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Abstract

We consider a linear control system with time-delays in a reflexive Banach
space X:

dz(t)
dt

=Aez()+ Sn_n dn(s)z(t+ )+ But) ae t>0.

2(M=¢°, 2(8)=g'(s) a.e. se[—4, 0),

where (¢°, ¢\eXxLy([—4 0]; X), weL¥*(R*; U), U is a reflexive Banach space,

b, ge(l, o0), B() is a family of bounded linear operators on U to X and A4,

generates a Co-semigroup, 7 is a Stieltjes measure. Moreover ¢' and » are assumed

to be restricted in {g*; l¢'l|lzpc-nen =p} and {#; |1#llz,0.000=0 (o, §>0). For
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given z°, ¢°eX and a given time 7>0, we discuss admissible controllability
problems :

(1) to determine independently ¢'(-) and #(-) such that x(0)=¢" and
(=2 or ||o(T)~=2%||<e (e: 2 given error). (the cooperative type)

(2) to determine u(-) for a given g¢'(-) such that x(0)=¢" and
2(T)—z*|=e. (the noncooperative type)

In this paper, for the both types, we establish necessary and sufficient conditions
involving p and 4, in order that we can find such ¢' and #. These conditions
are expressed in terms of the fundamental solution of the homogeneous system
with time-delays.

§1. Introduction

For linear systems in Banach spaces, the concept of controllability for free
(unconstrained) - controls as well as observability and identifiability has been
studied extensively. We refer to Curtain and Pritchard [3], Fattorini [4], Nakagiri
and Yamamoto [107, Suzuki and Yamamoto [15] for systems without time-delays,
and to Manitius and Triggiani [6], Nakagiri and Yamamoto [11], [12], Salamon
[14] for time-delay systems. However, with respect to time-delay systems, there
has appeared little work for controllability with constraint (e.g. Chan and Li [1]).

In this paper we study admissible controllability problems for a linear time-
delay system in a Banach space:

Forcing functions and initial funclions operate as controls in the system and

those controls ave assumed to belong to some norm-bounded constraint sets. Then,
in such constraint sets, we find controls steering a given initial state to a desirved
State.
These are problems in game theory, where in order to obtain a desired state,
two persons (called players) can move respective controls in a linear time-delay
system; a forcing function and an initial function correspond to two players’
controls. For these problems, there are two types (the cooperative type and
the noncooperative type), according to choices of two players’ controls. The
purpose of this paper is to derive necessary and sufficient conditions for the
two types of admissible controllability. For the cooperative type and the non-
cooperative type, these conditions are stated respectively in Theorems 1 and 2
(§2), and Theorem 3 (§3). Moreover in §4, we give a simple example explain-
ing Theorem 1.

Now, in this secton, we give exact description of a linear time-delay control
system in a Banach space. Let X and U be reflexive Banach spaces over C or
R, with norms ||-|| and ||-|lz, respectively. Consider an abstract control system
(1.1) on X with time-delays:
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dj?lgt) =Aux(t)+ g" h d(S)x(t+5)+ Blud) ae. >0

(.0
2(0)=¢", 2(s)=g'(s) a.e. se[~4, 0),

where g=(¢", ¢")eXXLy([~%, 01; X), ueLi(R*; U), p, qe(l, o), {BE); t=0}c
L(U, X) is a strongly continuous family of bounded operators from U into X,
A, generates a Co-semigroup {T(#); ¢=0} on X (cf. Tanabe [16]) and y is a Stieltjes
measure given by

(1.2) 7)== 5 Xecmn kDA~ [[Art@rde, ser—, 01,

In (1.2), Xz denotes the characteristic function of E and it is assumed that
0<l< ... <hu=h, Are LX) (r=1, ..., m)and A;(-)eL,([~4, 0]; £(X)). Here
and henceforth _£(U, X) denotes the set of all bounded linear operators on U
into X and also £(X)=_(X, X) is defined similarly. Then the delayed term
in (1.1) is written by

0

r‘%l Arﬁ(t_hrﬂg , Ars)z(t+s)ds.

Let W(¢) be the fundamental solution of (1.1), which is a unique solution
of the equation
13 0
1)+, 7=, e me+9ds, 120
Wit)= : -
0, t<0.

Then W()e.L£(X) for each #=0 and W() is strongly continuous in R* (e.g.
Nakagiri [81).
If the condition

(1.3) Ar(eLp(—h, 01; LX), 1/p+1/p' =1

is satisfied, then for each #=0, the operator valued function U,-) given by
(1.4 . Ut(s)zy_h Wt~s+8)dnE) ae se[—4, 0]

belongs to Ln(—#% 0]; £(X)). This follows from the Hausdofff-Young ine-
quality. Hence the function
W+ [, Useds+ | we—s)Bsuisias, 120
1.5 a9, w)= o ’
') a.e te[—h, 0)

is well-defined and is an element of C(R*; X). Moreover it is proved in [8]
that under the condition (1.3), the function z()=a2(#; ¢, %) is a unique solution
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of the integrated form of (1.1) by T(%), i.e.,

1.6 a=Twe+( Te-9B&ueds+ | T¢-9 anens+aus, 1=0

In this sense, this function x(#) is called the mild solution of (1.1). In the
system (1.1), #(#) and g'(s) are called a forcing function control and an initial
function control, respectively. Here we note that ¢°=x2(0) is not considered as
a control. We will study the admissible controllability by means of mild solu-
tions. Admissible controllability problems for linear time-delay systems can be
solved also by directly applying the semigroup theory (e.g. Example 5.1 in [1]).
In this paper, however, we will use the fundamental solution developed in
Nakagiri [7], [8] rather than the semigroup associated with (1.1), so that we
can obtain results which are more useful than those in [1].

§2. Admissible controllability of the cooperative type

For each #>0, 520, p=0 and p, ge(l, o), we define the constraint sets U
and G} by

@.1) (weLy00, £1; U); lnlle=({ llu(s)lis) " <o)
and
@.2) weLl— 03 X); lo'lo=(]" Nosiras) =4},

respectively. The sets U} and G are convex and closed in Ly [0, #1; U) and
Ly([—%, 0]; X), respectively. We put Y%,=UixG, and define reachable sets
Rg", Y3,) and Ru(g% 3, p) by

2.3) R’ Y5, )={zeX; x=x(t; (¢° g'), u) where (u, g)eY},}
and
(2'4’) g{w(goy 5, p)zi’;)')ﬂt(go; Yﬁ.p)'

For any #>0, 3, p=0 and p, ge(l, oo), by the definition, Rq(¢?, ¥%,) is convex.
Moreover we have

Lemma 1. For any t>0, 6, p=0, p, ge(l, o) and ¢°eX, the set Rg°, Y:,)
is closed.

We can see this lemma by the reflexiveness of U and X, and the proof is given

in Appendix, for convenience.
In this section, we consider the admissible controllability of the cooperative

type:
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DerFiNITION 1. The system (1.1) is said to be
‘(1) admissibly (4, p)-controllable on [0, #] (resp. in finite time) with respect

to ¢°, 2° if 2°eRug’, Y4,) (resp. "€ Ru(g", 4, p)),
(ii) admissibly (3, p)-controllable on [0, ] with respect to ¢°, B(z°; ¢) if
B(x'; )N RAg° Y3, #0, where we set B(x®; ¢)={zeX; |lz—2°||<e}.

Here ¢" and z° are assumed to be an initial state and a desired state (a target
noint), respectively, and B(z°; &) is a target set. Henceforth <., -> denotes the
duality pairing between X and its adjoint space X*.

Now we are ready to state Theorems 1 and 2, which generalize Theorems
4.1 and 4.2 in Conti [2] in two directions, to infinite dimensional spaces and to
differential equations with time-delays.

THEOREM 1. The system (1.1) is admissibly (5, p)-controllable on [0, £] (vesp.
in finite time) with respect to ¢°, z° if and only if (vesp. if and only if there
exists a t>0 such that)

17q/

(2.5) [{a® ~ W(D)g®, z*p| =< 5<S: IIB*(S)W*(Z‘—-S)x*H?;.ds>
+P(S0_h ”U;k(s)x*”g;ds)lp, for gach .‘L‘*GX*,

where 1/p+1/p"=1, 1/q+1/q =1, the operator U¥(s) is given by U¥F(s)=
5 Ko VAW R —s—h)+ || AKQWHt=5+8)d8 ae. sel—h, 0) and |||l ||
denote the norms in U*, X*, respectively. :

With respect to fixed ¢° and x° the (5, p)-controllability depends heavily
upon 6 and p, the radii of constraint sets of controls. For example, by the
definition, the (3, p)-controllability implies the (8, p’)-controllability if 6=¢’ and
e=p’. Theorem 1 states how the admissible controllability depends upon & and

0.
THEOREM 2. We assume that
(2.6) T is compact for all ¢>0.

Then the system (1.1) is admissibly (8, p)-controliable on [0, £] with respect to ¢,
B(x®; &) if and only if

@D K= W, 2 —elo*lles o | 1B WHt—s)a¥lgds)

+‘o(gih “Uzk(s)x*”gdsy/p

Jor each x*eX*.
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In Theorem 2, we note that the condition (2.7) is weaker than (2.5), in
proportion to e, the radius of the target set. Moreover Theorem 1 is true also

for functional differential equations with unbounded delay terms studied in
Tanabe [17].

Proof of Theovem 2. We recall the strict sepérafing hyperplane theorem
(Reed and Simon [p. 130, 13]).

LemMa 2. Let E and F be disjoint closed and convex sets in X. If E or
F is compact, then they can be strictly separated by a hyperplane, in other words,
theve exists an z¥eX* such that s%g Lz, 25> < in}g {a, zE>.
o TE.

For each >0, we define two operators B,: L,([0, #]; U) — X and
Gut Ly((—2, 0]; X)—> X Dby

2.8 _g?;u:S: W(t—5)B(s)u(s)ds
and

0
(2.9 ga'={", U (s)as,
respectively.

We prove the “if ” part by contradiction. Suppose that (1.1) is not admis-
sibly (3, p)-controllable on [0, #] with respect to ¢°, B(z°; ). Then by Definition
1, B(z"; )N R¢® Y%,)=0. This implies by (1.5) that the two convex sets
E=R,0, Y},)=B(UY+3/G}) and F=B(z"—W(t)y°; ¢) are disjoint. By Lemma
1, E is closed. Hence both £ and F are closed. Furthermore, on the assump-
tion (2.6), B, and g, are compact for all £>0 (Nakagiri [Lemma 3.3, 9]), so that
E is compact in X. Therefore it follows by Lemma 2 that there exists an
z¥eX* such that

2.10) inf {x, x¥>>do=sup {z, z¥>.
TEFR TEE

Note that d, is finite (E is compact!). On the other hand,

2.11) inf {z, 2> = inf ("~ W(H)g* +v, z¥>
TEF 1Y]se
=@ =W, at>—e SUD Gz, ob

={z°— W(t)g*, =¥> —ellwlx
and

= *
(2.12) do= SzEEP xy ¥

= sup {(S: Wt —8)BES)u(s)ds, %53 ue Ug}
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0
+sup (<[, Do) (5)ds, 8>3 o€ Gy}
12
= sup {[| <u(s), BHOYWHE—s)atdv.ods; Il =0}

+sup{{’, <0, UKds; llollb=o}

JQt

= o[, 1B W -azlg: ds)

+ o[, Wiz as)”

where (-, >y« is the duality pairing between U and U*. Then by (2.10)-
(2.12), we have

,

t 1/
@ =W, aty—eltle > o[ 1B WH(t—s)azg-ds)

+of |, IUzazz ds)

which contradicts (2.7).
Next we will prove the “only if” part. Assume that (1.1) is admissibly

(8, p)-controllable. Then there exist #eX, #eU and §'eG! such that
a =E: W(t——s)B(é)ﬁ(s)ds+Sih Uds)a'(s)ds € B(z'— W(H)g"; ).
Hence for any z*¢X* we have
[Ka® = WD)’y z*>] —ellz*|lx
=K'= WD, #*0 =<z — W' =7, 2= K3, 2%

=, wit—s)Bsycsas, o)+ <[, vk sis, %)

/q

=i([, 1B W —sig-ds) " + ([ 10K ds)”

(by Holder’s inequality).

This proves (2.7).

Proof of Theorem 1. In this theorem, the compactness of 9, and g, is not
necessary, since F=B(z'—W(#)g*; 0)={z"—W(#)g°} is compact (one point). Thus
we readily see this theorem from the proof of Theorem 2. The admissible
(0, p)-controllability in finite time can be proved similarly.
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§3. Admissible controllability of the noncooperative type

In this section, we discuss an admissible controllability problem which is
noncooperative in the sense that against one player’s control, the other player
may select an appropriate control. That is,

DeriNiTioN. 2. The system (1.1) is said to be admissibly (5, p)-controllable
on {0, ] in the noncooperative sense with respect to ¢° B(z°; ¢) if for each
initial function control ¢' € G}, there exists a forcing function control ue U} such
that z(f; (¢°, ¢'), w) € B(z"; ).

In game theory, ¢! and » correspond to an evader’s control and a pursuer’s
control, respectively (cf. Hajek [5)).

Our result is

THEOREM 3. The system (1.1) is admissibly (8, p)-controllable on [0, ] in the
noncooperative sense with respect to ¢° Bla®; €) if and only if

8.1 Ka® —W(B)g°, 2*D]—ellz*|ls

] 1/¢¢ 0 1/p
= o[, 1B @wre—9oiip.as)” —o( [ 1UrEE ds)
for each r*eX*.

The last term in (3.1) corresponding to the evader’s controls is negative
by the noncooperativeness.

Proof. First we show
LeMMA 3. Let E and F be closed convex sets in X. Then ECF if and only
if
(3.2) sup {z, z*) = sup <z, z*) for all z*eX*
ZEE ZeF )

Proof of Lemma 3. The “only if” part is obvious.. We shall show the
“if” part by contradiction. Let (3.2) be satisfied and suppose that £ is not
contained in F. Then there exists an element x,eE\F. Since {z,} is compact
and {z,} N F=g, it follows by Lemma 2 that {z,} and F can be separated strictly,
ie, '

(8.3) sup {z, ¥ < {xo, 2F) = sup {z, >

for éon;e :é;“eX*. : Clearlyb(S‘S) contradicts (3.2), and hence the proof is finished.

Now we return to the proof of Theorem 3. By Definition 2, the system
(1.1) is admissibly (3, p)-controllable on [0, #] in the noncooperative sense with
respect to ¢% B(a°; ¢) if and only if
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(3.4 W@+ GGy < — BLUS+ B(a®; &)

By Lemma 1, gu(Gh)=RA0, Y1 ,) is closed. Hence the set W()¢*+gG«(Gh) is
closed in X. Moreover — @B,(UH+ Bla"; e)=B(Us+ Bla; ¢) is closed, (In fact,
let wun=yn+2n, yne BLUY) and z,e B(z’; ) (=1) and let #, converge to u strongly
in X. Then by the refleziveness of X, there exists a subsequence {zn} such
that zn — z weakly for some zeX (e.g. [p. 141, 18]). Thus yn =%n —2a COR-
verge weakly to y=u—z. Since the convex set BUH=R(0, Y%, is closed
by Lemma 1, we have yeB.U% (e.g. [p.120, 18]). On the other hand, since
25— 2" — z—2z° weakly, we have Hz—-x"!léligz}_wionf [|gar—2||=¢ (e.g. [p. 120, 18]),
namely, zeB(z"; &). Therefore uwe (U +B(z"; ¢).)

Obviously both. W(#)¢*+2«(G)) and B.(USH+B(x"; ¢) are convex. Thus we can
apply Lemma 3, so that we see that (3.4) is equivalent to ' ‘

(3.5) sup W)’ + Gug', x*); 9'eGl}
= sup {Bu+y, 2*>; uelU, yeB(a"; &)}
for each x*eX*.

Then as in the proof of Theorem 2, we can verify that (3.5) is equivalent to
that ;

- 0 !
(3.6) W@, 2*+o(|., 10a% ds)
sa(g; I BH(5)W*(¢—s)a¥ ds) Y, @l .

Replacing z* by —z* in (3.6), we obtain the condition (3.1), This completes
the proof.

§4. An example

}n this section, we consider the following'simple control system on X=R
with one time-delay and we express the condition (2.5) for the admissible (3, o)-
controllability.

¢ du(?)
dt

=z2(O)+2@—-1)+u(t) ae t>0
4.1)

2(0)=¢", 2(s)=g'(s) ae. se[-1, 0),

where g=(¢°, ¢VeRXL.([~1, 0]; R) and ueLll(R*; R). ‘
As is easily checked, the fundamental solution W{(#) of (4.1) is given by

et (0=t=1)

(4.2) W) ={
et+(—1)e? (1=t=2), ete.
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Thus, by Theorem 1, for 1=¢=<2, the system (4.1) is admissibly (5, o)-controllable
on [0, f] with respect to ¢° z°c¢R if and only if

4.3) |20 — W) = 5(52 Wisyds) + p(S:ﬂ W(s)ﬂds)“,
namely,
4.4 2|z°—(e'+(E~1)et Mg

= 8(2e% 420 — 3+ (212 — 6£+5)g? -2+ (4f — 6)e2-1) 2
+ (2% +2e — 1+ (212 — 6+ 3)e* 2+ (4¢ — 6)e?t1) 172,
Here we note that W(#)=W()* (#=0). :

Appendix. Proof of Lemma 1

Let ﬁs(t; (¢° or), o) strongly converge to some xz,eX as #—> co for
(#n, gr)eY? .. Then we have to prove that z,=x(¢; (¢°, ¢'), %) for some (#, ¢')e Yi,.
The reflexiveness of U and X, and p, ge(l, oo) imply the reflexiveness of
Ly([0, £]; U) and Ly({—4A, 0]; X). Since Y%, is bounded in the reflexive Banach
space Ly ([0, £]; U)X Ly([—nh, 0]; X), there exists a subsequence {(z,, ¢5)} weakly
convergent to (%, ¢') (e.g. [p. 141, 18]). Furthermore, by Hunqs._lirﬂ. inf |jun)|, and
Hg‘]lpglixgl_)inf llorlls (e.g. [p.120, 18]), we see (%, ¢g")e Y%, By Mazur's theorem

(e.g. [p. 120, 18]), a sequence consisting of appropriate convex combinations of

N7l
(un, 03) (n=1), strongly converges to (%, ¢), say, (v, lz,‘,)-:kZ Onz(Ue, gF)
=1

N,
,Si ani=1, aai>0), We have |jon—ully |44 —g'|ly —> 0 as # —> co. On the other
=1

hand, by the strong continuity of B(:), we see that {||B(s)u||; 0=s=# is bounded
for each ueU, so that sup 1Bl s, xy <co by the resonance theorem (e.g. [p. 69,

18]). Therefore by the Imeamty of (1.1) and an estimate of solutions ((Theorem

2.1, 8], we see: Zankm(t (g% gi), ur)=(2; (¢° 73), vu) —> a(t; (g% ¢"), w)

strongly in X. ThlS 1mphes that zo=2x2(¢; (¢°, gY), ), which completes the proof
of Lemma 1.
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