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In this note, we shall make some remarks on Alperin-Goldschmidt’s fusion
theorem and its applications.

Let G be a finite group and p be a prime. We denote by .4 the set of all
non-identity p-subgroups H of G such that Ne(H)/H is pisolated.  (See §1 for
the definition and properties of p-isolated group.) For a Sylow p-subgroup P of
G, we denote by 4r(P) the set of subgroups H in 4 such that Np(f)isa Sylow
p-subgroup of Ng(H). Finally, for He %, let X(H) be the smallest normal sub-
group of Ng(H) subject to the condition that X(H)2H and PNX(H)H]. (See
Lemma 1 in §1 for the existence of X(H).)

Now we can slightly sharpen Alperin-Goldschmidt’s fusion theorem (13,5

TuroreM. The family {(H, O"X(H))| He 90 (P)} is @ conjugation family. More
precisely, if A and B are subsets of P such that A'=B=1 for somz geG, there
exist Hie J{(P), x:ic OXX(IL)) (i=1,2, ++-,n) and ye N(P) such that

(1) g=wwas~ny
(i) ACH, and A" *icH;., (i=1,2, -, n—1).

In §2, we shall prove this theorem by using a method of Gomi [4]. In §3,
we note firstly that several conjugation families which are defined in Goldschmidt
[5],[6] and Solomon [8] can be obtained as special cases of the theorem, and
secondly that a theorem of Glauberman (2], which says that a strongly closed
abelian p-subgroup controls strong p-fusion in G, can be proved by an application
of Alperin-Goldschmidt’s theorem. In an interesting paper [7], by which the
theorem was suggested, Puig defined a characteristic functor Z(P) and proved
«ZI - Theorem” which ‘says that, if G is p-stable, ZL(P) controls strong p-fusion
in G. Finally we note that ZL-Theorem can be also proved by an application
of the theorem. ~ » . :
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§1. Some properties of p-isolated groups.

Let X he a finite group and p be a prime. An equivalence relation on Syl, (X),
the set of all Sylow p-subgroups of X, is defined as follows: For P,QeSyl,(X),
P~@ if and only if there exists a sequence P=P, P, ---, P,=QeSyl, (X) such
that PN P#1 (i=1,2,---,»). If X has more than one equivalence class, X is
called p-isolated. 1t is well known that X is p-isolated if and only if X possesses
a proper subgroup Y such that p||Y] and p+|Y*N Y| for any xe X—Y. Sucha
subgroup Y is called strongly p-embedded subgroup of X and has the following
properties:

{1.1) ¥ contains some Sylow p-subgroup of X.
(1.2) If R s a subgroup of Y with p||R|, Nx(R)c Y.
(1.3) If NX and p||N|, X=YO!N).

(1.1) and (1.2) follow from the definition of strongly p-embedded subgroup,
and (1.3) follows from (1.2) and Frattini argument.

The next lemma is proved in L. Puig {7]. For convenience of readers, we
include the proof.

Lemma 1. Let X be @ p-isolated group and N; (i=1,2) be normal subgroups
of X such that pl|N;|. Then p||N,NN:.

Proof. Let ¥ Dbe a strongly p-embedded subgroup of X and P be a Sylow
p-subgroup of Y. Suppose by way of contradiction that p+|N,NNy|. Then we
have [PNN, PO N.JS PN N, NN.=1 and so P is noncyclic, as PNN;#1 (i=1,2)
by (1.1). Therefore Ny No={(Cuy,nx,(x)|15=2e PYS Y by (1.2) and Y2 (PN N)N: N
Np). Since N, normalizes (PN N,)(NiNN;), we have Y2 N, by (1.2). Then we
get YO N(N.)=X by (1.2), a contradiction.

Remark. By lemma 1, a p-isolated group X possesses the smallest normal
subgroup X, whose order is divisible by . In [7], it is shown that X,/0,.(X0)
is an (abelian or non abelian) simple group.

§ 2.  Fusion Theorems.

Let G be a finite group and P be a Sylow p-subgroup of G. Let 4, %4 (P)
and X(H) (He . 9() be as in the introduction.
The following lemma is a slight generalization of K. Gomi [4, Prop. (2.3)].

Lemma 2. If P, QeSyl(G) and PNQ++1, there exists a sequence Py=P, P,, + -
P,=QeSyl,;(G) such that
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(i) Hi=Pi . NPedy (i=1,2,---,7)
(ii) H; is a tame intersection of Py, and P;

(iii) there exist x;¢OP(X(H;)) such that P"i=P;,
(iv) PNQ=HNHN---NH,.

Proof. We proceed by induction on [P: PN®@]. Firstly suppose that PNQ is a
maximal intersection. Then P=P, and Q=P, satisfy the conditions (i), (ii) and
(iv). We will show that (iii) holds. Let H=P,NP, and M=NP)NNZH). Then
MJH is a strongly p-embedded subgroup of N(H)/H, as H=P;N P, is a maximal
intersection. - Then, by (1.3) applied as Y=MJH and N=X(H)/H, we have

2.1 NH)=MO"X(H)), (M=NEP:)nNH)).

Since Np(H), Np(H)eSyl,(N(H)), there exists xe N(H) such that Np (H)*=Np(H).
By (2.1), we can write z=mz; (melM, z:€O*(X(H))). Then we have Np(H)=
Np(H)?=Np,(H)""1=Np(H)™. -Since PynP"2Np(H)2H and PN P, is a max-
imal intersection, we must have P"1=P,. Thus P=P, and Q=2P, satisfy the
condition (iii).

Let H=PnQ. Take R, SeSyl,(G) such that Np(H)S Nxz(H)eSyl, (NH)), No(H)
S Ns(H)eSyl, (N(H)). Then we have PNR2Np(H)2H and SNQDNy(H)RH.
If RNSxH, we can find a sequence of Sylow p-subgroups which satisfies . the
conditions (i)~(iv) by induction applied to three pairs (P, R), (R,S) and (S, Q).
So we may assume H=RNS. If N(H)/H is not p-isolated, we have a sequence
Ry=R, Ry, -+, Rp=5e5y1,(G) such that R, NR;2H (i=1,2,---,m). Then we
can apply induction to (Ri-1, Ri) (1<i<m). Therefore we may assume N(H)/H
is p-isolated. Let ¢ be an equivalence class on Syl, (N(H)/H) containing Ns(H)/H
(cf. §1) and M={zeN(H)|C*"=C}. Then M/H is a strongly p-embedded subgroup
of N(H)/H and ¢ =Syl, (M|H)>Ns(H)/H. Then, by (1.3) applied as ¥Y=M]/H and
N=X(H)/H, we have N(H)=MO?(X(H)). Take xeN(H) such that Ns(H)*=Ng(H)
(Sylow’s Theorem). Let z=mx, (meM, z;cOP(X(H)). Then we have RNS™:D
Nr(H)=22H and S™NS™ is a tame intersection of S™ and S™ Furthermore it
follows from ¢ =Syl, (MJH)3> Ns(H)/H, Nsn{H)/H that there exists a sequence S™=
S, S, -+ +, Su=5 of Sylow p-subgroups of G suth that Ng,(H)eSyl, N(H) and S;-; N
Si2H (i=1,2,---,m). Thus we can find a sequence of Sylow p-subgroups satisfy-
ing (i)~(iv) by applying induction to (P, R), (R, S™), (Si-1,S:) and (S, @), q.ed.

Now we can prove the theorem stated in the introduction.

THrorREM 1. If' A, B are subsets of P such that A'=B=+1 Jor some geG,
there exist Hie 9((P), ;O X(H;)) (i=1,2, -+, n) and ye N(P) such that

(1) g=2w@s- 20y
(i) ACH, and A™®*icH,,, (i=1,2, ---,n—1).

Proof. Let Ky=0%X(H)) for He 9(. Then we have clearly



162 Takeshi Konpo

(2.2) Kyz=K3 for any xeG.

Let A, B be subsets of P with AY=PB=1 for some geG. Then we have AC
PnP7=£1, Therefore, by Lemma 2, there exists a sequence

P=Py, Py, -+, By=P""

lof Sylow p-subgroups such that

(1) Li=Pi.nPedy

(ii) L; is a tame intersection of P, and P;

(iii) there exists y;€ Ky, such that P¥i=P;_;

(iv) PNP"=LNL:N---NLn
Set - ,
(2.3) Ty=y1, @p=ylivt, Hi=LfWi-rdh (i=1,2,-.-,0).
Then we have
2.4) L1y Xi-1 =iy and  Hie H(P),
as H;CP¥t1=P and Np(H;)=Np,(L:)**". By (2.2) and (2.3), we have

ay=y e Kji-r =Ky, .

By (2.4) we have
AT @i [V [T

Since P=P Y 1=(PV™)y%"2 we have g~'x;-- 2,6 N(P) and s0 g=&1&s- -2y for
some yeN(P). Thus H;, z:€Ky; and ye N(P) have the required properties, g.e.d.
To state the following theorem which is a corollary of Theorem 1, we in-
troduce some notations.
For any p-subgroup H of G, set

C(H)=0,(N(H) mod C(H)) -
Let ' *
' (P)=1He JL(P)|HeSyly (CUD) -

Note that HeSyl, (5([1’ ) if and only if HeSyl, (OJ,.J,(]A\’T(H W) and HeSyl, (HC(H)),
and also ‘that, if He 90'(P), N(H) is p-constrained and C(H)=HC(H)=0,.(N(H))=
Op(N(H)yx H.

TueoreMm 2. If A, B are subsets of P such that A%= B=+1 for some geG, there
exist Hye I'(P), %:€0x(X(Hy) (1=1,2, ---,n), ceC(A) and ye N(P) such that

(1) g=caixe- - -2ny
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(i) - AcH, and A" rinng H; .

Proof. If He 9 (P)— #’(P), we have
(2.5) C(HHY20% X(H)).

In fact, we have C(H)2X(H) as N(H)[>C(H)=2H and p||C(H)/H], and so C(H)=2
OYC(H))20"(X(H)). By Theorem 1, we have H;¢ 4 (P), y;e O X(H)) (i=1,2, -+ -, n)
and yeN(P) such that

(1) g=ywa--yay
(i) ACH, and AW ¥icH;, , (1=1,2,- -, n—1)
If H;¢ 90’(P), we have y,€C(H;) by (2.5) and so g, ¥i0" ¢ CUH ¥ Vi ™ O
C(A). Thus we have
g=y YD gy Y YRy
and

?/icy;z/g~-~21i_1)*1EC(A) .

The repeated applications of this fact complete the proof of Theorem 2.

§3. Applications.

3.1. Some examples.

Example 1 (Goldschmidt [5]). For He 4(P), let

[C(}I) , if H$ Syl:n (Op'zv(N(H))) or
H¢Syl, (HC(H))

Ty=
lN( H), otherwise

As remarked in § 2, the condition H¢Syl, (O, o NUH))) or H ¢Syl, (HC(H )) is equiv-
alent to Hé¢Syl, (C(H)). Furthermore, if H &Syl, (C(H)), we have CUH)20(X(H))
by (2.5). Thus for He 9((P), we have Ty 2D0%(X(H)). Then, by Th. 1, the family
{(H, Ty)|He 90(P)} is a conjugation farmly This family is the one defined in
Goldschmidt [5].

Example 2 (Goldschmidt [6, §9 (9,1)]). Let Z be a nonidentity subgroup of
Z(P). For He 9 (P), let

CH), if He&Syl, (CH))
Tym CZ¥DYANH), if HeSyl,(C(H) and
Hé&Syl, (C(ZN )N NH))

N(H), otherwise.
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If HeSyl, (5(H)),~WE have ZCH and [Z,H]=1. So HCC(ZYD)YN NH)<NH).
Thus if HeSyl, (C(H)) and Hé¢Syl, (C(Z¥¥)A N(H)), we have C(Z¥)Yn N(H)2
X(H). Therefore we have Tp20"(X(H)) for any He #(P). Then, by Th. 1,
the family {(H, Tu)|He % (P)} is a conjugation family.

Example 3 (Solomon [8]). For He 4 (P),

CH), if Hé¢Syl, (CH))
TH____‘C(.Q,(Z(H)))DN(H), if HeSyl,(C(H) and
H ¢ Syl, (C(Q(ZH )N NH)

N(H), otherwise.

Similarly as example 2, we see 7520 X(H)) for any He 9 (P). Therefore, by
Th. 1, {(H, Tw)|He 9(P)} is a conjugation family.

3.2. (A theorem of Glauberman). We shall give an alternate proof of the
following theorem which Glauberman proved in [2] and [3].

TreorEM (Glauberman). If A is a strongly closed abelian p-subgroup of G,
then N(A) controls strong p-fusion in G. '

Proof. Let P be a Sylow p-subgroup of G containing 4. In view of Th. 2,
it suffices to show

NHYCN(A) for any He¥'(P).

To prove this, firstly we note that, if A, is a strongly closed abelian p-subgroup
of a finite group X, then we have

3.1 X=COx(X))N(Aq) .
In particular, if X is p-constrained,
3.2) XP>AOMX).

Let T=04X) and C=C(TNAINCT/TNAs). As A, is strongly closed, we have
TnAe<{X and so C<]X. Then Frattini argument yields X=C-N(Cn P,), where P,
is a Sylow p-subgroup of X containing A,. Then we get X=C(T)N(CN Py), since
C/C(T) is.p-group and so C=C(TYCNP,). But since A, is abelian, we have Cn
P,2 A, and then the strong closure of A, yields MCNP,)S N(A4,). Thus we must
have X=C(T)N(A,;), which proves (3.1). (3.2) follows from (3.1) applied to
Xj0p(X) ' I

Now let He 4(’(P). Then N(H) is p-constrained and O, po(N(H))=0,(NH)) X
H. Since N4(H) is a strongly closed abelian p-subgroup of N(H), we get

NUH)P> Na(H)Op(N(H)
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by applying (3.2) to X=N(H). Then we have Ny(H)COu» (NH))=0,(NH)) X H
and so N4(H)SH. This implies ACH and then the strong closure of A vyields
NH)S N(A), q.ed.

3.3. (Puig's ZL-Theorem). In [7], L. Puig defined a conjugacy functor L(P)
for a p-group P. L(P) is defined as follows:

Let Li(P) be a subgroup generated by all abelian normal subgroups of P and
L*(P) be a subgroup generated by all abelian subgroups of P normalized by L.(P).
Then we define

L¥(P)=P, LHP)=L¥LE(P) (i=12,..)
and

LP)= N LD
i=0

The following lemma is proved in [7] by elemental‘y arguments. For the proof,
we refer to [7, p. 54-56]

LemMma 3. Let Q be a subgroup of a p-group P. Then we have
(i) Co(L(PHSL(P)
(ii) If Q2L(P), we have L(P)=L(Q).

(iii) If QRL(P), there exists a subgroup B of P such that BSNp(ZL(Q)),
BEQ and [ZL(Q), B, Bl=1.

(iv) If Q2LW«(L(P)), we have ZL(Q)DZL(P)

(v) If QRLW(L(P), there exists a subgroup B of P such thai BC Np(L(Q)),
B&Q and [L(Q), B, B]l=1.

Now we can prove the following theorem as an application of Theorem 2.

TuroreMm (L. Puig). Let G be a finite group and p be an odd prime. If G
is p-stable, ZL(P) controls stromg fusion in G, where P is a Sylow p-subgroup of G.

Proof. Recall that G is p-stable, if G satisfies the following conditions:

Whenever Q is a p-subgroup of G and xeN(Q) with [NM(@Q), x, z]=1, we have
zeC(Q). k

In view of Theorem 2, it will be sufficient to show
(3.3) O X(HN)CT N ZL(P)) for any He ¥'(P).
Let He 9'(P). If HoL(P), we have L(H)=L(P) by Lemma 3 (ii), and so OP(X(H))
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CNHYCNLH)=NLPHYCNZL(P)). Therefore suppose HDL(P). Then, by
Lemma 3 (iii), there exists a subgroup B of P such that B&Np(ZL(H)), B&H
and LZL(H ), B, B]=1. Then, by P- -stability of G, we have BCG(ZL(H)) and o
H¢ Svl, (HC(ZL(H)NNH)), as HC(ZL(H) N P2¢B, H>:H. This implies X(H)<
HC(ZL(H, MANH). Thus we get

(3.4) OXX(H)SC(ZL(H)),
since ]fﬁ(ZL(IJ))/C(ZL(fI )) is p-group. Now we will show
(3.5) ZL(H)2ZL(P) for any He %'(P).

Then (3.4) and (3.5) will yield O X(H)cCZLIH)CCZL(P))< N(ZL(P)) which
will imply (3.3).

So suppose by way of contradiction that ZL(H)RZL(P) for some He J’(P).
Then, by Lemma 3 (iv), (v) we have HDL(L(P)) and there exists a subgroup
B of P such that B&Np(L(H)), BLH and [L(H), B, Bl=1. By p-stability of G,
we have BCC(L(H)) and then

(3.6) HeSyl,(HC(L(H)) N N(H))
as HO(L(H) N P2<¢B, H>2H. But we have
(3.7) CEnynNH)<C(H).

In fact, if » is a p’-element of 5(L(H))HN(H), then we have meOI’(C"(L(H)))Q
C(L{H)) and so [a, L(H), H]=1. Then 3-subgroup lemma yields [z, H]SC(L(H)).
So x stabilizes a chain H2 L(H Y21, since Cu{L(H))S L(H) by Lemma 3 (i). There-
fore we get xeC(H) and C(L(H))nN(H)/C(H) is p-group, which implies (3.7).
As He 9('(P), we have HeSyl, (C(H)) and so HeSyl, (HC(L(H)) N NCED) by (3.7),
contrary to (3.6). This contradiction implies (3.5), q.e.d.
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