Wronskian
(e.g. Ince {7]), it follows from the linear independence of ¢, and ¢, that

Po(x) is

(4.66) C o pmg)FEDPm () for some x,€(0,1].

We define an operator —A4, in X=I%Q0, 1) by
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( ) du(a:)

(—Au)(»)= pl(w) ——+aq,(®) +r(@u(z) (0<x<1)

DA)={ue 10, 1); ?%(0)+ﬁ?u(0)=3?(1)+ﬁ?u(1)=0} :

Then, for A=A,, we will prove (4.59). Noting (4.63)-(4.65), we have
(4.67) A1¢1:'—’Am¢1 , Ag=Amp,

by direct computations. Noting that the system of the elgenvectors of A™ is
complete in L¥(0, 1), we have:

ay, by € Span{Pprap, Proy; =1, 1sk< N},

and since {¢,, ¢,} is a basis of Span{Prar, Prbr; i=1, 1=k=<N}, there exist
@i, by €R (L=E=N, j=1, 2) such that

(4.68) QT =P+ P, Dp=bp P +bpepy (1 =kZN).

Since the restriction A7 of A™ on Span{d,, ¢.}, is bounded and AFd,=2A0

(k=1, 2) by (4.61), Ap= (,83» —& is a bounded operator on {Span{g,, ¢:.}}* to

itself. Therefore we have

u(t; A™, ait, bF) .
du = e‘36”‘<a" )
—p (5 A ap, b be

_ap( @b
- j};le 3 ( o ¢,) (by (4.68))

INCI AL axiPs
MJZ1 zz:o I A )(bki¢f)

Since we can calculate (—AP)* by a way similar to (4.34), we get

u(t; A™, ap, by)
d
-t A, g, b)

2ie O e (— AR, L by — ATy
‘g ; ((Zl)' (b,,,(~A3‘)‘¢,> (21+1)3<¢m(~—A6")‘f1¢j>) )
Thus by (4.61), we obtain
(4.69) u(t; A™, a?, by
2 o — 1420 —— 1p2l+1
=55 et ) €20

Consequently we have for £=0,
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dult) & (s (— 2,42 (— 2,4+ ) A
e - A (f@o enl Wt g oe )t

. 2 0 (___zj)ttzl . (__Xj)ztelﬂ "

—A’@l <fﬁo (?;;))!t. Ty (é;i]t_), - bw>¢1> (by (4.67))
=—Auli; Anat, b) (by (4.69) .

2
That is, u(¢; A™, af, b7 is a solution to the Cauchy problem d;;(f) + A, ult) =0

(t=0) with #(0)=a and %%(O)::b;”, so that the uniqueness to the problem im-

plies (4.59). This completes the proof of Theorem 4.
Now we conclude this section with proof of Lemma 1.

I

Proof of Lemma 1. As is easily seen, if z#py and |z—p| is sufficiently
small, then

z

(4.70) (z——]j)”:( : ‘i)(zer)-l

and (z~i)"‘ is a bounded linear operator. This means (4.10). We prove only
(4.11) and (4.13), because proofs of (4.12) and (4.14) are similar..

Proof of (4.11). By the definitions (4.9) and (4.70), we have

(4.71) th,:gﬁjsr 22+ L)y \dz ,
= 1
(4.72) Q= 5=y, @ Lrdz,
7"
and
(4.73) Qo= 5y |, e+ D)z
o

Since p is an isolated point of o(L), we have the Laurent expansion at
z=—pH=1):

P 2 (1D
12 TE @

(|z*4-2]5=0: sufficiently small),

+8i(27)

{4.74) (24 L)'=

where S3(2%) is analytic at z=p and Py=Py(L), D;=D;(L) are defined by (4.8)
(e.g. Kato [8]). Substituting (4.74) into (4.71), we get

1 z 2. 1 z ;
Q""‘( B/ —1 S,’H P, dz>P itz (—l)i( P/ —1 Spy EEp d"‘>D‘

1
+m5p,fsﬂ(z”d" '
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Here the third term at the right hand side vanishes by the analyticity of
2S5;(z?) at z=p. Henceforth we denote the residue of a function f at z=a by
Res(f; a@). By the residue theorem, we have

(4.75) Q.. ,‘_—Res< " ; /£>P;+Z( 1) Res((z2 ) ;)D

First let #0. Since p is the pole of order i+1 of the function T We

o E
(22— %)

have

z 1 d? 2
ReS("“( . — ) ; /l) *.—‘lza# az < (z+p)H )
(=D @-nt @)
=i (G e e G )
_(% (i=0)
“\0 (=1).

Second let #=0. Since g is the pole of order 2;-+1 of the function
we have

(2.' ___‘a.,)r)-l Z“'H ’

Res(@:i—;)m-; #) Res( iﬂ ? O) ((1) Z;(]); .

Therefore we obtain (4.16).
Similarly, by (4.74) and (4.72), we can see (4.17). To prove (4.18), in (4.73),
we note

* - —«__.__:!'____ 2 2 —
ZWV:TSp#L(z +L)dz= 27“/:{81*/‘(1 2+ L)) dz

z—-z?v 18 z~(zﬂ~|~L)“1dz )

so that we have only to use (4.74 and the residue theorem.

Proof of (4.13). We have (D,,) = 27‘5 WIS (z—p)(z—L)"‘dz. In order to
- r,
prove (4.13), we substitute (4.70) and (4.74) and by the residue theorem we

calculate the complex integrations:
*“S Ma+p) T z—p) i Az (120, 121, 1=0,1,2) .
—1)r,

We can similarly proceed, and so we omit details.
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