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1. Let o be a Dedekind domain with quotient field . Let K/F be a finite
separable extension of nth degree and © be the integral closure of » in K, that
is, the subring of X consisting of all integral elements over 0. Then O is a
Dedekind domain with quotient field K and, as a module over o, is torsion-free
and finitely generated of rank sn.

Let © he the complementary set of £ relative to p, that is, the set of elements
aeK such that trg,r (aw)eo for all weD, trg,r denoting the trace from K to F.
Then O is a non-zero fractional O-ideal in K, and the inverse ideal ©(O/o)=5"!
is an integral ideal in ©, called the different of © over » (or of KJF, fixing ©
and o once for all). The discriminant d(/p) of O over p is then defined to be
the norm Ng,»(D(Df0)) of the different D(O/v). d(D/p) is a non-zero integral
ideal in o.

The following theorems are due to Artin [1].

TuroreMm 1. With notations and definitions explained as above, let K=F(0)
be a finite separable extension of nth degree, 1€ denoting any generating element
of K over F. Then there exists a non-zevo fractional videal a in F satisfving the
equation ’

(/o) =d(0)a®,
d0)=dg »(0) denoting Lhe discriminant of 0 relative to K|F. ;

The ideal class of o is uniguely defined by Qo and is independent of choice

of genervating eclement 1.

TreoreM 2. Using notations as in Theorem 1, the following two conditions
are equivalent wilth each other.

(1) 2 is a free v-module of rank n, that is, there exists « basis wy, -, an
of K over F such that

O =pw; -+ + 0wy.
(2) The ideal a is principal in F.

If © is, as an p-module, a direct sum of the form QO=pdw;+ - +vw,, we shall
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say that fmy, -, oa) is a minimal basis of O over o (or K over .

In this paper, we shall describe proof of these theorems in detail to some
extent, and give some examples of Dedekind domains o with quotient field F
(number field) and extensions K/F, some of which do not have any minimal
hasis, some of which have minimal bases.

2. In the theory of modules over a Dedekind domain », the following theorems
are fundamental.

THEOREM A. For a module M over o, the following conditions ave equivalent.
(1) M is torsion-free and finitely generated.

(2) M is projective and finitely generated.

(3% M is isomorphic to a divect suwm oD@ of frectional o-ideals.

THrOREM B. Two direct sums a;®--- @1, and b,@---Pb, of non-zero fractional
ideals are isomorphic as o-modules if and only if v=s and ideal cluss of a-a
is equal to that of by--b,.

Now, as in section 1°, let F be the quotient field of a Dedekind domain o,
and let K=F) be a finite separable extension of nth degree. Denoting by ©
the integral closure of v in A, we may suppose €.

It is well-known that every non-zero fractional O-ideal % is, as a module
over o, torsion-free and finitely generated of rank s Therefore, by Theorem A,
there exist a basis y,, -+, 0f K/F and non-zero fractional v-ideals a,, -+, a, such
that

M=y Qg
It is noted that, by Theorem B, choosing a suitable basis jy, -, ;% and a suitable
ideal ¢, we may suppose 0,=--=(p-; =0, 0, =0

Denoting by () the conjugates of j; over F, it is easy to see that an ideal
ai--ag(det (747))%, which shall be denoted by d(¥), is uniquely determined by ¥,
and is independent of choice of 54, -+, 7, and @y, -, @, d(M) is a non-zero fractional

p-ideal in F.
The following theorem is also due to Arun [1].

TuroreM 3. The notations being the same as ebove, let N be a non-zero
Frectional O-ideal in K. Then we have

d()=Ng, r (1))*d( ).

Now, let AeGL(n, F) be a transformation matrix between two bases 1,0, -, 0"!
and 7y, -, 7a 1€, @ non-singular matrix with coefficients in F such that

(;“h EEE ;-HJ::(I, f, ey {/nml‘)‘,{l'

Then an. easy calculation shows that
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det (¥ =d(0)(det A),

whence we have
dd(0)' = (a,-an(det A))%
Now, let =9, As noted before, we may choose, by Theorem B, a,=--=a,..; =0

and a,=q for some ideal a so that

D=0y4 4+ 0yp-14+ 0,
whence the equation

d(Q)d(0)* = (a{det A))*
follows. This shows, as is easily seen, that £ has a minimal basis over p if and
only if an ideal d(D)d(#)~ is a square of some principal ideal in F. Therefore,
in order to prove Theorems 1 and 2, it is sufficient to show that d() actually
coincides with 9(D/o). It seems to me that Artin did not write his proof of this

fact in his paper [1], only for saving lines. So we shall give an elementary proof
of a theorem, due to Artin [1].

TuroreM 4. With notations and definitions we have explained above, d()
s the discriminant d(Qfo) of L over o.

Proof. We may choose a suitable fractional ideal a and a basis w,, -+, @, of
K over F, such that
Q=aw; +dws+ -+ +dwy.
Then
d()=a*(det (w{))?,
where (0{”) denotes the conjugates of w; relative to F, as before.

Let @, -, d@, be the complementary basis to the basis wy, -, @, that is,
{@y, -+, @,} 18 a basis of K/F such that trg.p(wd@;)=d; (1<£i,7<n). Since the
inverse ! of the different D=D(D/v) is a complementary set of O relative to
o, it can be calculated (cf. [2]) that ,

C‘D"l=a‘1&)1+nae+-5+nmn,
whece, by definition,
A(DY)=a"¥det (@))%
Now. Theorem 3 shows that
(D) =Ng.r ( ~7d(D)=b(Df0)*d(D).
Therefore, we have the equation
a~*(det (@)% =d(O/o)2a*{det (w{?)?).

But, as we can easily calculate
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det (@) =det (w3,
it follows that
D(O/0)2=(a® det (w{)*)*=d(2)*,
whence we have
D(2f0) =d().

3. We shall give some examples of Dedekind domains v with quotieni fields
F (guadratic number fields) and quadratic extensions K|F, which do not have any
minimal basis of K over F.

As usual, let Z be the ring of rational integers and let @ be the rational
number field. Before describing examples, we shall state the following theorem,
which will be needed to calculate examples.

THEOREM C. Let dy and dy be the discviminants of different quadratic fields
Q(~'my) and Q(~'ms), vespectively. Let dy be the discriminant of quadratic field

Q(~'mm). Then the absolute discriminant Dy of bicyclic biguadratic field K=
O~/ miy, 11 is equal to Dy=dydud,.

Now, let = (=5) be any square-free integer such that m=1 (mod 4). Let
ring o=0p of integers in F is a Dedekind domain and the ring O=og of inte-
gers in K is the integral closure of o in K. We shall prove

ProrosiTiON 1. K/F (i.e., oxfor) has no minimal basis.

Proof. The absolute discriminant of K=@Q(~/ 2, v/ —=m) is, by Theorem C,
Diy=2%(—=25m) - (—2%m) =2%m". Therefore, the relative discriminant d(K/F)=b(0x/vr)
can be calculated by the well known formula

Dg=d% Ng.r (0(K]F)),

dr denoting the discriminant —d4m of F, so that we have d(K/F)=(20z)%

Now, since K=F~/2), we may take #=+/2 and we can calculate d(¢)=
dg #w(0)=2% Hence, an ideal WK/F)d(#)* is (20r)"*, which shall be proved not
to be a square of any principal ideal in F.

LeMma 1. The ideal 2:p is not @ square of any principal ideal in F.

Proof. We can prove Lemma 1 by using the theory about ambiguous ideal
classes in quadratic fields (cf, proof of Lemma 2), but we shall show here a quite
elementary proof of this lemma.

The rational prime 2 is ramified in F, so that 20p=1% p.=2Z+(1+~ —m)Z
being a prime ideal in F. To prove lemma, it suffices to show that p. is not
principal. . Suppose . is principal, then there exist a,p€Z such that p.=
(a3~ —mop. Since the prime ideal p, contains 2 and 1++/—m, there are
v, 2, ueZ, (x,4)% (0,0, (z,2)%(0,0), such that
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14V —m=(a+ i =miz+u—m),
whence we have

2=qu—pym, l=az— Bum,
O=ay+pz, l=au+pz

We eliminate a and obtain 2y=—g-(y*m-+x*). Taking note of the fact m>5
and (x,y)=(0,0), we compare the absolute values of both sides and we have g=0.
Hence po=aor with a,z€Z,az=1, which means p,=op, contradiction !

We shall give another example of series of quadratic fields F and quadratic
extensions K|F, which has no minimal basis.

Let p be a prime number such that p=5 (mod 8), and let F=@(/2p), K=
Dg=8.p-8p=(8p)*, the relative discriminant MKjF) of K/F can be calculated as
in the above example, so that ¥(K/F)=o0r. We may put ¢=+/2, then d(0)=8,
whence dK/F)d(0)*=(2'op)®. The rational prime 2 is ramified in F, so that
20p =12, where D, is the prime divisor of 2 in F. Therefore, we have D(K/F)d(#)'=
((2~%p)p;r)%. Hence, if p, is not principal in F, then K/F does not have any
minimal basis. '

Lemma 2. 9, is not principal in F.

(mod 8), is —1, every ideal class in the usual sense coincides with ideal class in
the narrow sense. Hence, every ambiguous ideal class contains an ambiguous
ideal.

divided into the same ambiguous ideal classes ([4], Theorem 6.2). Hence p. and
p, are in the same ambiguous ideal class, different from principal class. This
means . is not principal.

By the same way, it can be easily checked that K=Q(~/2, v 5) (p prime,
such that p=5 (mod 8)) /as a minimal basis over Q(+/ p) and Q(+/2), respectively.

Other examples: K=Q(~ 2, ~'m), where m=3 (mod 4) is any positive square-
free integer, has a minimal basis over @(+/2m), and K=Q(+/2, ~/ p),p denoting

divisor of 2 in Qv p) (p=3 (mod 4)) is principal.

* Proof is due to S. N, Kuroda.



98 G. Funsaki

References

[1] Artin, E., Questions de base minimale dans la théorie des nombres algébriques,
~ The Collected papers of E. Artin, Addison-Wesley, pp. 229-231.
[2] Artin, E., Theory of Algebraic Numbers, Géttingen, 1956/57.
[3] Fujisaki, G, Some examples of number fields without relative integral bases, /.
Fee. Sei Univ. of Tokyo, 21, 93-95 (1974).
[4] Takagi, T. Lectures on Elementary Theory of Numbers (in Japanese), Kyoritsu,
Tokvo.



