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Abstract

Let G be a finite group with Ce(0x(G))<0y(G) and S a Sylow 2-subgroup of
G. Assume that S is contained in a unique maximal subgroup of G and that no
nonidentity characteristic subgroup of S is normal in G. Then it will be shown
that G is essentially equal to LMwrT, where L=SL,(2™) or Fy¢,:, M is the
natural GF(2)L-module, and T is a 2-group.

§1. Introduction

A finite group F is said to be of characteristic 2 type if it has even order
and every 2-local subgroup G of F satisfies the condition Ca(0:(G)<Ox(G). The
program to classify the finite simple groups has been completed and in particular
it has been shown that the nonabelian simple groups of characteristic 2 type
are the simple Lie type groups of characteristic 2 plus certain isolated simple
groups. In the course of the investigation to complete the classification and the
subsequent investigation to revise the classification, several interesting questions
have been raised. Among them is the question below. Note that if G is a
group and S is its subgroup, then G has the largest normal subgroup contained
in S. We shall denote it by O(G), because it is equal to Ox(G) if S is a Sylow
p-subgroup of G. ‘

QuesTiON. Suppose F is a group and G; (i=1, 2, ..., #) are finite subgroups
of F which have a common 2-subgroup S such that Og(G:)#1 for each i Can
we find a subgroup H of F which contains all the G; and satisfies Os(H)=1?

Of course the answer is sometimes “yes” and at other times “no”, and
we wish to describe the structure of the G; when the answer is “no”. Several
people have already investigated various special cases and their results have
reasonably been called “pushing up” theorems. The proceedings of the Durham
Conference [1] and of the Rutgers Conference [2] contain articles discussing
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certain pushing up theorems.

This paper is another contribution to the above question and concerned with
the special case where »=2, S is a Sylow 2-subgroup of G,, and S is normal in
G.. In this case, if some nonidentity characteristic subgroup C of S is normal
in Gy, then we can push G, and G, up to a larger group H=Nz(C). Thus we
are led to the following :

ProBLEM. Suppose G is a finite group with Ox(G)%1 and S is a Sylow 2-
subgroup of G. Describe the structure of G when no nonidentity characteristic
subgroup of S is normal in G.

In practice, we may place more restrictions on G in this problem. First,
we may assume that Cg(0:(G))<0:(G) because we have groups of characteristic
2 type in mind. Second, we may often assume that G is “small” in the sense
that we make clear in the following:

DeriNiTION. If a Sylow 2-subgroup S of a finite group G is contained in a
unique maximal subgroup of G, then we say that G is 2-irreducible or that G
is S-irreducible. In other words, G is S-irreducible if S#G and G is not generated
by any family of proper subgroups containing S.

In this paper, we restrict G to range over 2-irreducible groups in the above
problem. Thus, we study the following situation:

HypotHuesis 1. The group G is a 2-irveducible group with Ce(OxG))<0:(G)
and, for SeSyly(G), no nonidentity characteristic subgroup of S is normal in G.

"~ In this case, Aschbhacher’s so-called (local) C(G, T')-theorem [3] has already
shown that G is a product of S and blocks in 2, so our objective is to obtain
more precise information. It should be noted that Aschbacher [4] and the author
(5, 6] have improved the C(G, T)-theorem and that Baumann et al. considered
Hypothesis I with the additional condition that G/K=SL.(2™), m=1, for some
normal subgroup K of G (consult [1], [2]).

Hypothesis I actually contains too much restrictions on G. For the most
part of our analysis, we shall only need the fact that none of certain three
pre-assigned nonidentity characteristic subgroups of S is normal in G. Two of
the characteristic subgroups are known ones, i.e., 2,(Z(S)) and Q(K(S)) (consult
[6] for the definition of the latter). The third one will be defined in this paper
and denoted R(S).

§2. The main result

The groups G of Hypothesis I will turn out to have a relatively simple
structure, but we will describe it after rather lengthy definitions and remarks.
First, let P, be the GF(2)-space of all n-dimensional row vectors with
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coefficients in GF(2), #=3. The symmetric group 3, of degree » may be regarded

as a group of linear transformations of P,, ie., we make each se¥, act on B,
according to the rule

(.Z‘;,, ey $n)0=($1”_1 3o ey xm_x) .

Thus, we obtain a right GF(2) ¥,-module P,, which we call the natural permuta-
tion module for X, over GF(2). The module P, has two distinct Y,-invariant
subspaces T and U,; T, is the hyperplane defined by the equation

w1+w2+---+xn=0,
and U, is the line defined by the eguations
B L = =y
By definition, the natural (or standard) GF(2) 3.-module is the quotient module
My=Tn+Ur/Usx.

(When we regard M, as a module for the alternating group A., we call M, the
natural GF(2) Ap-module.) We denote by 4, the semidirect product of M, by

DY

dn=2,My .

Let £, be a representation group of 5,. Then an epimorphism 5, — ¥, induces
an action of 5, on M,, and we can define the semidirect product

Fn=2nMn .

This definition in general depends on the choice of £,, but a knowledge of the
Schur multiplier of X, shows that Iy=4,=5,. The above definitions show that
Iy is a central extension of 4, In section 3, we will more precisely prove that
if # is odd and #=3 then a central extension H of 4, is a central factor group
of I', defined by some 5, if and only if [H, H]=Z(H) and the preimage of M,
in H is an elementary abelian 2-group.

Second, we can define the action of SL,(2™) on the GF(2™)-space Vi of 3-



76 Kensaku Gomr

dimensional row vectors with coefficients in GF(2™) as follows:

a

B
(%, v, Z)( d)= (ax+cy, bz+dy, vabz++/cdy+2).

c

Further, as there is an epimorphism SL.(5) — SL,(4), the action of SL.4) on

V. induces an action of SL.(5) on V,. Thus, we can construct the semidirect
product

{SLz(Z"‘)Vm it m=3,
CsL.e)v, if m=2.

The group R, may be characterized as follows. The matrix group SL.(2™) acts,
by right multiplication, on the set N, of all 2-dimensional row vectors with
coefficients in GF(2™), and thus N,, becomes the so-called natural (or standard)
GF(2)SL,(2™)-module (of course, Ny, is also a GF(2™) SL,(2™-module). By defini-
tion, the quadratic group over GF(2™) is the semidirect product

Qm=SLy(2™)Np, .

It is easy to see that R, is a central extension of @,. In section 4, we will
more precisely prove that if m=2 then R, is a representation group of Q.
Note that if m=2 then Qn is perfect and so a representation group of @, is
nothing but a universal perfect central extension of Qp.

Finally, for finite groups G, J(G) is the subgroup generated by the set J(G)
of all elementary abelian 2-subgroups of maximal order.

Now, we can state our main result.

THEOREM. Swuppose G is a finite group satisfying Hypothesis 1 and S is «
Sviow 2-subgroup of G. Then G=SJ(G) and one of the following holds:

L) JKG)'is a central product, [(G)=TUHH, ... Hy, of 2~groups T, U and
the S-conjugates H;, 1=i=k, of a subgroup H, wheve H is a centval factor group
of I'st sy, 421, and T, U satisfy the following conditions:

(a) U<Z(H\H,...Hy) and 2,(U)XT;
(b) U is abelian of exponent at most 4;
(c) T is the divect product of copies of Dy and copies of Z,.
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(2) J(G) is a central product, J(G)=THH, ... Hy, of a 2-group T and the
S-conjugates H;, L=i=k, of a subgroup H, where H is a central factor group of
Rp, m=2.

In this theorem, if some additional conditions on G force Z(H)=1, then the
structure of J(G) is easily determined. First, if Z(H)=1 in (1), then U=2,(U)T
by () and so J(G) is the direct product of % copies of 4,¢,,, copies of D, and
copies of Z, by (c). If ¢=1 in (1), then we necessarily have Z(H)=1 because
INyz=d,=%,. Therefore, we obtain the following:

CorOLLARY. Suppose G is a solvable finite group satisfying Hypothesis 1
and S is a Sylow 2~subgroup of G. Then G=SJ(G) and J(G) is the direct product
of one or move copies of X, copies of Ds, and copies of Z,.

If Z(H)=1 in (2), then the Krull-Remak-Schmidt theorem yields that J(G)
is the direct product of % copies of Qm, copies of a Sylow 2-subgroup of Qn,
and copies of Z,.

The proof of the theorem begins at section 5 and ends at section 8. In
section b, we study GF(2)-representations of 2-irreducible groups. Recall that
if G isa finite group and V is a faithful GF(2)G-module, then P(G, V) denotes
the set of all nonidentity elementary abelian 2-subgroups A of G such that
|A||Cy(A) = |BlICr(B)| for all subgroups B of A. We are interested in the fol-
lowing situation :

Hyrorresis 1. The group G is a 2-irreducible group with O(G)=1 and V
is a faithful right GF(2)G-module with P(G, V) nonempty and Cv(S)£Ci(G) for
SeSyly(G). ‘

Under this hypothesis, we will show that the structures of both G and V
are highly restricted. In this analysis, work of Aschbacher is very helpful.
In particular, we will use Theorem 2 of [7], which implies that we appeal to
the classification of the finite simple groups. However, since we aim to apply
our theorem to the revision of the classification, we will first suppose that the
classification has not yet been completed, and prove all our results in sections
5-8 for K-groups, ie., finite groups all of whose simple sections are “known”
simple groups. To be more precise, we will assume Hypothesis 0 given in sec-
tion 5, which every K-group satisfies by Aschbacher’s theorem. Then we obtain
our theorem by appealing to the classification and Aschbacher’s theorem:

We conclude this section with a remark on our terminology and notation
(we have already defined some of them). Suppose G is a finite group and V is
a right GF(2)G-module. Then V* denotes the dual (or contragredient) right
GF(2)G-module, and for subspaces W of V, W* denotes the annihilator (or
orthogonal space) of W in V*. Also, we define V(G)=[V, G1/Cir, s:(G). Suppose
H is a finite group and there exists a monomorphism p:G— H. Let U be
a right GF(2)H-module. The GF(2)G-module V is said to be indaced by U
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through p if there exists an isomorphism o: V— U of GF(2)-spaces such
that (vg)"=v"¢" for each veV and geG.

§3. Symmetric groups

In this section, G is the symmetric group on the set @={1, 2,..., s}, L is
the alternating group on 2, R is a Sylow 2-subgroup of G, and S=RNL We
will record here various facts concerning G, L, and their natural module M,.

3.1. Let E be an elementary abelian 2-subgroup of G of maximal ovder.
Then the following hold :

L) [E|=2"24 wheve [ 1 is the Gaussian symbol;

) The length of each E-ovbit on Q is at most 4, and E has at most one
Jixed point;

3) CalE)=E.

Proof. TFirst, assume that E is transitive on 2 and »=2. Then E is regular
on 2,0 |El=n and Ce(E)=F. Since G contains an elementary abelian subgroup
of order 2"* generated by transpositions, we have n=2"2. Therefore, n=2"2=4
or 2, and (1), (2), (8) hold. Next, let Oy, O, ..., O, be the E-orbits on £ and
assume #>1. Let H be the setwise stabilizer of Oy, ..., O,, and G; be the
pointwise stabilizer of 2—~0;. Then E<H=G,X--- XxG, and so the maximality
of |E} yields that E is the direct product of the projections E; of E on Gy, and
that every elementary abelian 2-subgroup of G has order at most |E;|. . Since
G: is the symmetric group on O; and E; is transitive on O;, the previous discus-
sion shows that

(i) |Ey)=2u0u
(i) |Oi=4, 2, or 1, and
(i) Co(E)=E;

for each 7. If O;={p;} and Ow={px}, j#%, then the transposition (pj, #x) and
E generate an elementary abelian 2-group largér than E, which is a contradiction.
Therefore, |O;|=1 for at most one i. Consequently, we have |E|=2"%, If
10;]%1, then Oy is the unique Ej-orbit on Q of length greater than 1. Therefore,
Ce(E) leaves each O; invariant, and Ce(E)=Cu(E)=Cs,(E\) ... Ce(E)=E,\ ... E;
=FE. This completes the proof.

3.2. If nis a power of 2, then Z(S) is contained in a regular elementary
abelian subgroup of G.

Proof. We may assume nz4. The R contains a regular elementary abelian
subgroup E. Since z/2 is even, we have £<S and hence Z(S)<Ca(E)=E.

3.8, Assume n=0 or 1 (mod 4) and nz=z4. Then we have Cx(S)=Z(S).
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Proof. The assumption implies that S contains an elementary abelian sub-
group E of order 2%, Since Co(E)=F by 3.1, we have Cy(S)<S, and hence
Ca(S)=Z(S).

3.4. Assume that n is odd and n=3. Let T be a set of (n—1)/2 disjoint
transpositions in G. Then G has an element g such that G={TUT%.

Proof. We may assume that »=2m41 and T consists of the transpositions
(2i—1, 2), 1=i=m. Let ¢ denote the cycle (1, 3, 5, ..., 2m~1, 2m+1). Then
TUT? consists of the transpositions (7, i4-1), 1=i=2m, and hence G={TUT%.

3.5, Assume that n is odd and n=3. Let E be a subgroup of G and v the
number of the E-orbits on Q. Then dim Mn/Cy,(E)=n—v. In pariiculay, if tis
the product of (n—1)/2 disjoint transpositions, then dim Myp/Cu,(8)=(n~1)/2.

Proof. We use the notation of section 2. Take the basis of the natural
permutation module P, consisting of the unit vectors e;=(0,...,0,1,0,...,0),
where 1 lies in the i-th position, 1=i=#n. If Oy, Oy, ..., O, are the E-orbits on
Q, then the » vectors f;=Xe; (1€0;) form a basis of Cp(E). Now Un<Cp,(E)
and since # is odd, we have Pp,=T,@U,. Therefore, dim T%/Cr,(E)=n—r and
M,=T, This completes the proof.

3.6. Assume that n is odd and n=3. Let T be a group generated by (n—1)/2
disjoint transpositions in G. Then the semidirect product TMy is isomorphic to
the divect product of (n—1)/2 copies of Ds.

Proof. We use the notation of 3.5. Let n=2m-+1 and assume, without
loss of generality, that T is generated by the transpositions #;=(2i—1, 2i), 1 Si<m.
Identify M, with P,/U, and, in the semidirect product TM,, define Ti=<{#;,
i1+ U,», 1=i=m. Then we have Ty=Dy and TMy=Ti X+ X Tn.

3.7. If nis odd and nz3, then H(L, My)=HYG, Mn)=0.

Proof. We consider only the case =5, but when suitably modified, the
following argument works in the case #=3 as well. Since # is odd, L is generated
by the two cycles a=(l, 2, 3) and f=(3, 4, ..., n). Suppose V is a GF(2)L-
module which contains M, as a GF(2)L-submodule and satisfies [V, L]1<Ma.
Since a has odd order, we have V=M,+Cyp(a), and hence codim Cy(a)=2 by 3.5.
Similarly, we have codim Cy(8)=n~—3. Hence, codim Cy(L)=n—1=dim M, and,
since Cu,(L)=0, we conclude that V=M,DCp(L). This implies that H'(L, M,)
=0. Suppose U is a GF(2)G-module which contains M, as a GF(2) G-submodule
and satisfies [U, G1<M,. Then U=M,PCu,(L) by the above, and since Cu,(L)
is G-invariant, we have Cy,(L)=Cy,(G). Therefore, HY(G, My,)=0.

3.8. M, (nz3) is self-dual, i.e., M¥=M, as GF(2)G-modules.
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Proof. Let P, be the natural permutation module for G over GF(2). Since
permutation matrices are orthogonal, it follows that P¥=P, Hence ME=z=P,(G)*
2 PHG)=PG)=M,.

3.9. If n is odd and n=3, then every extension of M, by X, splifs.

Proof. See [8]

3.10. Let H be a finite group and K a normal subgroup with Cu(K)=1.
Assume that K/Oy(K)Y=An, n 0ddz3, that O(K) is elementary abelian, and that,
when considered a GF(2)(K/O:(K))-module, OK) is induced by M, through an
isomorphism KJOyK)—> An. Then the following hold:

1) H/OAK)=An or Zn;

(2) When considered a GF(2)(H/O(K))-module, Ou(K) is induced by M,
through @ monomorphism HjOyK)— 3n;

(38) Let E be an clementary abelian 2-subgroup of H. Then |E|=2"'. If
1E|=2""1 and E+Oy(K), then H/ON(K)=3w and H=EK.

Proof. If n=3, define C=Cg(K/Ox(K)), while if »=3, define C=Cr(0:(X)).
Then C always centralizes both K/O,(K) and Oy(K), because Cx{O(K))=0,(X)
and, if #+3 and Ki/O«K) (i=1, 2, ..., n) are the distinct subgroups of K/Oy(X)
of index #, then Co,u(K:)'s have order 2 and generate Oy(K). Since Cu(K)=1,
it follows that C is a 2-group. If O (K)<B<LC with |B:0(K)|=2, then B is
elementary abelian and then Cy(K)%1 by 3.7, a contradiction. Thus, C=0(X)
and hence (1) holds. (2) now follows from 3.4 of [9]

In order to prove (3), let E be an elementary abelian 2-subgroup of H of
maximal order, and assume E#0,(K). Then we have |E|Z]0(K){=2""" and
hence

|BOWK)/0u(K)| =|E : ENOL(K))|
=104(K): ENOL(K))|
210u(K) : Coyr(B)l.

3.1 of [9] now shows that H/O.(K)=ZY,, that EO,K)/O,(K) is generated by
transpositions in H/O,(K), and that

|EOo(K)/Oo(K)|=10:(K) : Copx(E)] -

Hence (3) follows.
3.11. Let H be a central extension of An=Z, M, n odd =3. Assume that
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H' =Z(H) and that the preimage of My, in H is an elementary abelian 2-group.
Then H is isomorphic to a central factor group of [

Proof. First, H/Z(H)=4, because Z(4,)=1. Let Vand K be the preimages
of My and Y, in H, respectively. Regard V as a GF(2)(H/V)-module and con-
sider the dual module V*. Since V/Z(H) is a natural module for H/V=Y,,
Z(H)* is the dual of a natural module, and so Z(H)* is a natural module by
3.8. Also, since Z(H)=Cy(H/ V), we have Z(H)*=[V*, H/V]. Thus, 3.7 yields

V*=Z(H)*+Cr(H/V)
=Z(H)+[V, H/V}

=(Z(H)nlV, H/V]*.

This implies that Z(H)N[V, H]=1 and hence V=Z(H)x[V, H]. Therefore, H
is' a semidirect product of [V, H] by K, and [V, H] is a natural module for
K/Z(H)=%,. Now, since H'=K'[V, H), we have K'>Z(H) and so, if Z(H)+1,
K is a representation group of Y,. This completes the proof.

§4. Special linear groups SL.(2™)

In this section, L=SL,(2"), m=1, I'=Aut GF(2™), and G=I"L is the natural
semidirect product. Embed L and I" into G, take ReSyly(G), and define S=RN L.
We will record here various facts concerning G, L, and the natural module N,
for L. Note that G=AutL.

4,1. Let E be an elementary abelian 2~-subgroup of G of maximal ovder.
Then |E|=2" and Ce(E)=EF.

Proof. If m=1 or 2, then G=2; or 35 and the assertion is proved in 3.1.
Therefore, assume m>2. We may assume that S consists of the matrices

1 a , aeGF(@2™), and R=0S, where 0eSyl,(I"). Suppose there is an involu-
0 1

tion # in R—S. Then & contains a unique involution ¢ and te$Cs(p) because S
is elementary abelian. Since |Cs(¢)|=1|S:Cs(¢)|, we conclude that ¢ is conjugate
to ¢ in R. Thus, if E£L, then we may assume ¢eE. But then E<<{p>Ci(¢)
and |E|=2™22<2™=|S|, a contradiction. Therefore, E<L and |E]=|S|=2" In
proving Ce(E)=E, we may assume E=S. We have Ng(S)=I"Nz(S) and N (S)=HS,
where H is the group of matrices (g_l 2), heGF(2™)*. Henc¢ Cr(S)=S and
so [Ce(S), Nr(S)1<S. Also, since I' acts faithfully on H, we have Ca(N(S)/S)
=Ny(S)<L. Therefore, Ca(S)=Cr(S)=S.
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4.2. L has an element g such that L=<{S, S%).

Proof. If S consists of the matrices ((1) ‘1’), acGF(2™), then g———(g (1))

meets our requirement.

4.3. (1) If 1szeS, then |Cy,(z)|=2"
@) |[Nm, Slj=2™
3) L transitively acts on N,—{(0, 0)}.

Proof. We may assume that S consists of the matrices (6 ‘1’), acGF(2™).

Then both Cy,(z) (L=x€S) and [Nn, S] consist of the vectors (0, y), yeGF(2™).
Thus, (1) and (2) hold. The stabilizer in L of the vector (0, 1)eN, is equal to
S and hence (3) follows.

4.4, If m=2, then |\H (L, Np)|=2" (consult 3.7 for the case m=1).

Proof. Suppose V is a GF(2™) L-module which contains Ny, as a GF(2™) L-
submodule and satisfies [V, LI<Nn. If ¢ is an involution of Z, then [V, £]<Cy,, (%)
and so |V:Ce(®)|=|[V, £]|=2™ by 4.3. Since L is generated by the three in-

volutions <(1) %), <(1) (l)), and (2 g—l ), where % is a generator of GF(2™)%,

we conclude that |V:Cy(L)|<2*™. Now, Cy,()=0 by 4.3, s0 |V: Nup+Cv(L)]
is bounded from above by 2™ It remains to prove that this upper bound is
attained. Let U be the GF(2™)-space of 3-dimensional row vectors with coeffi-
cients in GF(2™), and define the action of L on U by

a
(=, v, Z)(

b . o
d)=(x, Vacz+ay-+cz, Vbdz+by+dz).
c

We can verify that this action of L on U makes U a right GF(2™) L-module
(U is the dual of the GF(2™) L-module V., defined in section 2). It is clear that
the vectors (0, v, 2) of U form a GF(2™) L-submodule, W, isomorphic to N, and
that [U, L1<W. Furthermore, since m=2, we can easily deduce that Cy(L)=0.
Thus, |U: W+Cy(L)|=2™ and the proof is complete.

4.5. If Vis an irveducible GF(2)L-module with |V|=2" and |V : Cy(S)|=2™,
then V=Nnp.

Proof. This is a special case of a much more general result, e.g, 2.1 of
[9). A very elementary proof was given in (1K) of [10].

4.6. Ny is a self-dual GF(2)L-module.
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Proof. By 4.3, we can apply 4.5 to V=N and conclude that NE=N,.

REMARK. N, is self-dual also as a GF(2™L-module.

4.7. If m=2, then Ry is a representation group of Q.

Proof. Since m=z2, we have [L, L]=L. We have remarked in the proof
of 4.4 that Cyp(L)=0. Hence Vu=[Vn, L] and R, is perfect. Since Ry, is a
central extension of Qn, it therefore suffices to prove that the order of an
arbitrary perfect central extension H of @, does not exceed that of Rn. To
this end, take an epimorphism = :H — @, with Kerz<Z(H) and define Z=
Ker = (in fact, Z=Z(H)). Since Sylow p-subgroups of @, are cyclic for all odd
primes p, Z is a 2-group, and so is the preimage V of N, in H. Furthermore,
if X is an arbitrary maximal subgroup of Z, then since |V/Z]|=2"">4 and H
acts transitively on V/Z~-{1} by 4.3, we have that V/X is elementary abelian.
Hence V is elementary and we can regard V as a GF(2)(H/V)-module. Denote
by V* its dual module. Then since V/Z is a natural module for H/V==SL,(2™)
and Cy(H/V)=Z by 4.3, Z* is also a natural module by 4.6 and [V*, H/V]=Z*.
Thus, |V*:Z++Cp(H/V)|=2™ by 4.4. Also, since H/[V, H] is a perfect central
extension of SL,(2™), a knowledge of the Schur multiplier of SL,(2™) shows that
|Crvo(H/V)|=|V: [V, H]|£2 with equality only when m=2. Therefore, |V]=
| V*| =2+ with equality only when m=2. This shows that |H|=|Ry], as re-
quired.

§ 5. GF(2)-representations of 2-irreducible groups

The following hypothesis was stated in section 2.

Hypotursis II. The group G is a 2-irreducible group with O.(G)=1 and V
is a faithful right GF(2)G-module with P(G, V) nonempty and Cy(S)ECy(G) for
SeSyl(G).

In this section, we will give a description of the structure of the pair G,
V" of this hypothesis under an additional hypothesis satisfied by all K-groups.
In order to state it, we define () to be the set of all quadruples (i, W, 4, K)
of a finite group H, a faithful GF(2)H-module W, a nonidentity elementary
abelian 2-subgroup A of H such that |A|=|W : Cw(A)|, and a quasisimple normal
subgroup K of H such that Cu(K)=Z(K)=0(K) and H=AK. The additional
hypothesis is the following :

Hyrportuesis 0. If (H, W, A, K)eQ and K=L/M for some subgroup L of
the group G and a novmal subgroup M of L, then either KeChev (2)—{(P)SU2™),
S22 Y)|m=2} or KA, n=T.
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Here, Chev(2) denotes the set of all (isomorphism classes of) guasisimple
groups K with Oy(K)=1 and K/Z(K) isomorphic to a simple group of Lie type
and characteristic 2 (we consider the groups A PSUs(3), and 2Fy(2) to be of
Lie type and characteristic 2). We note that all K-groups satisfy Hypothesis 0
[7, 111.

Under Hypotheses 0 and II, let @*(G, V) be the set of all minimal elements
of P(G, V) under the partial order =, defined as follows: A=y,B if and
only if A<B and |A||Cv(A)|=|B||Cv(B)|. Furthermore, let PG, V) be the set
of all elements of P*(G, V) contained in Oy »(G), and let P¥G, V) be the
complementary set of PG, V) in @G, V). We can now describe the stru-
cture of G.

5.1. Define a subgroup N of G by

N {(ﬂ’ff(G, 18) if PG, V) is nonempty,
EqerG, v if @HG, V) is empy.

Then G=SN, Ce(N)=1, and N is the direct product of one ov more subgroups
L;, Lg, ey L}c wz‘t]’l L16={L1, Lg, ey Lk} and ngng(zm) (m,_Z_l) or L1§A2m+1
(m=2"=2).

Proof. By 1.11 and 1.14 of [9], N is a central product of one or more
subgroups Ly, Ls, ..., L; and either L;=SLy(2) for each i or L, is quasisimple
for each i. Of course, if L;=SL,(2), then N is the direct product of the L; and
hence L;=Cy(0O¥(Cn(L}))). The components Z, are, therefore, uniquely determined
by the Krull-Remak-Schmidt theorem and, consequently, G permutes the L; by
conjugation because N <]G.

If H<QG, then G=Ng(SNH)SH by a Frattini argument and so, since 0,(G)
=1, the 2-irreducibility of G shows that either H<O(G) or SH=G. Hence

G=SN.
Similarly, we have G=S¢(Lf> and hence
LLG‘:LIS:‘{LD LZ, reey L’G}n

Since G=SN and 0,(G)=1, we have
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Ce(N)=Z(N)<ON).

Therefore, we may assume from now on that L, is quasisimple.

Since (P(G, V))£Cu(L;) by the above remarks, 4.1 of [9] shows that there
exists an element (H, W, A, K) of Q such that K is a homomorphic image of
L,. The structure of X is restricted by Hypothesis 0, so a knowledge of the
Schur multipliers of the relevant simple groups (e.g., [12]) and 4.2 of [9] show
that either L;=A,, nz7, or L,eChev(2)—{(P)SU@2™), Sz(2*™')[m=2}. Conse-
quently, G is 2-isolated only if L,=SL,2™), m=2.

We interrupt the proof with a lemma which gives a criterion for the 2-
irreducibility. For finite groups G, we define .9(o,2.¢ to be the set of all noni-
dentity 2-subgroups 7" of G such that Ng(T)/T is 2-isolated. For T€.9(yq.4, WE
define N#(T) to be the subgroup of Ng(T") containing T such that N¥T)/T is
the unique minimal subnormal subgroup of Ng(T")/T of even order.

Lemma. Let G be a finite group which is neither 2~isolated nor 2-closed.
Assume that, for each Te Il o0, N¥T) is contained in a proper subgroup of G
of odd index. Then G is not 2-irreducible.

Proof. Suppose G is 2-irreducible. Take TeSyly(G) and let M be the unique
maximal subgroup of G containing 7. Then the conjugates of A control Sylow
2-intersections in G by 1.7 of [5] and so G is generated by Ne(T") and the con-
jugates of M containing T by 1.5 of [5]. However, this implies that G=1M, a
contradiction.

Let us return to the proof of 5.1. Since G is 2-irreducible, the above lemma
and the main theorems of [13] show that one of the following holds (see also
(14]):

(1) LizAst., 6225

2) L,=SL,(2™), m=2; ‘

(3) L, =(P)SLy(2™), Sp«2™Y, or As and some element of Ns(L,) interchanges,
by conjugation, the two nontrivial parabolic subgroups of L, containing SN L.
Here, A, is the perfect central extension of A; by Zs and by “parabolic sub-
groups,” we mean subgroups containing a Sylow 2-normalizer.

Now, since Cp(S)£Cw(G) and G=S{L§>, we have [Cv(S), L,]#0. Also, since
Ce(N)<O(N), we have [L,, <P*(S, V)»]#1. Therefore, case (3) does not occur
by 4.7 of [9], and L, has the desired structure. In particular, Z(L,)=1 so
Ce(N)=1 and N=L;X--+ XLz The proof of 5.1 is complete.

The letters used in 5.1 will retain their meaning for the remainder of this
section. Thus, s is the integer such that L;=SLy(2™) or Asm.;, and % is the
number of the G-conjugates of L.
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5.2. If 1#X <G, then OHG)< X.

Proof. Since G=SN and N <] G, we have O¥G)<N and in particular O*(X)
normalizes each L;. Also, since O(G)=1 and Ce(N)=1, we have [N, O¥X)]=+1.
Thus, 1[L;, OXX)]<]L; and hence OL;)<[L; O¥X)]<X for some i. Since
the L;, 1=j=k, are all conjugate and O¥G)=0%L,) ... O*(Lsy), we conclude that
< X.

We will next describe the action of G on V. To this end, we define
W=[V, NJ,

Wi=lV, L], 1=i=k,

and denote by ~ the natural homomorphism W-— W/Cw(V).

5.3. () W is G-invaviant and W=+0.
(2) If geG and Li=Lj;, then Wig=W;.
@) W=W,+We+ - +Ws.

(4) Wi=[W, 0Ly}, 1=isk.

(B) W=[W, OYN)].

(6) Co(W)=1.

Proof. (1), (2), and (3) immediately follow from the definition. In proving
(4), we may assume L;=SL.(2), in which case |W;|=4 by 1.11 of [9] and (4)
clearly holds. Finally, (5) is a consequence of (4), and (6) follows from 5.2 and

®).

5.4. (1) When considered a module for L, W, is either induced by the
natural GF(2) Apmi-module through an isomorphism L; —> Agmir, o induced by
the natural GF(2)SLy(2™)-module through an isomorphism L, — SLy,(2™). (We
shall call the former case Asm.i-case and the latter case SLa(2™)-case.)

@ Wi, L]=0  if i#j.

®) W=W.@W.®---@W..

@) (P(G, V> normalizes each L; and, in SL.(2™)-case, {P(G, V)>)=N.

Proof. Set L=1L,. If L=SLy(2), the assertions follow from 1.11 and 1.13
of [9]. So we assume L#SL,(2). Define K=Ng(L)L, R=0,(K), and let bars
denote images in K/R. Further, define U=Cy(R) and recall that U(L)=
[U, L)/ Cr,zo(L). If C(U(L)*#1, then [U, L]1=0 and so [V, L=0 by Thompson’s
Ax B-lemma, a contradiction. Therefore, Cr(U(L))=1 and the definition of K
shows that

Cx(UL))=R.
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Since Z(L)=1, we also have
Cx(L)=R.
4.2 of [9] shows that the former part of (4) holds and in particular
KPS, VH<Ns(L)<K.

Also, since Ce(N)=1 and N=(L5) by 5.1, we have
CPHS, VIECo(L).

Thus, we can take AeP(S, V) so that [L, Al#1 and, using the definition of
P(S, V), we can deduce as follows:
[UL) : Coeny(DI=IU, L] C, (A
=[U, L1+Cr(4) : Cr(A)|
=|Cr(RNA) : Cr(A)]
=|A:RNA|

=|4|.

Hence (AL, U(L), A, L)eQ, and so one of the following holds by 2.1, 3.1, 3.4,
and 3.8 of [9]:

(i) AL=SLy(2@™) and U(L) is induced by the natural GF(2)SL,(2™)-module;
(ii) AL=Zsms and U(L) is induced by the natural GF(2)Zzn. -module.

Furthermore, |U(L): Cyey(A)|=|A| in either case by 2.1 and 3.1 of [9]
Therefore, Cy(RNA)Y=[U, L1+Cr(A), and if RNA=]1, then RNAeP(G, V) and
RNA<wA. Suppose we have taken A from @*(S, V) (this is possible). Then
we must have RNA=1 and hence V=[U, L]+Cy(4). This implies that
A<Cx(V/[U, L)), so L=[L, A1<Cx(V/[U, L)). Thus, [V, L]=[U, L] and V(L)
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=U(L). We conclude that V(L) is the natural module for L=SL,(2") or for
L= A,y according as (i) or (if) holds. Also, since [V, LIKU=Cp(R) and R=
Cs(L), we have [[V, L], SNL;]=0 for all j=2. Thus, we have [[V, L], L;]=0
for all j=2, proving (2). Consequently, we have Cw,1;(L)=Cw (), so V(L)
=W, and (1) holds. (3) now follows from (1), (2), and 5.3. In case (i), A induces
a group of inner automorphisms on L. Therefore, in SL,(2™)-case, <#(S, V)
induces a group of inner automorphisms on L and hence on N as well, which
implies that {(S, V)y<N because Ce(N)=1. Since N<{P(G, V)) by 5.2, we
have proved the latter part of (4).

5.5. In Asmii-case and SL.(2)-case, Cw(IN)=0.

Proof. In SLy(2)-case, this follows from 1.11 of [9]. In A,n.i-case, 3.7 and
3.8 imply that Cw,(L)=0 because W;=[W; L] and W;/Cw,(L:) is a natural
module by 5.4. Hence, by (3) of 5.3 and (2) of 5.4, we have Cy(N)=0.

5.6. If 1#xeZ(S), then x normalizes each L; and |W : Calx)| =2,

Proof. Since Z(S) centralizes each SN L; Z(S) normalizes each L; and leaves
each W; invariant. By 3.3 and 4.1, Z(S) induces inner automorphisms on each
L;, and hence on N as well. Since Ce(N)=1, this shows that Z(S)<Z(SNN).
Thus, if xeZ(S), then x=z, ... 2; with z:€Z(SNL;), and if furthermore =1,
then each x;#1 because S transitively permutes the Z(SNL;), 1=i=k. Since
W, is a natural module for L;, 3.2, 3.5, and 4.3 show that |W;: Ca (sl =2™
We conclude by (2) and (3) of 5.4 that |W : Cy(a)| =2

5.7. Assume that S has an elementary abelian normal subgroup E of ovder
at least 2" such that (W, E, E1=0. Then the following hold:

(1) E novmalizes each Ls;
(2) |E|=27%;
(3) ColE)=E.

Proof. Let 1s£2eENZ(S). Then [W, E]1<Cw(E)<Cw(z) and so E centralizes
W/Ca(x). Suppose yeE and LV=L;, i#j. Then Wi+ Capla)=Wi+Cilx))y=W;
+Ci(z) and hence [Wi z]=[W:i+Ci(z), z)=[W;+Cilz), z1=[W; z]. Thus,
., x]ngWj by 5.6. But then W, 2]=0 by 5.4 and, since W=3Ws (seS)
by 5.1 and 5.3, we conclude that [W, z]=0, contrary to 5.6. Therefore, E
normalizes each L, Now define

H= {'% Ne(Ly),
Co=CalLiniLuss . .. La), i=0, 1, ..., =1,

Cy=H,
H-,;=CII(L1 P Li—-lLi-H “ee L]g), i=l, 2, Coeay k,
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and note that Co=Cq(N)=1 and H,=C,. This definition shows that C;/Ci-; is
isomorphic to a subgroup of AutZ; containing InnZL;. So |ENC;: ENCiy| =27
for each 7 by 3.1 and 4.1, which yields that |E|<2mk Therefore, |E|=2™* and
then we have |ENGC;: ENCi—y|=2™ for each i. In particular, |ENH|=|ENC|
=2™ and so

|ENHi|=2", 1=isk,

because S transitively permutes the H; by 5.1. Now, L; <| H; and Ca(L:)=Ca(N)
=1, so a knowledge of the structure of AutZL; shows that H;/L; is cyclic and,
if m=1 or L;=SLy(2), then H;=L; Thus, ENL;#1 and hence Co(E)=Cu(E).
Also, since (ENC)Ci-y/Ciy is self-centralizing in C;/Ci-1 by 3.1 and 4.1, we
have Cg(E)<EC;, for each i and hence Cu(E)=E. Therefore, Co(E)=E.

5.8. Under the hypothesis of 5.7, if furthermore |W :Cw(E)|=2"F, then
(P(S, VYW<E and G has an element g such that N<{E, E’). Furthermore, the
following hold :

(1) In SL(2™)-case, E=SNN;

(2) In Asm.-case and SLa(2)-case, if we set H=NNea(l;) (1=isk) and
H;=Cu(L,...LiyLiyi ... Ly) for i=1,2,..., &k then H=H X - xXH E=
(ENH)X - X(ENHY), Hi=Swm., and ENH; is generated by m disjoint trans-
positions in H; (note that m=1 in SLy(2)-case). Furthermore, W=W,P---®Wx,
(Wi, Hi=0if i#j, and when considered a GF(2)Hy-module, Wi is induced by the

natural GR(2)2 um1-module.

Proof. SLy(@™)-case: Recall from 5.7 that E normalizes each L; and define
Ki=EL;. Also, define R;=0,(K;) and let bars denote images in K;/R:. Then
K leaves W, invariant, and

Cx(W:)=Cr(L)=Ru.

Since |W: Cw(E)|=2"% we have |W :C#E)| =2 and so |W~L:Cﬁ/‘i(E)[_§_~2m by
5.4 because S transitively permutes the W; by 5.1. Also, ENHiNR;<Ca(N)=1
and, as was shown in the proof of 5.7, |ENH;|=2". Hence

|Blz2m= W : Cr(B)l.

If m=2, then the above remarks show that (K Wi E, L)eQ and so Ki=L;
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by 2.1 of [9]. Thus, £ induces a group of inner automorphisms on each L; in
SL.(2™)-case, m=2. The same is true of SL.(2)-case as well because OutSLy(2)
=1. Hence, E<XSN.N and, since orders coinside, we conclude that (1) holds.
The former part of 5.8 in SL,(2™)-case now follows from 5.4 and 4.2.

Azmir-case and SLy(2)-case: As was remarked in 5.7, H; is isomorphic
to a subgroup of AutL; containing Inn L. Also, W=W,®---@W; and
Wi is a natural module for L;=Asn.. or for L,=SL.,2) by 5.4 and 5.5.
Therefore, when considered a GF(2)H;module, W,; is induced by the natural
GF(2)Z3m.i-module through a monomorphism H; —> Sam.: by 3.4 of [9] (note
that m=1 in SL.(2)-case). Furthermore, since |W : Cw(E)|=2™%, we have |W;:
Cw (E)|=2" as in SLy(2™)-case, and hence |ENH;|=2"z|W;: Cw(ENH;)|. Thus,
3.1 of {91 shows that H;=3m,, and that ENH; is generated by m disjoint
transpositions in H;. Now, since Ce(N)=1, we have (H\, ..., Hpy=H X -+ X Hj
and, consequently, |H|=|Xwm.i|%. On the other hand, |H|=II%,|C; : Ci—i| | Xams1l?,
where C; is the same as in the proof of 5.7. Therefore, H=H;X -+ X Hx.
Similarly, we have E=(ENH;)X- - xX(ENHy) because |ENH;|=2" and |E|=2™*
by 5.7. If i=j, then [W; L;1=0 by 5.4, so |H;/Ca(Wi)|=2 and Cw(H;)=0.
Since L; is irreducible on W; we conclude that Cw (H)=W;, ie., [Wi, H;]1=0.
We have proved (2). 3.4 now shows that there is an element geG such that
N<(E, E%. In order to prove {@(S, V))<E, we let bars denote images in
H/Cg(W;). Then by (2), H=H;=5m.,. Furthermore, ENH, is generated by
the m distinct transpositions -in SN HeSyly(H). Suppose Ae®(S, V). Then
A<SNH by 5.4 and, if A=1, then Ae®SNH, W) by 1.2 of [9]. Therefore,
A<ENH; for each i by 3.1 of [9], and hence it follows that A<E.

§ 6. Pushing up and GF(2)-representations

In this section, we will consider the following situation:

Hyrotursis III. The group G is a 2-irreducible group with Ce(O:(G))<0:(G)
and, for SeSyl(G), 2,(Z(SNXZ(G) and Q(K(S)) is not normal in G.

Under this hypothesis, we define @=0,(G), V=0,(Z(Q)), and C=Cy(V). Also,
we denote by - the natural homomorphism G — G/C, and regard V as a faithful
right GF(2)G-module. The main purpose of this section is to'show that the
pair G, V satisfies Hypothesis II of section 5 (see 6.6 below).

6.1. G=SC.

Proof. Since Ce(Q)<Q, we have 2,(Z(S))<V and so, if G=SC, then 2:(Z(S))
<Z(G), contrary to Hypothesis III.

6.2. If X<G, then either SNX ]G or G=SX.

Proof. By a Frattini argument, G=Ng(SNX)SX and so G=Ng(SNX) or
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G=SX by the 2-irreducibility of G.
6.3. J(S)xC.

Proof. 6.1 and 6.2 show that Co(V)=Q. Hence if J(S)<C, then J(S)=/(Q),
V<(ZU@)=2(Z(JS)), and K(S)=Cs(2(ZUSN<Cs(V)=Q. However, this
shows that K(S)=K(Q) and so Q(KX(S)) <1 G, contrary to Hypothesis III.

6.4. G=SJ(G).

Proof. If G#+SJ(G), then SNJ(G)<Q<C by 6.2 and so J(S)=J(SNJ(G))<C,
contrary to 6.3.

6.5. If Ae(S) and A%£C, then AeP(S, V).

Proof. If CNA<B<A, then the maximality of |A| shows that Cy(A)=VNA
=Cy(B)NB and |A|=|BCy(B)|. Hence |A:B|=|Cv(B): Cy(A4)|, which implies
that AeP(S, V).

6.6. When V is regarded as a GF(2)G-module, the pair G, V satisfies
Hypothesis 1L

Proof. Since G+S by 6.1, G is 2-irreducible. Let X/C=0,(G). Then
X=(SNX)C. Hence SX=SC+G by 6.1 and so SNX<Q<C by 6.2. This implies
that O,(G)=1. When considered a GF(2)G-module, V is clearly faithful and
@G, V) is not empty by 6.3 and 6.5. Finally, Cv(S)=0:(Z(S))£Cr(G) by
Hypothesis III.

Now assume that the group G satisfies Hypothesis 0 in addition to Hypothesis
III. Then G also satisfies Hypothesis 0 and so, by 6.6, we can apply the results
of section 5 to the pair G, V. We can also apply Theorem H of [6] to G. Thus,
the following two results can be proved.

6.7. Under Hypothesis 0, we have OG)<Ca(Q/V).

Proof. Since G+#LCa(8,(Z(S))), N{(Q(K(S)))y by Hypothesis III, Theorem H
of [6] shows that G has an Aschbacher block B. The definition of Aschbacher
blocks adopted in [6] or [5] in particular shows that 1#=B=0%B)<0Ca(Q/V)).
Since O¥Ca(Q/V/1))=1 by Hypothesis III, we must have B£C. Thus, Ca(@/V)
£C and so O¥G)<Cx(Q/V)C by 5.2. Hence G=SCs(Q/V)-SC and, since G+SC
by 6.1, we have G=SCs«(Q/V) by the 2-irreducility. Thus OXG)<Ce(Q/V).

6.8. Under Hypothesis 0, we have C=Q.

Proof. Since OXCa(Q/V/L)=1, Co(Q/V)<Q and so |G:Cx(Q/ V)] is divided
by |C:Q|. Now, |G:Cs(Q/V)] is a power of 2 by 6.7, while QeSyl.(C) as was
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remarked in the proof of 6.3. Therefore, C=Q.

§7. A characteristic subgroup for pushing up

In this section, S is a 2-group. Here, we will define a characteristic sub-
group R(S) of S mentioned in the introduction, and prove one of the key results.
Let B(S) be the collection of the finite groups which satisfy Hypothesis III of
section 6 together with Hypothesis 0 and contain S as a Sylow 2-subgroup. If
B(S) is nonempty, we define

RES)=N0:(G)  (GeB(S).
If B(S) is empty, we define

R(S)=S.

Thus, we have defined a subgroup R(S) of S.

7.1. R(S) is a characteristic subgroup of S containing Z(S).

Proof. That R(S) is characteristic follows from remarks in section 1 of [6].
If GeB(S), then Z(S)<Ca(0,(G)) <0u(G). Therefore, Z(S)<R(S).

7.2. If GeB(S) and R(S) is not normal in G, then there exists an element
X of B(S) such that [0:(G), OHG)L0,(X).

Proof. If [0y(G), OHG)]1<O0x(X) for all Xe B(S), then O0(G)N0u(X) <] SO G)
=G for all Xe®(S), hence R(S)G.

§ 8. Pushing up for 2-irreducible groups

In this section, we will conclude the proof of the theorem stated in section
2, but as was noted in section 1, we will more generally consider a 2-irreducible
group G with Cg(0:(G)) <04(G) such that, for SeSyly(G), none of 2,(Z(S)), QUK(S)),
and R(S) is normal in &. We will also assume that G satisfies Hypothesis 0.
Thus, G is a member of $(S) and so by 7.2 we are led to the following situa-
tion :

HyporrEsis IV. S is @ 2-group, Ge B(S), and there exists an element Xe B(S)
such that [0.(G), OHG)]£0:(X).
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Under this hypothesis, we define Q@=0Q,(G), V=0,(Z(Q)), and denote by - the
natural homomorphism G — G/Q. Since GeB(S), G satisfies Hypotheses 0 and
II1, and so we can apply the results of section 6 to G. Thus, CG(V) Q by 6.8,
and we can regard V as a faithful GF(2)G-module. The pair G, V satisfies
Hypothesis II by 6.6, and G satisfies Hypothesis 0, so we can apply the results
of section 5 to the pair G, V. Thus, if we define

{<£Z’;“(G", V) if PG, V) is nonempty,
“\Ec@r@G, V) it PXG, V) is empty,

then, by 5.1, N is a normal subgroup of G, N is the direct product of onme or
more subgroups

Li=Ly/Q, i=1,2,...,k,

and either L;=SL,(2™), m=1, for each i or Li=Am,, m=2"=2, for each i.
Furthermore, if we define

W=[V, NJ,

W=V, L, 1=i=k,

then, according to 5.4, there are two possibilities for the action of L; on
Wi+ Cw(N)/Cw(N), i.e., SLy(2™)-case and Asm,,-case. Since XePB(S), the above
remarks apply also to X and, in particular, we can define the subgroups Qx, N,
Wy of X analogous to the subgroups @, N, W of G, respectively. Thus, Qz=
0x(X) and so [@, O¥G)]1£Qx by Hypothesis IV. We will use this condition only
in the proof of 8.3 below,

8.1. OYG)<Ca(Q/W).

Proof. Since O¥G)<N by 5.1, the definition of W shows ONG)<Ce(V/W).
The remark now follows from 6.7.

8.2, Cs(Wx)=Qx.

Proof. This follows from (6) of 5.3 applied to X/Qx and Wyx.
8.3. WQr.

Proof. If W<Qy, then [@, OH(G)]<Qx by 8.1, contrary to Hypothesis IV.
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8.4. Wx£@Q.

Proof. If Wx<@, then since W<Z(Q), we have W<Qx by 8.2, contrary
to 8.3.

We will not use the condition [@, O¥G)]£Qx any more, and results analogous
to 8.1 and 8.2 also hold for X and G, respectively, because their proofs depend
only on the fact that G, Xe B(S). Therefore, 8.3 and 8.4 permit us to exploit
the symmetry between G and X in the remainder of this section.

8.5. (1) Wx novmalizes each L;.

(2) 1Q:QNAQx|=|W: WNQRx|=2™=|Wx: WzNQ|.

(3) G has an element g such that N<{Wx, WiQ.

@) JO<WxQ.

B) If G is in SLy(@™)-case, then WxQ=SNN.

6) If G is in Asmyi-case or SLy(2)-case, then |W|=|Wx|=2"" WxN@=
WnQx=[W, Wxl, and WxW is the direct product of mk copies of Ds.

Proof. Since

1+Wx <18

by 8.4, we can take an element z of Wx~Q so that xQeZ(S/Q). For this
element, we have

Cw(z)2Cw(Wx)=WNQw

and hence

|W: WnQxIz|W: Cw(Wx)lz|W: Cu(z)|z2m*

by 5.6. By the symmetry between G and X, we have

|Wx: WeNQ|z2"x"x,

where my and %y have the same meaningifordX as s and & have for G. Further-
more, since Wy is abelian normal in S, we have
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[W, Wx, Wxl=1.

If mykyzmk, then |Wyx: WxNQ|=2mxFx=2mk, 50 Wy : Wi N Q]=2"xFx=2"F by
(2) of 5.7. If mkzmyksx, then by symmetry |W: WNQx|=2"*=2"r*x. Hence
we conclude that

mbh=mxkx

and
[Wx: WxNQ|=\W: WNRx|=2"F.

Thus, (1) holds by 5.7. It also follows that

|W: Co(Wx)|=|W : Cw(x)|=2",

and hence

Co(x)=Cw(Wx)=WNQx.

Since Qx<C5(Wx), 5.7 also shows that Qx<WxQ. By symmetry, Q< W@y and

30 |Q:QNQx|=|W:WnQx|. This proves (2). Since |W:Cw(Wix)=2m (3),

(4), and (5) hold by 5.8, because Co(V)=Q by 6.8 and JS)<(P(S, V)) by 6.5.
In order to prove (6), suppose G is in Aymii-case or SLy(2)-case. Then

Cw(N)=1
by 5.5 and so

I WI =2%mk

by 5.4. Hence |Cw(2)|=|W: Cir(z)| =2™ and WNQz=C(x)=[W, z]<[W, W]
<WNWx<WnNQRy. We conclude that
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WNQx=[W, Wx]

and consequently

(W, Wxll=2mk,

Now, we can take an element % of X so that Nx<{(W, W">Qx by the symmetry
between G and X. By 5.3, Wx=[Wx, Nxl<[Wx, W1 [Wx, W7, which yields
|Wy|=2m  Therefore,

|[Wx|=2""% and CWX(NX> =1

by 5.4. So far in this paragraph, we have used only the fact that Cw(V)=1,
and we have shown that CWX(NX)=1. Thus we can conclude, by symmetry,
that

WxNQ=[Wx, Wl=WnNQx.

Finally, take a complement Y to WxN@Q in Wx. Then WWx is a semidirect
product of W by Y and the action of ¥ on W is described by 5.8. We conclude
by 3.6 that WWy is the direct product of mk copies of Dy.

8.6, Let g be an element of G as in (8) of 8.5, and define P=QNQxNAQL.
Then the following hold :

) [P, Wxl=1;
@ Q=WP and WNP=Cw(N);
() P=Co(O*(N)).

Proof. Since W<Z(Q) and Wx<Z(Qx), the definition of P and (38) of 8.5
show that [P, Wx]l=1 and WNP<LCw(N). Hence |W:Cw()|=|W:WnNP|=
[WP: P|=|Q : PI=1Q : QNQx|% Now, |W:Cw(N)|=2™* by 5.4, while |@ : QN Qx|
=27 hy (2) of 8,5. Hence (2) follows. (3) of 8.5 also shows that N=Cxy(P)@,
so P<|N and then O¥N)<Cx(P). Since Cw(O*N))=Cw(N) by 5.4, (2) shows
that Co(O¥IN))=P.

8.7. Define M=0*N) and K;=0*L;), 1=i=k. Then the following hold :
1) W=Q, M1<QNM end W;=[Q, KGI<QNK;;
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(2) If Li=SLs(2™) m=2) ov Li=Agm.., then K; is perfect, Ki/ Wy is quasi-
simple with Z(K,/Wi)=QNKi/ Wi, Ki/QNEKi=Li, and Wi/Cw(N) is a natural
module for Ki/QNK;=SL.2™) or Asmii;

() If Li=SLy(2), then Ki/WizAs, QNKi=W;, and W; is a natural module
for K/ Wi=As;

(4) M is a central product of Ky, ..., K.

Proof. First, (1) follows from 6.7 and 5.3. Then (2) and (3) follow from
5.4 (and 5.5 for SLy(2)-case). Suppose i, je{l, 2, ..., k} and isj. Then [K;
K1<QnK; by 5.1 and so [K;, K<W; by (L)~(3). Since [W;, K;]=1 by 5.4,
we conclude that [K;, K;]=1. Now, since ON)=0%L,)...0%Ly) by 5.1, we
have K, ... Kpy<M<K, ... KiQ and so M=K, ... K.

8.8. In SL.(2™)-case m=2), the following hold :

(1) N.is a central product of M and P;
(2) M<J(G)EN;
(3) K is a central factor group of Rum.

Proof. Since m=z2, we have N=MQ and so N=MP by (2) of 8.6 and (1)
of 8.7. This is a central product by (3) of 8.6. We have M<J/(G) by 6.4, and
J(G)XN by 6.5 and (4) of 5.4. Now, since Wy is elementary abelian, (§) of 8.5
shows that @ has a complement in SNZL; and so @/P has a complement in
SNL;/P (note that P<|G by (3) of 8.6). Since Q/PF is abelian by (2) of 8.6,
Gaschiitz’ theorem shows that @/P has a complement X;/P in L;/P. Let J;=
0*X;). Then J;<K; and X; is a central product of J; and P by (3) of 8.6.
Hence [; is a perfect central extension of SL.(2™) and Z(J)=PnNJ;=QNJ:.
Furthermore, Li=/;@ and so K;=/;(QNK;). We now argue by (2) of 8.7 that
K, is a perfect central extension of the quadratic group @n: Since Ki/W; is
quasisimple with Z(K;/Wy)=QnN K/ W3, we have K;=/;W;and so QNKi=@ N J4)-
Wi=(PNJ)Wi. Thus, Ki/CwN)YPNJ)=Qu. Since Cw N)PNJ)<Z(K:) by
(3) of 8.6, we conclude that K; is a perfect central extension of @n. Therefore,
K, is a central factor group of Ry by 4.7,

8.9. In Awmii-case and SLo(2)-case, the following hold:

) Let H=WxM. Then J(G) is a central product of J(P) and H;

(2) H is a central product of PNH and the S-comjugates H,, ..., Hy of
H, =4, Ky), where weWx and H, is a cenitral factor group of I'imis;

3 J(S)=J(P’2><WxW;

(4) Let G0=QNG(L¢). Then G, is a central product of P and H;

(5) If no nomidentity charactevistic subgroup of J(S) is movmal in G, then
J(P) is the dirvect product of copies of Dy and copies of Z,.

Proof. By 8.6, WxQ is a central product of WxW and P. Since Cy(N)=1
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by 5.5, we have

Q=WxP

by (2) of 8.6. Further, WxNQ<W by (6) of 8.5. Hence WxWnNP=W;WnNQ
NP=(WxNQWNP=WnNP=1 and so

WiQ=WxWXxZP.

Now, J(S)=J/(WxQ) by (4) of 8.5, and J(WxW)=WxW by (6) of 8.5. Therefore,

JS)=WxWxJ(P).

Since M=0*G)<J(G) by 5.1 and 6.4, we have J(G)=<{J(S)*>=JS)J(S), M]=
JSM=J(PYWxWM and therefore

JG)=]P)H

by (1) of 8.7. This product is a central product by 8.6.

Recall that P<{G by (3) of 8.6, and define = to be the natural homomorphism
G — G/P. By 8.7 and 5.5, W; is a natural module for K;/QN K= Asm,: (note
that m=1 in SL,(2)-case) and |@NK;: W;|=2. Hence it follows that

QNK,; is elementary abelian

and then QNKi=W;XCqnx,(K:i) by 3.7. Since Conx(Ki)=Conx(M)=PNK; by
(4) of 8.7 and (3) of 8.6, we conclude that

QNEK=W;xX(PNKy),
K:/ W?—EAMH, and

W73 is a natural module for K;/W73.
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In particular, Z(K;)=1 and so
Mr=K;x-+ XK}

by (4) of 8.7. Since W*<M" by (1) of 8.7, we have Cg (M")<Cq=(WT). Since
Q=WxP and Ce(W)=Q by (6) of 5.3, we have Cogr(W*)=Co(W)=Q =W".
Therefore,

Co(M™)=Z(M")=1.
Note that A normalizes each K; by.(1) of 8.5, and define

Hi=Ca (K, ... KinKis ... Kp), 1Si=k,
Ci=Ca (Kis1 ... Ky), i=0,1,...,k~1,

Ci=H".

Then H;=Cj and, since H <{SM=G, S transitively permutes the H; (1=i=<Fk)
by 5.1. Further, since Ce (M™)=1, we have C,=1 and

CHYy ..., Hpy=H)x-- xHj.

We can apply 3.10 to C3/Ci-; because K;<|C; and CiNK;=Z(Ky)=1. Thus,
IWSNCh: WeNCiy| =2 by (3) of 3,10. This yields |Wy| <2, while since
WeNP=1 we have |W% =2 by (6) of 8.5. We conclude that |WxNC;:
Wy Ci|=2"" for each i and, in particular, |WxNH;|=2"" Therefore, |Wx
N Hj =2" for each i and hence

Wy=(WxNHDX - X(WxNHp.

We can also apply 3.10 to H; because Cauz (K)<Cos (M7)=1. If WxNH;=W;

=0,(K;) for some i, then this holds for each ¢ and so Wr=0:(M") =", which
is a contradiction because Wr<Q by 8.4. Therefore, Wyn H;#W; for each i,
and we conclude by 3,10 that
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HZ/W:§22m+1?
W3 is a natural module for H;/W;, and

Hi=(WxNH)K:.
Furthermore,

T
Hi=dopnia

by 3.9. Take an element w;e Wy so that H;=@>K,; and define Hy=<{w)Kz,
1=i=k. Then H;/PNHi=4sm.: and, since

[H, Pl=1
by 8.6, H; is a central extension of Ayp,, with Z(H;)=Pn H;. Further,
PNnH;=PNK;

because |H;: Ki|=2=|H;: K;|. Hence Z(H)=Z(K)<H} by 8.7. Also, since
QNEK=W:xX(PNK)=W;x(PNH;), the preimage of Mum,, in H; is equal to
QNK; which is elementary abelian. Thus, we conclude by 3.11 that H; is a
central factor group of I'sm+:. We have that

Hi=K;.

In Asnii-case, this follows from (2) of 8.7. In SL.(2)-case, this follows from
the fact that (H3)/=Kj3, because PNH;=PNK;=1 by (3) of 8.7. Let i, je{l,
2, ...,k i+j. Then [H; Hjl=1 and so [Hi, H;<P. Hence [H; H; Hil=1
and the three-subgroup lemma yields that [Hf, H;]=1. Thus, [Ki H;l=1 and
since Wy is abelian, we conclude that [H;, H;]=1 whenever i#+j. Since H<G,
by (1) of 8.5, we have |Gy|=|H"|=|H;...Hi=|4wm|*. On the other hand,
since Cz(N)=1, the structure of AutL; shows that |Go|=|3sm.:|* and hence
|Gy £|damss k. Hence Go=PH and H=(PNH)H,...H, which are central
products. Since we can choose the z; so that {w, . .., wi}=w$, we have proved

-4
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Assume that no nonidentity characteristic subgroup of J(S) is normal in G.
Let J(P)=DXE, where D is the direct product of copies of D; and E is the
direct product of indecomposable groups which are not isomorphic to Ds. Then
since J(S)=J(P)XxWxW and WxW is the direct product of copies of Dy by (6)
of 8.5, Krull-Remak-Schmidt theorem shows that E’ is a characteristic subgroup
of J(S). Since it is normal in SM=G by (3) of 8.6, we conclude that E'=1.
Hence E*=Z(J(S))* and we similarly have E*=1, proving (5).

This completes our analysis of the pair S, G satisfying Hypothesis IV. We
can derive our theorem stated in section 2 from 8.8 and 8.9. If the group G
satisfies Hypothesis I and SeSyly(G), then G=S/(G) by 6.4 and the pair S, G
satisfies Hypothesis IV. If G is in Asm,i-case or SLy(2)-case, then 8.9 shows
that condition (1) of our theorem is satisfied with T=J(P) and U=PnH. If G
is in SLy(2™)-case (mz=2), 8.8 shows that condition (2) of our theorem is satisfied.

We mentioned theorems of Baumann et al. on groups G satisfying Hypothesis
I with G/K=SL,(2™) for some normal subgroup K of G. All these theorems
can also be derived from the results of this paper because the following holds:

8.10. Let G be a finite group satisfyving Hypotheses 0 and 111, If K is a
broper normal subgroup of G with O(G/K)=1, then K=0\(G).

Proof. Since Oy(G/K)=1, we have Oy(G)<K. If O,(G)<K, then 5.2, 6.6,
and 6.8 yield that O*G)<K, which is a contradiction.
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