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Abstract

This paper presents some weak (or variational) formulations for an electro-
magnetic eigenvalue problem related to the analysis of cavity resonators in
microwave theory. Particularly, mixed and penalty formulations are considered,
since they appear to be applicable to finite element analysis of such a problem.
Moreover, some theoretical results are derived for these formulations. Then, a
simple two-dimensional finite element is developed by the penalty formulation,
and tested by numerical computations. We point out some numerical difficulties
observed in this type of piecewise polynomial finite elements based on the
penalty approach.
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§1. Introduction

Let £ be a bounded domain in R*® with Lipschitz continuous boundary 9:2.
In the microwave theory such as adopted in particle accelerator physics [1], we
often consider an eigenvalue problem for a non-negative number 2 (eigenvalue)
and a real vector-valued function E (eigenfunction): find a pair {2, E} such that
E=+0 and

rotrot E=2E, divE=0 in 2; Ex#=0 on 2@, (1)

where 7% denotes the outward unit normal on 82 and X does the vector product.
Physically, E represents the amplitude of a time-harmonic electric field, and 2 is
a quantity proportional to the square of the frequency of the time-harmonic
vibration. The houndary condition in (1) means that the boundary 82 consists
of a perfect conductor, and an additional boundary condition div E=0 is some-
times imposed there.

If the amplitude of a magnetic field H is employed as the fundamental
quantity in place of E, the present problem becomes
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rotrot #=2H, divHE=0 in 0

H-%=0, (rotH)xn 0 onaQ (2)
Physically, the equlvalence of these two problems is known for positive values
of 2: we will later give a mathematical proof in the framework of the Hilbert
space method (Theorem 2).

A difficulty of this problem is how to deal with the divergence-free condi-
tion: div E=0. However, if E satisfies the first rélation in (1) for 20, this
condition holds automatically for such E since div E=4"!div (rotrot £)=0.
Thus, the divergence-free condition is consistent with the first relation so long
as we are interested in time-harmonic electric fields with 2>0. This fact will
be also proved in this paper (Theorem 1). Another difficulty is the complexity
of function spaces appearing in the weak formulations of the present problem
as we will see later: we need some Hilbert spaces other than the Sobolev spaces
to describe the present problem mathematically.

Recently, three- dimensional calculations of electromagnetw problems become
increasingly important. Unlike in the two-dimensional cases, the basis of such
calculations does not appear to be fully developed at present. As a theoretical
study for such an aim, we will first give some mathematical preliminaris (Sec-
tion 2), and then derwe some weak formulatlons for the above problem (Section
3): in particular, m;xed and penalty formulations will be discussed, since they
appear to be theoretically interesting and practically promising. - Moreover, we
will present a simple two-dimensional finite element model based -on the penalty
approach and test it numerically by a few sample problems (Sections 4 and 5).
It is a classical “nodal- point” elemernt ‘based on-the piecewise linear Lagrange
interpolation polynomial. In particular, we will point out some numerical diffi-
culties of such an element when £ has an reentrant corner. This type of
numerical phenomenon appears to be commonly observed when the penalty ap-
proach is used with the usual piecewise polynomlal approx1mate functlons see
also [14].

~ The results of thls paper are partlally announced in. [12] w1thout proofs,
where some numerical results based on the Nedelec finite element spaces [16,17]
are also included. :

§2 Function. spaces and prehmmary results i

Let @ be a bounded domain in R? with Lipschitz continuous boundary Let
us con51der some real function spaces related to Q.  First,. H () and HY(Q) are
the usual first-order Sobolev spaces, and Ly(Q) is the L.- -space for 2. We will
denote by (+,) the inner product of L.(2) or. {LE(Q)}3 Slrmlarly, we, W111 use
111 to denote ‘the norm of LZ(Q) or. (L2, Moreover we define .

Hiy(2)={ge H'(?); the trace of ¢.is constant on eaoh:_ ,7
connected component of Q). . .° R ¢3)
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Note that H'(Q), HY(2), and H%(Q) are Hilbert spaces, and that the latter two
are subspaces of the first.

We also use some real Hilbert spaces of vector functions for electromagnetic
fields, see e. g. [5,6]. - We first introduce three Hilbert spaces with their norms.

Hrot ; Q)={ve{L(D}*; rot ve{L.(2)}*} equipped with
[0l zrceer s 2y =(l[0]]* +Irot o[|?)**, (4)

H(div; Q)={ve{L,()}*; divveL,(Q)} equipped with
ol zcas s v= ([0l +]|div 2]]?)**, (5)

H(rot; Q)N H(div ; Q)={ve{L(D}*; rot ve{L:(Q)}, divveL(2)} equipped with
l19lzzcrors 930 case s o2 = ll0ff* +[[rot o]+ [ldiv of[*)!2. (6)

Here, rof and dip are the usual differential operators in the sense of distribution.
Later, the gradient operator grad will be also used. The inner products of the
above Hilbert spaces are the standard ones associated with the norms. These
function spaces are not the usual Sobolev spaces, Clearly, {H(2)} is continu-
ously imbedded in H(rot;2)NH(div;Q): the converse is, however, not true in
general [20]. ‘

The following spaces are subspaces of H(rot; Q) or H(div;9).

Hy(rot; @)={veH(rot; 2); (v, rot g)=(rot v, ¢) for all
peH(rot; 2}, ’ (7)

H(rot® ; @)={veH(rot; 2); rot v=0}
={ve{L2_(.Q)}3; (v, rot ¢)=0 for all geHy(rot; D}, (8)

Hy(rot?; Q) ={veHy(rot ; 2); rotv=0}
={vel{L (D)} ; (v, rot $)=0 for all peH(rot; )}, (9)

Hydiv; @)={peH(div; 2); (v, grad ¢)=—(div », g) for all
CqeH' (), e
H(div'; 9)={veH(div ; 2); divo=0}
={we{l(Q)}; (v, grad ¢)=0 for all ge H{(D)}, (1
Hy(div'; @y={ve Hy(div; 2); divu=0}
={pe{L(D}; (v, grad ¢)=0 for all geT'(Q)}. (12)
The meaning of veH(rot; ) is that veH(rot; Q) and the tangential components
of » on 802 vanish in a generalized sense [5,6]. Similarly, veH(div;2) if and

only if veH({div; Q) and the normal component of » on 92 vanishes in a genera-
lized sense.

Let us-list some important results on these spaces,



46 Fumio Kikucur

(i) gradgeH(rot®; Q) for each ge HY(Q).

(ii) grad ge Ho(rot® ;2) for each ge HL(Q).

(iii)y If 2 is simply-connected, there exists for ‘each veH(rot’; ) a function
geH'(Q) such that grad g=v. Such g is unique up to an additive constant.

(iv) For each veH(rot®; 2), there exists ge HL(Q) such that gradg=v». In
particular, when 8% is connected, ¢ can be taken uniquely from HY2).

For (ii) and (iii), see Theorem 2.9 and the proof of Theorem 3.4 of [6]. On the
other hand, (i) is trivial, and (iv) can be derived from (iii) by extending ve
Hy(rot; 2) as zero outside 0.

We will use the following notations:

Ui=H(rot; Q2), U,=H(rot; 2),
Vi=U,NH({div; Q), e =U.NHy(div; 2), (13)
Wi=HY2), We=H'(2), J

where V; and V, are subspaces of H(rot;2)nH(div; Q).

By means of the Poincare-Friedrichs inequalities, grad HY{) and grad H'(Q)
may be considered closed subspaces of U, and U,, respectively, where grad Hy(Q)
={v=gradg; ge H¥D)}, for example. Then due to (11) and (12), we have the
following orthogonal decompositions of U; and V,; for i=1,2:

U,={U:NH(div*; 2)} @ grad H{(2), (14)
U,={U, N Ho(div® ; 2)} @ grad H(2), (15)
Vi={V:NH{div°; 2} @ (VingradW;)  (1=1,2). (16)

Notice that grad H¥Q)c Hy(rot?; @) and grad H*(2)c H(rot®; 2) from (i) and (ii).
Moreover, we find from (iii) and (iv) that

grad HY(Q)=H,(rot*; 2) when 82 is connected, 17
grad HY(Q)=H(rot"; @) when 2 is simply-connected. (18)

Note that the boundaries of cavity resonators are usually connected and then
(17) holds.

As in [13], let us consider the rotation operator in two settings:
Si: Uy — {L(Q)}; Sme=rotu for uel; (i=1,2). (19)

As usual, the dual operator of S; is denoted by SF:{L. D} —U; (i=1,2).
Furthermore, the null space and the range of a linear operator are designated
by N(-) and R(-), respectively. Then we have the following orthogonal decom-
positions for i=1,2: ‘

Ui=NS) @RESH, {L(Dy=NSHDRES), (20)

where R(SF), for example, denotes the closure of R(S¥) in U;. As is shown in
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[13], we have

NS)=Hrot*; ),  N(S;)=H(rot’; 2), @1)
NSH=H(rot"; 9)=NSy),  N(SH=Hyrot’; Q)=N(S)), (22)
R(SHYCH(div*;2),  R(S)HCHEv; 2), (23)
RB)=Hdiv"; Q) if @ is simply-connected, (24)
R(Sy)=H(div®; 2) if o9 is connected, (25)
RESHCVinHWiv'; 2)  (i=1,2), (26)
REH=U.NKRE), REH=U.NREY, @7
R(SH=Hy(rot; )N H(div®; Q) if 82 is connected, (28)
mj=H(1’Ot;Q>ﬂHo(diV° 1) if 2 is simply-connected. (29)

We can also obtain the following orthogonal decompositions with respect to the
inner product of H{rot;2) or H(rot; 2)NH(div; Q). ‘

Hy(rot ; 2) N H(div® ; @) =R(SF) @ {Ho(rot® ; 2) 0 H{div® ; &)}, (30)
H(rot ; @) N Hy(div® ; 2)=R(SF) @ {H(rot*; Q) N H,(div®; 2)}. 31

In order to assure the closedness of the ranges appearing above and also
to use for some other purposes, we employ the following two assumptions [H1]
and [H2].

[Hi] V; is compactly imbedded in {L,(2)}® (=1, 2).

Remark 1. [H1] and [H2] both hold when £ is a bounded domain with
sufficiently smooth boundary or 2 is a convex bounded domain, since V; and V,
are continuously imbedded in {H*()}* in such cases, see {5, 6,10,11]. Moreover,
according to Weck [20], [H1] holds when 2 is a “C-region”. []

As is shown in [13), a direct consequence of [Hi] is that R(S:;) and R(S¥)
are respectively closed in {L.()}® and U; (i=1,2). We can also see that R(S;)
is closed in {L.(2)}® if and only if R(S,) is closed in {L.(2)}*, by noting that S,
and S, are the dual operators of each other when they are considered (unbounded)
operators in {L,()}.

Let us list two results related to [H1] and [H2), whose proofs are quite
similar to each other and given later.

(v) R(SH as a subspace of V, is compactly imbedded in {L,(@)}* if and
only if R(SF) as a subspace of V; is compactly imbedded in {L.(2)}%
(vi) If VinH(div®; 2) as a subspace of V; is compactly imbedded in {L,(2)}*,
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then [Hi] holds true (i=1, 2).

RemARk 2. If [H1] holds, then R(S¥)cV, is closed and is compactly im-
bedded in {L.(@)}. Thus, if £ is simply-connected in addition, then R(S})=
Hrot; Q)N Ho(div®; 2)=V. N H(div®; 2) from (29), and hence [H2] holds due to
(v) and (vi). Moreover, if H(rot’; Q)N Hy(div®;2) is shown to be finite-dimen-
sional even when 2 is not simply-connected, then [H2] follows from [H1] due
to (31). Of course, H{rot®; 2)N Hy(div®; ) is finite-dimensional when [H2] holds.
Similarly, if [H2] holds and 02 is connected, then R(S¥)=H,(rot;2)NHdiv";£)
=ViNnH(div"; 2) from (28), and hence [H1] holds. In this case, however, [H1]
follows from {H2] even when 92 is not connected, since we can show from (iv)
that Hy(rot®; @)n H(div®; 2) in (30) is finite-dimensional (that is, the number of
connected components of 32 is finite) .under the present assumptions on 2. [

(a) Proof of (v). We will only prove the “if ” part: the “only if” part
may be proved similarly. If R(SF) as a subspace of ¥, is compactly imbedded
in {L.(2)}, then R(S;) and R(S¥) are closed respectively in {L,()}* and U, and

such that {juully, (=|/4allv,)=1 (#=1,2, .-.). Clearly, there exists a subsequence
{wk)s-y of {ua)7., that converges weakly in U, to a certain #,eR(S§). Note that,
for each ¥, there exists a unique v,eR(S¥) such that Syw,=rotv,=#% Since
R(S) is closed in {Z(Q)} and v, belongs to R(S¥) with |[rotos||=|ju}|=1, we find
that |jzally, ='|Ivnllul is uniformly bounded with respect to ». Thus, we can use
the assumption to show that ». converges weakly in V; and strongly in {L,(Q)}*

to a unique v,eR(SF) such that rot v,=u, Noting that v,eU,, we now find that
(2%, w¥)=(rot vn, u¥)=(vn, rot z¥),

which converges to (o, 1ot %) =(rot vy, %0)=(tto, %) a8 % — co. This fact means
that «3 converges strongly to #, in {L,(2)}, and the proof is complete.

(b) Proof of (vi). The proof is given only for i=2, since that for i=1
is easier. From (16), it is sufficient to prove that V,ngradW, is compactly im-
bedded in {L(2)}. The proof is quite similar to that of (v), and hence we only
show the outline, Let us consider a sequence {#,}3., in Ve.ngradW, such that
llnlly,=1. Then there exists a subsequence {u%}3., that converges weakly in
V. to ueeV, For each =¥ there exists a unique pre Wo=H'(Q) such. that
grad pn=wuy and (pn, 1)=0. Then, by the Friedrichs ineguality and the Rellich
theorem of choice, p, converges weakly in W, and strongly in Ly(2) to a unique
o€ W, such that grad po=u, and (po, 1)=0. Then, as in the proof of (v), we can
show that (u, wf)=~ —(pn, div w}) converges to —(po, div #o)=(14s, %45) as n — oo,
and the proof is complete.
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§3. Weak‘ formulations

This section is devoted to presenting some weak formulations to the cavity
resonator problem (1) or (2) the former and the latter being expressed in terms
of E and H respectively. Hereafter, we will consider two sequences of formu-

lations, the first (i=1) and the second (i=2) of which correspond to (1) and (2),
respectively.

A natural formulation is grven as follows for z.-l 2:
[Fhl]i Find {2, ule R* X U; such that u#0 and .

(rot %, rot ©)=2(u,v); VvelUi,

32
(2, gradq) 0 = quWq, e - (3

The first relation of the above means that rot rotu ,zu and that for z——2 the
tangential components of rot % vanish on 39 due to . Moreover, for i=1,
the boundary condition for E in (1) is taken into account as the condition #eU..
Similarly, the second condition above means that #e H(div'; @) for i=1 and e
Hy(div®; Q) for i=2. That is, it means that div#=0 and that, for i=2, the
normal -component of u vamshes on 992. Thus all the relations in (1) and (2)
are taken account of in the present formulatlon Furthermore, under [(H1] and
[H2], the spectral problems associated with [F1li-;,. have nice propertles the
spectra consist of ergenvalues only and have no accumulation points except in-
finity, each eigenvalue is non-negative and 1s at most ﬂmtely degenerate and
some typical expansion -theorems are valid. ,

As was pointed out in Section 1, the second condition of (32) may be omit-
ted if we consider non-zero eigenvalues only: '

THEOREM 1. For A#0 and i=1, 2, consider ucU; such that

S

Cotwroto)=2w,0); YoeU. (33
Then 1 Satisfies ‘
(, grad g)=0: Vge Wi . (34)

Proof. Let us consider v=grad g for ge W;. Then by (@) and (u) Ve Uz
H(rot®; £). Substituting this » into (33), we find that 2(74 grad ¢)=0, from which
the conclusion follows. - ] .

-Despite the above' results, finite element models omitting the second condi-
tion of (32) usually suffer from the spectral pollution [7] since’ U; is not com-
pactly imbedded in {L,(2)}% In fact; 0 is now an mﬁnxtely degenerate elgenvalue';
Whose elgenspace is UsNH(rot’; Q). -

“We can also see that [F1], and [F1], are in a sense equwalent to each other
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so long as we consider only non-zero eigenvalues and their associated eigen-
functions (this fact is physically well known, as was noted in Section 1).

TuEOREM 2. Let us consider {2, ule R\ x U, such that
(rot w, rot¢)=2A(w, v); YoveU,. (35)
Then u*=rotu belongs to U, and salisfies
(rot #*, rot v)=(u*,v); VvelU,. ’ (36)
Conversely, let us consider {2, u*}e R'xX U, that satisfies (36). Then u=rot u*

belongs to U, and satisfies (35).

Proof. 1. Let us first prove the former part of the theorem. It may be
readily seen from (35) that w*=rotue{l,(2)}® satisfies rotu#*=rotrotu=2ue
{L(2)}2, and hence w*eH(rot; 2)=U, Moreover, for velU,, we have

(rot w*, rot v) =A(#, rot v) =A(rot u, v) =A(w*, v)

since #eU,=H,(rot; 2). Thus we have proved the former part.

2. To prove the latter part, let us consider #*eU, subjected to (36). Then
we can easily show that #=rot #* belongs to H(rot;2) with rot#«=rotrot #*=
Au*. Moreover, for veH(rot; 2),

(u, rot v)=(rot u*, rot v)=A(u*, v)=(rot %, v},
and hence meH,(rot; Q)=U, Finally, for vel,, we have
(rot #, rot v)=A(u*, rot v) =A(rot u*, v)=2(u, v),

and the proof is complete. []

A major difficulty of [F1]; when they are applied to the finite element me-
thod lies in the second condition of (32). A typical method to relax such a
constraint condition is the mixed formulation based on the Lagrange multiplier

(31.

[F25: Find {4, u, ple R* X U x W; such that u+0 and

{ (rot z, rot v)+(grad p, v)=Ku,v); Vveli, a7

(u, grad g)=0 i YgeW;.

Here, p is the Lagrange multiplier introduced to deal with the linear constraint
condition. Clearly, any eigenpair of [F1]; with p=0 satisfies (37). Conversely,
grad p in (37) is found to be zero by equating » to grad peUsNH(rot’; 2) in the
first relation. Thas [F2); is equivalent to [F1J.

We can also consider the following perturbation problem of [F2}; by intro-
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ducing a (small) positive parameter e.

(F3) Fix ¢>0, and find (3, u, pye R* X Usx W; such that u+0 and

(rot w, rot v)+(grad p, v)=A(zn,v); YvelU;,

(38)
(u: grad Q)*s(py Q)=0 i V(]G Wz .

Clearly, any eigenpair of [F2]; is that of [F3];, but there may exist eigenpairs
of [F8]; other than those of [F2].

For the selection of the parameter ¢>0, we have the following results, which
mean that we need not use too small values of ¢ if we are interested in a fairly
restricted number of eigenpairs as is often the case in practical applications.

THEOREM 3. Let A be an arbitrary fixed positive number. Then any eigen-
value of [F3]; in the interval 10, A, if it exists, is necessarily en eigenvalue of
[(F1); provided that

0<e<pifAo (39)

where p; is the smallest positive eigenvalue of the eigemvalue problem (i=1,2):
find {p, r}e R* X W; such that r+0 and

(grad, grad @)=p(r,q); VgeWi. (40)

Proof. Equating v in (38) to gradg for ge W;, we have
(grad p, grad q)=2(w, grad q)=2¢(p,q) (VgeWs),

which implies that either p is zero or 2:>0 is an eigenvalue of (40). However,
Ze cannot be an eigenvalue of (40) since 0<2e=2e< s from (39). Thus we find
p=0, and then [F3); reduces to [F2]; (or [F1}). That is, the considered eigen-
value of [F3); is also that of [F1}. [

Another approach to deal with the second condition in (32) is the penalty
method, in which ¢>0 is again used.

[F4), Fix >0, and find {4, u)e R*x Vi such that u+0 and
(rot %, rot o) +e~(divw, div o) =a(x, v); VoveV;. (41)

An advantage of the penalty approach is that we need not use any additional
quantities such as p. However, the function spaces for « are different from
those for # used in the other formulations. The penalty approach was employed
by Leis [15] for boundary value problems of electromagnetic waves, and ¢ (or
its inverse) is called the penalty parameter.

By means of the Fredholm alternative and the. theory of mixed formulation,
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we can show for each >0 that [F3}; is equivalent to [F4]; ‘with p=—etdiv u.
Thus Theorem 3 also applies to [F4];,. Note also that divaeW;. The details
of the present discussion may be found in [13] and are omitted here,

§4. A penalty finite element method for 2-D probleins

As applications of our weak formulations to numerical analysis, we consid-
ered a mixed finite element method based on [F2); in [9, 12]; and also a penalty
finite element method based on [F4]; in [8, 14]. In this section, ‘we will reconsidér
the penalty finite element method especially in 2-D (two-dimensional) cases.

In the penalty finite element method, we first prepare a suitable finite-
dimensional subspace V} of V; (i=1,2). Then the approximate problem is given
by:

[F47r  Fix >0, and find {2, wma}e R*X VE such that u,+0 and ‘
(rot #s, rot va) +e " (div up, div vr)=2(ttn, v1.); Vore VI, (42)

To discuss the convergence of the penalty approach, we usually consider a
family of finite-dimensional subspaces {V?},., constructed over a regular family
of triangulations of @, where % denotes the maximum diameter of finite elements
in each triangulation. Then, if the penalty parameter ¢>0 is fixed, a sufficient
condition for convergence under [Hi] is given by the following approximation
capability for the family of subspaces {V}}., of Vi

For each veVy, there exists a family {vplns, such that vyeVyE for each k>0
and satisfies

lim [jzn—]lv, =0 ‘ (43)

Under the assumption above, we can show the convergence of the approximate
eigenpairs to the exact eigenpairs as 20 by means of the Rayleigh quotient
techniques [19]. Error estimates are also obtainable if the eigenfunctions are
sufficiently smooth. At first glance, the penalty method appears to be easy. to
apply. Actually, it appears to be-difficult to find appropriate {V#},., for 2 of
general shape as we will see later by numerical results.

Before presenting concrete finite element models, we will give some pre-
parations for the 2-D cases. Now we consider a domain £ in R® with Lipschitz
continuous boundary 82. Usually, we deal with bounded domains, but we also
use unbounded ones for some auxiliary purposes, For '2-D vector-valued func-
tions, we consider various function spaces as in the 3-D (three-dimensional)
cases. Such function spaces are defined essentially in the same fashion as in
the 3-D cases, and will be denoted by the same notations as in Section 2, but
of course we must consider two-component vector-valued functions. In pérticular,
we will often use {L(2)}?, whose norms and inner preduct are denoted by the
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same . notations ||-|| and. (,) as.those of the scalar L,-space for convenience.
However, for the spaces related to the rotation operator, we should make some
modifications since we must be careful in defining 2-D rotation operators. For
this purpose, let us define two differential ope1ators rot and roi* by

rOt U= afozs— it fidze,  TOL* $={3j0s, —08/01) | (44)

where #={u,, %} is a two-component vector function, ¢ is a scalar function, and
{21, z2} is the variable of R Then H(rot;) and the related function spaces
are defined as follows.

H(rot; M ={ve{L(2)}*; rotweLy,(2)} equipped with

9]l ot : r =(I[0]]*+||rot o]|*)*, (45)
Hyrot ; Q)={veH(rot ; 2); (v, rot* ¢)=(rot v, 4)) for all
GeH'(D)}, - (46)
" H(rot®; @)={ve H(rot; .Q) ; rot p=0}
={ve{L ()} (v, rot* ¢)=0 for '411 g’)éH&(.Q)}, 47

Ho(fdt";!))* {veHy(rot; 2); rot p=0}
={ve{l(2)})*; (v, rot*¢)=0 for all pe H'(Q) (48)

We do not define H(rot*; £) and H(rot*; Q) since they are nothing but H(Q)

and HYQ), respectively. We also employ the notations in (18). Some of the
results in Section 2 are also valid in the 2-D cases. In particular, we have the
following orthogonal decompositions of {L.(2)}2:

{L(D)=rot* HNQ) B H(rot"; Q) =rot* H(Q) @ Ho(rot’; 2)
=rot* Hy(2) @ grad HY(2), (49)

where rot* Hy(Q)={rot* ¢; ¢cHY(2)}, for example. For the last decomposition in
(49), see [6)].

Under the preparations above, we can consider the formulations in Section
3 even in the 2-D cases after necessary modifications. Moreover, Theorems 1
and 3 hold in the same forms. On the other hand, Theorem 2 does not hold
in the original form. Instead, we have the following results frequently used in
2-D analyses.

THEOREM 4. - For i=1,2, let us consider (A, wye R*x U, such that
(rot u, rot v) =, v); Voeli. (50)

Thien, zf 270, there exists pe Was (i. e, ¢e W.=H\R) fori=1, and ¢eW,=HYQ)
fm’ 1_2) such z‘kat 1ot*¢ ‘u and

* (grad ¢, grad ¢) =i(¢, gb), Yye WH (51)
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Conversely, let us consider {2, ¢} R* X W,y that satisfies (51).. Then u=rot* ¢
belongs to U, and {1, u} satisfies (50).

Proof. We only prove the results for i=1, while we may prove those for
i=2 in a similar fashion. For 1=0, let us consider #elU,=H,(rot; 2) that satis-
fies (50) for i=1. Then, we can find that such # is orthogonal to H,(rot®;2)
in {L(2)}, and hence there exists a unique ¢geH*(Q) such that rot* ¢=w and
(¢, 1)=0 due to (49). Substituting this expression into (50) for i=1, we have

(rot rot* ¢, rot v) =A(rot* ¢, v)=2A(¢, rot ») for all vel,. (a)
For ¢eH'(Q) with (¢, 1)=0, let us consider peH*(2) such that (p,1)=0 and
(grad p, grad g)=(¢, ¢) for all ge HY(Q).

Such a p exists uniquely, and rot*p is in U,=H,(rot;2) since rotrot* p=—
div grad p=¢eH'(2) and (rot* p, rot* g)=(grad p, grad q)=(rot rot* p, g) for all ge
H'Y(Q). Substituting v=rot* p into (a) and noting that rot* ge Hy(rot; 2), we have

(rot rot* ¢, rot rot* p)=(rot rot* ¢, ¢)=(rot* ¢, rot* ¢)
=g, rot rot* p)=4a(¢, ¢),

and hence (rot* ¢, rot* ¢)=(grad ¢, grad ¢)=2(g, ¢). Since ¢ satisfies (¢, 1)=0, (51)
holds for any ¢eH'(2) which does not necessarily satisfy (¢, 1)=0.

Conversely, let us consider ¢eH*(2) that satisfies (51) for i=1. Then, we
have rot rot* ¢ =1gpe H'({2), and hence u=rot* ¢ belongs to H(rot;£). Moreover,
it holds for all ¢peH*(2) that

(rot u, 9)=2¢, ¢)=(grad ¢, grad ¢)=(rot* ¢, Tot* ¢)=(%, rot* ¢),
which means that we Hy(rot; 2). Now, we have for any veH,(rot; Q) that
(rot u, rot v)=i(¢, rot v)=A(rot* ¢, v)=A(x, v),

and the proof is complete. []

In: 2-D cases, we usually use triangular or quadrilateral finite elements for
triangulations. For simplicity, we assume that 2 is a bounded polygonal domain
so that triangulation is always possible. Then, we approximate unknown func-
tions by piecewise polynomials, and the isoparametric transformations are also
available, see [2,4]. When we use the penalty method, the functions to be ap-
proximated are in H(rot ; 2)N H(div; 2) so that the approximate functions should
also belong to this space. Then it can be shown that the piecewise polynomial
approximate functions must be continuous even across the interelement bound-
aries, and that such functions also belong to {H'(2)}? cf. Theorems 2.1.1 and
4.2.10f [4]. Thus, so long as we use the present penalty approach, the approx-
imate functions cannot be outside {H!(2)}%.. Moreover, we must impose boundary
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conditions associated with the condition weH,(rot;2) (i=1) or ueHy(div;2) (i=
2). This may be done by introducing appropriate local coordinates as is com-
monly used in the finite element analysis [2]. In the next section, we will test
the simplest finite element model based on this approach, and point out a nu-
merical difficulty observed in a test problem.

Besides the formulations in Section 3, the formulations based on (51) in
Theorem 4 are available for finite element analyses of the 2-D electromagnetic
eigenvalue problem. Historically, such formulations are classical, and have been
used almost exclusively in numerical analysis, This approach is essentially to
approximate the eigenpairs of the Laplace operater with the homogeneous Neu-
mann or Dirichlet boundary condition, and hence is fully established in the finite
element method. In particular, all the standard Lagrange type elements for
H'(Q) are available, and their approximation properties are also known [2, 4, 19].
In the next section, we will also use this approach to obtain reference numerical
results. :

The approximation capability of the penalty approach is not necessarily es-
tablished for the standard piecewise polynomial approximations. However, in
some special cases, we can prove it under mild assumptions on triangulations
and finite elements. We first present the following lemma, which can be proved
in a manner similar to that of the 3-D case [6, 10, 11].

Lemma 1. Let 2 be a bounded convex domain in R*. Then V; is continu-
ously imbedded in {HXQ)}® for i=1,2. In other words,

Vi=Hy(rot; DN{HQ}*,  Ve=Hy(div; Q)N {H'(Q), (52)

both algebmically and topologically.

Then we have the following theorem, by which we can prove the approxi-
mation capability of the standard piecewise polynomial finite element method
based on the penalty approach when @ is a hounded convex polygonal domain.

I‘HEOREM 5. When £ is a bounded convex polygonael domain in R, Vin
(C=(DV is dense in Vi (i=1, 2), where C=(2) is the totality of vestrictions to Q of
infinitely diffeventiable functions defined in R*.

Proof. We will only sketch the proof.

1. By the partition of umity for £, it is sufficient to consider functions
with compact support and defined in the domain 2* shown in Fig. 1. More
specifically, 2*c R? is defined by

Q%={{m:, zo}e R*; 2,>0, x>z, c0t 0},

where ¢ is an interior angle of 2, which satisfies 0<#<=z since £ is convex.
We should show that any e Vi(2*) with compact support can be approximated
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Fig. 1. Domains considered in the proof of Theorem 5.

by functlons in V@) N{C(2%)} (i=1,2), where V;(£2*) denotes V; for 2*. By
Lemma 1, # is actually in Vy(@*)n{H'(Q%))%

2. We will first prove the results for i=1. Let us consuler the coordinate
transformation in R? by -

Yi=g—L Cot 0,  gp=ax/sing. - (a)
Then a point {z;, z.} in £* is mapped to a point {y,, ¥} in 2%* defined by
0% ={{y,, yle B 9,0, 4:>0.

For w={u,, us}e Hy(rot ; @*)N{H'(Q*)}* with compact support, let us con51der its
covariant components {v;, #,) in the oblique coordinates {yi, ¥.}. That is, with
(a), v, and », are defined by

01(Y1, Y2) =21 ( 21, X2) V2(Y1, Yo) =2y (@1, 22) COS O+ a(, 22) SIN G .

We can easily show that v, and v, belong to H'(2**) and have compact support.
Moreover, from the condition #eHy(rot; 2%), . and v, are shown to satisfy, in
the sense of. trace, that ,

»i(y1, 0)=0 for %, >0, 22(0, y2)=0 for 2/2>0 .

More specifically, we should notice that the condition (#, rot* ¢)e=(rot #, $), for
any peHY(2¥) is equivalent to (v, rot* ¢)gw=(rot v, ¢)ow for any ¢eH'(Q**), where
v={y, V:}, TOL V=004/0y, —8v:/0ys, rOL* H={D/dy., —¢/0y:}, and (-,-)ew denotes the
inner products of L,(@**) and {L,(@**)}*. Since », and », belong to H'(2**), we
can apply the Green formula to the above relation to obtain the conclusions.

Now we will use a kind of “reﬂectlon” technlque We extend {v1, 22} to R?
by deﬁnmg {w,, ws} as follows.

wi(y1, ?/2):*7)1(?/1,,’!/2) , wz(yx,,y2)=1g‘z(?!1, Ya) if 4,>0, 1.>0,
wi(ys, y2)=v:(~v1, ¥2), Wy, ¥2)=—va(—us, ¥2) if 2<0, >0,
w!(?/l,; Z/a)= "Ul(?!u "'.1/2), waly1, 2/2)—'—‘02@1» —2/2) if ?/1,>0, y2<0,
wi(ys, Y2) =0 —y1, ~Y2), Walyr, Yo)=vo{ =1, —v2) if 110, ¥2<0.
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We may check that w, and w, have compact support and belong to AR, by
noting the continuity of traces along the lines y,=0 and #,=0. Then we can
use the mollifier technique. That is, we first consider a non-negative C-function
p(ys, y2) with compact support such that

=y, y)=pn, vs), oy, —u2)=p(ys, ), SSch(yl, y2)dyidy: =1,

and then approximate w; (j=1,2) by

wat )=\ " witvi—ot, ve—itotie, irrmtant
where ¢ is a positive parameter. Then w., and w., are C*-functions with com-
pact support, and converge respectively to w, and w, in H'(R?) as r | 0. Noting
the symmetry (or antisymmetry) of p, w,, and w. in v, and v, we find that

"Wy, 0)=w.5(0, y)=0 for —oo<yy, ya<<oo.

Now let us define the restrictions ».; of w.; to 2% (j=1,2), and then introduce
a vector-valued function #.(z;, x.) which is defined in @* and has {v.,, v..} as its
covariant components in the oblique coordinates {y,v.}. We can prove that u.
belongs to Hy(rot; @%){C=(2%)}? and approximates # in the metric of {H!(02%).
This completes the proof for i=1.. ‘

3. The proof for i=2 may be given similarly. However, in this case, we
use the conmtravariant components {v*, v% defined by

0 (Y1, y2) =01(%1, 32) —a(w1, m) COL G, (1, ya) =2a(zs, 22)/SIN 0 .

Then »' and »* belong to H'(@**), and, from the condition zeH(div;Q*), we
have ‘

0'(0,y2)=0 for %.>0, 2%(y,0)=0 for ,>0.

The “reflection” technique is again used but in a different fashion. That is,
v* is extended to he antisymmetric in y, and symmetric in y., while 2* is ex-
tended to be symmetric in y, and antisymmetric in .. Then we can complete
the proof by using the mollifier and restriction techniques as before. [

Remarx 3. By making full use of tensor analysis, we may extend the
present results to the case where £ is a bounded convex domain in R?* whose
boundary consists of a finite number of sufficiently smooth arcs. However, it
appears to be difficult to obtain the same results for general non-convex domains.
Rather, our conjecture is that, for 2 of general shape, VN {H'({)}* is not neces-
sarily dense in V; (¢=1,2). If this is true, the use of the penalty finite element
method based on piecewise polynomials appears to be hopeless for general pur-
poses. It is known that V; is not necessarily contained in {H'(2)}? see [20].
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§5. Numerical results

For several 2-D problems, we test the simplest triangular finite element
based on the penalty approach with the piecewise linear polynomial. We also
use the piecewise linear triangular element for the eigenvalue problem (51) of
the Laplace operator to obtain reference results. The latter method will be
called the comventional one. We use the subspace iteration method to solve the
arising algebraic eigenvalue problems [2]. Except it, we use standard computa-
tional techniques in the finite element analysis, and we omit the details here.
As is shown in Fig. 2, we consider four types of domains: (1) rectangular
domain, (2) circular domain, (3) pentagonal domain, (4) “curved” quadrilateral
domain. In the actual computations, we only analyze the upper half portion of
£ as is hatched in the figure by taking advantage of the symmetric or anti-
symmetric properties of the eigenfunctions. Moreover, we deal with only a
quarter part of £ in the case of the circular domain.

Hereafter, we will only consider the problem corresponding to (1), which in
the present case becomes

rot*rot#=a# and diva=0 in 2, #;=0 on 082, (53)

where u={u;, #,} is the electric field, and #;, is the tangential component of u
on 32. We solve (53) numerically by the proposed penalty finite element me-
thod with the wvalue of ¢ usually taken as 1. On the other hand, the problem
corresponding to (51) for i=1 is given by

—divgrad ¢ =29 in 2, dpfon=0 on 342, (54)

where dg/on represents the derivative of ¢ in the outward normal direction on
as.

We numerically obtain the first (positive) eigenvalue and the associated
eigenfunction of each problem. In the present case, the eigenfunction for the
electric field # is expected to be symmetric with respect to the horizontal line
passing through the barycenter of 2, while that for the scalar function ¢ is
expected to be antisymmetric. In addition, in the case of the circular domain,

o) (2) (3) : (%)

e 1 e 1 — e 1~

TFig. 2. Domains considered in numerical experiments.
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the eigenfunctions # and ¢ are respectively expected to be antisymmetric and
symmetric with respect to the vertical line passing through the center of 2.
We should impose appropriate numerical boundary conditions on the function
values of # and ¢ at boundary nodes, although some of them may be dealt with
as natural boundary conditions. At each node on the actual boundary 3%, the
tangential value of » should be set equal to zero by using the local coordinate
transformation technique [2], while we need not introduce any constraint on the
value of ¢. In particular, the values of both #, and =, should be set equal to
zero at corner nodes on A2 to match the condition #,=0 in (53). However, if
94 is curved, only the component of # in the actual tangential direction is set
equal to zero, although a2 is approximated by polygonal lines with nodes located
on 982 in such cases, Along the horizontal line passing through the barycenter,
the nodal values of #, and ¢ are set equal to zero. On the other hand, along
the vertical line passing through the center of the circular domain, only #., is
set equal to zero.

5.1. Problem (1): rectangular domain

In this case, we use two types of meshes: mesh-1 and mesh-2 in Fig. 3.
Approximate values for the first eigenvalue are given in Table 1 together with
the results for other problems. They are fairly close to the exact one (=n=?/4
=2.46740. ..), and the convergence character appears to be reasonable. Figures
3 and 4 respectively show vector plots of the associated approximate eigen-
functions obtained by the conventional method (Fig. 3) and the penalty method
(Fig. 4). The initial points of the arrows are the barycenters of triangles for
the conventional method and the vertices of the triangles for the penalty me-
thod, respectively. Only the relative values of the arrow lengths are meaning-
ful since eigenfunctions are considered. They coincide well with the exact
eigenfunction expressed in terms of sinusoidal functions.

Table 1. Approximate results for the first eigenvalues

method conventional penalty (s=1) exact condition
Problem | mesh-l | mesh2 | mesh-l | mesh-2 at P
(1) 2.4873 2.4724 2.4873 2.4724 2.4674
(2) 3.4795 3.4122 3.3986 3.3932 3.3900
(3) 2.1603 2.1679 Uy =0
s 1.7746 1.7515 : - —
a=v. 6.1148 5.5463 #y=1ty=0
s 2.9005 2.8657 : —
=1 3.1188 2.9617 Uy=ug=0
(4) 1.9378 1.9220 2.0169 1.9422 —
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To see the influence of ¢ on the numerical solutions based on the penalty
method, we obtain eigenvalues. for mesh-1 numerically by changing ¢ in the
interval 0<1/e=<0.5. The results are summarized in Fig. 5. We can see that
there are many small eigenvalues when 1/ is close to zero. This type of nu-
merical phenomenon is known as the spectral pollution [7). However, as 1/e
increases, most of the non-physical eigenvalues grow rapidly and only physically
meaningful approximate eigenvalues remain to be almost constant. Here, the
“physically meaningful” eigenvalues are those whose associated eigenfunctions
satisfy the divergence-free condition approximately. In the present figure, only
one approximate eigenvalue is insensitive to the variation of ¢, and is close to
the exact first eigenvalue. Thus, we have numerically confirmed the observa-
tions suggested by Theorem 3: we need not use too small values of ¢ if we
are interested in only restricted number of eigenvalues close to zero.
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MESH -1

SYMMETRIC MODES

0.2

Ve

0.4 0.5 ‘
Fig. 5. Variation of the approximate eigenvalues against s.

0.3

0.1

(Problem (1), penalty, mesh:1)

Problem (2): circular domain

5.2

The employed mesh patterns are shown in Fig. 6, and approximate values
for the first eigenvalue are given in Table 1. The exact eigenvalue and the

MESH-2

MESH-1

Fig. 6. Vector plots of the approximate eigenfunctions.

(Problem (2), conventional)
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Fig. 7. Vector plots of the approximate eigenfunctions.
(Problem (2), penalty)

associated eigenfunction may be obtained by the use of the Bessel function.
Vector plots of approximate eigenfunctions are drawn in a similar manner to
that of Problem (1) and are given in Fig. 6 (conventional method) and Fig. 7
(penalty method). Again, the approximate eigenpairs coincide fairly well with
the exact one.

5.3. Problem (3): peniagonal domain

As the third problem, we consider a pentagonal domain shown in Fig. 2,
where ¢ is a geometric parameter indicating the length of the horizontal segment
passing through the barycenter of £. We use two types of meshes: mesh-2 is
shown in Figs. 9 and 11, while mesh-1, not shown here, is similar to mesh-1 of
Problem (1). We should take a special care of the modal value of # at corner
point P shown in the figure, since P becomes a point of reentrant corner when
a<l. To match with the boundary condition in (53), nodal values of both u,
and #, should be set equal to zero at P. However, we also use the procedure
introduced by Hara in [8,14] to deal with this reentrant corner which may pro-
duce strong singularity to the eigenfunctions: we set only the nodal value of
u; to zero at P, while we make the nodal value of #;, unconstrained. Such a
procedure is not justified theoretically, but may brings us some improvements
to numerical solutions as we will see soon.

Fig. 8 illustrates. the approximate first eigenvalues against ¢ (0.3=e=<1.8).
We can readily see that the eigenvalues obtained by the penalty method with
#y=u,=0 at P are quite larger than those of other methods especially when @
is smaller. On the other hand, the results by the conventional method appear
to be generally reasonable. It is theoretically known that the conventional me-
thod gives convergent approximate solutions, and the obtained approximate
eigenvalues are upper bounds of the exact ones [19]. When the numerical
boundary condition at P is modified as was mentioned before, the results improve
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Fig. 8. Variation of the approximate eigenvalues against .

(Problem (3))

but are not fully reasonable when ¢<1. In particular, the accuracy is not ne-
cessarily improved but becomes worse by mesh refinement when ¢ is close to
0.3. It is also to be noted that the differences of the approximate values are

not so large when ¢ is close to 1.8

Figures 9 and 10 show the vector plots of approximate eigenfunctions for

Fig. 9. Vector plots of the approximate eigenfunction.
(Problem (3), =0.5, conventional, mesh-2)
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a=0.5 by the conventional method and the penalty method, respectively. We
can see that the singularity of # at P is not well represented by the penalty
method. Figures 11 to 13 show similar results for ¢=1.8. In this case, the
differences of numerical solutions are not so large. Notice that it is theoretically
shown in Section 4 that the penalty finite element method can give convergent.

numerical solutions in the present case where 2 is a convex bounded polygonal
domain.

5.4. Problem (4): “curved” quadrilateral domain

‘As the final problem, we consider a quadrilateral domain, one 31de of which
is a circular arc. In this case, £ is not convex, but does not have reentrant
corners. Employed meshes are shown in Fig. 14.

" Unlike in Problem (3), the approximate eigenvalues given in Table 1 agree‘
farly well with each other and appear to be convergent in all the cases. The
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Fig. 15. Vector plots of the approximate eigenfunctions.
(Problem (4), penalty)

vector plots of approximate eigenfunctions are illustrated in Fig. 14 (conventional
method) and Fig. 15 (penalty method), and agree well with each other. Thus,
the penalty method appears to be applicable to the present problem in which
no reentrant cormer exists, though the convergence may not be so rapid as in
the convex cases.

§6. Concluding remarks

We have presented some weak formulations for an - electromagnetic eigen-
value problem related to free vibration analysis of cavity resonators and wave
guides. Some of the theoretical results were already published in [12], but we
give here complete proofs to them and add some new results. We also test the
penalty approach more systematically than in [8,14), and point out a numerical
difficulty when the penalty approach is applied to problems on domains with
reentrant corners. On the other hand, the mixed method given in [9, 12] appears
to be free from such a difficulty. At present, Hypotheses [H1] and [H2] employed
in this paper are not shown to be true except for some special domains. More-
over, the problem given at the end of Section 4 appears to be open. Thus
there are many things left to be done from both theoretical and numerical
viewpoints. Since the present eigenvalue problem is of much practical import-
ance, we will continue our theoretical studies to solve such open problems.
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