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1. Let A be a noncyclic elementary abelian p-group where p is a prime,
and X Dbe a p’-group on which A acts. When informations on the nilpotent
length of the groups Cx(a) (¢€A¥ are given, what can we say about the nil-
potent length of the underlying group X? This sort of results have been
obtained by Kurzweil [3] and J. N. Ward [4], {5].

The purpose of this note is to prove the following:

Theorem. Let A and X be as above. Assume that, for any ae A}, Cyla) is
solvable. Let n be an integer defined by

nzMa;x #(Cx(a))

ag4

where w(Cx(a)) denotes the nilpotent length of Cxla). If m(A)=n+2, X is
solvable with n(X)<n.

Notations. For a solvable group Y, F(Y) denotes the Fitting subgroup (=the
largest normal nilpotent subgroup) of Y, and we define F,(Y") inductively:

FJ(Y)=F‘(Y‘) and Fm(Y)zF(YmOd Fm—l(lj)) (?11;2)

If Y=FJ(Y) and Y2 F,..(Y), n is called the nilpotent length of a solvable
group Y and is denoted by #(Y). For an abelian group B, #m(B) denotes the
minimal number of generators of B. The other notations used in this note are
standard. T

Remarks. (1) The assertion in the theorem that X is solvable is an im-
mediate corollary of the solvable signalizer functor theorem of Goldschmidt [11,
if #=2 and so m(A)=4. We shall use this fact in the proof of the theorem.

(2) If m(A)<n+1, we can construct a solvable group X with #(X)=n+1
which satisfies the hypothesis of the theorem (cf. §4). Thus the assumption
m(A)=n+2 is essential. '

2. Lemma. Let Y be a finite growp on which « finite group B acts.
Assume that the orders of B and ¥ are coprime. Then the followings hold:
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(i) For anmy prime q dividing Y|, there exists « B-invaviant Sylow g-
subgroup of Y.

(ii) Let @ be a B-invaviant Sylow q-subgroup of Y. For any subgroup V
of B, ColV) is a Sviow g-subgrvoup of Cy(V).

(iii) Let Yy be a B-invaviant normal subgroup of Y. Set Y=Y|¥,. Then,

(i¥)  If B is abelian, we have
Y=<{Cy({V)|B] V=cyclic}.
(V) If Bis noncyclic abelian and Y is solvable, we have
bme(CY(b))gF( ).
Proof. The assertions (i), (ii) and (iii) are consequences of the Schur-Zas-

senhaus’s Theorem [2, p. 224]. For (iv), refer to [2, p. 225]. We shall prove
(¥). By [1, Lemma 2, 3], we have

N Op(Cyr(0)S0(Y)
veBt

for any prime ¢. Take a prime 7 dividing |¥|. Then we have

N Oy (Y)=0,(Y)

qxr
and
N N OpCr(d) = N OACx(D)).
g%r beBY bk
Thus we get
N OACy(B)SOLY).
beBt

This yields (¥).

3. The proof of the theorem. We proceed by induction on n, where n is
an integer defined in the theorem:

n=Max #{Cx(a)).

acat

Firstly suppose m=1. Then our hypothesis is that Cx(¢) is nilpotent for any
aeA* and m(A)=3, and we will have to show that X is nilpotent. Let g be a
prime such that g divides |X| and @ be an A-invariant Sylow g-subgroup of X.
We shall show

(1) QX

By Lemma (i¥), we have
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(2) X={Cx(V)| Al V=cyclic).
The second application of Lemma (i) yields
(3) Q={Co(U| V]U=cyclic).

where V7 is any fixed subgroup such that 4/V is cyclic. (Note that 7 is non-
cyclic, as m(A)=3). Then Co(U) is a Sylow g-subgroup of Cy(U) for any U
with V/U=cyclic (see Lemma (ii)). Noting that U=x1 as V is noncyclic, Cx(U)
is nilpotent and so Cx(V) normalizes Cy(U), as Cx(V)SCx(U). By (3), Cx(V)
normalizes €. Since V is arbitrary, X normalizes @ by (2). This proves (1).
Thus X is nilpotent. We have proved the case nz=1.

Let #>1. Then we have m(A)=n-+2=4. A theorem of Goldschmidt [1]
yields that X is solvable. Set ¥=X/F(X). We shall show that, for any sub-
group V of A with m(V)=2,

(4) M Ce(V)<n—1,

By Lemma (¥), we have

WQ'#F((:X(zf))gF(X).
This implies
(5) FRONCH(V)= 0 Cs(@).
Then we have
(6) CN=Cx(V) (Lemma (%))
=Cx(V)] 0 (FCxo)NCx(V) (by (5)).

But we have
Cx@)[FCx@)NCx(V) = Cx(V)F(Cx(0))| F(Cx(v)).
Since n(Cx())<n by the assumption of the theorem and Cx(V)SCx(v), we have
wWCx(VIF(Cx)F(Cx@))) <n—1.

Then (6) yields (4), because the nilpotent length of a direct product is the
largest of those of direct factors and the nilpotent length of a homomorphic
image does not exceed the one of the original group., Next we shall show, for
any ae A,

(7) n(Cyla)) <n—1.
If we set Y=Cz(e) and A=(ad>® A1, A, acts on Y. Then (4) yields:
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n(Cy(0))=n(Cz({a, by)<n—1

for any be Al Since m(A)=(n—1)+2, the induction applies to get (7).
Finally (7) and the induction vield #(X)<n—1, which implies w(X)<n.
This completes the proof of the theorem.

4. The construction of examples mentioned in the remark. In this section,
we shall construct a pair of groups (A, X,) for each integer n=2 as follows:

A,: elementary abelian p-group of order p".
X,: solvable p’-group with #n(X,)=#,
A, acts on X, in such a way that, for any ae4?, n(Cx,(@))=n—1.

We proceed by induction on n We know that (A, X,) can be constructed
(cf. [4, p. 469]). So we shall show how to construct (Ap.., Xpw1) from (A4, X5).
Set

Yu=A,-X, (a semi-direct product).

Take a prime g such that p divides ¢—1 and (¢, |[F(X,))=1. Let V, be a
vector space of finite dimension over the field F, of ¢ elements such that ¥,
operates faithfully on V, and Y,NZ(GL(V,)=1. (For example, look at the
regular representation of ¥,). Let

44
Gn= . =aleGL(Vy)
' [23

where =1 and 1xaek, Regarding Y,CGL(V,), set

Uni1={n, Yu?
and

Anir={Pn, An).
Constructing ‘a semidirect product Y,.i= Ups1- Vo, let

Kue1=0p(Yps1).

Then (Ap.1, Xn:1) is what we require. In fact, we have F(X,..)=V, because
(0, |IF(X))=1 and ¥, is faithful on V,. We note that X=X, -V, and
X, V, are invariant under A,.;. Since Cx,,(¢.)=X, we have n(Cx,  (#))="n.
If geA,, we have

Cl’n«;x("r/") =Cvn(¢)C Xn(‘r/")
and s0 #(Cr,., () <n since n(Cr,@)<n—1. If gedn,—An and ¢=gigs (G164,
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and m=0), we have
Crp (P =Cr($)Cx, ()
=Cra(¢)Cxy(¢ha)
since [¢,, Xp]=1 by construction. Then we have

#(Cxy, ()<
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