Mathematics

A Theorem on a Multiplication Operator in
Certain Function Spaces

By Kunio TsuJioxa and Munemi MIYAMOTO

Institute of Mathematics and Department of Pure and Applied Sciences,
College of General Education, University of Tokyo

(Received August 31, 1967)

Finite-dimensional Minkowsky-Farkas lemma [4] was generalized by Hurwicz
[5] to infinite dimensional cases. We shall generalize his result further to the
case of densely defined linear operators which are not necessarily everywhere
defined. Next, we shall apply the result to the case of a multiplication operator
between concrete function spaces on [0, 1].

The authors wish to express their hearty thanks to Professor S. Furuya
and Professor F. Niiro for their kind advice. Parts of results in Proposition 2

and Theorem are due to the latter.

Let X and Y be locally convex linear topological spaces on R and let Pr
be a closed convex cone in Y. The cone Pr induces order relations (cf. e.g.
[6]) in ¥ and Y*.

PROPOSITION 1. Let A be a linear operator from X into ¥ whose domain
D(A) is dense in X. We assume that:
(a) any non-negative y* in Y* (s approximated in the w*-topology by non-
negative elements of D(A®).
Let Va={x*e X* : x*(x)=0 for all x€ D{(A) such that Ax=0} and let Zp={A%y* :
0=y*e D(AM)}.
In order that Zsx=Va, it is necessary and sufficient that Zax is closed in
the o(X*, D(A))-topology, whose definition is found e.g. in [2].

Proof. (Sufficiency) An inclusion V4D Zs+ always holds. Let Zi be o(X*,
D(A))-closed. We take an x*&Zs«. Then, for some x€ D(A),

inf a%(x0)= inf y*(Axo)=0>x*(x0) ,
FEL L 0SyrE DAY
ie.,

Y*¥(Ax0)Z0>x0*(x0) for any 0 y* € D(A¥X) . (1)

We note that the inequality (1) holds also for any non-negative y*€ ¥* by the
assumption (a).
Next, we assert that

Ax=0. (2)
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In fact, if (2) is false, then Ax, does not belong to the closed convex cone Pr.
Therefore Axo and Pr are strictly separated by a functional yo*€ ¥Y* such as

inf yo*(v)=0>3*(Axo) ,
yEPY

ie.,
3o (Axe)<0, y*=0.

which contradicts (1). Thus we have the inequality (2). The inequalities (1)
and (2) show that x* ¢ Va.
Necessity of the condition is evident, because Va is o(X*, D(A))-closed.

Next, we shall consider cases where X and ¥ are C=C [0, 1] or L,=L,
[0, 1] with 1=p=-+oo and Pr is the set of non-negative functions in ¥. Let
A be an operator defined by multiplication by a fixed function a(f), i.e.,

Ax(t)=a()x(t) ,
DA)={xe X; axeY}.

Our aim is to study conditions to be imposed on the function « so that we
can apply Proposition 1. Let @& be a measurable function on [0, 1] and let
S={t; a(f)+#0}. We define functions ¢ and e as follows:

a{(D=at) forte Sand ¢ (f)=-+oo forigs,
a"D=a@®) ' forte Sand e~V ({)=0 forigS.

We say that a function & belongs locally to Ly at (¢, if hly belongs to
L,(U) for some neighborhood U of £. Let I', be the set of such a function %
that 2~ belongs locally to L, at almost all { where & does not vanish. We
denote by M the set of all Lebesgue-measurable functions on [0, 1].

PROPOSITION 2. In each combination of X and Y, a necessary and sufficient
condition for D(A) to be dense in X is that the function a(t) belongs to a set
listed in the table, where 1<p, p'<+wo.

— p
. i
X \\\ C Lo Ly
3] Bl 3
C C L. Ly
P 5 )
Lo {0} L., Ly
7%) e i)
Lp Fp M M

*) The result is due to F. Niiro.
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In each case, if D(A) is dense, D(A*) satisfies the condition ().

Proof. (I) Sufficiency of the conditions except for 7), 8) and 9) is clear.
Case 1). If a is discontinuous at f, the domain D(A) is contained in a set
{xe C; x(ts)=0} which is not dense in C.

Case 5). Let a be not essentially bounded. We put Cu=={t; a<|a®|<n-+1}.
There exists a subsequence {#;} such that the Lebesgue measure 1Cujl of Cu;
is positive. For any xe D(A), we have

2@ ni=lax| < +co foralmostallte Cuy,
i.e.,

!:Jr(a‘)igJJ—@gﬂéﬁ for almost all € Cy; .
i

Therefore lllvxﬂw;/;lmﬂg%ﬂ’ﬁ for all . Letting j—-o0, we have ||l — x| =1
¥

which shows that D(A) is not dense in L...
Case 2). Proof goes in the same way as in Case 5).
Case 4). Suppose that ¢ does not vanish almost everywhere. The Lebesgue
measure of a set Q@={f; 7<|a(®)|<d} is positive for some y and 6>0. We find a
to in @ such that for any >0, |Q N (fo—s¢, to){ and [{Q N (f, fo+<)| are both positive.
In fact, if every €@ has a neighborhood (f—s;, #+<:) such that one of |@N
(t—s:, )] and [N, t-2)| is zero, then the measure of @ is zero, since @ is
covered by at most a countable number of such intervals.

Putting x(®)=7gn10,1,3(#), we have for xe& D(4),

fla=(B)xo(8)—2()]] 1o
Zlla () x0(8) — 2()] oot
= [la (D) {xo() —aDxOH Lo
=07 () —a(B) 2D pewicr

Since axe C, the right hand side of the inequality is not less than 6-1/2,
which shows that D(A) is not dense in L...

Case 3). Suppose a€L,. Then i 1P |Co| == 400, Wheré Co={t; n=lad)| <n+1}.

For xe D(A), we have xo=inf x(1)=0, since x>, n?'|Ca| < X la(®)x() |7 di < +co.
t

Therefore every x in D(A) has zeros, which implies that D(A) is not dense
in C.

Case 6). We see as above that if a€ L,/, the essential infimum of x(f) is equal
to zero for any x€ D(A). \

Case 8,9). (Sufficiency) Let a be a Lebesgue-measurable .function. We_ put
B.={t; la(®)l <n}. The domain D(A) includes a set {xXp,; x€ L., n=1}, which
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is dense in L.

(Necessity) The domain D(A) being dense in L,, we can extract a sequence
{xs} from D(A) converging to 1. A subsequence {x.;} converges almost every-
where to 1. The function a(®=lim a(f)x.(f) is Lebesgue-measurable, since
axn,- 1S 80.

Case 7). Let G be the union of open sets O such that atlo€ Ly(0). We see
that |G\S|=0. In fact, if not, |O\SI>0 for some open set O such that
ato€ Ly(0), which is absurd.

LEMMA 1. A continuous function v belongs to the range R(A) of A, if the
support Sy of vy is contained in G.

Proof. For every t in Sy, there is an open neighborhood U: of ¢ such that
aYv,€ Ly(Us). The neighborhood U: is contained in G. The compact set Sy

is covered by a finite number of the open sets U, Us,, - -+, Us,. Let U= O Ut;.
=1

The function ¢~!lz belongs to L,(U). We define a function x as follows:
x(D=a @)y fortelU,
x(t)=0 fort@ U.

Vanishing on U¢, the function y is equal to ax. The function |x| is majorized
by vllcle] on U and vanishes on U, therefore it belongs to L,.

LEMMA 2. Thereis ay in R(A) such that y(t)#0, if and only if a* belongs
locally to Ly at to.

Proof. Let a! belong locally to Ly at f. For some neighborhood U of
to, @~z belongs to Ly(U). Take a continuous function ¥ with the support in
U such that y(f))=1. The function x defined as in proof of Lemma 1 belongs
to L,. Therefore y=ax belongs to R(A).

Conversely, let y=ax be a function in R(A) such that v({)#0. We may
assume that y(f)=1. A set U={f; »(#)>1/2}is a neighborhood of f. If feU,
then a(®)=£0, therefore |x()|=1a"(H)|¥{t) >1/2la~*(#)|. Since x€ Ly, a~'lve€ Ly(U).

We now prove the sufficiency of the condition in Case 7). If eael’y, then
|SNG|=0, therefore |SOG|=0. Without loss of generality, we may assume
that S=G. It is sufficient to prove that a characteristic function of any
measurable set is approximated in L, by elements of D(4).

Let E be a measurable set. Since Xsene € D(A) and Xp=1Ysne-+Ysene, We
may assume ECS. Fix an arbitrary positive number c. There are a positive
constant ¢ and a measurable set E:CE such that |[ENE:|<(¢/3)? and such that
la(f)|=c on Ei. Let d=min{(e/3)?, ce/(2/»-3)}. By Egoroff’s theorem, there
arve a compact set FC E: and a continuous function y such that |[E\F|<d and
such that la@®)—y(H|<é on F. Put k=§é1g y(®). - There is an open set O with

FcOcG such that
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P

2:3v k7

S @) Pdt<
oI

We find a continuous functions y: satisfying relations:
Sy, O,
n=yonk,
Inmllest .

By Lemma 1, y:€ R(A). Hence for some x€D(A), y=ax. We may assume
x(#)=0 on O°. We have:

2515,y S IENE < —
2w —2rll, SIEONFIMP< 5‘/"<—§‘

1/,
pre—ly={| 11=airar| bt}

O~F

g{ c-‘o)”+kf’§ ]a“(t)l?dt} ’

e? 1/1’_w I3
( 3 T R e kﬂ) N
Therefore |1s—x|lp,<s.

(Necessity) Suppose that |SNG|>0. Take any x€ D(A). By Lemma 2, y(f)=
alt)x(te)=0 for any fo€SN\G. Since a(le)>0, x(fo)==0. Thus x vanishes on
S\G. Therefore ys-¢ is not in the closure of D(A).
(Il) We prove the last statement. In Cases 1—6), A is everywhere defined and
continuous on X. Therefore A* is also everywhere defined. The condition
(@) is satisfied. We see that A¥*y*=gay* for y*€ D(A¥*)=Y*.
Cases 7,8). Let K be a set {y(); 0=SyeLi,aye Ly,*} in ¥*. As is easily seen,
K is included in D(A*).
In Case 7), 2 non-negative measure in €* is approximated in the w*-topology
by elements of K, which implies validity of the condition (a). ‘
In Case 8), the w*-closure of Ly={ydt: 0<ye€ L:} is equal to a set {y*e€ L.*,
y*=0} by Lemma 1 of [6].  Every element of L, is w*-approximated by elements
of K, since K is strongly dense in L, as is seen in Case 9) of (I).
Case 9). We have D(A¥)={y*e Lp* : ay* € Ly*} and A*y¥*=ay* for y*e D(A¥).
As is seen in (), D(A* is strongly dense in Ly*. For any non-negative
y*e Lp*, there is a sequence y.* in D(A¥) strongly converging to y*. Let
F¥=y*V0 for a subsequence y.;* converging to y* a.e.. Then 0<% e D(A™)
and ¥*—y* strongly, therefore in the w*-topology.

A
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REMARK. In each case, a necessary and sufficient condition for A to be
defined everywhere on X is that the function a(t) belongs to a set listed in the
table, where +co>pi>p=1 and po~l-+prt=ps"t.

P c Lo Ly Ly,
~ 1) 2) 3)

4 c L. LPl Lpz
To 5 6)

Lo {0} L., Ly, Ly,

7} 8) m 10)

Ly, {0} {0} L, Ly,
11)

Lpy {0} {0} {0} L.

Proof. The sufficiency of the conditions is obvious. In Cases 1—6),
necessity follows from Proposition 2.

We prove necessity in Cases 7—11).
Case 7). The result follows immediately from that in Case 4).
Case 10). Suppose a €Ly, i.e., |a|?2&Lyp,~1. Since Ly~ is the dual space

of Lpp,~1, there exists a function x0€ Ly,p,—t such that Sla(z‘)[f’z'lxo(t)ldtz +co.

Putting x1=|%0|!/72, we have x1€ Ly and ax & L,,. The operator A is not defined
for meL,,.

Case 9). The result follows in a way analogous to that of Case 10).

Case 11). Suppose that a(f) does not vanish almost everywhere. Then, for
some §>0, a set P={{; d=|a(#)!} has the positive Lebesgue measure. There is
a countable number of mutually disjoint sets {7} with the positive Lebesgue
measures in P. That is,

P> 3 T, I Tol >0

Given 7>(1~pe/p1)?, there is a subsequence {m} such that |7,,|</-7. Putting
%)= 3, | Tol =7 72,(8), we have x€ Ly, and ax@ Ly,
Case 8). The result follows from that in Case 11).

THEOREM. In each case, in order that D(A) is dense, that D(A¥) satisfies
the condition («) and that Zs» is o(X*, D(A))-closed, it is necessary and sufficient
that the Function a satisfies the conditions listed in the table, where oo >pi> ps
=1 and pot-+pri=pat.
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¥ c L L L
X "~ B p1 b2
~_
1 2) 3)
C a,a-veC | a,a-D€Lw a=0a.e. a=0a.e.
4) 5) 6
Lo a=0a.e. a,a'=" € Lo a=0a.e. a=0a.e.
7
Ly, a€l'py, al=1¢€ Ly at-1¢ Le a=0a.e.
a(—1 ELpl
B) =) 9) 1) 11)
L,, @€ lpy a=0¢g Ly, a-eLy | at-vele
@'~ € Ly,

Proof. Case 5) (Necessity) As was seen before D(A®)==L.* and A*y*=gy*
for y*e L.*. Suppose a" & L.. Since L.. is the dual space of Li, there is a

function x* € L, with a-?(@)«*(#) =0 such thatg a~ () a*(Ddi=--co. As a positive

measure Yo {Odt=y o 1ergn)(Da V(O x*Ddt belongs to L.*=D(A*), a measure
a(Dv.*(H)dt belongs to Zsa~. We see that a(f)y.*(H)dt—x*(f)dt in the w*-topology.
But x*(t)dt does not belong to Zax, since e (Hx*()df does not belong to L..*.
Therefore Zai+ is not w*-closed.

(Sufficiency) Let x*=A*y;* in Za» converge to some x*¢€ L.* in o(X*, D(A))-
topology. For any x€ D(A)=L., we have

S Ay (Dt S KDDL |

Take an ¥=0 from L., then a function x=¢~'% which belongs to L., makes
the left-hand side non-negative. We see that ¢V (@)x*(H)dt=0, since Sf(t)a‘*”(t)

2¥(dt=0. Therefore x*=A*(a"Vx*) belongs to Za=.
Case 2). Necessity is proved in the same way as above.
(Sufficiency)y™ The set Zax is convex, so that by the Krein-Shmulyan theorem
(cf. [3]) it is sufficient to prove that (Za)w={x*e€Zs; |x*|<N} is w*-closed
in {&%; |#*| <N} for any N.

For a moment we assume following

LEMMA 3. For any x*€Zasv, we can find a non-negative v*€ L.* with
wt= A%y such that || y¥| @ e l24].

Let a directed set {x:*} in (Zar)xy w*-converge to xo* with [[x*|<N. By
Lemma 3, we find v#=0 with x7*=A%y* such that [y*|=Z|le?]p.llz*
la* ||z N. Being bounded in norm, the set {y:*} is sequentially w*-compact.
A sequence {y»*} w*-converges to some ¥,* in L.*. By the resonance theorem,
Iye*| =@ || N. The operator A* is a continuous mapping from (L.*, w*)

* The result is due to F. Niiro.
#k  The proof is due to F. Niiro.
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into (C*, w*), so that xe*=A*y*. Hence xo*€(Za*)n.

Proof of Lemma 3. Let x*=A*y* with y*=0. The signed measure x* is
decomposed into the positive part x.* and the negative one x-* (Jordan’s
decomposition). Let ax=(xa)V0, then a=a"—a~. We denote by A. operators
defined by multiplication by a+. Since A*=A *— A%, s*=A Fy¥— A *y*  The
operators As* being non-negative, the measures A+*y* are also non-negative.
Minimality of Jordan’s decomposition implies that 0=Zx:*<As*y*. For any

0sxeC, 0 S xdxs* = ‘x a=dy*.

In view of Theorem 2 of Ando [1], there are extensions Z+* of x+* to
elements of L.* such that 0<F.*<a+dy* Multiplying each side by a+'™", we
get 0=aaVaes*Sdy*. Let Pr=3.%4-7.%, where Jz*=axs""x:*. We see that

ARG AKG KL AF R g K g e g
Hence |7*||=5*(1)=3*D)+I-*1) =)@ || oo+ *(1D) + (x-*¥ D} =@ 2o | 5%
Case 4). The result follows immediately from proposition 2.
Case 9). (Necessity) Suppose @~V & L,, Then for some %€ Ly, S [a=V () x0(B)|
di=-co, where p2~'-+g:"'=1. We can take %, such as ¢ (@) x:(0)=0. If x0€ Zax,
there is a non-negative yo*€ D(A*) such that

S wo(Os(Bdt= S Ay Dt .

for any x€ D(A). For xu(d)=3yp01sn(Ha~1(f) which belongs to D(A), the left-
hand side of the above equality diverges to infinity, while the right-hand side
is bounded by ||y*ll;, as #n—-+oco. Thus x & Zs«. We have

D(A*)D K'={y*(t)dt; y*€ L1, ay* € Ly},
A*y*di=qav*dt for y*(dte K' .

As is easily seen, y*(O)di=u-Dzyzni(t)at(Hdt€ K and A*y*dit=ay.*di—x.(t)dt
in the w*-topology. Hence Za* is not o(X*, D(A))-closed.
(Sufficiency) Let xi¥dt=A*dy:*e Za+ o(X*, D(A))-converge to some x*, i.e.,

Saxdyz*-»gx(nx*(t)dt = Sa(t)x(t)a‘-“ (Ox*@dt for any xe D(A).

Since the left-hand side is non-negative for x=a¢""y with 0<y€ L., so is the
right-hand side, i.e., S yHaV(Dx*(HOdi=0. Thus a"Vx*di=0 and x*di=
AXaDx¥dE) € Zax.

" Case 11), (Necessity) Let p:>1. Suppose a"V € L., i.e., |a*V|%2€&L.. There
is a function |x*|%2e L, with a“Y4*=0 such that S a0 (0) 72| x* () |%edt= + oo.
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Put va* =% (-Dprgn)@ (D), then A*y,* converges in the o(X*, D(A))-topology
to x*, which is not in Z4+ as in Case 5).

In case where p:=1, replacing x* by sign(e'V(#)), we can apply the same
argument.

Sufficiency is proved in the same way as in Case 9).
Case 10). (Necessity) We see that D(A®)={y*€ Lq,; ay*€ Ly} with p;'-+g; =
1(7=1, 2) and that A*y*=ay* for y*e€ D(A¥). If pa=1, then g:=-oo. Suppose
a= & Ly, i.e., [a V|1 @ Ly,~1. Noting that L¥pq-1=ULg—, we see that for

some |xo*|1 € Lyy—t (ie., xo*equ),S lat=D0|xe*|ndi= +o0, i.e., aYxo* € Ly,.

We can take x* such as a™Yax*=0. Put yw*=Zatepza(Da1(Dx*(L), then
0=y.*€ D(A¥). A sequence of functions #n*=A*p,* =y tgp=a 2% which
belong to Za*, converges in the o(X*, D(4A))w*-topology to xo*. Since aYx*
&Ly, x0* is not in Zg*.
Sufficiency is easily proved.

Case 6). As the operator 4 is everywhere defined and bounded, so is the
operator A*. Suppose that e does not vanish almost everywhere, A set P=
{t; 6=la(®|} has the positive measure for some §>0. We choose T as in proof
of Remark to Proposition 2. For a fixed 7>p:, we take a subsequence {7}
such that |Tw[=/77. Putting

N
xv ()=(sign a(t) 2} | Tl P1ra(t) € L ,

£*(t) =(sign a(®)) é | Ty B (f) € Lo Lo |

where 1—1/y>p>1—1/p., we have
vt =A*a -V xn¥) e Za*

w*- lim xn*=x% .
N> oo

On the other hand x*¢ Z4*, since at~Vx* @ Lg,=Ly,*,

Case 3). The argument goes in the same way as above.

Case 7). We can apply the same argument as in Case 6) by taking
r>(1=qg),
e A=1N>p>a,

xn*=(sign a(®) LE'.: | Ty ~Piirn(2)

x*=(sign a(?)) él | Tyl Bty (8)
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where ¢i™*-+p1"'=1 and g1+ pa1=1.
Case 8) We first prove

LEMMA 4. We assume that D(A) is dense in Ly with p=1. Then Zs={x*dt;
x*€ Ly=Ly* 0=Za"Vx*e L, =0 on S¢.

Proof. It is evident that the right-hand side is contained in Za.
Let x*di=A*dv* for some dy*e D(A¥). For any x€ D(A),

5 xx*dzf:S axdy*® .

Put xe(®)=1xse(@) sign (x*(®)). Then axo=0, hence x € D(A), and S qcIi\f*!dt: wa*
dt=0. Therefore x*=0 on S°.

Choose an open set O such that OcOcG, where G is the set defined in
proof of Proposition 2. Let dyi*=a"Yx*1odt and dys*=7Zody*, the former is a
well-defined measure, because @€ Ly(O) by Proposition 2. If the support Sy
of a continuous function y is contained in O, then y€ R(A) by Lemma 1. For

such v, y=>Xov and atVy& D(A), so that
Sa"“yx*dtzgydy* ,
therefore
Sydyl* =Sydya* .
As y#(09)=y(0) =0, dy*=dy.* - For z=sign (a" V%),

S Iaf’”x*ldtzgzdyl*=§zdyz*§g ldye*| < 40 .
0 7] 0 o

Letting O 1 G=S, we have ¢~Vx*¢ L;. Non-negativity of a“Yx* is evident.
Thus Lemma 4 is proved.

We now prove necessity of the conditions. The first condition is evidently
necessary by Proposition 2. Suppose that @V @ Ly,. There is an x*€ Ly,=Ly,*
such that a"Vx*¢ L;. We may choose x* so that a~Px*=0. Take a sequence
of compact sets {Fx} with lim F,=S. Since ¢€ 'y, a""Vir,€ Lp,(F.), so that

aVir,x*e L. Therefore xr,4*€ Zs+» by Lemma 4. As is easily seen, 1r, x*—>
Zsx* in the o(X*, D(A))-topology. But xsx*& Zax, since ¢ xsx* & L.
(Sufficiency) Let xi*di=A*dy,*e Zs* converge to x*€ Lp*=Lg, in the o(X*,
D(A))-topology. Namely, for any x€ D(A)

&axdyx*ﬂgx*xdt .
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As in proof of Lemma 4, we see that x*=0 on S°. Since a™™ € Ly,, a"Vx*€ L.
For any 0=ye(C with its support SycS, which is in R(A) by Lemma 1,

Sydyz*;o. Therefore gya(‘“x*dzf= Sx*xdt:z._o, where y=Axr=ax. Thus a¢"Va*=
0. By Lemma 4, we see that x*e€ Za=.

Let f be a real valued function defined on L.=UL.[0.1]. We assume that f
is Fréchet-differentiable, i.e., there exists a limit /(o x)SIin(}( J(xo+ex)—f(x))e
[

for any %o and x€ L.. and that for some constant C(xo), |3/ (xo; #)| SClxo)lx] L,
for any x € L., i.e., 8f(xo; - ) is extended to an element Ff(x) of Li*. A mapping
g(x)=1—x* from L.. into itself has the continuous Fréchet differential dg(xo;x)=
—2x0x. We put @(x, ¥)=f(x)+<{g(x), 2*> for x€ L.. and 1*& L..*

PROPOSITION 3. If the maximum of f(x) subject to the constraint g(x)=0 is
attained at a, then there exists a non-negative 2* € L* satisfying relations:

3:0((a; x), 1*)=df(a; x)+<{0g(a; x), 4*>=0 forany x€ L.,
{gla), 2*>=0.
If a*V e Ly, we can choose 2* from L,, where 1<p=<+co.

Proof. Let X=L. xR with the natural order relation. We consider an
operator A on X into itself which is defined by:

S

Ax= ( —2a 1-— a2> ( —2ax-+(1— a%)forx:(x

>€X.
0 1 & 3

A functional x¢* € X* defined by xo*(x)=—df(a; x) for x= ( x) € X, belongs
£

to Va. To see this, we take any x€ X such that Ax=0, ie., —2ax-+(1—a?)
£20 and £20. By Lemma 5, 1—(a--x)*=0 for ¢€[0, 1/(1+&-+|x])]. Since
fla) is the maximum of f(x) under the constraint g(x)=0, fla+:x)= fla) for
small positive . Thus xo*(x)=—df(a; x)=0.

A set U={y, e XxR; (g, )=(Ax, —xo*(x)) for some x € X} contains all
non-positive elements in X x R, hence U has interior points. Since x¢*€ Va,
0,0)¢ U for any £>0. Therefore the zero (0,0) of X< R is on the boundary
of UU. By the Hahn-Banach theorem, there exists a non-null functional (go*,
Loy e X* % R* such that

<y7 y0*>+<‘:; C0*>_£_0 ’

for any (y,0)eU. Since U contains all non-positive elements, (go*, {*)=0.
We shall show that {*>0. In fact, if &*=0, we have {Ax, go*>=0 for
any x€X. Replacing x by —x, we have {Ax, yo*>=0 for xe X, i.e.,

{—2ax, YO +<1—a?, yOE+n*E=0,
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where yo*:—(yo*) and x=<x). The last equality shows that
770* 13

ax, yo*y=1-~a%, yo*>=0 .

Putting *=a€ L., we obtain <1, ye*>=0, which is absurd, since yo* is 2 non-
negative, non-null functional. Thus &*>0.

Since (Ax, —xo*(x)) e U, CAx, yo*>+{—xo*(x), {*>=<0 for any x€X. Re-
placing x by —x, we have

CAx, yo*o-H{—xo¥(x), L*H=0 .
Therefore
<Ax, 20*>""JCO*(.X‘) =0 )

where 20*:(20*)=(Cu")“1yo*go. That is,
lo*

—2ax, A¥>+<1—at, AF>ElF=—if(a; %),
for any x€ L., and §€ R. Hence
3.0((a; %), ¥ =3df(a; x)+{8g(a; x), 2*>=0 for any x€ Le,
and
{g@, 2*>=0.

We now prove the second statement in case where 1<p<+co. Let X=
Lix R and let Y=L,xR. We consider an operator A from X into ¥, which
is defined as above on D(4A)=L.xRcX. The domain D(A4) is dense in X.

For y*::( y*\ e D(A®) and x=/ x\€D(A), we have

7*) (5 )

{x, A*y*)={Ax, y*>:<<——2ax+‘(1—a2)é’> s (y*>>

3 7*
) i)
¢/ \l—a, y*5>+7*

=<x,< —2ay* )> .
d—a?, y*¥>+7*

We see that DAYDEKX R, where K={y*eLy; ay*€L.}. The set K is a
strongly dense sublattice of L, as is seen in Case 8) of Proposition 2. Therefore
any non-negative element of Y*=L,x R is w*-approximated by non-negative
elements of KX R. Hence the condition () is satisfied.
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The set Zax is o(X*, D(A))-closed as will be seen in Lemma 6. Therefore
Va=Z4 by Proposition 1.
As is seen above, xo¥€ Va=Z4+ Hence xo*==A*2* for some non-negative
20*:(20*)6 DAY Y*=Ly,<R. We have, for any x:( x)e D(4),
Io* &

—dfla : x)=<x, x*>=Lx, A*A*>

") (o)
& <1*~£l2, 20*)‘*"10*

=5, —2a20"> +((L—a, 2S+LME .

Hence —df(a: x)=<{—2azx, 2*> and {1—a? 2*>=0.
In case where p=-co0, we can apply the same argument as above by
replacing ¥ by L:xR. The domain D(A*) coincides with ¥*.

LEMMA 5. Let a, x, & and < be real numbers satisfying the following
inequalities: 1—at=0, —2ax+(1—a?)5=0, 620 and 0=e=1/(A+E+(x)).  Then
we have 1—(a-+ex)*=0.

Proof. If x>0and a<(1+8)/(A-+E+]x]), then 1 —a—ex=1—(1+48)/(1-+E-+|x])
— x| /(1+E-+]x))=0, and 1-+a+ex=0, which proves 1—(a+ex)*=0.

If x>0 and e=(1+&)/(1+E+xD), then 1—ag—ex={1—a*—ex(l+a)}/(l+a)
={2ax/(1+8)—2x/(1+E+ DA+ @) = 2%/ A+ &+ x]) —2x/(1+E4 2}/ (1 +a) =0 and
1+4a+ex=0. Case when £<0 can be reduced to the above, since —x>0 and
—2(—a)(—x)+{1—(—a)?}=0.

LEMMA 6. We denote LixR by X. Let Y be Ly*xX R in case 1<p<~+0o0
and Lix R in case p=-+oco. We define an operator A as in the proof of the
second statement of Proposition 3 with essentially bounded a.

If avv e Ly, then Zax is o(X*, D(A))-closed.

Proof. Let x;*= A*( yz*) € Zy+ converge to XxX.*= (xw*) € X* in the o(X*,
vl* ok

D(A))-topology. In other words,

EQQ

Lx, —2ay7*>—{x, x.*> for any x€ L., ,
l—a?, y7¥>+mF—ba*

As x..* vanishes on the complement of S={¢:a(f)0}, xw*z——Zayw* for yo*=
—271g-Vg, % We can easily see that 0=<y.*€ L,. (Cf. Case 10) of Theorem).
Suppose £.4< {1 —a%, ¥=*>. The right-hand side is equal to I, yJ}—-lian a?,

¥, since {a?, yi*{=<{—al2, —2ay:*>.
For xy=—(a"2/2)%o-t 12 € L, liﬁn et sy, Y75 =Ii1m Lxn, 2750 =EN, K™D

=Lt~ gm0 Yo
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The last term converges to <1, y.*» as N—-+co. Hence for large N, we have

EH < a1 20y, ,\’m*>‘”li§n lad, yi¥>
=lUmdy a1 e v, Y1750 —Hm @, yi*
4 i
<lim <{1—a?, v:*>
A
<Hm {1 —a?, i =%,
2

which is a contradiction. Thus &.%=/1—a?, y.*>. Putting n.*=&*—<1—a?,
¥.>=0, we have x&“:A*( y*)
et
REMARE. A direct calculation leads to a finer result. That is, if I'f(a) € Ly,
then e L, To see this, we prove.

LEMMA 7. Assume that Vfla)e L,. Then, Ffa)®)=0 for almost all t where
la®)]#=1. FAQD=0 for almost all t where a(f)y=1. FAa)H)Z0 for almost all ¢
where a(t)=—1.

Proof. Let J.={t:la(®|=1—1/n}). For any measurable set I'C/. and
0<e<1/n, glatsyr)=0. Therefore df{a : £yr)=<Ffl@), £xr>=0, which implies
that Ffla)=0 a.e. on Ju.

Let J=I{t:a(®=1}. For any measurable set I"C Jand 0<s<1, gla~—sxr)=0.
Therefore fla : —yr)=<Ffla@), —xr>=0, which implies that Ff(@)=0 a.e. on J.

Put 27O =Ff@(®)/(2a®) for t such that a(®+0 and put 2*(#=0 for ¢
where a()=0. By above Lemma, 4o* is non-negative and belongs to L,. It is
easy to see that 4o* is a unique function that satisfies the relations in Proposi-
tion 3.
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