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1. A Schrodinger operator with a vector potential has the form
Lu(z) = ——jz/_] (85+1bi(x))a ()0 -+ ibe(w))ul) + c(x)oe(z).
yk=1

Recently, Ikebe and Saito {1] and Mochizuki [5] investigated the spectral proper-
ties of L by the limiting absorption method and proved among other things that
the spectrum of L is absolutely continuous in (0, c0). In deriving this result, it is
assumed that ¢ and the rotation of &, but not necessarily #; themselves, tend to
zero as |x|—oo with the specified order of decrease. From this assumption it
also follows that the essential spectrum o.(L) of L is contained in [0, c0). As
is mentioned in [5], however, it seems that the relation g.(L)=[0, c0) has re-
mained unproved.

In the present note we prove o.(L)=[0, o). The method is simple and based
on the fact that a guage transformation in the electromagnetic theory does not
change the spectrum. By virtue of this fact it suffices to find a guage transfor-
mation which makes new b; decrease at infinity. In this note we are concerned
with selfadjoint problems, but the method may be applied to non-selfadjoint pro-
blems as treated by Saito [6]. For previous results for seifadjoint problems, see
(21, [71. '

In formulation we follow Mochizuki’s work [5] on exterior problems. How-
ever, it is convenient for us to work with quadratic forms rather than operators.
This is because only new b;, not necessarily their derivatives, decrease at infinity.
Assumptions on a,; and ¢ will be slightly weakened.

2. Let £ be a domain in R* with smooth boundary I'=0f such that the
complement of @ is compact. Let @u(z), b4z), and ¢(x) be real functions on 2
and ¢ a real function on I We consider the quadratic form

n

2.1 hlu, v]= 3, (@5(0+ibe)u, (aj+ibj)v)+(cu, )+ (ou, V)p

Jy k=1
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in LXQ), where ( , ) and ( , ), denote the inner products in L*) and L¥/"), re-
spectively. We assume that:

(2.2) @ is bounded, measurable, and satisfies @;ul@)=ar/{z);

2.3) " (e coldt for all zeR" and ZeR" (co>0):
jF=1

(2. 4) lap(x)—dml—0 as  |x|--oo;

(2.5) b;€CY(£2) and there exist ¢>0 and >0 such that

18 bi(ae)— Bxb ()| < e(L+ |w])—

for all xeR*® and j, k=1, -, u k

2.6) sup le(y)l

S e dx<oo for some a, 0<a<2;
vel Jizoui<t ly—w|

2.7) lim S le{x)|dr=0;
J]=men Jly—w | <1
xren
(2.8) oceC(I).

We denote by H™ the Sobolev space of order m.
THEOREM. Let
| Dy=(we LAQ) 0 H 90| (@ ibrue LHD), k=1, -+, 1}

‘and let h be the quadratic form with domain D(h)=D, defined by expression (2. 1).
Then: 1) Dh)={e-u|lucH (D)} for some ¢eCH2); ii) b is a closed Hermitian
symmeltvic form which is bounded from below; and iii) the essential spectrum of
the selfadjoint operatoy H associated with the form h coincides with [0, oo).

Remark 1. For the sake of brevity we formulated the theorem for the case
that the Robin boundary condition is satisfied. However, the theorem remains
valid with a suitable change in the case that the Dirichlet condition is imposed
on some of the connected components of /',

Remark 2. It is seen from the proof that a unitary transformation converts
the form % to form (2.1) with an additional condition that

2.9) | bia@) < el +]x])mined i el

3. Proof of the theorem.

LemMA. Let bj, j=1, -, n, satisfy (2.5) and put b(x)=(D:(x), -+, bulx)). Then,
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according as 51 or e=1 there exists gbeC‘(Q_) such that

” Co(l+ |e])mine D i exel,
3.1) |b(z)—grad ¢(z)| <
co(l+ ]z log (1+1z)), i e=L1

Proof. For the simplicity of exposition the proof will be given for n=3.
The proof is essentially the same for general ». It suffices to assume £=R* and
construct ¢peC'(R*—{0}) satisfying (3.1) for [x|>1. We define ¢ as

Hx)= S: b(x)-ds= go bi(x)dz s+ bo(x)dzs+ bs(z)ds,

where we integrate along the straight line from 0 to @. Let ¢;=(1,0,0) and let
h be real. Let y be a triangular contour passing the vertices 0, z-+/%e;, 2, 0 in
this order and C the triangle encircled by y. Then, using Stokes's theorem we
obtain ‘ '
x +hey
(3.2) g&(m—%—/ze])——(/)(x):S b(x)-ds-%-g b(x)-ds
4 x

E

8 1
= S rot b(x)-ndS+ S bi(t, s, x4)dt,
¢

xy
where n is ‘the unit vector in the (positive) normal direction of C, dS the area
element of C, and w=(zy, 22, xs). Dividing both sides of (3.2) by % and letting
h—0, we obtain

=]
0‘1 (2)=bu(2) +sin /)S rot bz 1) nlw|-'sds,
. 0
where ¢ is the angle between 2 and e,. This and the similar formulas for o¢/dz,
and 8¢/oxy show that ¢eCY{R"—{0})). Furthermore, it follows from (2.5) that

3¢ {11 sds
) —orad ()] < — e
]b(a) glad (/)(a‘)l— |$l S() (1_'_8)1‘16

(8.1) for |x|>1 follows from this at once.

Remark. If the first order derivatives of rot d(z) satisfies condition (2.5),
we can prove an inequality similar to (3.1) for the derivatives of b—grad ¢.

Proof of the theorem.. Let ¢ be as given in the lemma and put b =5p—grad
¢. Let W be the unitary operator in L*%2) defined as Wu=e¢~#u. Then, as is
immediately seen, one has (9 -+iby) W= W(d+ib®)*. Hence Dp=WD{. Since o

% The change from b to b is a (time-independent) * guage transformation.” It is
well-known in physics that such a transformation induces a change of phase of wave
functions as described by W (cf., e.g., Landau and Lifschitz [4; Chapt. XV]). Similar use
of guage transformations in the study of Schrodinger operators was made also in a
recent work of Simon [8]. :
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is bounded, we have D{=H ). Thus, statement i) is proved.

The quadratic form Z[Wu, Wv), , ve W*D,=D{’, has the expression (2.1)
with b replaced by ™. Since statements ii) and iii) of the theorem are concern-
ed with unitarily invariant properties, we may replace b by b and assume that
b itself satisfies (2.9). Under this assumption statements ii) and iii) are essen-
tially known and may be proved as follows. (Note, however, that the following
proof does not require any information on the bhehavior of 0;0; at infinity.)

It follows from the boundedness of b, the relation ©,=H'2), and assump-
tions (2.2)—(2.4) that the positive Hermitian form /u[u, v]l= X (a0 +ibr)s,
(0;+1bj)v) on Dy is closed and that /,[#]-+||||? is equivalent to the norm of H'(Q).
Assumptions (2.6) and (2.7) imply that the multiplication by |¢|'® is a compact
operator from HYQ) to L¥%) (see Schechter [7; pp. 105 and 111]). Hence, the
form (cu,v) is defined on 9, and is /Z;-compact. It is also clear that the form
(o2, v)r is Au-compact. Since Z,-compact forms are /;-bounded with relative bound
0, statement ii) follows.

Let fofu, v]-—-f} (Ortt, 0xv) With D(he)=H' ). Then, the form %~ can be ex-
k=1 ‘

pressed as
(3.3) Rlu, v]=lhlu, 11+ 2 (B, Av)+(Ciu, Cov)+ (ou, v)r,

where J] is a finite sum and A,, B,, and C’s have the following form: A, is one
of 4; and the identity; B, is one of (@u—0;)ow i@jbe, —ibiazds, and aubibs;
Ci=sgn c¢lc]*®- and Co=|c|*"®.. Let =(TBLAL))DLANPLYI"), where TOLH2)
stands for the direct sum of copies of Ii?(!,)) indexed by v. We define 5perators
A and B from L¥Q) to & as follows:

‘4%=(Zy: @ Au) D Cou @ ul.,
Buz(%} @ Bau) D Ciu @ only.
Then (3.3) can be written as
Alu, v]=holu, v1+(Bu, Av) .

Let H, and H be selfadjoint operators associated with 4, and % and take a nega-
tive 2 such that 2<H. Put RA)=(H—2A)" and Ry()=(H,—2)~*. Then we know
that

R(2) = Ry(2)=[Ro(D) A¥]*(1+ [BR(2) A*]*)~* BRo(A),

where [T']* stands for the closure of an operator T (see Kuroda [3; §2]). It is
clear that B,Ry(2) is compact for every v, Furthermore, the compactness of
[c|*? (or ¢) as an operator from HYQ) to L¥2) (or L*I™) implies the compact-
ness of CiR¢(1) (or oRy(2)). Thus, BRy(1) and hence R(2)—Ry(1) are compact.
Therefore, auss(R(2) =0ess(Ro(2)) by Weyl's theorem. This gives o.u(H)= om(Ho)
=[0, co) and statement iii) is proved.
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