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Abstract

The sectional genus g of a polarized surface (S, D) is defined by the formula 2¢g—2
=(K+D)D, where K is the canonical bundle. This paper gives a classification of (S, D)
in casefg=3.

Introduction

A polarized surface is a pair (S,D) of a nonsingular complete algebraic
surface S defined over the complex number field and an ample divisor D on S.
The  sectional genus ¢(S,D) of (S,D) is given by the formula 2¢(S, D)—2=
(K+D)D, where K is the canonical divisor of S. We have a classification theory
of (S, D) with ¢(S, D)=<2 (see [1], [2], [3], [5]). In this paper we treat polarized
surfaces with ¢(S, D)=3.

The author would like to express his hearty thanks to Professor T. Fujita
for invaluable comments during the preparation of this paper.

Notation, convention and terminology

We shall work over the complex number field. Throughout this paper S
stands for a nonsingular complete algebraic surface. We use the standard nota-
tion from algebraic geometry. The words “ Cartier divisors”, “line bundles”
and “invertible sheaves” are used interchangeably, and *vector bundles” and
“locally free sheaves”, too.

if

the numerical equivalence of Cartier divisors.

x: the pull-back of a Cartier divisor Aon ¥ by a given morphism X —
Y. However, when there is no danger of confusion, we often write
A instead of Ay by abuse of notation.

n:  =Pp(OF @O (~n)) for any nonnegative integer .

the canonical divisor of S.

kS
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#(S): the Kodaira dimension of S.
g(S): the irregularity of S.

Qx(S): the blowing-up of S at a point p.
E,: the (—=1)-curve on Q,S) over p.

§1. Preliminaries

(1.1) Dernirion [2]. Let (S, D) be a polarized surface and let p be a point
on S. Set S'=Qu(S) and D'=Dg—F, If D’ is ample, the polarized surface
(S, D’) is called the simple blowing-up of (S, D) at p.

(1.2) DermviTioN [1]. A polarized surface (S, D) is a scroll over a curve C
if S is a P*-bundle over C and DF=1 for any fiber F of S—C.

(1.83) ProrosiTiON. Let (S, L) be a polarized surface. Then K+D is nef
unless '

(1) (S, D)y=(P* 0 (L),
(2) (5 D)y=(P%0F(2), or
(3) (S,D) is a scrool over a nonsingular curve.

For a proof, we refer to [1] and [5).

(1.4) Lemma. Let (5, D) be a polarized surface and suppose that the geo-
metric genus p(S)=0. If (S, D) is not of the type (1.8;3), then ¢(S, D)=24(S).

Proof. Since ¢(S, D)=0, we may assume ¢(S)z=1. If £(S)=0, then ¢(S)=1
because HOs)=1—g(S)+p,(S)=0. On the other hand «#(S)=0 yields ¢(S, D)=2,
hence the assertion holds. If x(S)=—o0, then K2=8(1—¢g(S)). Hence (K+ D)=
K*+2KD+D¥—D*=81—q(S)+4(g(S, D)—1)— D*=4(4(S, D)—2¢(S)+1)— D% Now
< K+D is nef by (1.3), so (K+D)»=0. IFrom them ¢(S, D)=24(5). Q.E.D.

(1.5) P'-bundles over a nonsingular curve Let S be a Pl-bundle over
a nonsingular curve C. Then there exists a vector bundle £ of rank two on
C such that S=Py(F). We may assume that F satisfies the conditions that
H(E)#0 but for all line bundles L on C with deg L<0, H(ER L)=0. In this
case E is said to be mnormalized. Of course F is not necessarily determined
uniquely, but the integer e=—deg (det EX=—c¢,(E)) is an invariant of S. If £
is .decomposable, then E~@;@ L for some line bundle L on C with deg L=0.
Therefore ex0. All the values of e=0 are possible. If £ is indecomposable,
then —g(S)=<e=2¢(S)—2. Let H be the tautological line bundle and let F* be a
fiber of S— C. Then every divisor D on S is numerically equivalent to aH+bF
for some integers @, b.. We can determine the ample divisors on S. If the
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invariant e=0 (resp. ¢<0), then a divisor D=oH+bF is ample if and only if
a>0 and b>ae (resp. a>0 and 26> ae).
For details we refer to [4] and [9]

(1.6) LemMA. Let (S, D) be a polarized surface and suppose #(S)=—oo and
KD=0. Then K?<0.

Proof. When KD=0, K=0 or K*<0 by the Hodge index theorem. How-
ever, the former does not occur, since S has an extremal rational curve. Hence
we may assume from here KD>0. Suppose to the contrary that K?z0. Then,
by the Riemann-Roch theorem for surfaces either tK+D or (L—f)K—D has
sections for £30. But the second possibility is excluded, since (1—HK—-D)D<0
for t=1. So #K+D has a section. Taking an arbitrary nef divisor N on S, we
have (tK-+D)Nz=0 for 0, thus KN=0 in particular. This implies that K is
pseudo-effective, which contradicts #(S)= —oo. Q.E.D.

§ 2. Classification

In what follows, let (S, D) be a polarized surface with ¢(S, D)=3.

(2.1) Clearly (S, D) is neither (P? @#*(1)) nor (P2 0(2). So if K+D is
not nef, then (S,D) is of the type (1.3;3). Since ¢(S, D)=¢(S) in this case,
(S, D) is a scroll over a nonsingular curve of genus three.

From now on, we assume that K-+D is nef.

(2.2) Suppose that K is nef. Then 0=KD=4—D* so D*=1,2,3 or 4

If D*=4, then KD=0. Since K?z0, K=0 by the Hodge index theorem.

If D=3, then KD=1 and (3K—D)D=0.  Obviously 3K—D=£0. Hence 0>
(3K—~D)?=9K>—3 by the Hodge index theorem. From this K*=0. So Sis a
minimal elliptic surface.

If D*=2, then KD=2 and (K—D)D=0. The Hodge index theorem yields
K=D or 0>(K—D)=K*—2. In the latter case S is either a minimal elliptic
surface or a minimal surface of general type with K*=1.

If D*=1, then KD=3 and (K--3D)D=0. Similarly as above, unless K=3D,
S is either a minimal elliptic surface or a minimal surface of general type with
1=K*=8. :

(2.3) Suppose that K is not nef. Then the following three cases occur by
the theory of extremal rays: ,

(1) S=P= ‘
(2) Sisa P'bundle over a nonsingular curve.
(3) S#43, has a (—1)-curve.
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(2.4) When (2.3;1) holds, (S, D)=(P?, ©p4)).

(2.5) We consider the case (2.3;2). With the same notation as in (1.5),
we have K=-—-2H+(2¢(S)—2—e)F. Set D=aH+bF. Then az=2 since K+D is
nef. Hence (S,D) is not of the type (1.3;3). Consequently g(S)=1 or 0 by
(1.4). Note D*=a(2b—ae) and 4=(K+D)D=(a—1)(2b—ae)+2a(g(S)—1).

(2.6) Suppose ¢(S)=1. Then 4a=(a—1)D% So (@, D*)=(2,8), (3,6) or (5, 5).
In case (¢, D*)=(2,8), we use (1.5) to find b—e=2, e=1,0,—1. Similarly,
in case (@, D*)=(3, 6) (resp. (5,5)), (&, e)=(L,0) (resp. (=2, —1)).

(2.7) RemarRk. Let S be a P'-bundle over én elliptic curve. Then, simi-
larly as in (2.6), we get the following classification table of polarized surfaces
(S, D) with ¢(S, D)=2,4,5 or 6, which will be used in (2.16):

oS,D) « D* KD b e
(1y 2 2 4 =2 1+e 0, —1
(2) 2 3 3 -1 ~1 -1
(3) 4 2 12 -6 3+e 2,1,0 —1
(4 4 3 9 -3 0 -1
(5) 4 4 8 -2 1+2¢ 0, —1
6) 4 7 7 -1 -3 -1
(7y 5 2 16 -8 d+e 3,2 1,0 —1
(8) 5 3 12 -4 2 0
(9) 5 5 10 -3 1 0
a 5 9 9 -1 —4 —1
an 6 2 20 —10 5+e 4,82 1,0 —1
12 6 3 15 —5 (5+3¢)2 1, —1
s 6 6 12 —2 1+3e 0, —1
a4 6 11 1 -1 -5 -1

(2.8) Suppose ¢(S)=0. Then b—ae>0 since e=0. Thus 4=(K+D)Dz=
(e—-D)d+1)—2a=(e~1)(0—1)—-2. So (e, D")=(2,16) or (3,15) if e>0. If e=0,
then (@¢—1)(b—=1)=3. Since S=~P!X P!, we may assume b=a. So (¢, D)=(2, 16).

In case (g, D*)=(2, 16), we have b—e=4, ¢=3,2,1,0.

In case (@, D¥)=(3, 15), (b, ©)=(4,1). Therefore S=Q,(P? and D=0pg'4)—E,.
Note that in this case (S, D) is the simple blowing-up of (P2, ®p%(4)).

(2.9) Remarx. Let Sbea Pl-bundle over P'. Then, similarly as in (2.8),
we obtain the following classification table of polarized surfaces (S,D) with
g(S, D)=2,4,5 or 6, which will be used in (2.16):
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oS.D) @ D* KD b e
(1) 2 2 12 -10 3+e 2,1,0
(2) 4 2 20 -14 5+¢ 4,3,2 1,0
(3) 4 3 18 -12 3 0
(4) 5 2 24 —16 6+e 54,3 21,0
(5) 5 3 21 —13 5 1
(6) 6 2 28 —18 T+e 6,543 210
(7) 6 3 24 14 (84302 20
(8) 6 4 24 -4 5 1

In the last case (S, D) is the simple blowing-up of (P2 Op*(5)).

(2.10) We divide the case (2.3;3) into two subcases according as 2K+D
is nef or not.

(2.11) If 2K+D is not nef, then there exists an extremal rational curve E
such that 2K-+D)E<O0. Since S+ 3, E must be a (—1)-curve, so DE=1. We
contract £ to a nonsingular point on another surface S. It is easy to see that
D+ FE is the pull-back of an ample divisor D’ on §’. Note that K'+D’ is nef
for the canonical divisor K’ of S’ and that ¢(S, D)=¢(S', D’). Repeating this
procedure if necessary, we eventually get a polarized surface (So, Do) satisfying
one of the following conditions.

(1) The canonical divisor K, is nef.

(2) Se=P2

(3) S, is a P*-bundle over a nonsingular curve.
(4) Se#x Y, has a (—1)-curve and 2K;+D, is nef.

Accordingly we conclude that (S, D) is_ a simple blowing-up of another polarized

surface.
From now on, we assume that 2K+D is nef.

(2.12) Let E be a (—1)-curve on S. Then m=DE=z=2 and E is contractible
to a nonsingular point on another surface S’. Since D-+mE is the pull-back of
an ample divisor D’ on &, we obtain a polarized surface (5%, D), in which K-+
D’ and 2K’4+D’ are nef for the canonical divisor K’ of S’ We claim that =(S)
= —oco unless K’ is nef. Indeed, if K’ is not nef, then one of the following
conditions holds.

(1) S'=pP2
(2) S is a P'-bundle over a nonsingular curve.
(3) $'#3, has a (—1)-curve E' and 2K'+D' is nef.

If (3) holds, then #=D'E’=2 and E’ is contractible to a nonsingular point on
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another surface S”. Moreover, D'+#nE’ is the pull-back of an ample divisor D"
on 8. Now, for the canonical divisor K” of 5", K"D'=(K'—E)D' +nE)=
KD —n=K—-EYD+mE)~n=4—D*—-m—n<0. So combining this with (1) and
(2), we infer that #(S)=-—cc except in the case that K’ is nef. If K’ is nef,
then 0= K'D'=4—D%—~m, hence (D% m)=(1,2),(2,2) or (1,3). In case (D% m)=
(1,2), D"*=5 and K'D'=1. By the same method as in (2.2), we find that S’
is a minimal elliptic surface. Similarly, in case (D% m)=(2,2) (resp. (1,3)),
K'=0 and D"*=6 (resp. K’=0 and D"?=10).

(2.13) Now we study the case x(S)=—oco. Suppose ¢(S)>0. Then ¢S)=1
by (1.4), so K*<—1. On the other hand 0=(2K+Dy=4K*+16—3D% From
them we can give the following table:

D? KD K
(1) 4 0 ~1
(2) 3 1 -1
(3) 2 2 ~1
(4) 2 2 -2
(5) 1 3 -1
(6) 1 3 -2
(7) 1 3 -3

(2.14) We deal with the case g(S)=0. Now 0=(2K+D)D=8—D* since 2K
+D is nef.

If D*=8§, then (2K+D)D=0, which implies 2K+D=0 by the Hodge index
theorem. Hence —K is ample, K?=2 and D= —2K.

If D*=7, then KD=-3 and (7K+3D)D=0. Thus 0=(7K+3D)=49K*—63
by the Hodge index theorem. So K?=<1. On the other hand 0=(2K+D)*=4K*
—5. From them we get a contradiction.  Similarly, the case D*=6 is ruled out.

If D*=5, then KD=—1 and (5K+D)D=0. The Hodge index theorem gives
0=(BK+D):=25K*—5, so K:=0. On the other hand 0=QK-+Dy@=4K%+1.
Hence K?*=0.

If D*=4, then. KD=0, so K*<0 by (1.6). On the other hand 0=(2K+ D)
=4K?*+4. From them K?=-1.

If D*=3, then KD=1 and 0=(QK+D)*=4K*+7. Combining this with (1.6)
we obtain K2=-—1. Similarly, in case D?*=2 (resp. 1), K?*=~1 or —2 (resp.
-1, =2 or -3). ‘

Therefore we get the following table for D*=5:
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(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

D‘a

R H DN WO

g

WwW WD OR

K2

0
—1
~1
-1
-2
-1
—~2
~3
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(2.15) Remarx. Let things be as in (2.14). Then, by the same argument
as above, we obtain the following table for ¢(S, D)=2,4,5 or 6 and K?=0:

(1)
(2)
(3)
(4)
(8)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14
(15)

9(S, D)

OO OGO U1 O O O i i i Do

D2
4
12
9
8
7
16
12
10
9
20
16
14
13
12
11

8

|
HFD WA GOHNAOHNWON

COCHNUIOORKAOCOM WM XN

™

(2.16) Taking the following steps, we can determine the structure of (S, D)

in (2.13;1)~(2.13;7) and (2.14;1)~(2.14; 8).

Step 1. We take x=min {{eZ*|tK+D is not nef}. Note z=3.

Step 2. Put A=(x—2)K-+D. Then A isan ample divisor on S. Since K+ A
is nef and 2K+ A is not nef, (S, A) is of the type (2.11). Hence we get a po-
larized surface (S,, A,) which satisfies one of the conditions (2,11;2), (2.11;3)
and (2.11;4). Of course g(Ss, A)=¢(S, 4) is not always equal to ¢(S, D). Note

KK+ A)=K(E+A) since (Ky+As=K+A.

Step 3. We study the structure of (S, 4,) using (2.6), 2.7), (2.8), (2.9),

(2.13), (2.14) and (2.15). Here we cannot assume ¢(S, A)=3.
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(2.17) As an example of the method (2.16), let us consider the case
(2.14;7). Let 2, A, S,, K, and A, be as above. Since (4K+D)*<0, 2=3 or 4.

If #=4, then A*=5and KA=-1, s0 ¢(Ss, A)=¢(S, A)=3 and Ky(K,+A4,)=—3.
This implies (S, Ag)=(P? 0F'(4)). Hence S=Qp, - Qp (P and D=0p(10)—
3B, —-+-—3Ey,,.

If £=3, then A*=5, KA=1 and K(K,+A4,)=—1. Hence we have two pos-
sibilities :

(1) (S, Ay is of the type (2.15;5).
(2) Agf=6, KA,=0 and K*=~1.

We apply (2.16) to (S,, A,) again. We let y=min {feZ*|tK,+ A, is not nef} and
put By=(y—2K,+ A,

In case (1), y=3 or 4 since AK,+A,)?<0. If y=4, then B?=3, K,B,=—1
and Ky(Koy+By)=—1. Thus (Sy, Byw) is of the type (2.15;1). From this S=
Qp,RpQp,(Sen) and D=Dy—4Ep —2E,,—2F,, where S, is a Del Pezzo surface
with Ky®=1, and Dyy=—~5K,,. If y=3, then B?=5, K B,=—1 and K,(Ky+ Byo)
=—1. However, this is excluded since Ky?*>0.

In case (2), y=3. So B2=5. K;By=—1 and Ky(Ko+ By)=—2.  Accordingly
—Ky is ample, Ky*=2 and By=—2K,. From this $=Q,,Q, Q& (Sw) and
D=Dy—3Ey—3E),—3Ey,—2E;,, where Dyy=—4K,,.

By the same way we can describe the precise structure of the others.

From the facts mentioned above we obtain the following

TueoreM. Let (S, D) and (S, Do) be polarized surfaces such that S=@,, - -
Qp,Qp,(So), 720, and such that D=Do—m Ly —maEp,— - —m,Ep,, and let K, be
the canonical divisor of S,. Assume ¢(S, D)=3. Then one of the following
eleven conditions is satisfied:

(0) (S,D) is a simple blowing-up of another polarized surface.

(1) K=D and D*=2.

(r) K=3D and D*=1.

() -S is a minimal surface of general type. D*? and K? are as follows:

D K?
(1) 2 1
(2) 1 1=K°=8

(Iv) Sy is a minimal elliptic surface. D% Do?, KD, and m; are as follows:
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On Polarized Surfaces of Sectional Genus Three

(1)
(2)
(3)
(4)

(1)
(2)
(3)

D*
3

2
1
1

D02

2

D
4
2
1

K()Do . (7721, Mz,
1:2
Do?: (m, 1, » -+ )
6:2
10:3

...,mr)
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(VI) There is a vector bundle E of rank two on an elliptic curve C with
e=—cy(E) such that Sy=P¢(E). D,=aH-+bF, where H is the tautological line
bundle and F is a fiber of Sy — C. D% e, @, b and my; are as follows:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)

o

O = o DWW Ol o oD

-1
0
!
0
0
-1
0
-1

—

T
O~ WU O3 1w

b (my, Mg, + =+
2+e

1
-2
14+2¢:2
143¢:3
-3 :2

1 :4
~5 :3

1:2 2

1:5
-8 :4

1:3 2
-4 12 2

(V) (Se, Do)=(P? ©F*(a)). D? @ and m; are as follows:

(1)
(2)
(3)
(4)
(5)
(6)
(7)

D2
16
16

N

DD WOk W Ww

: (mly 77’Zz,

DWW
DO LW oY W

DO WO W

MW S WD

"',mr)

DO WO W

DNwWo W

DLW O W

W oW

WO Wi
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(V) (So, Do)=(Ton, ¢ H+bH"), where H is the tautological line bundle and

H’ is the pull-back of @p'(1). D% #, a, b and m; are as follows:

D® 7 a b (my, M, +++, My)
(1) 16 0,2, 3 2 4+n
(2) 4 0, 2 4 5+2#2:2 2 2 2 2 2 2 2 2
(3) 3 0,2 6 7+3%2:3 3 3 3 3 3 3 3 3

(IX) So is a Del Pezzo surface with Ky*=1 or 2, and Dy=—akK, D? Ky

@ and m; are as follows:

(1]

£z2]
[3]
£4]
£s]
L6l
L7]
£el
£o]

D2 Ky a: (my, Mo, « -+, My)
(1) 8 2 2
(2) 5 1 3:2
(3) 3 1 4:3 2
(4) 2 2 5:4 4 4
(6) 2 2 3:2 2 2 2
(6) 2 1 6:5 3
(7) 1 2 7:6 6 5
(8) 1 2 4:3 3 3 2
(9) 1 1 9:8 4
10) 1 1 5:4 2 2

(X) (S,D)is a scroll over a nonsingular curve of genus three.
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