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Introduction

Let p be a prime, G be a group of order divisible by p, and & be a normal
set of subgroups of G. For SeSyl(G), let F(S) be the set of all XeF such
that SN XeSyl(X). The set & is said to comtrol Sylow p-intersections in G if
for each pair S, T of distinct Sylow p-subgroups of G such that SN7T=1, there
exist Sylow p-subgroups Sy, Si, -, S. of G, elements X, .-, X, of &, and an
element w;eX; for each i satisfying the following conditions:

(1) Sy=Sand S,=T;

2) XieF(Si)NF(S:) for each i;
(3) S;%=S;_, for each i;

4) SNT=S:nX; for each i

As is shown in [6, Theorem 1.4], if the set & controls Sylow p-intersections in
G, then it controls the p-fusion in G. That is, whenever A is a subset =1 of
SeSyly(G) and ¢ is an element of G such that A’=S, there exist elements
Yi, o, Yo of F(S), an element w;e¥Y; for each i, and an element yeNg(S) such
that A?=A%"%" and A" ¥%=SNY; for each i. Let o= 0 e be the set of
all nonidentity p-subgroups / of G such that Ny(H)/H is p-isolated in the sense
of Goldschmidt [4]. For He (o, let N¥(H) be the subgroup of Ng(H) containing
H such that N§(H)/H is the unique minimal subnormal subgroup of Ne(H)/H
of order divisible by p. A useful sufficient condition for the set & to control
Sylow p-intersections in G is that, for each He 9, N¥(H) is contained in some
member of & [6, Theorem 1.7]. Thus, in studying the conjugacy of subsets of
SeSyly(G), one is naturally led to the problem of finding a suitable set & in G
satisfying this sufficient condition.

In this paper, we. consider the above problem in the special case where
=2 and G has a normal subgroup N such that G/N is a 2-group and N is a
central product of conjugates in G of a quasisimple subgroup L. We will show
that if LeChev(2) or L= A, then we can find, in most cases, a normal set & in




16 Kensaku Gomi

G consisting of almost 2-constrained core-free subgroups of odd index such that,
for each He 4 o260 NEH) is contained in some member of &. Here, Chev(2)
denotes the collection of all quasisimple groups L with Ox(L)=1 such that L/Z(L)
is isomorphic to a finite simple group of Lie type and of characteristic 2.

The exact statement of the above result and its proof will be presented in
Section 4 (4.2 and 4.3). The proof requires precise information about the set
o2 in the automorphism groups of the groups in Chev(2) and the alternating
groups. Sections 2 and 3 are intended for this topic. For instance, we show
in Section 3 that if G=2X,,#n even, and He 4 y.5.¢, then Ng(H) is contained in a
subgroup of G isomorphic' to Iof¥pp or Sy Znu or ¥ X . Section 1
contains a list of properties of the set 4o...¢ and a related set ...

The main results of this paper (3.3, 4.2, and 4.3) are needed in the final
section of [6], where we prove a theorem generalizing the C(G, T)-theorem of
Aschbacher [17 and a 2-fusion theorem due to P. McBride.

1. The Sets #2¢ and 9o, ¢

In this section, G is an arbitrary finite group. Let He=.%.¢ be the set
of all 2-subgroups A of G such that H=0,(Ng(H)), and let .= 9 s,2.¢ be the
set of all nonidentity 2-subgroups H of G such that Ng(H)/H is 2-isolated of
even order. Clearly, 4(o.¢ is a subset of ¢ For He ¢ let NHH) be the
subgroup of Ng(H) containing H such that N#(H)/H is the unique minimal
subnormal subgroup of Ng(H)/H of even order. The N¥H) is well-defined (see
[6, Definition 1.63). '

1.1. If Hedlg, then H contains all Ne(H)-invariant 2-subgroups of G.

Proof. Let X be an Ng(H)-invariant 2-subgroup of G. Then Nyxy(H) is a
normal 2-subgroup of Ng(H); so Nyu(H)=H and X=<H.

1.2. Let Z be a subgroup of Z(G) and let bars denote images in G|Z.
Then 7= a.

Proof. In view of 1.1, we assume that Z has odd order. If His a 2-sub-
group of G, then Nz(H)=Nu(H) and O Nz(H))=0Nz(H)), whence the assertion
follows.

1.3. If G is a central product of subgroups G, G, -, G, and if Heda,
then H=HHy-H,, where Hie ¢, for each i

Proof. In view of 1.2, we assume G=G;XG:X--XG, Let H; be the
projection of H into G; for each 4. Then H;=H for each i by 1.1; so H=H,H,
M, and, since Ng(f)is the product of the Ng,(H:), it follows that Hie 4 ¢, for
each i. , ,
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1.4, If Ais a group acting on G and X is an A-invariant 2-subgroup of G,
then there is an A-invariant element He 9 q such that X=H and Ng(X)<Ny(H).

Proof. Recursively, define H,=X and H,=0y(Ne(H,_1)) for n=2, 3, --. Then
Hy=Hu.y and Np(H,)= Ng(Hn,,) for each n. Choose n so that H,= Hn.l Then
H=FH, meets all the requirements.

1.5 LeMMA. ZLet N be a 2-isolated finite group and M be the unique minimal
subnormal subgroup of N of even ovder. Then any subgroup of N containing
M is 2-isolated. In particular, subnormal subgvoups of N of even order are 2-
isolated.

Proof. Let L be a strongly embedded subgroup of N. Then N=ML and
so if M=X=N then LNX is a strongly embedded subgioup of X.

1.6. If Hedloc and NYH)ZX=G, then He 9o v and NEH)= NHH).

Proof. This follows from 1.5 applied to Ng(H)/H and from the definition
of N¥(H).

1.7 LEMMA. Suppose a group H acts on G=G;XGyX X Gy, and let Hy=
Nu(Gy). If H permutes the G, 1=i=n, transitively, and Cg(F;)#1 for each i,
then the following holds:

(L) if weCy(H), then Cellly) contains a unique conjugate, say, x; of z
under the action of H, 1=i=n;

(2) Co(H)={a\m2-an; 2eCo,(H)};
3) ColH)=Cu (H).

Proof. Since H;=H, it follows that Cs(H) is contained in the product of
the Cgf). By assumption, Cg(H:)#1, whence Np(Co(Hh)=H; for each i
Therefore, it suffices to consider the case where H; centralizes G; for each 7.
Let 1#xeG, and assume zf 2*eG; with ¢, heH Then 1s£2'eG;N G+ so
b lge Hy=Cn(Gs) and a'=(x" =g Thus if zeG,, 7 NG; consists of a single
element, say, ;. If heH and Gi*=Gy, then z'=gx,; for each zeG, Hence it
follows that Cu(H)={mxe+ s ; z€G,} and that the mapping x — z12n &, 2€Gy, is
an isomorphism of G, onto Ce(H).

1.8 LeMmma. Suppose a 2-group H acts on G=GiXGyX > X Gy, where |Gy
is even for each i and H permutes the G;. If furthermore Ca(H) is 2-isolated,
then the Gi are all conjugate under the action of H and Cg(H) is 2zsolated
where Hy=Ng(G,).

Proof. Since Ce(H) has a unique minimal subnormal subgroup of even
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order, it follows that the G; are all conjugate under the action of H, Whencé
Co (H)=ColH) by 1.7: :

2. The Set J(o.:,¢c and Groups in Chev(2).

Let Chev(2) be the collection of all quasisimple groups L with Oy(L)=1 such
that L/Z(L) is isomorphic to a finite simple group of Lie type and of charac-
teristic 2. We consider As=Sp.(2), SU(3)=G(2Y, and 2F,(2) to be of Lie type
and of characteristic 2. Thus the 3-fold covering group A, of A, is a member
of Chev(2). Let

Chev(2)*=Chev(2) U {Sp«(2), Go(2), *Fu(2)},

and let Chev(2)~ be the collection of all LeChev(2) such that L/Z(L)% As SUs(8)
or Fy(2).

For LeChev(2)*, a Borel subgroup of L is a Sylow 2-normalizer of L, and
a parabolic subgrowp of L is a subgroup containing a Borel subgroup. Borel
subgroups and L itself are called the friviel parabolic subgroups. Notice that if
P is a parabolic subgroup of L and U is a Sylow 2-subgroup of L contained in
P then N {U)=P by Sylow’s theorem.

For the definition and fundamental properties of the groups of Lie type, the
reader is referred to Steinberg’s lecture note [8].

2.1 Lemma. (1) If LeChev(2)*, then a maximal 2-local subgroup of L is a
proper parvabolic subgroup of L.

(2) Suppose L=~A;, SUL3) or *F(2) and L is embedded in G=5p,2), G:(2)
or *Fy2), as the case may be. Then a Sviow 2-subgroup U of L is contained in
a uwnique Sylow 2-subgroup T of G. The maximal 2-local subgroups of L con-
taining U are the P.NL, where P;, i=1,2, are the nontrivial parabolic subgroups
of G containing T, and P;NLIO(P;N LY Pi)O(FP;) for each i.

Proof. We may assume Z(L)=1. The assertion follows from a theorem of
Borel and Tits [3] except in the case L=Aq SU(3) or *F,(2), where the argu-
ment is as follows. Embed L in G=S5p4(2), Ga(2) or *F,(2), as the case may be.
Let M be a maximal 2-local subgroup of L and N be a maximal 2-local subgroup
of G containing M. Then N is a proper parabolic subgroup of G by [3], and
moreover N is not Borel in. G as M is not Borel in L (this is seen, when L=
SU(3) or *Fy(2)’, from the structure of the centralizer of a central involution of
L). So NJOy(N)=SL,(2) or Sz(2), Sz(2) occuring only when G=2%F,2). This
forces O(M)Y=0,(N), whence M=NnNL and O,(M)=0(N)NL. Moreover, O:(N)
£ L (when NJOy(N)=S5z(2), this follows from Section 4 of [9]), whence M/O.(M)
=NJO(N). Now let T he a Sylow 2-subgroup of G contained in N and set
U=TNL, then UeSyly(L) and UsM. As N (U)=U, M is a parabolic subgroup
of L. By the same reasen, T is a unique Sylow 2-subgroup of G containing U.
The assertions (1) and (2) now follow from the above discussion.
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In A, a Sylow 2-subgroup is contained in precisely two nontrivial parabolic
subgroups and they are 2-local subgroups (this is proved by using 2.1, Sylow’s
theorem, and Burnside's pg’-theorem). The same is true of SUy(3) and *Fy(2)
(but this fact is irrelevant to the present work). In view of these facts, we
define the ranks of these three groups and their central extensions to be 2.
The rank of a remaining group in Chev(2)" is the ordinary one; that is, the
rank of its split BN-pairs at characteristic 2.

2.2 LemMa. If LeChev(2)t and He 4 1, then Ni(H) is a parabolic subgroup
of L.

Proof. We argue by induction on the rank of L. In view of 1.2, we assume
Z(Ly=1. We also assume H=1 and HéSyly(L). Let M be a maximal 2-local
subgroup of L containing Ny(H). By 2.1, M is a nontrivial parabolic subgroup
of L and, if K= Og'(M) then K =K/O,(M) is a nonempty central product of
subgroups K;, i=1,2, -, k&, in the family

Chev(2)* U {SLx(2), Sa(2), (P)SUs(2)}.

Now O.(M)=H by 1.1. So He 4l and, by 1.3, H=H ,H.---H; with Hie X%,
for each i. By the induction hypothesis when K;eChev(2)* and by direct check
when K;e{SLy(2), Sz(2), (P)SUs(2)}, we get that Ng(H) is a parabolic subgroup
of K;. Furthermore, H; is a Sylow 2-intersection in Ng,(H;). Thus, there is
a Sylow 2-subgroup U of L such that UsN(H) and H=UNU® for some xeL.
We assume LeChev(2)", for U is Borel in L in the contrary case. Take a BN-
pair of L such that B=Ny(U). Then xeBnB for some neN; so H=(UNU"p
for some beB, and H is normalized by <U,(BNAN)>=AH. The proof is com-
plete.

2.3 LEMMA. AutCF2))= AutCF2)=Fy2) end Aut(SU3))=Aut(G:(2))=
Go(2).

We present only a proof of Aut(®*Fy(2))=Fy(2). The remaining parts of
the lemma are well-known and their proofs are available in [8]. Let G="Fy(2),
L=2F,2), and A=Aut(L). Embed G in A. Then since Aut(G)=G, it follows
that N4(G)=G. Therefore, the proof will be completed once we show that A/L
is a 2-group.

Let P and @ be the maximal 2-local subgroups of L containing UeSyli(L),
and set R=0,(P) and S=0.(Q). Choose notation so that P/R=SL.(2) and Q/S<
Sz(2) (see 2.1). We follow the notation used in Section 4 of [9], where Tits
gives generators and relations for G. We may assume U=U*NL. Then P=
<U* 1> NL, Q=<U" > NL, R= <uta, 1y, s, w5 ; 1,7€{1, 3,5, 7} >, and S= <,
U, U, s, Wity 3 6, 7€(3,5,7}>. - Using relations given in [9], we can show that @
has, other than S and 1, precisely two normal 2-subgroups S, and S, where
Sy== < e?, Uay 85, s, 2> and Se=<u?>. Using S, S, and S, we define five
normal subgroups of P: ,
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=<SP >, Ra":(gzs‘”, Ry=<(SiNR)F>,
Ri=N\ S Rs= <S>
aTEP

We can verify the following :

Ry= <ati®, s, Us®, Uy, 157, U, 12", Ustts > ;
Ro= <y, ts®, Uy, 157, te, Uslés> ;

Ry= <o, us®, ts, 5%, >

Ry=<us®, g, s>

Re=<uz®, 05> .

Thus, we have obtained a descending series R,=R, Ry, ---, Rs, R;=1 of normal
2-subgroups of P. The above equalities also show that if /=3 or 5 the factor
group V;=R;,/R; is of order 2, while if i=1,2,4 or 6 V; is an elementary
abelian group of order 4 admitting a faithful action of P/R.

Now let N=N4(P) and C=Cx(P/R). Then A=LN and LNN=P as NyU)
=N and Ny(P)=P. Also, N=PC and PNC=R as Aut(SLy(2))=SLy(2). Thus
A/L=C/R and it suffices to show that C is a 2-group. Now C=N4(U)=N4(Q)
and so the uniqueness of the S; implies that C normalizes the S; as well as S.
The definitions of C and the R; then show that C normalizes the R, So N=FPC
acts on V; for each i. If i=1,2,4 or 6 then P/RC__, NJCx(V)T— Aut(V;)=SLa(2),
whence N=PCx(V;) and Cp(V;)=R. This implies that Cy(V:)=C for i=1,2,4
or 6. We conclude that C centralizes each V;, 1=i=6, as well as UJ/R. There-
fore OXC) centralizes U and, by [6, Lemma 4.9], O¥C)=1. We have shown
that C is a 2-group, as required.

2.4 LeMMA. Suppose a 2-group H acts on a group L, where LeChev(2)t or
Lz=A,, n=5. If C,(H) is 2-isolated, then one of the following holds:

(1) L=SL.@2™), (P)SUL2™), or Sz(2™"), m=2;

(2) L=(P)SLy2™), Sps2™), As or A¢, and if U is an H-invariant Sylow 2-
subgroup of L, some element of H interchanges the two nontrivial parabolic sub-
groups of L containing U.

Proof. Suppose L=A,, n=7. Then L=+Ci(f) and, as Ou(C,(/])=1, every
element of H—Cy(L) induces the same outer automorphism « of order 2 on L.
We may assume that the action of « is the conjugation by the element g=
(1,2)(8,4)-(2s—1,2s) of ¥, Since OL(CL(f)=1, it follows that s=1. But then
Ci(f)=Xn-, is not 2-isolated, a contradiction.

Assume therefore LeChev(2)*. In this case, we argue by induction on the
order of L. The knowledge of the Schur multipliers of the relevant groups in
Chev(2)* permits us to assume Z(L)=1 (see [7]). We may also assume that &
is faithful and nontrivial on L. Embed H and L in A=Aut(L), and let z be an
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involution in Z(H). Then H acts on K=Cy(z), and Cx(H)=Cr(H) is 2-isolated.
Since O(C(H))=1, it follows that ANL=1 and OK)=1. Thus, z is an outer
involutory automorphism with 0,(Cz(2))=1. This remark, together with 2.1 and
2.8, implies L& SU(3), 2Fi(2), Ga(2), or 2Fy(2). ‘Similarly, if LA or Spi2),
then z is not contained in the subgroup of A isomorphic to Sp4(2), and it follows
that z interchanges the nontrivial parabolic subgroups of L containing a given
H-invariant Sylow 2-subgroup of L.

Assume therefore LeChev(2)~ but L£SL,(2™), PSUs@2™), or Sz(2* 1), m=2.
If furthermore L& PSLy(2™) or Sp.(2™) then, as Ox{Cz(z))=1, results in Sections
8 and 19 of [2] show that N=ZFE(K), the semisimple part of K, is contained in
Chev(2). As Cy(H) is 2-isolated by 1.5, the induction hypothesis implies that
N is one of the quasisimple groups mentioned in (1) and (2). Then L=PSL2™),
PSLy2™), PSU2™), or PSU2™), and K=Sp,(2™) again by [2]. If L=PSL,@2™)
or PSL;(2™), then z is a graph automorphism. However, as <z>=H, the struc-
ture of Out(L) shows that H=Z(H) contains an involutory field automorphism,
which is a contradiction. Therefore, L=PSLy(2™), Sp.(2™), PSU,2™), or PSU(2™).

Let B, i=1,2, be the nontrivial parabolic subgroups of L containing an
H-invariant Sylow 2-subgroup U of L. Suppose (2) does not hold. Then H
normalizes both P, and P; as P &P, when L=PSU,2™) or PSU2™). So z is a
field automorphism and, if L=PSLa(2™) or Sp,(2™), then K= PSLy(2™*) or Sp.(2™*).
We argue that UN KeSyl(K) and that PNK, i=1,2, are the nontrivial parabolic
subgroups of K containing UNK. It is clear that, for some yezUNz4, Cy(y)e
Sylo(Cu(y)) and the Cpy), i=1, 2, are the nontrivial parabolic subgroups of Ci()
containing Cy(y). So it suffices to prove yUNy4=yY. This, however, has been
proved in the course of calculation in [2] and our paper “Finite groups with a
standard subgroup isomorphic to Sp(4,2™” (Japan. J. Math. 4 (1978), 1-76 ; see
4] and 6K). Now the induction hypothesis implies that some element of H
interchanges P NAK and P,NK. This is a contradiction as we are assuming
that A normalizes P, and P..

2.5 THEOREM. Suppose G is a group having « novmal subgroup LeChev(2).
Then if L=X=G and He 900, x, one of the following holds : :

(1) Cu(H) is 2-isolated ;

(2) 41 posseses a nonidentity element I such that N¥H)=NgI) and
|G : Ne(D)| is odd;

(3) L=(P)SLy2™), Sp2™, or As and Np(HNL) is a nontrivial parabolic
subgroup of L with QN (HNL)=HNL. Some 2-element of G interchanges, by
conjugation, the two nontrivial parabolic subgroups of L containing a Sviow 2-
subgroup of L. '

Proof. Let I=HNL. Clearly Ng(H)SNs(I), and ITe gy by 1.1. If I=1,
(1) holds by 1.5; so we assume [##1. By 2.2, N¢(I) is a parabolic subgroup of
L. Let U be an H-invariant Sylow 2-subgroup of Nn(I) and let UH=TeSyl(G).
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We assume T'£Ng(I) as (2) clearly holds in the contrary case. Then [=U as
U=TnNL, whence Nr(H)/I has even order and the rank of L is at least 2. We
assume that the rank of L is greater than 2, for if it is 2 then (3) clearly holds.

Now let N=<Ny(I[)">. If N#L, then O,(N)=#1 and 1.4 shows that there
is an element =1 of 41 such that NT=Ng(J). This implies that (2) holds as
NEHEH)=NL(H)H=NT. We therefore assume N=L. In this case, we shall
derive a contradiction by showing that L has rank 2. Now since Nr(/) is a
nontrivial parabolic subgroup of L, it follows that O¥(N.(I)/]) is a central product
of the subgroups Ki/l, i=1,2,---,7, each of which is contained in the family

Chev(2)~ U{SLx(2), (P)SU2), Sps(2)}.

The Krull-Remak-Schmidt theorem applied to the central factor of KiKy---K, /1
yields that H permutes the K; by conjugation. As CNLU,,;(H):NL(H)/I is
2-isolated, 1.8 shows that H is transitive on the &; and that Cx,.(H)) is 2-isolated,
where H,=Ngyx(K;). So by 2.4, one of the following holds:

(i) K /I=SLy2™), (P)SUy(2™), or Sz(2™™1);

(i) KifI=(P)SLy2™) or Sp,(2™) and some element of 7, interchanges, by
conjugation, the two nontrivial parabolic subgroups of Ki/I containing UNK,/L

Now 7 acts, by conjugation, on the set of all minimal nontrivial parabolic
subgroups of L containing U/, and each T-orbit on the set has length at most 2.
If P is a minimal nontrivial parabolic subgroup of L such that N(U)<P=Ni(I),
then PNK;/l is a minimal nontrivial parabolic subgroup of K;// containing
UnNK;/I for some uniquely determined 7. Hence if 71, then P is not H-invariant
and s0 <PT>=<PE¥>=Ny(I). This is a contradiction as N.(J) is generated
by all of such P and we are assuming that Ny (I) is not T-invariant. Thus
=1, and an analogous argument shows that (ii) does not hold. Therefore, (i)
holds, which implies that Nz(/) is a minimal nontrivial parabolic subgroup of
L. But then |Np([)?|=2 and, since L=0N, it follows that L has rank 2, a con-
tradiction.

2.6 CorROLLARY. Under the hypotheses of 2.5, G has a proper subgroup Y
of odd index containing NHH) such that Ny(YNL)=YNL and OXCrq(O(YNLY))
=2Z(L), except when one of the following holds:

(1) L=SLy2™), (P)SUL2™, or Sz(21), m=2;

(2) L=(P)SLs2™), Sp«2™), or A, and if TeSylo(G) then some element of T
interchanges, by conjugation, the two nontrivial parabolic subgroups of L contain-
mg TNL.

Proof. If neither (1) nor (2) holds, then 2.4 and 2.5 show that 9(; contains
an element I#1 such that N¥H)=N(I) and |G: Ng(l)| is odd. As Nz (I)is a
proper parabolic subgroup of LeChev(2), No(NL(I)=Ni(I) and OXCr(I))=Z(L).
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So Y=Ng(I) meets all the requirements.

3. The Set 4(y.2.¢ and the Alternating Groups

In this section, G is a group isomorphic to the symmetric group X, on #
letters, and L is the subgroup isomorphic to the alternating group A, The
main result of this section is Theorem 3.11, which is a consequence of the
theorems 3.3, 3.5, 3.9, and 3.10.

Throughout the section, we fix a permutation representation of G on the set
{1,2, -+, n}. The symbols =, T, and X respectively denote the isomorphism,
embedding, and direct product of permutation groups as well as those of abstract
groups. The symbol [ stands for the wreath product of permutation groups.
Let V=V{e, 2) be the vector space of dimension ¢ over GF(2) and A(e, 2) be the
group of all affine transformations « of the form z“=x*+a (zeV), where 2 is
a nonsingular linear transformation of 7 and aeV. Then A(e 2) is a doubly
transitive permutation group on V with a regular normal subgroup, and the
stabilizer of a point is isomorphic to GL(e, 2). Let Ale, &, 7)=Ale, 2)[ X x Y, for
ez1, k=1, and r=0. Notice that A(l,2)=2, and A(2,2)=3,.

3.1 Lemma. Maximal 2-local subgroups of G are isomorphic to Ale, k,7)
Sfor some e, k, and v with n=2°k-+r. Conversely, subgroups of G isomorphic to
Ale, k; 7), n=2k+r, are maximal 2-local subgroups of G with the exception of
AL 2,7), Ale, k,2) 2°%k+4), Ale, k,4) (2°k£2), and A2, 1,4).

Proof. See [5].
3.2 Lemma. If SeSyly(G), then Ng(S)=S

Proof. We argue by induction on n. Let M be a maximal 2-local subgroup
of G containing N(S). If M is intransitive, then MC_,%,x%,, where n=g+r
and gr+0; so the assertion follows from the induction hypothesis applied to .3,
and Y, Assume that M is transitive. Then M=A(e, &, 0) with #=2%% by 3.1,
and so M has a normal subgroup N such that M/N=23; and N=A(e, 2)X X
Ae, 2) (k copies). Let T=SNN, then as NJO(N)=GL(e, 2) X -+ X GL(e, 2), Nx(T')
=T. Hence Ny(T)/T=S:, and the proof is completed by the induction hypo-
thesis applied to 3.

3.3 THEOREM. Suppose n is odd and He 9 o,6. Then either Ne(H)T 35,
X2y or No(H)=SX3, where SeSyly(Zn s). In the latter case, No(H)C X m,,
X2 _am_, where 2™ is the highest power of 2 diwiding n—1.

Proof. Since # is odd and H is a nonidentity 2-subgroup, it follows that
Ng(H) is contained in a subgroup K of G isomorphic to 3,_»x X, for some odd
integer r<n. Choose K so that » is minimal subject to this. condition. As
He gk, 1.3 shows that Ne(H)=Ns, (I)XNs(J), where Ieds, , and Jed(s,.
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As 7 is odd, the minimality of » forces /=1, whence Ng(H)=Ns, ()X 3. Now
since Ng(H)/H is 2-isolated, it follows that either »=1 or r=3 and feSyly(Zn_s).
In the latter case, Nr, ,(I)=I by 3.2. Thus, we have proved the first half of
the theorem.

In proving the second half, we may assume that Ng(H) is the direct product
of SeSyl(Gy.a.5) and Gy, 5....n. Let <8, (2, 3)> = TeSyly(G) and let M= < T, No(H)>.
Then M=<T,(1,2)>=T<(1,2)T>, whence M=Ng(<(1,2)">). As T fixes 1,
<(L,2)'>=<(1,i); ie2">. Therefore, MC X XX, 0.,

3.4 Lemma. If n=6 and SeSylo(L), then Ni(S)=S5.

Proof. We argue by induction on . When =6, maximal 2-local subgroups
of L containing S are isomorphic to X, by 2.1 and so Nz(S)=S by 3.2. Assume
#n>6 and let M be a maximal 2-local subgroup of G containing Ng(S). Then
M= Ale, k, ) with n=2%%+r by 3.1. Let ¢=2%. We distinguish three cases:

Case 1: r>1. The Ng(8) is contained in a subgroup K=K, x K, with K,=3,
and K,=53,. Let S=TeSyl(K). Then TeSyl(G) and T=(SK.NK,) (SK;NK;)
as g#1=r. Therefore, No(S)=N&(T) and then 3.2 shows that Ni(S)=S.

Case 2: r=1. We have Ny (S)C A, and g=6 as ¢ is even. Therefore,
Ni(S)=S by the induction hypothesis applied to A,.

Case 3: »=0.- We have M=A(e, k, 0) with n=2%, and e=1 or 2 as |G: M|
is odd. If e=1, then Ox(M)£L and so T=S0.(M) is a Sylow 2-subgroup of G
normalized by Ng(S), whence Ni(S)=S as befme Assume e=2. Then M has
a normal subgroup N such that N=X,X s (k copies) and M/N=2:. Let
U=SNN. Then since k=2, it follows that NVI,L(U) U. Therefore, Nyor{U)U
=3, and we have N, (S)=S by 3.2 applied to X}

3.5 THEOREM. Suppose n is odd and He 9o, .0 Ha. Then either N¥(H)C—
XX or n=T and Ng(H)T XXX

Proof. Arguing as in the proof of 3.3, we have that Ne(H)=Ny,(I)X3,
where n=g+7, ¢ is even #0, and fe 4 s, As H=I under the above isomorphism,
we have furthermore that g=4. If [Ng(I)/I| is even or =1, then N¥(H)"
Nay(I) and so N¥(H)T—Y,_1x3:. Assume therefore that | N4 (D)/I} is odd and
r+#1. Then IeSyli(4,) and, unless g=4, Nx(I) is a 2-group greater than I by
3.4. As Ied(s, we must have g=4. Now since Np(H)/H is 2-isolated, it follows
that =3 or 5. Butif =5, Np(H)/H is an extension of Zs by X; and so is not
2-isolated. Therefore, 7=3 and Ne(H)C 53X

3.6 LeMMA. Let Un be the group of all upper triamgular matrices in
GL(m,; 2), m=2, and E an elementary abelian subgroup of U of maximal order.
Then if m is even, E is the group En of all matrices (m:y) in Un with xi;=0 for
i<j<m/2 or ml2<i<j. If m is odd, E is the group Ej, e==+1, of czll matrices
(@eg) in Un with z5;=0 for i<j=(m-+e)[2 or (m+e)[2<i<].
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Proof. We denote by #(X) the rank of a 2-group X; that is, the rank of
an elementary abelian subgroup of maximal order. We present a proof in the
case where m is even as the argument for odd m is similar. The assertion is
clearly true when m=2. So assume m=4 and let P be the group of all matrices
(@:7) in Up with 2;;=0 for 1<i<j<m. Then P is a normal extraspecial sub-
group of order 2*** Hence r(ENP)=m—1 and, since r(E)=»(En), it follows
that #W(EP/P)={(m—2)/2}*>. Let S be the group of all matrices (z;;) in Un with
xi;=0 for 1=i<j or i<j=m, and let F'=EPNS. Then U,=SP, SNP=1, and
Sz=Un-s. As r(F)=r(EPIP)={(m—2)/2}*, we get F=E,NS by the induction
argument and, in particular, 7(F)={m—2)/2}%. So r(E)=(m/2)* and HENP)=
m—1. Now, as EP=FP=FE,P, ENP|Z(P)<Cpizcpy(En)=EnNP|Z(P). Comparing
orders, we get ENP=FE,NP, whence E=Cp, p(ExNP)=FE, This completes
the proof.

3.7 LEmMa. Let X=Ale, 2) and SeSyl(X). Then

(1) the vank of S is equal to ele+2)/4 when e is even and to (e+1)*4 when
e is odd;

2) if e=3 and Y|O(X) is a minimal nontvivial parabolic subgroup of
X0 X)=GL{e, 2) containing S|0«(X), then Y is contained eithev in Nx(J(S)) or
in Cx(Z(S)), where J(S) is the “ Thompson subgroup’ genevated by all elemeniary
abelian subgroups of S of maximal ovder.

Proof. We may assume that X consists of all matrices (z:i;) in GL(e+1,2)
with ;=0 for ¢>1 and that S=U,., in the notation of 3.6. Therefore, (1)
is a consequence of 3.6, For i=1,2,---,e, let s; be the matrix obtained by
interchanging the i-th row and the (i+1)-th row of the identity matrix, and let
Y:=<S,s;>. Then Y=Y; for some i. Now, J(S)=FE, or <E}, Es,> accord-
ing as e¢ is odd or even by 3.6 and, since e+1=4, it follows that Y, and Y,
are contained in Nyx(/(S)) and the Y;, 2=i=e-—1, are contained in Cx(Z(S)).
This proves (2).

3.8 LeMmmA. Let X=A(e, 2)[2x, e=2, and let’ Y be the normal subgroup of
X such that Y=Ale, 2)X- X Ale,2) (k copies) and X|Y =Xy Let SeSyl(Y) and
S=TeSylo(X). Then J(S)=J(T).

Proof. Let r be the rank of a Sylow 2-subgroup of A(e,2). Then »(S)=rk
and 7 is given in 3.7. Let E be an elementary abelian 2-subgroup of T of
maximal order, and suppose ££S. Then E=ES/S is a nonidentity permutation
group on the set D of % factors of Y. For i=1,2, -, define the subgroup E;
of E and a subset D; of D in the following way. Let E;=E and let D, be an
Ej-orbit on D of maximal length. For i=2,3, -, let E; be the kernel of F;_,
on D;.; and let D; be an Ey-orbit on D of maximal length. Let Z;=|D;| and let
n; be the number of the E-orbits on D. Choose a positive integer m so that
En#1 and En.,=1. As FE is abelian, |E;: E;..|=/ for each i and so

<1) . E !E-Izlllz"'lm.



26 Kensaku Gomi

AS #5a=(;—1)+4 by the definition of the n; and /Z;,
Wi — M=l —1, 1=i=m.

Summing up, we have
@ k—m=z= ) (1)

as #m =4k It follows from 1.7 that
(3) HSNE)=HCs(EY)=rm.
By (1) and (3),

|E|=|E| SNE| Shle--1n2™.
As r{(E)=7r(S)=rk, we have

DA

On the other hand, (2) shows

arémm z (2N 2N (27

Combining these two inequalities, we conclude that /;=2 for each i and that
r=1. However, since ¢=2, it follows that »==1. This contradiction shows E<S,
proving the lemma.

3.9 THEOREM. Suppose n is even and He Y o.q. Then No(H) is comtained
in a subgroup of G isomorphic to Xofdnp or S JZnu 0 Sif X oy X Do

Proof. We argue by induction on n. Assume first that Ng(H) is intransi-
tive. Then Ng(H)C 2;x23,, where ¢ and r are even nonzero integers such
that n=qg+r, and so Ng(H)=Ns,(H,) X Nz (H,) for some Hyedls, and HreHs,
by 1.3. As Ng(H)/H is 2-isolated, H,#1+H, and we may assume, by symmetry,
that N, (Hy)/H, is 2-isolated and Nr(H,)/H, is of odd order. Thus, Hy€ 4oz,
and - the induction hypothesis implies that Ny (H)C »Ief3y. or X[y, or
S gnpu*xZy As Ns(H,)=H,eSyl(E,) by 3.2, Ny (H)CT 3%, and, if 4}z,
Ny, (H)" 2%, Therefore, it suffices to consider the case where Ny (H,)C—
I3 or ZifE gieyu X Xs, 447, and r+2. Then H, has an orbit of length 2 and
4)(r—2). Hence, H.C X3¢ 2uXx3s, and the theorem is proved.

Assume next that Ng(H) is transitive, and choose a maximal 2-local sub-
group M of G containing Ne(H) so that the 2-part of |M| is maximal. Then
M=Ale, k,0) with n=2°% by 3.1. If e=<2, the theorem holds; so we assume
¢=3. Let N=N,X--XN; be the normal subgroup of M such that N;=A(e,2)
for each i and M/N=Y;, and let K=HNN. Then Kedlyx by 1.1, and so K=
Kixx K, with Kiedlwy, for each i by 1.3. Since Ng(H) is transitive, it fol-
lows that the K; are all conjugate under Ng(H), and consequently Ny (K=
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Ny (K3) for each i. As O.(ND=K, by 1.1, Ny (K)/O:(Ny) is a parabolic sub-
group of N,JO.(N,)=GL{e,2) by 2.2, and either

(A) Ny,(K3)/K, is a nonempty direct product of groups isomorphic to
GLd,2), 25d=<e, or

(B) NNI(Kl) = [{1 esylg(Nl)

Assume that (A) holds. Then Nxy(K)/K=L,/KX - X Li/K, k|l, with L;/K=GL(d;, 2)
for some d;,2=d;=e, and H permutes the L; by conjugation. As Cw yayx(H)
=Ny(H)/K is 2-isolated, 1.8 shows that the L; 1=j7=</, are conjugate under H
and so the N, 1=i=k, are conjugate under H. Furthermore, C. x(H) is 2
isolated, where Hy=Ng(L,). Thus, 2.4 shows that L,/K=GL(2,2) or GL(3,2)
and, if L,/K=GL(3,2), an element of A, induces a graph automorphism on L./K.
We may suppose L,=Ny (K)K. Then 1#0*L.)=N;; so Hi=Ng(N,) and if
L"=Ny (KK, heH, then heNg(Ny). As Nu(N\)=N,Cy(N,), we conclude that
Ny (K)[K=GL(2, 2) in Case (A). Now let S be an H-invariant Sylow 2-subgroup
of Ny(K) and let SH=TeSylo(M). As e=3 and as the N; are conjugate under
H, 3.7 shows that Ny(K)=Nx(/(S)) or Cx(Z(S)). Also, J(S)=J(T) by 3.8 and
Z(T)=<zzy>, where <2z>=Z(SNN;). Therefore, Ny(K)sSNy(K)Ny(S)=
Nu(J(T)) or Cy(Z(T)). However, if X is a maximal 2-local subgroup of G
containing Ng(J(T)) or Ng(Z(T)), then Ne(H)=<X and the 2-part of | X] is greater
than that of |M| as 7¢Syl.(G). This is a contradiction completing the proof.

3.10 TrarOREM. Suppose n is even, He ¥ o .NHe, and Neg(HYLL. Then
N¥(H) is contained in a subgroup of G isomorphic to XofXup or 35w or
i X gy X X

Proof. We argue by induction on ». Assume that Ng(H) is transitive, and
let M be a maximal 2-local subgroup of G containing Ng(H). Then M= Ale, k, 0)
with »=2% by 3.1. As O,(M)=H=L by 1.1, we have ¢>1, and as ML, we
have e¢<3. Therefore, M=2 /Y, and the theorem holds.

Assume therefore that Ng(H) is intransitive. Then arguing as in the proof
of 3.9, we have that Ne(H)=N:(H,)X N, (H,) for some Hye 4y, and Hye X s,,
where g and 7 are even nonzero integers with n=g¢+r. As A=L, H,=A, and
H,= A, and consequently g¢g#2sr. As Np(H)/H is 2-isolated, we may assume,
by symmetry, that |Na(H)/H;| is odd. Then H,eSyly(A,) and |Ns (H,): N (H,)|
=2. If rs4, then Ny (H,)=H, by 3.4 and so N:,(H,) is a 2-group, a contradic-
tion because H,e s, Therefore, r=4. If |Ny(Hp/H,| is odd, then similarly
g=4 and Ng(H)T_ 3, X3, C_X,f%,. Soassume that INA,I(H,I)/HQI is even. Then
Na(Hy)/H, is 2-isolated and, as ¢ is even, Hy#1. Thus, Hye %o, 4,N 95, and
moreover NE(H)C o NE (H)X Hy. 1f Ny (H)<EAq then Hye 9o, x, and so Ny, (Hy)
C 52 Zgp or Zf3qu or Xyf3qouX2: by 3.9. If Ny (H) £ A, then N¥ (H)
C 53[0 X f30, or 2 (JE nyuX3s by the induction hypothesis. As H,C_,
3%, ¥, the theorem holds.
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3.11 THEOREM. Swuppose L=X=G and HeHo x. Then N¥(H) is contained
in a subgroup of G isomorphic to one of the groups on the following list:

ey o S .
Dol up N0 Yaf X nonypX X,
S a e ey .
Nof ¥y, X, T monu XX,
S W oy -
Xof Y nenyp X Xy il ¥ negys X Xy,

If nis odd and 2™ is the highest power of 2 dividing n—1, then N¥H) is con-
tained in a subgroup of G isomorphic to Xn X2 o S X3, _gm_,

Proof. If X=G and » is even, then by 3.9, Ng(H) is contained in a sub-
group isomorphic to one of the first three groups on the above list. Suppose
X=G and » is odd. Then by 3.3, either Ng(H)=Ns, (K)x3, for some Ke
Ho.5,_, OF Ne(H)=SXZEy, SeSyla(Fnas). As SC 5322 s Ne(H) is contained
in one of the last four groups on the list. Suppose X=L and » is even. In
this case, we may assume Ng(H)£L. Let K=0.(Ng(H)), then H=KNL and
Ne(H)=Ng(K) by 1.1. If H+#K, then Ke9o¢; S0 we may assume H=K. But
then T satisfies the hypotheses of 3.10, and it follows that N¥(H) is contained
in one of the first three groups on the list. Finally, suppose X=L and » is
odd. As before, we may assume He % and 3.5 shows that either N¥(H)C—
ua X3y or n=7 and Ne(H)C_¥,x%,. In the former case, N¥H)=N%, (K)
x 3, for some Ke4(y 4, , by 1.6. Thus, we have proved the first part of the
theorem. The second part follows from 3.3 and 3.5.

3.12 CoROLLARY. Suppose L=X=G and Hedlo,x. If n+2™+1 for any
integer m, then G has a proper subgroup Y of odd index containing N¥H) such
that No(YNL)=Y. If furthermore n is even or n=3 (mod 4), then such Y may
be chosen so that, respectively, Cyorn(OfYNLN=0(YNL) or O*Crnr(O{YNL))=
<z>, wheve z is a 3-cycle in L. '

Proof. Assume that 7 is even. Then N¥() is contained in-a subgroup ¥
of G isomorphic to one of the first three groups on the list of 3.11, which are
of odd index in G and satisfy Cy(Q:(Y))=0:(Y). So it suffices to prove Ng(¥NL)
=Y. Suppose Y=2I,/%: or X, 2. Then Y is a maximal 2-local subgroup of
G by 3.1 as k=3 when Y=3./%. Since Y=SNz(YNL)SENg{0.(YNL)) and 1+
O YNL=0(YNL), it follows that Neg(YNL)=Y, as desired. If Y=2X,J3:Xx2,,
then O«(¥NL) has k orbits of length 4 and two fixed points; so Ng(O:(YNL))
T3 X ¥y x 2, and, comparing orders, we get No(¥YNL)=1Y.

Assume #=3 (mod 4). Then N¥(H) is contained in ¥Y=3,[3;x 3, (k=3) or
Yo Zex 3y (k even #2) or 3JYpx2s, which are of odd index in G and satisfy
O Cr(OLY)))=X, or As. These groups are maximal 2-local subgroups of G by
3.1 and Ox(Y)NL=1, whence N(¥YNL)=Y as before.

Suppose # is odd and n=+2"+1 for any integer m. The N¥(H) is contained
in Y2, X2 or Y, X3, m_,, Where 2™ is the highest power of 2 dividing
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n—1. ‘These groups are proper and of odd index in G. Looking at the lengths
of the YN L-orbits, we have as before that Ng(YNL)=Y.

4. The Main Theorems

In this section, we assume the hypothesis 4.1 below. The main result of
this paper is stated in the theorems 4.2 and 4.3.

4.1 HypotTHESIS. G is a finile group, N is a normal subgroup of G, GIN
is a 2-group, and N is a cenival product of the quasisimple groups L=L,, Ls, -,
Ly, which ave all conjugate in G.

4.2 TurorREM. Under Hypothesis 4.1 with LeChev(2), if HeH o2 e then G
has a proper subgroup M of odd index containing N¥(H) such that ONCu(O(M)))
=Z(N), except when one of the following holds :

(1) L=SL.@2™), (P)SU(2™), or Sz(2%""), mz=2;

(2) L=(P)SLy(2™), Sps2™, or Ay, and if SeSylu(G), then some element of
Ng(L) interchanges, by conjugation, the two nontvivial pavabolic subgroups of L
containing SN L.

4.3 THeorReM. Under Hypothesis 4.1 with L=A., n=7, if Hedl,u, then
the following holds:

(1) if n=£2"+1 for any integer m, then G las « proper subgroup of odd
index containing NEFH);

(2) if n is even, then G has a proper subgroup M of odd index containing
N¥H) such that Cu(OM))=0o(M);

(3) if n=3 (mod 4), then G has a proper subgroup M of odd index contain-
ing NEH) such that OCu(O.(M)))y=1 or <z, 2y, 2>, where z; is « 3-cycle
in Ly A, for each i.

Proof of 4.2 and 4.3. Assume that G satisfies Hypothesis 4.1 with Le
Chev(2) or L=A,, n=7. When LeChev(2), assume that neither (1) nor (2) of
4.2 holds, and when L=z=A,, #n=7, assume that »##2"+1 for any integer m.
Now let He 4 o,2.0 and define J=HNN. Then Ne(H)=Na(J)and JeHwv by 1.1,
and so J=/1 o Ji by 1.8, where Jied(r, and Ji=JNL; for each i. Since G/N
is a 2-group, it follows that O Cx(0:(X))) =0 Cxnn(O(XNN))) for any subgroup
X of G. Hence if JeSyl:(V), then M=Ng(J) is a proper subgroup of odd index
containing N¥(H) such that O Cyu(O(M))=Z(N). Therefore, assume Jf¢SylL(N)
and, changing. the numbering of the L;, let Ny,(J:)//; have even order for 1=
i=/ and odd order for /<i=k, where 1=/=<k. Then, as Cy ww(ll)=Ny(H)]
is 2-isolated by 1.5, 1.8 shows that the L;, 1=i=/, are conjugate under H. Let
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Hy=Npy(L;) for each i. Then H; acts by conjugation on Nz(/:)//i, and we can
define the set Ci//; of all fixed points under this action of A;. For simplicity,
let I=H,, K=J,, and D=C,. Now, D/K is 2-isolated by 1.8. Hence if K=1,
then C.(I)=D is 2-isolated. But then L#A,, n=7, and (1) or (2) of 4.2 holds by
2.4. Therefore, we assume K=1. Then, as Ny (I)/I=D[K, Ie 4o rr and O(LI)
is a proper subgroup of I by 1.1. Let /=TeSyla(Ng(L)) and let bars denote
images in LTJ/O.(LT). As Te 9077, 2.6 and 3.12 show that LT has a proper
subgroup ¥=YJO(LT) of odd index containing N#%(J) such that Nz(¥ nL)=
¥n L. Furthermore, if LeChev(2) or L=A.,, m=4, we may choose Y so that
O¥Crrnz(O¥ NLY)=2Z(L), while if L=A, n=3 (mod 4), we may choose Y so
that OXCya5(O(Y N L))=<Z>, where Z is a 3-cycle in L. As Y contains [ and
has odd index in L7, we may assume T=Y. Let T=SeSyl(G) and define P=
<(¥YNL)S>. Then, as No(L)=T=No(YNL) and the L; 1=i=k, are conjugate
under S, we see that

=)

P=T1(¥YnLy,

=1

where the s;, 1=i=<k, are elements of S satisfying L%=L;. Similarly,
13
<(¥YynLy> =]_Il (Yn L),

where /e H and Lhi=L;, 1=<i=l. Now, No(L)=Nys(L)=NT=LN(YNL), whence
No(L)=Ng((YNLy)L; for each i, 1=i=k. If 1=i=l (YNL)' and (YNL)" are
conjugate in Ng(L:), and so L; has an element w; such that (YNL)#=(¥YN L),
Let Ay, dg, -, dn be the H-orbits on the set {Li.,---, Ly} and, changing the
numbering, assume that L., -, Lim are representatives of i, -+, .lu, respec-
tively. Let [+1=j=l+m. As Ng(¥YNL) contains a Sylow 2-subgroup of Ng(L),
L, has an element z; such that H;=Ng((Y N L)*"), whence as before

<((Yﬂ L)Sj"",f)11> 21;1 (}rﬂL)sjwjh'

where % ranges over representatives of the left cosets of ; in H. If L*=Li,
/e H, then as before L; has an element y such that (¥'n Lyi#it=(YNLy'¥ Thus,
we conclude that

Pr=<(YNLY, (YNLY%H; [+1sj2l4+m>

for some element zeN. Now define M=Ng(P®). Then M has odd index =1
in G as S°=M. Also, H=M and C¥=YNL=P® where C¥//; 1=i=l, is the
unique minimal subnormal subgroup of Ci//; of even order, whence C¥.«-C¥H=
<C¥ H>=M. As Ny(H) permutes the C¥ by conjugation, <C¥, H>NNg(H)|H
is a normal subgroup of Ng(H)/H of even order whence N§H)= <CH,H>N
Na(H)=M. We have shown that M is a proper subgroup of odd index contain-
ing N¥(H), completing the proof of 4.3.1. Now since N (YNL)=¥NL, it
follows that PNL=YNL and MAN=P® If LeChev(2) or L=A,, n even =8,
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choice of Y shows O¥Cp(O«(P))=Z(N), while if L=A,, n=3 (mod 4),

O¥Cp(Ou(P)))=1 or <z, -+, 2>, where z; is a 3-cylce in L; for 1=i=k. This
completes the proof of 4.2, 4.3.2, and 4.3.3.

[1]
[2]

3]
[4]
[5]
[6]
£7]

8]
[o]

References

M. Aschbacher, A factorization theorem for 2-constrained groups (to appear).
and G. Seitz, Involutions in Chevalley groups over fields of even order,
Nagoya Math. J. 88 (1976), 1-91.
A. Borel et J. Tits, Eléments unipotents et sous-groupes paraholiques de groupes
réductifs I, Inventiones math. 12 (1971), 95-104.
D.M. Goldschmidt, A conjugation family for finite groups, /. Algebra 16 (1970),
138-142,
K. Gomi, On maximal p-local subgroups of Sp and An, J. Fac. Sci. Univ. Tokyo,
Sect. IA, 19 (1972), 215-229.

, Sylow 2-intersections, 2-fusion, and 2-factorizations in finite groups of
characteristic 2 type (preprint).
R.L. Griess, Jr., Schur multipliers of the known finite simple groups, Bull. Amer.
Math. Soc. 78 (1972), 68-71.
R. Steinberg, “ Lectures on Chevalley growps”, Yale Univ. 1967.
J. Tits, Algebraic and abstract simple groups, Ann. of Math. 80 (1964), 313-329.




